Lecture 2 - Simulation of differential-algebraic equations
Simulation of $D A E$ models and index reduction

Erik Frisk

erik.frisk@liu.se
Department of Electrical Engineering
Linköping University
February 8, 2022

LINKÖPING
UNIVERSITY

$$
x_{1}=\left(u_{C}, i_{L}\right), x_{2}=\left(u_{2}, i_{2}, u_{0}, u_{1}, u_{L}, i_{1}, i_{C}, i_{0}\right)
$$

$e_{1}: u_{0}=f(t)$
$e_{2}: u_{1}=R_{1} i_{1}$
$e_{3}: u_{2}=R_{2} i_{2}$
$e_{4}: i_{C}=C \frac{d u_{c}}{d t}$
$e_{5}: u_{L}=L \frac{d i_{L}}{d t}$
$e_{6}: i_{0}=i_{1}+i_{L}$
$e_{7}: i_{1}=i_{2}+i_{C}$
$e_{8}: u_{0}=u_{1}+u_{C}$
$e_{9}: u_{L}=u_{1}+u_{2}$
$e_{10}: u_{C}=u_{2}$

Computational form of model
$e_{4}: \frac{d u_{c}}{d t}=\frac{1}{C} i_{C}$
$e_{1}: u_{0}=f(t)$
$e_{2}: u_{1}=R_{1} i_{1}$
$e_{5}: \frac{d i_{L}}{d t}=\frac{1}{L} u_{L}$
$e_{3}: u_{2}=R_{2} i_{2}$
$e_{4}: i_{C}=C \frac{d u_{c}}{d t}$
$e_{10}: u_{2}:=u_{C}$
$e_{5}: u_{L}=L \frac{d i_{L}}{d t}$
$e_{3}: i_{2}:=\frac{1}{R_{2}} u_{2}$
$e_{1}: u_{0}:=f(t)$
$e_{6}: i_{0}=i_{1}+i_{L}$
$e_{7}: i_{1}=i_{2}+i_{C}$
$e_{8}: u_{0}=u_{1}+u_{C}$
$e_{9}: u_{L}=u_{1}+u_{2}$
$e_{10}: u_{C}=u_{2}$
$e_{8}: u_{1}:=u_{0}-u_{C}$
$e_{9}: u_{L}:=u_{1}+u_{2}$
$e_{2}: i_{1}:=\frac{1}{R_{1}} u_{1}$
$e_{7}: i_{C}:=i_{1}-i_{2}$
$e_{6}: i_{0}:=i_{1}+i_{L}$

Simple circuit model, index >1

$x_{1}=\left(u_{C}, i_{L}\right), x_{2}=\left(u_{2}, i_{2}, u_{0}, u_{1}, u_{L}, i_{1}, i_{C}, i_{0}\right)$
$e_{1}: u_{0}=f(t)$
$e_{2}: u_{1}=R_{1} i_{1}$
$e_{3}: u_{2}=R_{2} i_{2}$
$e_{4}: i_{C}=C \frac{d u_{c}}{d t}$
$e_{5}: u_{L}=L \frac{d i_{L}}{d t}$
$e_{6}: i_{0}=i_{1}+i_{C}$
$e_{7}: i_{1}=i_{2}+i_{L}$
$e_{8}: u_{0}=u_{1}+u_{L}$
$e_{9}: u_{C}=u_{1}+u_{2}$
$e_{10}: u_{L}=u_{2}$

$$
F(t, y, \dot{y})=0
$$

Definition

The minimum number of times the DAE has to be differentiated with respect to t to be able to determine \dot{y} as a function of t och y is called the (differential-) index of the DAE.

- index might be solution dependent, uniform index
- There are several types of index, the above is called differential index.
- Perturbation index
- variants of the above (see paper)

Anyhow: index is a measure how far from an ODE the DAE is.

- Simulation of high index DAE:s, key problems
- Simulation of index 1 DAE:s
- State-space method
- ϵ-embedding
- BDF
- Index reduction
- Index reduction by differentiation
- Drift stabilization

Simulation of DAE with index >1

$$
\begin{aligned}
A \dot{y}(t)+B y(t) & =g(t), \text { linear, constant coefficients } \\
A(t) \dot{y}(t)+B(t) y(t) & =g(t), \text { linear, time-varying coefficients } \\
F(\dot{y}, y, t) & =0, \text { general DAE }
\end{aligned}
$$

- Start with a linear DAE with constant coefficients, this is sufficient to illustrate the main reasons why high index problems are difficult
- Consider the index-3 problem

$$
\begin{aligned}
x(t) & =g(t) \\
\dot{x} & =y \\
\dot{y} & =z
\end{aligned}
$$

which has the solution $x(t)=g(t), y(t)=\dot{g}(t)$, and $z(t)=\ddot{g}(t)$.

Backward Euler, fix step length

A backward Euler on the problem gives the equations

$$
\begin{aligned}
& x_{n}=g_{n} \\
& y_{n}=\frac{x_{n}-x_{n-1}}{h} \\
& z_{n}=\frac{y_{n}-y_{n-1}}{h}
\end{aligned}
$$

Direct substitutions of x_{n} and y_{n} give

$$
\begin{aligned}
& x_{n}=g_{n} \\
& y_{n}=\frac{g_{n}-g_{n-1}}{h}=\dot{g}_{n}+\mathcal{O}(h) \\
& z_{n}=\frac{g_{n}-2 g_{n-1}+g_{n-2}}{h^{2}}=\ddot{g}_{n}+\mathcal{O}(h)
\end{aligned}
$$

This looks great!

$$
x\left(t_{n}\right)-x_{n}=0, \quad y\left(t_{n}\right)-y_{n}=\mathcal{O}(h), \quad z\left(t_{n}\right)-z_{n}=\mathcal{O}(h)
$$

Now assume variable step length, i.e., the algorithm becomes

$$
\begin{aligned}
x_{n} & =g_{n} \\
y_{n} & =\frac{x_{n}-x_{n-1}}{h_{n}} \\
z_{n} & =\frac{y_{n}-y_{n-1}}{h_{n}}
\end{aligned}
$$

Now, examining the error in z_{n} we obtain

$$
z_{n}-g_{n}^{\prime \prime}=\cdots=\frac{1}{2}\left(\frac{h_{n-1}}{h_{n}}-1\right) \ddot{g}_{n}+O(h)
$$

This means that the error will diverge(!) with decreasing $h_{n}, O\left(h_{n}^{-1}\right)$ (index >2). The error in y will be $O(1)$ (index 2).

One of the exercises is to show ... in the expression.
Hint: Taylor expansion around $t=t_{n}$.

Linear, non-constant DAE:s

For a DAE

$$
A(t) \dot{y}(t)+B(t) y(t)=g(t)
$$

you can define local index at time t and global index via a transformation to a canonical form by $y(t)=H(t) z(t)$ and $G(t)$ to

$$
G(t) A(t)\left(H^{\prime}(t) z(t)+H(t) \dot{z}(t)\right)+G(t) B(t) H(t) z(t)=G(t) g(t)
$$

such that

$$
G(t) A(t) H(t)=\left[\begin{array}{ll}
1 & 0 \\
0 & E
\end{array}\right], G(t) A(t) H^{\prime}(t)+G(t) B(t) H(t)=\left[\begin{array}{cc}
C(t) & 0 \\
0 & I
\end{array}\right]
$$

where E is nilpotent, i.e., the same canonical form as previously shown for linear, constant, DAE:s

$$
\begin{aligned}
\dot{z}_{1}+C(t) z_{1} & =G_{1}(t) g(t) \\
E \dot{z}_{2}+z_{2} & =G_{2}(t) g(t)
\end{aligned}
$$

$$
\left(P_{n} E Q_{n}\right) z^{\prime}+\left(P_{n} Q_{n}\right) z=P_{n} q_{n}
$$

- If we can transform the DAE, all is well. Then the time variable problem is no more difficult than the time invariant.
- Problem: Finding the transformation matrices is not easy
- What happens if you "go with it" anyway with a fixed step length BDF for a time variable system?

From Gear, Petzold:

If the local index is two, we may have a stability problem depending on how fast the matrices change with time. If the local index is larger than 2, we almost always have a stability problem.
Important to note: Stability problem, not an accuracy problem

Simplify to

$$
(E+h l) Q_{n} z_{n}=E Q_{n} z_{n-1}+h q_{n}
$$

Now, solve for z_{n} according to

$$
z_{n}=Q_{n}^{-1}(E+h l)^{-1} E Q_{n} z_{n-1}+h Q_{n}^{-1}(E+h l)^{-1} q_{n}=S_{n} z_{n-1}+u_{n}
$$

The real solution satisfies

$$
z\left(t_{n}\right)=S_{n} z\left(t_{n-1}\right)+u_{n}-\frac{h^{2}}{2} S_{n} z_{n}^{\prime \prime}(\xi)
$$

With $e_{n}=z_{n}-z\left(t_{n}\right)$ we get the recursion

$$
e_{n}=S_{n} e_{n-1}+\frac{h^{2}}{2} S_{n} z_{n}^{\prime \prime}(\xi)
$$

Now we have a (recursive) expression for the simulation error, time to analyze!
where P_{n} and Q_{n} are time variable transformation matrices and the constant matrix E is in the form $(m=3)$

$$
E=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad E^{m}=0
$$

Apply BDF on the DAE

$$
\left(P_{n} E Q_{n}\right)\left(z_{n}-z_{n-1}\right)+h\left(P_{n} Q_{n}\right) z_{n}=h P_{n} q_{n}
$$

which then can be written as

$$
\left(P_{n} E Q_{n}+h P_{n} Q_{n}\right) z_{n}=P_{n} E Q_{n} z_{n-1}+h P_{n} q_{n}
$$

Expansion of the recursion gives

$$
e_{n}=S_{n} e_{n-1}+\frac{h^{2}}{2} S_{n} z_{n}^{\prime \prime}(\xi)
$$

where we have the explicit expression for the fault

$$
e_{n}=\frac{h^{2}}{2} \sum_{i=1}^{n}\left(\prod_{j=i}^{n} S_{j}\right) z_{i}^{\prime \prime}+\prod_{j=0}^{n} S_{j} e_{0}
$$

Three problems

- $z^{\prime \prime}$ not bounded
- $e_{0} \neq 0$
- S_{j} not bounded

Now we can start answering the questions, why does it work for constant linear DAE:s (no time variable transformations):

$$
S_{n}=S=Q^{-1}(E+h l)^{-1} E Q
$$

Then we have that

$$
S^{k}=Q^{-1}\left((E+h l)^{-1} E\right)^{k} Q
$$

Some basic algebra gives

$$
(E+h l)^{-1} E=\left[\begin{array}{cccccc}
0 & & & & & \\
h^{-1} & & & & & \\
-h^{-2} & & & \ddots & & \\
h^{-3} & & \ddots & & & \\
& \ddots & & & & \\
& & h^{-3} & h^{-2} & h^{-1} & 0
\end{array}\right]
$$

which gives that $S^{m}=0$, i.e., S also is nilpotent of order m, same as E.

Back to the expression

$$
e_{n}=\frac{h^{2}}{2} \sum_{i=1}^{n}\left(\prod_{j=i}^{n} S_{j}\right) z_{i}^{\prime \prime}+\prod_{j=0}^{n} S_{j} e_{0}
$$

Here it is clear that for $n>m$, the second term disappears (that is not influenced by the step length h)

After some thought you can derive the expression

$$
e_{n}=\frac{h^{2}}{2} \sum_{i=0}^{m-2} S^{i+1} z_{n-i}^{\prime \prime}
$$

Here we see why the limit for one step BDF is at index 1 problems (S factors then contains at most h^{-1})

Some conclusions

In the general case there is no methods (to my knowledge) for high index problems in the form

$$
A(t) \dot{y}+B(t) y=g
$$

and even less for

$$
F(t, \dot{y}, y)=0
$$

Though, sometimes, it might work with a BDF with fixed step length.

- Note that we have a stability issue, not accuracy (although this could also happen, more about that next time)
- Thus, it is not a solution to increase the order of the method or taking shorter steps.
- On the contrary, shorter steps might even make the situation worse
- Classes of DAE:s

If
If

$$
\begin{aligned}
& \dot{x}=f(x, y) \\
& 0=g(x, y)
\end{aligned}
$$

$$
F(t, y, \dot{y})=0
$$

has index ν then
has index ν then

$$
\begin{aligned}
\dot{x} & =f(x, \dot{u}) \\
0 & =g(x, \dot{u})
\end{aligned}
$$

$$
\begin{aligned}
\dot{y} & =u \\
0 & =F(t, y, u)
\end{aligned}
$$

$$
\text { index } \nu+1
$$

index $\nu-1$.
Rule of thumb: The semi-explicit case behaves as the general but with a higher index (and vice versa)

Simulation of semi-explicit index 1 DAE:s

- State-space method
- ϵ-embedding
- BDF (DASSL with variants) is a commonly used DAE solver. Can be downloaded online.
Is described in detail in the nice book "Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations" by K.E. Brenan, S.L. Campbell and L.R. Petzold. The book is in our library and I have uploaded the chapter on DASSL on the course web page for the interested.

I will show the basic principles of DASSL at the end of this lecture.

- I can also highly recommend the method descriptions of the SUNDIALs solvers (https://sundials.readthedocs.io/).

```
Simulation of high index DAE:s, key problems
```

```
Simulation of high index DAE:s, key problems
```

- Simulation of index 1 DAE:s
- State-space method
- ϵ-embedding
- BDF

- Index reduction by differentiation
- Drift stahilization
- Drift stahilization
- Index reduction
- Matlab have several solvers for DAE (ode15s, ode15i, ode23t)
- Python has good ODE support in SciPy but no DAE solvers, I use the package ODES https://scikits-odes.readthedocs.io/ which is a wrapper around...
- SUNDIALS (more on the next slide)
- Julia - probably the environment with the most support for numerical integration (but I think less support for DAE) with the package
DifferentialEquations.jl
(https://github.com/SciML/DifferentialEquations.jl)

SUite of Nonlinear and DIfferential/ALgebraic Equation Solvers

Software library consisting of 6 different solvers, written in C.
https://computing.llnl.gov/casc/sundials

- CVODE(S)

Solves IVP for ordinary differential equation (ODE) systems. Includes sensitivity analysis capabilities (forward and adjoint).

- IDA(S)

Solves IVP for differential-algebraic equation (DAE) systems. Includes sensitivity analysis capabilities (forward and adjoint).

- ARKode

Solves IVP ODE problems with additive Runge-Kutta methods, including support for IMEX methods.

- KINSOL
solves nonlinear algebraic systems.
Wrappers in Python exists. Specialized Matlab packages utilizes these solvers. Lots of functionality not available in vanilla Matlab/Python.

State-space method

$$
\begin{aligned}
y^{\prime} & =f(y, z) \\
0 & =g(y, z), \quad g_{z} \text { invertible }
\end{aligned}
$$

Implicit function theorem then gives that there exists (locally) a function $G(y)$ such that

$$
z=G(y)
$$

Substitution into the first equations gives the ODE

$$
y^{\prime}=f(y, G(y))
$$

which can be solved using your method of choice, no new theory. You can even use an explicit solver if you like.
Lose the structure of the problem which might lead to unnecessary numerical difficulties.

Simulation software (a slighlty Julia-centric view)

from https://github.com/SciML/DifferentialEquations.jl

Outline

- Simulation of index 1 DAE:s
- ϵ-embedding
- BDF

```
Index reduction
    - Drift stahilization
```

Write down, for example, a Runge-Kutta for the ODE

$$
y^{\prime}=f(y, z), \quad \epsilon z^{\prime}=g(y, z), \quad g_{z} \text { invertible }
$$

You then get

$$
\begin{aligned}
\left(Y_{n i}-y_{n}\right)_{i=1, \ldots s} & =h A\left(f\left(Y_{n j}, Z_{n j}\right)\right)_{j=1, \ldots, s} \\
\epsilon\left(Z_{n i}-z_{n}\right)_{i=1, \ldots s} & =h A\left(g\left(Y_{n j}, Z_{n j}\right)\right)_{j=1, \ldots, s} \\
y_{n+1} & =y_{n}+h b^{T}\left(f\left(Y_{n j}, Z_{n j}\right)\right)_{j=1, \ldots, s} \\
\epsilon z_{n+1} & =\epsilon z_{n}+h b^{T}\left(g\left(Y_{n j}, Z_{n j}\right)\right)_{j=1, \ldots, s}
\end{aligned}
$$

Assume an implicit method which gives that the A matrix is invertible

$$
h\left(g\left(Y_{n j}, Z_{n j}\right)\right)_{j=1, \ldots, s}=\epsilon A^{-1}\left(Z_{n i}-z_{n}\right)_{i=1, \ldots s}
$$

Now, let $\epsilon \rightarrow 0$ and RK becomes

$$
\begin{aligned}
\left(Y_{n i}-y_{n}\right)_{i=1, \ldots s} & =h A\left(f\left(Y_{n j}, Z_{n j}\right)\right)_{j=1, \ldots, s} \\
0 & \left.=g\left(Y_{n j}, Z_{n j}\right)\right)_{j=1, \ldots, s} \\
y_{n+1} & =y_{n}+h b^{T}\left(f\left(Y_{n j}, Z_{n j}\right)\right)_{j=1, \ldots, s} \\
0 & =g\left(y_{n+1}, z_{n+1}\right)
\end{aligned}
$$

- for a stiffly accurate solver it holds that $z_{n+1}=Z_{n s}$ and the last rewrite is not necessary.
- The solution is identical to the state-space method.
- Methods pretty similar but has some pros and cons respectively
- State-space form does not require an implicit solver
- ϵ-embedding technique possible to generalize to systems not in semi-explicit form (see Hairer-Wanner)

$$
M y^{\prime}=f(t, y)
$$

Order reduction

- Stiffly accurate is sufficient for semi-explicit index 1
- Does not apply for higher index
- Stiff decay DIRK (Diagonally Implicit Runge Kutta) methods gets serious order reduction for semi-explicit DAE:s of index 2
- Simulation of high index DAE:s, key problems
- Simulation of index 1 DAE:s
- State-space method
- e-embedding
- BDF
- Index reduction
- Index reduction by differentiation
- Drift stabilization

A s step BDF can be directly applied to the general problem

$$
F\left(t, y^{\prime}, y\right)=0
$$

without modification with respect to the ODE case.

- Popular method. "BDF is so beautiful that it is hard to imagine something else could be better", Petzold, 1988.
- IDAS/DASSL(DDASRT/DASPK/DASKR), ...
- Last time I checked OpenModelica used ddasrt (Dubbel precision, dassl with root solver), a predecessor to DASKR

DASSL

- DASSL (and successors) is perhaps the most used DAE solver
- Designed to solve DAE:s with index 0 and 1 in the general form

$$
F\left(t, y^{\prime}, y\right)=0
$$

- BDF of order 1 to 5 . No order reduction
- Variable step length by an extension of fix step length BDF
- Will spend time on lecture to describe the basics

Outline

- Simulation of high index DAE:s, key problems
- Simulation of index 1 DAE:S
- State-space method
- - -embedding
- BDF
- Index reduction
- Index reduction by differentiation
- Drift stabilization

There are many methods to reduce index.

- Index reduction through differentiation
- Change of variables; think pendulum in polar coordinates. But which coordinate change? Differential-geometry.
- The basic state-space form from control theory

$$
\begin{aligned}
& \dot{x}=f(x, u) \\
& y=h(x, u)
\end{aligned}
$$

- dummy-derivatives, will come back to this next time where automatic methods suitable for large scale models (Modelica) is discussed.
- ...

Solving high index problems is difficult. For a DAE with index k

$$
F(t, \dot{y}, y)=0
$$

we can derive an ODE by differentiating the equations k times

$$
\begin{aligned}
F(y, \dot{y}) & =0 \\
\frac{d}{d t} F(y, \dot{y}) & =0 \\
\vdots & \\
\frac{d^{k}}{d t^{k}} F(y, \dot{y}) & =0
\end{aligned}
$$

This DAE has exactly the same solution set as the original DAE. One major problem: it is overdetermined!
Find the underlying ODE and simulate that one?

Index reduction through differentiation

We have done this before, an index 3 example is
$e_{1}: \dot{x}=w$,
$e_{3}: \dot{y}=z$,
$e_{5}: 0=x^{2}+y^{2}-I^{2}$
$e_{2}: m \dot{w}=-x \lambda$,
$e_{4}: m \dot{z}=-y \lambda-m g$

Differentiate the algebraic equation 2 times and we have an index 1 DAE.

- Solution sets to the two
- Initial conditions a difficult problem
- Underlying ODE (UODE) and the original DAE
- Invariants, which are maintained?
- Requires projections or other more or less advanced techniques to fulfill the original algebraic constraints.

Drift in pendulum

- Drift in the pendulum example

Drift

Theorem

If we apply a method of order p we will (in the example from the last slide)

$$
\left\|x^{2}+y^{2}-1\right\| \leq h^{p}\left(A t_{n}+B t_{n}^{2}\right)
$$

What can you do about this drift?

- Baumgarte stabilization
- Projection based methods
- Use another index reduction technique

250 sec .

Baumgarte stabilization

The first (1976) method to stabilize drift. The principle is simple, instead of using the second derivative of the algebraic constraint

$$
\ddot{g}=0
$$

in the solver you use

$$
\ddot{g}+\alpha \dot{g}+\beta g=0
$$

where α and β are chosen such that the zeros of the polynomial

$$
s^{2}+\alpha s+\beta
$$

lies in the left half plane.

Simple to generalize. Kan be tricky to choose parameters α and β with respect to stiffness and other numerical properties.

Consider an index 2 DAE with corresponding differentiated index 1 DAE
$e_{1}: \dot{x}=f(x, y)$
$e_{1}: \dot{x}=f(x, y)$
$e_{2}: 0=g(x)$
$\dot{e}_{2}: 0=\dot{g}(x)=g^{\prime}(x) f(x, y)$

Simulating $\left\{e_{1}, \dot{e}_{2}\right\}$ will have problems ensuring $g(x)=0$. Instead, simulate the index 1 DAE

$$
\begin{aligned}
\dot{x} & =f(x, y) \\
0 & =g+\alpha \dot{g}(x)=g(x)+\alpha g^{\prime}(x) f(x, y)
\end{aligned}
$$

and then then

$$
g+\alpha g^{\prime}=0 \quad \Rightarrow \quad g \sim e^{-\alpha t}
$$

Thus, the constant $\alpha>0$ stabilizes g.
Show the basic principle on a semi-explicit DAE with index 2 . Not easy to generalize for higher index, see Hairer-Wanner for further discussions.

$$
\begin{aligned}
& e_{1}: y^{\prime}=f(y, z) \\
& e_{2}: 0=g(y)
\end{aligned}
$$

Differentiate once

$$
0=g_{y}(y) f(y, z)
$$

By solving an index 1 DAE $\left(e_{1}, e_{2}^{\prime}\right)$ we will not necessarily fulfill $g\left(y_{n}\right)=0$ at each step, even if we start in a consistent starting point.

Stabilization through projection, cont.

Principle

(1) Start in a point y_{n-1}, z_{n-1}.
(2) Take a step to $\tilde{y}_{n}, \tilde{z}_{n}$ with any method.

- Project! One projection that has been suggested is defined by

$$
\min _{y_{n}}\left\|\tilde{y}_{n}-y_{n}\right\|, \quad g\left(y_{n}\right)=0
$$

This is a non-linear optimization's problem with constraints.
There are many other ways to project to the surface \mathcal{M}.

ODE:s with invariants

$$
y^{\prime}=f(y), \quad \varphi(y)=0
$$

- Invariants from conservation laws, index reduction
- Difference compared to DAE, over determined
- $\varphi(y)=0$ is called a first integral if $\varphi(y) f(y) \equiv 0$ in the neighborhood of the solution.
- Linear first integrals is fulfilled for most methods of integration
- Quadratic first integrals is fulfilled by, e.g., symplectic Runge-Kutta
- More complex invariants are normally not fulfilled.

Lecture 2 - Simulation of differential-algebraic equations
Simulation of DAE models and index reduction

Erik Frisk

erik.frisk@liu.se
Department of Electrical Engineering
Linköping University
February 8, 2022

$49 / 49$

