Göm meny

Abstract



Driving Cycle Generation Using Statistical Analysis and Markov Chains


A driving cycle is a velocity profile over time. Driving cycles can be used for environmental classification of cars and to evaluate vehicle performance. The benefit by using stochastic driving cycles instead of predefined driving cycles, i.e. the New European Driving Cycle, is for instance that the risk of cycle beating is reduced. Different methods to generate stochastic driving cycles based on real-world data have been used around the world, but the representativeness of the generated driving cycles has been difficult to ensure. The possibility to generate stochastic driving cycles that captures specific features from a set of real-world driving cycles is studied. Data from more than 500 real-world trips has been processed and categorized. The driving cycles are merged into several transition probability matrices (TPMs), where each element corresponds to a specific state defined by its velocity and acceleration. The TPMs are used with Markov chain theory to generate stochastic driving cycles. The driving cycles are validated using percentile limits on a set of characteristic variables, that are obtained from statistical analysis of real-world driving cycles. The distribution of the generated driving cycles is investigated and compared to real-world driving cycles distribution. The generated driving cycles proves to represent the original set of real-world driving cycles in terms of key variables determined through statistical analysis. Four different methods are used to determine which statistical variables that describes the features of the provided driving cycles. Two of the methods uses regression analysis. Hierarchical clustering of statistical variables is proposed as a third alternative, and the last method combines the cluster analysis with the regression analysis. The entire process is automated and a graphical user interface is developed in Matlab to facilitate the use of the software.

Emil Torp and Patrik Önnegren

2013

Download Article (pdf-file)Show BibTeX entry

Informationsansvarig: webmaster
Senast uppdaterad: 2021-11-10