Lecture 1 - Simulation of differential-algebraic equations

$D A E$ models and differential index

Erik Frisk

erik.frisk@.liu.se

Department of Electrical Engineering
Linköping University
February 2, 2022

UNKÖPING

Outline of the DAE module, lectures

1) Basic properties

- principles
- differences between ODE:s and DAE:s
- differential index

2) Simulation methods

- principal problems with high index problems
- simulation of low-index problems
- index reduction techniques

3) Adjoint sensitivity analysis, numerical code, and Modelica, simulation of object-oriented models
4) Modelica continued

- Simulation of Modelica models, structural analysis
- index reduction using dummy-derivatives

What this part of the course is (hopefully):

- Understand what a DAE is, characteristics, and structure
- Understand why they are useful
- Understand why they are (sometimes) more difficult to simulate than an ODE
- Understand the origins of the difficulties and how to detect them
- Know how and when one can expect your favourite solver for ODE:s to work well also for DAE:s
- How to simulate models described in object orients languages, like Modelica

What this part is not:

- detailed derivations and analysis of specific methods for simulation of DAE:s

Outline

- Introduction to differential-algebraic models
- Briefly; solution to differential-algebraic equations
- Illustrative example in three acts
- Differential index
- Initial conditions
- Simulation of DAE:s with low index
- Implicit and semi-explicit forms

ODE

A system of ordinary differential equations

$$
\frac{d}{d t} x(t)=f(t, x(t)), \quad x(0)=x_{0}
$$

where $x(t) \in \mathbb{R}^{n}$ and $f: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
A mathematically, and numerically, convenient representation of a dynamical system.

DAE

A general DAE formulation instead

$$
F\left(\frac{d}{d t} x(t), x(t), t\right)=0, \quad x(0)=x_{0}, \dot{x}(0)=\dot{x}_{0}
$$

where $x(t) \in \mathbb{R}^{n}$ and $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$.

Algebraic vs dynamic vs. state variables

In an ODE

$$
\dot{x}(t)=f(t, x(t))
$$

the state is x but for a DAE

$$
F(\dot{x}(t), x(t), t)=0, \quad x(0)=x_{0}, \dot{x}(0)=\dot{x}_{0}
$$

x is not exactly the state. It includes the state, but there are typically more variables than state-variables.

For that reason, it is sometimes beneficial to write a DAE as

$$
F(\dot{x}(t), x(t), y(t), t)=0
$$

where $x(t)$ are the dynamic variables and $y(t)$ the algebraic variables. Again: Note that $x(t)$ not necessarily is the state here (more later).

Why DAE?

- Object oriented modelling
- Basic physics
- structure and numerics
- Invariants
- Simplification of an ODE, e.g., assume a physical connection is stiff instead of flexible. Can result in a DAE that is much simple to solve than the original ODE
- Singular perturbation problems (SPP)
- Inverse problems, given $y(t)$, simulate corresponding u
- Many names: singular, implicit, descriptor, generalized state-space, non-causal, semi-state, ...

A simple electrical circuit

$$
u_{0}=f(t)
$$

10 equation in 10 unknown
$\left(u_{0}, u_{1}, u_{2}, u_{L}, u_{C}, i_{0}, i_{1}, i_{2}, i_{L}, i_{C}\right)$

```
model Circuit
    import Modelica.Electrical.Analog.Basic.*;
    import Modelica.Electrical.Analog.Sources.*;
    Resistor R1;
    Resistor R2;
    Capacitor C;
    Inductor L;
    Ground G;
    SineVoltage src;
equation
    connect(G.p, src.n);
    connect(src.p, R1.p);
    connect(src.p, L.p);
    connect(R1.n, R2.p);
    connect(R1.n,C.p);
    connect(L.n, R2.n);
    connect(L.n, C.n);
    connect(C.n, G.p);
end Circuit;
```

```
R1.R * R1.i = R1.v;
R1.v = R1.p.v - R1.n.v;
0.0 = R1.p.i + R1.n.i;
R1.i = R1.p.i;
R2.R * R2.i = R2.v;
R2.v = R2.p.v - R2.n.v;
0.0 = R2.p.i + R2.n.i;
R2.i = R2.p.i;
C.i = C.C * der(C.v);
C.v = C.p.v - C.n.v;
0.O = C.p.i + C.n.i;
C.i = C.p.i;
L.L * der(L.i) = L.v;
L.v = L.p.v - L.n.v;
0.0 = L.p.i + L.n.i;
L.i = L.p.i;
G.p.v = 0.0;
```

src.signalSource.y = sin();
src. $\mathrm{v}=$ src.signalSource. y ; src.v = src.p.v - src.n.v;
0.0 = src.p.i + src.n.i;
src.i $=$ src.p.i;
L.n.i + R2.n.i + C.n.i + G.p.i

+ src.n.i $=0.0$;
L.n.v $=$ R2.n.v
R2.n.v = C.n.v
C.n.v = G.p.v;
G.p.v = src.n.v
R1.n.i + R2.p.i + C.p.i $=0.0$
R1.n.v = R2.p.v
R2.p.v = C.p.v;
src.p.i + R1.p.i + L.p.i $=0.0$;
src.p.v $=$ R1.p.v;
R1.p.v = L.p.v;

Differential-algebraic models

A general DAE in the form

$$
F(\dot{y}, y, t)=0
$$

is kind of similar to an ODE

$$
\dot{y}=f(y, t)
$$

How big difference could there be?
Why not apply, e.g., an Euler-forward/backward

$$
F\left(\frac{y_{t}-y_{t-h}}{h}, y_{t-h}, t-h\right)=0, \quad F\left(\frac{y_{t}-y_{t-h}}{h}, y_{t}, t\right)=0
$$

and solve for y_{t} ?
Unfortunately, it is not that simple! (in general)(but sometimes!)

A simple case

Assume a DAE

$$
\begin{aligned}
\dot{x} & =f(x, y, t) \\
0 & =g(x, y, t)
\end{aligned}
$$

If you can solve for y in the second equation $y=g^{-1}(x, t)$, you'll have an ODE

$$
\dot{x}=f\left(x, g^{-1}(x, t), t\right)
$$

Loss of structure when transforming into an ODE (rem. the simple circuit).
As on last slide, apply Euler-backwards directly?

$$
F\left(y_{n},\left(y_{n}-y_{n-1}\right) / h, t_{n}\right)=0
$$

But ... what happens with the mathematically well formulated model

$$
\begin{aligned}
\dot{x} & =f(x, y, t) \\
0 & =g(x, t)
\end{aligned}
$$

A general DAE

$$
F(y, \dot{y}, t)=0
$$

is pretty similar to an ODE

$$
\dot{y}=f(y, t)
$$

What is the difference? When can an ODE solver work also for DAE:s?

Answer: Sometimes

This first lecture deals with these differences, characteristics of DAE:s and when ODE methods can be directly applied

Next time more on how to simulate DAE:s and how to transform them into a form suitable for an ODE solver.

Outline

- Introduction to differential-algebraic models
- Briefly; solution to differential-algebraic equations
- Illustrative example in three acts
- Differential index
- Initial conditions
- Simulation of DAE:s with low index
- Implicit and semi-explicit forms

The DAE below can easily be tranformed into an ODE

$$
\begin{aligned}
\dot{x}(t) & =-x(t)+y(t) \\
0 & =x(t)+y(t)-u(t)
\end{aligned}
$$

but for illustration, a directly applied backward Euler gives

$$
\begin{aligned}
\frac{x_{t+1}-x_{t}}{h} & =-x_{t+1}+y_{t+1} \\
0 & =x_{t+1}+y_{t+1}-u_{t+1}
\end{aligned}
$$

which can be solved numerically, or analytically as

$$
\binom{x_{t+1}}{y_{t+1}}=\frac{1}{1+2 h}\binom{x_{t}+h u_{t+1}}{-x_{t}+(1+h) u_{t+1}}
$$

$D A E$ and $O D E$

$$
\dot{y}(t)=z(t)
$$

- Integration, gives smoother solutions; differentiation gives more non-smooth solutions.
- Differentiation is "simpler" than integration analytically; numerically it is the other way around
- ODE - pure integration

DAE - mix between integration and differentiation

Assume a DAE

$$
\begin{aligned}
z_{1} & =g(t) \\
\dot{z}_{1} & =z_{2}
\end{aligned}
$$

You can easily see that it is not direct to numerically derive solutions $\left(z_{1}(t), z_{2}(t)\right)$ if the function $g(t)$ has discontinouties.
For ODE:s the situation is more simple

$$
\dot{x}=f(x, t)
$$

Implicit ODE

$$
F(y, \dot{y}, t)=0, \quad F_{y^{\prime}} \text { invertible }
$$

Linear time-invariant DAE

$$
E \dot{y}=A y, E \text { singular }
$$

Semi-explicit DAE

$$
\begin{aligned}
\dot{x} & =f(x, y, t) \\
0 & =g(x, y, t)
\end{aligned}
$$

Solvability

A linear and time-invariant DAE

$$
A \dot{y}+B y=f(t)
$$

is solvable if and only if $\lambda A+B$ has full rank for any $\lambda \in \mathbb{C}$ (think Laplace-transform) for a smooth $f(t)$.

$$
(s A+B) Y(s)=F(s)
$$

However, the DAE

$$
\left[\begin{array}{cc}
-t & t^{2} \\
-1 & t
\end{array}\right] \frac{d}{d t} y+y=0
$$

is not solvable on the interval $t>0$ in spite of $|\lambda A(t)+B(t)| \equiv 1$.
Something to think about at home: figure out why. Hint: uniqueness.
That this is a DAE and not an (implicit) ODE is due to

$$
\operatorname{det} A(t) \equiv 0
$$

Characterizing solvability and solutions for time-variable DAE:s complex

A semi-explicit DAE

$$
\begin{aligned}
\dot{x}_{1} & =f_{1}\left(x_{1}, x_{2}, t\right) \\
0 & =f_{2}\left(x_{1}, x_{2}, t\right)
\end{aligned}
$$

is similar to the stiff ODE (ϵ small)

$$
\begin{aligned}
\dot{x}_{1} & =f_{1}\left(x_{1}, x_{2}, t\right) \\
\epsilon \dot{x}_{2} & =f_{2}\left(x_{1}, x_{2}, t\right)
\end{aligned}
$$

- similarities
- differences
- when do ODE methods work for DAE:s?
- In this presentation, I will for simplicity mainly illustrate using one-step Euler-backwards
- Introduction to differential-algebraic models
- Briefly; solution to differential-algebraic equations
- Illustrative example in three acts
- Differential index
- Initial conditions
- Simulation of DAE:s with low index
- Implicit and semi-explicit forms

Reformulate equations into computational form

$$
\begin{aligned}
u_{0} & =f(t) \\
u_{1} & =R_{1} i_{1} \\
u_{2} & =R_{2} i_{2} \\
i_{C} & =C \frac{d u_{C}}{d t} \\
u_{L} & =L \frac{d i_{L}}{d t} \\
i_{0} & =i_{1}+i_{L} \\
i_{1} & =i_{2}+i_{C} \\
u_{0} & =u_{1}+u_{C} \\
u_{L} & =u_{1}+u_{2} \\
u_{C} & =u_{2}
\end{aligned}
$$

$e_{10}: u_{2}:=u_{C}$
$e_{1}: u_{0}=f(t)$
$e_{2}: u_{1}=R_{1} i_{1}$
$e_{3}: u_{2}=R_{2} i_{2}$
$e_{4}: i_{C}=C \frac{d u_{c}}{d t}$
$e_{5}: u_{L}=L \frac{d i_{L}}{d t}$
$e_{6}: i_{0}=i_{1}+i_{L}$
$e_{7}: i_{1}=i_{2}+i_{C}$
$e_{8}: u_{0}=u_{1}+u_{C}$
$e_{9}: u_{L}=u_{1}+u_{2}$
$e_{10}: u_{C}=u_{2}$
$e_{3}: i_{2}:=\frac{1}{R_{2}} u_{2}$
$e_{1}: u_{0}:=f(t)$
$e_{8}: u_{1}:=u_{0}-u_{C}$
$e_{9}: u_{L}:=u_{1}+u_{2}$
$e_{2}: i_{1}:=\frac{1}{R_{1}} u_{1}$
$e_{7}: i_{C}:=i_{1}-i_{2}$
$e_{6}: i_{0}:=i_{1}+i_{L}$
$e_{4}: \frac{d u_{c}}{d t}=\frac{1}{C} i_{C}$
$e_{5}: \frac{d i_{L}}{d t}=\frac{1}{L} u_{L}$

The simple circuit model, act 1

$x_{1}=\left(u_{c}, i_{L}\right), x_{2}=\left(u_{2}, i_{2}, u_{0}, u_{1}, u_{L}, i_{1}, i_{C}, i_{0}\right)$

$$
\begin{aligned}
u_{0} & =f(t) \\
u_{1} & =R_{1} i_{1} \\
u_{2} & =R_{2} i_{2} \\
u_{3} & =R_{3} i_{3} \\
u_{L} & =L \frac{d i_{L}}{d t} \\
i_{0} & =i_{1}+i_{L} \\
i_{1} & =i_{2}+i_{3} \\
u_{0} & =u_{1}+u_{3} \\
u_{L} & =u_{1}+u_{2} \\
u_{3} & =u_{2}
\end{aligned}
$$

Reformulate equations into computational form

$$
\begin{aligned}
& \frac{d i_{L}}{d t}=\frac{1}{L} u_{L} \\
& u_{0}:=f(t)
\end{aligned}
$$

Solve for $\left\{u_{1}, u_{2}, u_{3}, i_{1}, i_{2}, i_{3}\right\}$ in (6 unknowns, 6 equations)

$$
\begin{gathered}
\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right):=\frac{1}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}}\left(\begin{array}{c}
R_{1}\left(R_{2}+R_{3}\right) \\
R_{2} R_{3} \\
R_{2} R_{3} \\
R_{2}+R_{3} \\
R_{3} \\
R_{2}
\end{array}\right) u_{0} \\
i_{0}:=i_{1}+i_{L} \\
u_{L}:=u_{1}+u_{2}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d i_{L}}{d t}=\frac{1}{L} u_{L} \\
& u_{0}:=f(t)
\end{aligned}
$$

Solve for $\left\{u_{1}, u_{2}, u_{3}, i_{1}, i_{2}, i_{3}\right\}$ in (6 unknowns, 6 equations)

$$
\begin{aligned}
u_{1} & =R_{1} i_{1} \\
u_{2} & =R_{2} i_{2} \\
u_{3} & =R_{3} i_{3} \\
i_{1} & =i_{2}+i_{3} \\
u_{0} & =u_{1}+u_{3} \\
u_{3} & =u_{2} \\
i_{0} & :=i_{1}+i_{L} \\
u_{L} & :=u_{1}+u_{2}
\end{aligned}
$$

$$
\begin{aligned}
u_{0} & =f(t) \\
u_{1} & =R_{1} i_{1} \\
u_{2} & =R_{2} i_{2} \\
i_{C} & =C \frac{d u_{C}}{d t} \\
u_{L} & =L \frac{d i_{L}}{d t} \\
i_{0} & =i_{1}+i_{C} \\
i_{1} & =i_{2}+i_{L} \\
u_{0} & =u_{1}+u_{L} \\
u_{C} & =u_{1}+u_{2} \\
u_{L} & =u_{2}
\end{aligned}
$$

$$
x_{1}=\left(u_{C}, i_{L}\right), x_{2}=\left(u_{2}, i_{2}, u_{0}, u_{1}, u_{L}, i_{1}, i_{C}, i_{0}\right)
$$

It is not possible to, in the same way as before, to obtain a computational form. If you write the model in the form

$$
\begin{aligned}
\dot{x}_{1} & =g\left(x_{1}, x_{2}\right) \\
0 & =h\left(x_{1}, x_{2}\right)
\end{aligned}
$$

where $x_{1}=\left(u_{C}, i_{L}\right)$ och $x_{2}=\left(u_{0}, u_{1}, u_{2}, u_{L}, i_{0}, i_{1}, i_{2}, i_{C}\right)$. Then

$$
\operatorname{rank} h_{x_{2}}=\operatorname{rank} \frac{\partial h\left(x_{1}, x_{2}\right)}{\partial x_{2}}=
$$

$$
=\operatorname{rank}\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -R 1 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & -R 2 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0
\end{array}\right)=7<8
$$

- Act 1: simple, very similar to an ODE
- Act 2: bit more difficult, took some algebra but we were OK
- Act 3: significantly more difficult

The difference between these three acts were changes in components.
Important: All three are mathematically well formed models!

A main property that separates them is: differential index

Transfer functions for model 2

The three models are linear, i.e., we can compute the transfer functions to show what is happening.

$$
\begin{aligned}
i_{L} & =\frac{1}{s} f, & u_{2} & =\frac{R_{2} R_{3}}{R_{2} R_{3}+R_{1}\left(R_{2}+R_{3}\right)} f \\
u_{L} & =f, & i_{3} & =\frac{R_{2}}{R_{2} R_{3}+R_{1}\left(R_{2}+R_{3}\right)} f \\
i_{1} & =\frac{R_{2}+R_{3}}{R_{2} R_{3}+R_{1}\left(R_{2}+R_{3}\right)} f, & u_{3} & =\frac{R_{2} R_{3}}{R_{2} R_{3}+R_{1}\left(R_{2}+R_{3}\right)} f \\
u_{1} & =\frac{R_{1}\left(R_{2}+R_{3}\right)}{R_{2} R_{3}+R_{1}\left(R_{2}+R_{3}\right)} f, & u_{0} & =f \\
i_{2} & =\frac{R_{3}}{R_{2} R_{3}+R_{1}\left(R_{2}+R_{3}\right)} f, & i_{0} & =\frac{R_{1}\left(R_{2}+R_{3}\right)+s L R_{3}+R_{2}\left(R_{3}+s L\right)}{s L(R 2 R 3+R 1(R 2+R 3))} f
\end{aligned}
$$

The three models are linear, i.e., we can compute the transfer functions to show what is happening.

$$
\begin{aligned}
u_{C} & =f, & u_{L} & =\frac{s L R_{2}}{R_{1} R_{2}+s L\left(R_{1}+R_{2}\right)} f \\
i_{L} & =\frac{R_{2}}{R_{1} R_{2}+s L\left(R_{1}+R_{2}\right)} f, & i_{C} & =s C f \\
u_{0} & =f, & i_{0} & =\frac{R_{2}+s C R_{2}\left(R_{1}+s L\right)+s L\left(1+s C R_{1}\right)}{s L R_{2}+R_{1}\left(R_{2}+s L\right)} f \\
u_{1} & =\frac{R_{1}\left(R_{2}+s L\right)}{s L R_{2}+R_{1}\left(R_{2}+s L\right)} f, & i_{1} & =\frac{R_{2}+s L}{s L R_{2}+R_{1}\left(R_{2}+s L\right)} f \\
u_{2} & =\frac{s L R_{2}}{R_{1} R_{2}+s L\left(R_{1}+R_{2}\right)} f, & i_{2} & =\frac{s L}{R_{1} R_{2}+s L\left(R_{1}+R_{2}\right)} f
\end{aligned}
$$

- Introduction to differential-algebraic models
- Briefly; solution to differential-algebraic equations
- Illustrative example in three acts
- Differential index
- Initial conditions
- Simulation of DAE:s with low index
- Implicit and semi-explicit forms

(Differential-) Index

A DAE is almost an ODE, just need some differentiation

$$
\begin{aligned}
\dot{x} & =f(x, y) \\
0 & =g(x, y)
\end{aligned}
$$

Differentiate the second equation

$$
0=g_{x} \dot{x}+g_{y} \dot{y}=g_{x} f+g_{y} \dot{y}
$$

If g_{y}^{-1} exists we can rewrite as

$$
\begin{aligned}
& \dot{x}=f(x, y) \\
& \dot{y}=-g_{y}^{-1} g_{x} f
\end{aligned}
$$

Comments: solutions sets, equivalence.

$$
F(t, y, \dot{y})=0
$$

Definition

The minimum number of times the DAE has to be differentiated with respect to t to be able to determine \dot{y} as a function of t och y is called the (differential-) index of the DAE.

- index might be solution dependent, uniform index
- There are several types of index, the above is called differential index.
- Perturbation index
- variants of the above (see paper)

Anyhow: index is a measure how far from an ODE the DAE is.

Sufficient condition for index

$$
\begin{aligned}
F(y, \dot{y}) & =0 \\
\frac{d}{d t} F(y, \dot{y}) & =0
\end{aligned}
$$

$$
\frac{d^{j-1}}{d t^{j-1}} F(y, \dot{y})=0
$$

which can be collected to $\mathbf{F}_{j}\left(t, y, \mathbf{y}_{j}\right)=0$. Algebraicly $\mathbf{F}_{j}\left(t, y, \mathbf{y}_{j}\right)=0$ consists of $n j$ equations in $n j+n$ unknown variables.
A sufficient condition for \dot{y} is a unique function (locally) if t and y is that

$$
\frac{\partial \mathbf{F}_{j}}{\partial \mathbf{y}_{j}}
$$

is 1 -full column rank
DAE:n has index no larger than v if $\partial \mathbf{F}_{v+1} / \partial \mathbf{y}_{v+1}$ has 1-full rank and $\mathbf{F}_{v+1}=0$ is consistent.

$$
E \dot{x}=J x+K u
$$

Then there exists a non-singular matrix P and a change of variables $z=Q x$ such that

$$
\left(\begin{array}{ll}
l & 0 \\
0 & N
\end{array}\right)\binom{\dot{z}_{1}}{\dot{z}_{2}}=\left(\begin{array}{ll}
A & 0 \\
0 & I
\end{array}\right)\binom{z_{1}}{z_{2}}+\binom{B}{D} u
$$

Where matrix N is nilpotent, i.e., there is an integer m such that $N^{i} \neq 0$ for $i<m$ and $N^{m}=0$.
A simple algebra exercise gives that the solution to the DAE is

$$
\begin{aligned}
& \dot{z}_{1}=A z_{1}+B u \\
& z_{2}=-\sum_{i=0}^{m-1} N^{i} D u^{(i)}
\end{aligned}
$$

How is the degree of nilpotency m related to the index? Transfer function, how does it relate to the degrees of numerators and denominators?

1-full rank

When has the equation

$$
\left(\begin{array}{ll}
A_{1} & A_{2}
\end{array}\right)\binom{x_{1}}{x_{2}}=b
$$

a unique solution for x_{1} ?
Unique x_{1} solution if and only if

$$
\operatorname{rang} A=n_{1}+\operatorname{rang} A_{2}
$$

Example:

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=b
$$

Now, back to the last slide, what does 1-full rank mean there?

- ODE

$$
\dot{y}=f(y, t)
$$

- Hessenberg index 1 /semi-explicit index 1

$$
\begin{aligned}
& \dot{x}=f(x, z, t) \\
& 0=g(x, z, t), \quad g_{z} \text { nonsingular for all } t
\end{aligned}
$$

- Hessenberg index 2

$$
\begin{aligned}
\dot{x} & =f(x, z, t) \\
0 & =g(x, t), \quad g_{x} f_{z} \text { nonsingular for all } t
\end{aligned}
$$

Our index 2 equation, all algebraic variables are "index 2 " variables.
The remainder of the lecture will introduce some important differences between ODE:s and DAE:s from a simulation perspective. We will come back to these in detail in upcoming lectures.

1 Initial conditions
$2 a$ Simulation of equations with index 0 and 1
$2 b$ Simulation of equations with index ≥ 2

Outline

- Introduction to differential-algebraic models
- Briefly; solution to differential-algebraic equations
- Illustrative example in three acts
- Differential index
- Initial conditions
- Simulation of DAE:s with low index
- Implicit and semi-explicit forms

Bullet 1: Initial conditions

For the DAE

$$
F(t, y(t), \dot{y}(t))=0
$$

is it sufficient that the initial conditions $y(0)$ and $\dot{y}(0)$ satisfies

$$
F(0, y(0), \dot{y}(0))=0 ?
$$

Remember the model thaht had no degrees of freedom

$$
\begin{aligned}
\dot{x}_{1}+x_{2}+x_{3} & =f_{1} \\
\dot{x}_{2}+x_{1} & =f_{2} \\
x_{2} & =f_{3}
\end{aligned}
$$

- Index and "hidden" conditions
- Methods to determine consistent initial conditions
- Pantelides algorithm

Initial conditions, cont.

What degress of freedom do we have for the initial condition? In the equations

$$
\begin{aligned}
\dot{x}_{1}+x_{2}+x_{3} & =f_{1} \\
\dot{x}_{2}+x_{1} & =f_{2} \\
x_{2} & =f_{3}
\end{aligned}
$$

there is no freedom at all and the solution was uniquely determined (in the class of smooth functions) directly by the equations.
If we have m equations/variables, it holds that the degrees of freedom / that $0 \leq I \leq m$ and it is not trivial to find consistent initial conditions.

$$
\begin{aligned}
\dot{x} & =f(x, y) \\
0 & =g(x, y)
\end{aligned}
$$

Pantelides algorithm

We will come back to a possible solution later

Outline

Bullet 2a: Index 1 "as easy" as ODE

Will come back to this, but the basic principle is easily illustrated.
Assume a semi-explicit DAE in the form

$$
\begin{aligned}
\dot{x}_{1} & =f_{1}\left(x_{1}, x_{2}, t\right) \\
0 & =f_{2}\left(x_{1}, x_{2}, t\right)
\end{aligned}
$$

with index 1. Then,

$$
\frac{\partial f_{2}}{\partial x_{2}}
$$

has full column rank and it exists a (local) inverse w.r.t. x_{2}.
The algebraic variable can then be inserted in the dynamic equation resulting in an ODE which can be solved using any standard ODE method.

```
```

- Introduction to differential-algebraic models

```
```

- Introduction to differential-algebraic models
- Briefly; solution to differential-algebraic equations
- Briefly; solution to differential-algebraic equations
- Illustrative example in three acts
- Illustrative example in three acts
- Differential index
- Differential index
- Initial conditions
- Initial conditions
- Simulation of DAE:s with low index
- Simulation of DAE:s with low index
- Implicit and semi-explicit forms

```
```

- Implicit and semi-explicit forms

```
```

Bullet 2a: Index 1 "as easy" as ODE, cont.

Consider an implicit index 1 DAE

$$
F(\dot{x}, x, t)=0
$$

Apply a basic implicit Euler backward

$$
F\left(\frac{x_{t}-x_{t-1}}{h_{t}}, x_{t}, t\right)=0
$$

and solve numerically for x_{t}. Index 1 property ensures that a solution exists.

Important note: Procedure no different than implicit Euler for ODE:s.

One conclusion: BDF and other typical implicit solvers will work approximately the same for DAE:s of index 1 as for ODE:s.

There are practical differences though, see Hairer/Wanner and the following papers for further details

- Petzold, "Differential/algebraic equations are not ODEs"
- Brenan, Campbell and Petzold Petzold, "Numerical Solution of Initial-Value Problems in Differential Algebraic Equations"

Equations you, generally, can solve using basic ODE methodology is

- Index 1 DAE:s (more to follow)
- Linear DAE:s with constant coefficients of any index (kind of)

$$
A \dot{y}+B y=f
$$

Will not pursue this here. More details in "ODE methods for the solution of differential/algebraic systems".

- For index >1, direct ODE methodology does not work at all. We need new techniques and index reduction is one possibility we will discuss a lot in upcoming lectures.

Outline

- Introduction to differential-algebraic models
- Briefly; solution to differential-algebraic equations
- Illustrative example in three acts
- Differential index
- Initial conditions
- Simulation of DAE:s with low index
- Implicit and semi-explicit forms

Implicit and semi-explicit forms

A fully implicit DAE

$$
F(\dot{x}, x)=0
$$

can always be rewritten as a semi-explicit DAE by introducing a new variable x^{\prime} (algebraic, should not be confused with \dot{x})

$$
\begin{aligned}
\dot{x} & =x^{\prime} \\
F\left(x^{\prime}, x\right) & =0
\end{aligned}
$$

Q
 Does this mean that we can forget about implicit forms and focus on semi-explicit?

An implicit example

Consider the implicit index-1 DAE

$$
\begin{aligned}
& e_{1}: \dot{x}_{1}+\dot{x}_{2}=u_{1} \\
& e_{2}: x_{1}-x_{2}=u_{2}
\end{aligned}
$$

From equations $\left(e_{1}, e_{2}, \dot{e}_{2}\right)$ we can solve for the highest derivatives.
Transform the DAE into a semi-explicit DAE by introducing x_{1}^{\prime} and x_{2}^{\prime}

$$
\begin{aligned}
& e_{1}: x_{1}^{\prime}+x_{2}^{\prime}=u_{1} \\
& e_{2}: x_{1}-x_{2}=u_{2} \\
& e_{3}: \frac{d}{d t} x_{1}=x_{1}^{\prime} \\
& e_{4}: \frac{d}{d t} x_{2}=x_{2}^{\prime}
\end{aligned}
$$

An implicit example, cont'd

Turns out that

$$
\begin{aligned}
& e_{1}: x_{1}^{\prime}+x_{2}^{\prime}=u_{1} \\
& e_{2}: x_{1}-x_{2}=u_{2} \\
& e_{3}: \frac{d}{d t} x_{1}=x_{1}^{\prime} \\
& e_{4}: \frac{d}{d t} x_{2}=x_{2}^{\prime}
\end{aligned}
$$

has index 2.
Assignment: Verify that you need ($e_{1}, \dot{e}_{1}, e_{2}, \dot{e}_{2}, e_{3}, \dot{e}_{3}, e_{4}, \dot{e}_{4}, \ddot{e}_{4}$) to be able to solve for highest derivatives.

Rule of thumb

Going from fully implicit to semi-explicit increases index by 1

Lecture 1 - Simulation of differential-algebraic equations $D A E$ models and differential index

Erik Frisk

erik.frisk@.liu.se

Department of Electrical Engineering
Linköping University
February 2, 2022

\square LINKÖPING UNIVERSITY

