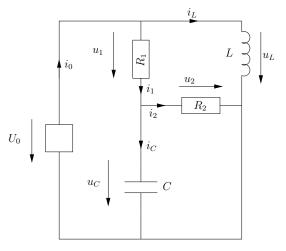
Lecture 2 – Simulation of differential-algebraic equations Simulation of DAE models and index reduction

Erik Frisk erik.frisk@liu.se

Department of Electrical Engineering Linköping University

February 8, 2022

Simple circuit model, index 1



$$x_1 = (u_c, i_L), x_2 = (u_2, i_2, u_0, u_1, u_L, i_1, i_C, i_0)$$

$$e_1:u_0=f(t)$$

$$e_2: u_1 = R_1 i_1$$

$$e_3: u_2 = R_2 i_2$$

$$e_4: i_C = C \frac{du_C}{dt}$$

$$e_5: u_L = L \frac{di_L}{dt}$$

$$e_6: i_0 = i_1 + i_L$$

$$e_7: i_1 = i_2 + i_C$$

$$e_8: u_0 = u_1 + u_C$$

$$e_9: u_L = u_1 + u_2$$

$$e_{10}: u_C = u_2$$

1/49

Computational form of model

 $e_{10}: u_C = u_2$

$$e_{1}: u_{0} = f(t)$$

$$e_{2}: u_{1} = R_{1}i_{1}$$

$$e_{3}: u_{2} = R_{2}i_{2}$$

$$e_{4}: i_{C} = C\frac{du_{C}}{dt}$$

$$e_{5}: u_{L} = L\frac{di_{L}}{dt}$$

$$e_{6}: i_{0} = i_{1} + i_{L}$$

$$e_{7}: i_{1} = i_{2} + i_{C}$$

$$e_{8}: u_{0} = u_{1} + u_{C}$$

$$e_{9}: u_{L} = u_{1} + u_{2}$$

$$e_{4}: \frac{du_{c}}{dt} = \frac{1}{C}i_{C}$$

$$e_{5}: \frac{di_{L}}{dt} = \frac{1}{L}u_{L}$$

$$e_{10}: u_{2} := u_{C}$$

$$e_{3}: i_{2} := \frac{1}{R_{2}}u_{2}$$

$$e_{1}: u_{0} := f(t)$$

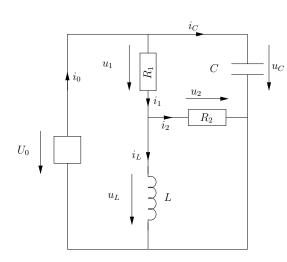
$$e_{8}: u_{1} := u_{0} - u_{C}$$

$$e_{9}: u_{L} := u_{1} + u_{2}$$

$$e_{2}: i_{1} := \frac{1}{R_{1}}u_{1}$$

 $e_7: i_C:=i_1-i_2$

 $e_6: i_0:=i_1+i_1$



$$x_1 = (u_C, i_L), x_2 = (u_2, i_2, u_0, u_1, u_L, i_1, i_C, i_0)$$

Simple circuit model, index > 1

$$e_{2}: u_{1} = R_{1}i_{1}$$

$$e_{3}: u_{2} = R_{2}i_{2}$$

$$e_{4}: i_{C} = C\frac{du_{C}}{dt}$$

$$e_{5}: u_{L} = L\frac{di_{L}}{dt}$$

$$e_{6}: i_{0} = i_{1} + i_{C}$$

$$e_{7}: i_{1} = i_{2} + i_{L}$$

$$e_{8}: u_{0} = u_{1} + u_{1}$$

 $e_1: u_0 = f(t)$

$$e_{10}: u_L = u_2$$

 $e_9: u_C = u_1 + u_2$

3/49

$F(t, y, \dot{y}) = 0$

Definition

The minimum number of times the DAE has to be differentiated with respect to t to be able to determine \dot{y} as a function of t och y is called the (differential-) index of the DAE.

- index might be solution dependent, uniform index
- There are several types of index, the above is called differential index.
- Perturbation index
- variants of the above (see paper)

Anyhow: index is a measure how far from an ODE the DAE is.

• Simulation of high index DAE:s, key problems

- Simulation of index 1 DAE:s
 - State-space method
 - ϵ -embedding
 - BDF
- Index reduction
 - Index reduction by differentiation
 - Drift stabilization

5/49

Simulation of DAE with index > 1

$$A\dot{y}(t)+By(t)=g(t),$$
 linear, constant coefficients $A(t)\dot{y}(t)+B(t)y(t)=g(t),$ linear, time-varying coefficients $F(\dot{y},y,t)=0,$ general DAE

- Start with a linear DAE with constant coefficients, this is sufficient to illustrate the main reasons why high index problems are difficult
- Consider the index-3 problem

$$x(t) = g(t)$$
$$\dot{x} = y$$
$$\dot{y} = z$$

which has the solution x(t) = g(t), $y(t) = \dot{g}(t)$, and $z(t) = \ddot{g}(t)$.

Backward Euler, fix step length

A backward Euler on the problem gives the equations

$$x_n = g_n$$

$$y_n = \frac{x_n - x_{n-1}}{h}$$

$$z_n = \frac{y_n - y_{n-1}}{h}$$

Direct substitutions of x_n and y_n give

$$x_n = g_n$$

 $y_n = \frac{g_n - g_{n-1}}{h} = \dot{g}_n + \mathcal{O}(h)$
 $z_n = \frac{g_n - 2g_{n-1} + g_{n-2}}{h^2} = \ddot{g}_n + \mathcal{O}(h)$

This looks great!

$$x(t_n) - x_n = 0$$
, $y(t_n) - y_n = \mathcal{O}(h)$, $z(t_n) - z_n = \mathcal{O}(h)$

6/49

Theorem

If a k step BDF (k < 7) is applied to

$$A\dot{y}(t) + By(t) = g(t)$$

the solution will be $O(h^k)$ after max (m-1)k+1 steps.

This would indicate that an algorithm with fixed step length would work fine also for high index.

Unfortunately, this breaks down for variable step length integrators.

9/49

Constant DAE, variable step length, cont.

One result for variable step length

Theorem

If a k step BDF (k < 7) is applied on

$$A\dot{y}(t) + By(t) = g(t)$$

and the ratio between successive step lengths are bounded, then the solution will be $O(h_{max}^q)$ where q = min(k, k - m + 2).

- This gives that an index 6 problem could be solved by a 6-step BDF, or?
- Which precondition is here questionable, and why?
- One step backwards Euler with fixed step length is a recommended approach for linear high-index problems with constant coefficients.

Constant DAE, variable step length

Now assume variable step length, i.e., the algorithm becomes

$$x_n = g_n$$

$$y_n = \frac{x_n - x_{n-1}}{h_n}$$

$$z_n = \frac{y_n - y_{n-1}}{h_n}$$

Now, examining the error in z_n we obtain

$$z_n - g_n'' = \cdots = \frac{1}{2} \left(\frac{h_{n-1}}{h_n} - 1 \right) \ddot{g}_n + O(h)$$

This means that the error will diverge(!) with decreasing h_n , $O(h_n^{-1})$ (index > 2). The error in y will be O(1) (index 2).

One of the exercises is to show ... in the expression.

Hint: Taylor expansion around $t = t_n$.

10/49

Linear, non-constant DAE:s

For a DAE

$$A(t)\dot{y}(t) + B(t)y(t) = g(t)$$

you can define local index at time t and global index via a transformation to a canonical form by y(t) = H(t)z(t) and G(t) to

$$G(t)A(t)(H'(t)z(t) + H(t)\dot{z}(t)) + G(t)B(t)H(t)z(t) = G(t)g(t)$$

such that

$$G(t)A(t)H(t) = \begin{bmatrix} I & 0 \\ 0 & E \end{bmatrix}, G(t)A(t)H'(t) + G(t)B(t)H(t) = \begin{bmatrix} C(t) & 0 \\ 0 & I \end{bmatrix}$$

where E is nilpotent, i.e., the same canonical form as previously shown for linear, constant, DAE:s

$$\dot{z}_1 + C(t)z_1 = G_1(t)g(t)$$

 $E\dot{z}_2 + z_2 = G_2(t)g(t)$

- If we can transform the DAE, all is well. Then the time variable problem is no more difficult than the time invariant.
- Problem: Finding the transformation matrices is not easy
- What happens if you "go with it" anyway with a fixed step length BDF for a time variable system?

From Gear, Petzold:

If the local index is two, we may have a stability problem depending on how fast the matrices change with time. If the local index is larger than 2, we almost always have a stability problem.

Important to note: Stability problem, not an accuracy problem

13/49

Simplify to

$$(E + hI)Q_nz_n = EQ_nz_{n-1} + hq_n$$

Now, solve for z_n according to

$$z_n = Q_n^{-1}(E + hI)^{-1}EQ_nz_{n-1} + hQ_n^{-1}(E + hI)^{-1}q_n = S_nz_{n-1} + u_n$$

The real solution satisfies

$$z(t_n) = S_n z(t_{n-1}) + u_n - \frac{h^2}{2} S_n z_n''(\xi)$$

With $e_n = z_n - z(t_n)$ we get the recursion

$$e_n = S_n e_{n-1} + \frac{h^2}{2} S_n z_n''(\xi)$$

Now we have a (recursive) expression for the simulation error, time to analyze!

What is the origin of the stability problem?

A DAE with local index m can be transformed into

$$(P_n E Q_n) z' + (P_n Q_n) z = P_n q_n$$

where P_n and Q_n are time variable transformation matrices and the constant matrix E is in the form (m = 3)

$$E = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad E^m = 0$$

Apply BDF on the DAE

$$(P_nEQ_n)(z_n-z_{n-1})+h(P_nQ_n)z_n=hP_nq_n$$

which then can be written as

$$(P_n E Q_n + h P_n Q_n) z_n = P_n E Q_n z_{n-1} + h P_n q_n$$

14/49

Expansion of the recursion gives

$$e_n = S_n e_{n-1} + \frac{h^2}{2} S_n z_n''(\xi)$$

where we have the explicit expression for the fault

$$e_n = \frac{h^2}{2} \sum_{i=1}^n \left(\prod_{j=i}^n S_j \right) z_i'' + \prod_{j=0}^n S_j e_0$$

Three problems

- z" not bounded
- $e_0 \neq 0$
- S_i not bounded

Now we can start answering the questions, why does it work for constant linear DAE:s (no time variable transformations):

$$S_n = S = Q^{-1}(E + hI)^{-1}EQ$$

Then we have that

$$S^k = Q^{-1}((E + hI)^{-1}E)^kQ$$

Some basic algebra gives

$$(E+hI)^{-1}E = \begin{bmatrix} 0 \\ h^{-1} \\ -h^{-2} \\ h^{-3} & \ddots \\ & \ddots \\ & & h^{-3} & h^{-2} & h^{-1} & 0 \end{bmatrix}$$

which gives that $S^m = 0$, i.e., S also is nilpotent of order m, same as E.

17/49

Then why did it not work for time variable systems?

$$e_n = rac{h^2}{2} \sum_{i=1}^n \left(\prod_{j=i}^n S_j \right) z_i'' + \prod_{j=0}^n S_j e_0$$

Three problems

- z'' not bounded
- $e_0 \neq 0$
- S_j not bounded

$$S_2S_1 = Q_2^{-1}(E + hI)^{-1}E\underbrace{Q_2Q_1^{-1}}_{\neq I}(E + hI)^{-1}EQ_1$$

For time variable/non-linear systems, the matrices are changing all the time and $\prod_{i=1}^{j} S_i \neq 0$ for all j.

Back to the expression

$$e_n = \frac{h^2}{2} \sum_{i=1}^n \left(\prod_{j=i}^n S_j \right) z_i'' + \prod_{j=0}^n S_j e_0$$

Here it is clear that for n > m, the second term disappears (that is not influenced by the step length h)

After some thought you can derive the expression

$$e_n = \frac{h^2}{2} \sum_{i=0}^{m-2} S^{i+1} z_{n-i}''$$

Here we see why the limit for one step BDF is at index 1 problems (S factors then contains at most h^{-1})

18/49

Some conclusions

In the general case there is no methods (to my knowledge) for high index problems in the form

$$A(t)\dot{y} + B(t)y = g$$

and even less for

$$F(t,\dot{y},y)=0$$

Though, sometimes, it might work with a BDF with fixed step length.

- Note that we have a stability issue, not accuracy (although this could also happen, more about that next time)
- Thus, it is not a solution to increase the order of the method or taking shorter steps.
- On the contrary, shorter steps might even make the situation worse
- Classes of DAE:s

19/49

lf lf $F(t, y, \dot{y}) = 0$ $\dot{x} = f(x, y)$ has index ν then 0 = g(x, y) $\dot{y} = u$ has index ν then 0 = F(t, y, u) $\dot{x} = f(x, \dot{u})$

index $\nu - 1$.

Rule of thumb: The semi-explicit case behaves as the general but with a higher index (and vice versa)

index $\nu + 1$.

21/49

Simulation of semi-explicit index 1 DAE:s

State-space method

 $0 = g(x, \dot{u})$

- ϵ -embedding
- BDF (DASSL with variants) is a commonly used DAE solver. Can be downloaded online

Is described in detail in the nice book "Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations" by K.E. Brenan, S.L. Campbell and L.R. Petzold. The book is in our library and I have uploaded the chapter on DASSL on the course web page for the interested.

I will show the basic principles of DASSL at the end of this lecture.

• I can also highly recommend the method descriptions of the SUNDIALs solvers (https://sundials.readthedocs.io/). Outline

- Simulation of high index DAE:s, key problems
- Simulation of index 1 DAE:s
 - State-space method
 - \bullet ϵ -embedding
 - BDF
- Index reduction
 - Index reduction by differentiation
 - Drift stabilization

22/49

Numerical code

- Matlab have several solvers for DAE (ode15s, ode15i, ode23t)
- Python has good ODE support in SciPy but no DAE solvers, I use the package ODES https://scikits-odes.readthedocs.io/ which is a wrapper around . . .
- SUNDIALS (more on the next slide)
- Julia probably the environment with the most support for numerical integration (but I think less support for DAE) with the package DifferentialEquations.jl

(https://github.com/SciML/DifferentialEquations.jl)

SUite of Nonlinear and DIfferential/ALgebraic Equation Solvers

Software library consisting of 6 different solvers, written in C. https://computing.llnl.gov/casc/sundials

CVODE(S)

Solves IVP for ordinary differential equation (ODE) systems. Includes sensitivity analysis capabilities (forward and adjoint).

- IDA(S)
 Solves IVP for differential-algebraic equation (DAE) systems. Includes sensitivity analysis capabilities (forward and adjoint).
- ARKode Solves IVP ODE problems with additive Runge-Kutta methods, including support for IMEX methods.
- KINSOL solves nonlinear algebraic systems.

Wrappers in Python exists. Specialized Matlab packages utilizes these solvers. Lots of functionality not available in vanilla Matlab/Python.

25/49

State-space method

$$y' = f(y, z)$$

 $0 = g(y, z), g_z$ invertible

Implicit function theorem then gives that there exists (locally) a function G(y) such that

$$z = G(y)$$

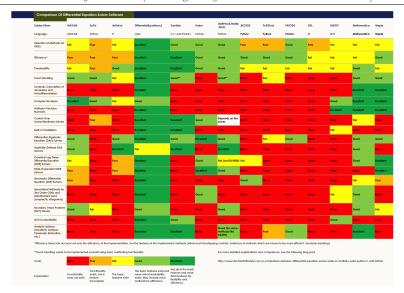
Substitution into the first equations gives the ODE

$$y'=f(y,G(y))$$

which can be solved using your method of choice, no new theory. You can even use an explicit solver if you like.

Lose the structure of the problem which might lead to unnecessary numerical difficulties.

Simulation software (a slightly Julia-centric view)



from https://github.com/SciML/DifferentialEquations.jl

26/49

Outline

- Simulation of high index DAE:s, key problems
- Simulation of index 1 DAE:s
 - State-space method
 - ε-embedding
 - BDF
- Index reduction
 - Index reduction by differentiation
 - Drift stabilization

27/49 28/49

ϵ -embedding

Write down, for example, a Runge-Kutta for the ODE

$$y' = f(y, z), \quad \epsilon z' = g(y, z), \quad g_z \text{ invertible}$$

You then get

$$(Y_{ni} - y_n)_{i=1,...s} = hA(f(Y_{nj}, Z_{nj}))_{j=1,...,s}$$

$$\epsilon(Z_{ni} - z_n)_{i=1,...s} = hA(g(Y_{nj}, Z_{nj}))_{j=1,...,s}$$

$$y_{n+1} = y_n + hb^T(f(Y_{nj}, Z_{nj}))_{j=1,...,s}$$

$$\epsilon z_{n+1} = \epsilon z_n + hb^T(g(Y_{nj}, Z_{nj}))_{j=1,...,s}$$

Assume an implicit method which gives that the A matrix is invertible

$$h(g(Y_{nj}, Z_{nj}))_{j=1,...,s} = \epsilon A^{-1}(Z_{ni} - z_n)_{i=1,...s}$$

29/49

Order of solver: RK for semi-explicit index 1

• If the method is stiffly accurate, the solution is equivalent to y' = f(y, G(y)) and a p order method gives

$$y_n - y(t_n) = \mathcal{O}(h^p), z_n - z(t_n) = \mathcal{O}(h^p)$$

under a Lipschitz assumption on G.

- If the solver is not stiffly accurate, you may lose order on the z-component.
- really the same phenomenon, *order reduction*, as for stiff ODE:s
- Example on page 269 in Ascher-Petzold.

ϵ -embedding, cont'.

Now, let $\epsilon \to 0$ and RK becomes

$$(Y_{ni} - y_n)_{i=1,...s} = hA(f(Y_{nj}, Z_{nj}))_{j=1,...,s}$$

 $0 = g(Y_{nj}, Z_{nj}))_{j=1,...,s}$
 $y_{n+1} = y_n + hb^T(f(Y_{nj}, Z_{nj}))_{j=1,...,s}$
 $0 = g(y_{n+1}, z_{n+1})$

- for a stiffly accurate solver it holds that $z_{n+1} = Z_{ns}$ and the last rewrite is not necessary.
- The solution is identical to the state-space method.
- Methods pretty similar but has some pros and cons respectively
- State-space form does not require an implicit solver
- ϵ -embedding technique possible to generalize to systems not in semi-explicit form (see Hairer-Wanner)

$$My' = f(t, y)$$

30/49

Order reduction

- Stiffly accurate is sufficient for semi-explicit index 1
- Does not apply for higher index
- Stiff decay DIRK (Diagonally Implicit Runge Kutta) methods gets serious order reduction for semi-explicit DAE:s of index 2

BDF

• Simulation of high index DAE:s, key problems

- Simulation of index 1 DAE:s
 - State-space method
 - ε-embedding
 - BDF
- Index reduction
 - Index reduction by differentiation
 - Drift stabilization

33 / 49

34 / 49

DASSL

- DASSL (and successors) is perhaps the most used DAE solver
- Designed to solve DAE:s with index 0 and 1 in the general form

$$F(t, y', y) = 0$$

- BDF of order 1 to 5. No order reduction
- Variable step length by an extension of fix step length BDF
- Will spend time on lecture to describe the basics

Outline

• Simulation of high index DAE:s, key problems

A s step BDF can be directly applied to the general problem

without modification with respect to the ODE case.

something else could be better", Petzold, 1988.IDAS/DASSL(DDASRT/DASPK/DASKR), ...

dassl with root solver), a predecessor to DASKR

F(t, v', v) = 0

• Popular method. "BDF is so beautiful that it is hard to imagine

Last time I checked OpenModelica used ddasrt (Dubbel precision,

- Simulation of index 1 DAE:s
 - State-space method
 - \bullet ϵ -embedding
 - BDF
- Index reduction
 - Index reduction by differentiation
 - Drift stabilization

There are many methods to reduce index.

- Index reduction through differentiation
- Change of variables; think pendulum in polar coordinates. But which coordinate change? Differential-geometry.
- The basic state-space form from control theory

$$\dot{x} = f(x, u)$$

$$y = h(x, u)$$

- dummy-derivatives, will come back to this next time where automatic methods suitable for large scale models (Modelica) is discussed.
- . . .

37/49

Index reduction by differentiation

Consider the index 1 DAE

$$\dot{x}_1 = f(x_1, x_2)$$

 $0 = g(x_1, x_2), \quad g_{x_2}(x_1, x_2) \text{ invertible}$

It is direct to differentiate the second equation and derive the ODE

$$\dot{x}_1 = f(x_1, x_2)
\dot{x}_2 = -g_{x_2}(x_1, x_2)^{-1}g_{x_1}(x_1, x_2)f(x_1, x_2)$$

What will happen with the solution?

Index reduction by differentiation

Solving high index problems is difficult. For a DAE with index k

$$F(t,\dot{y},y)=0$$

we can derive an ODE by differentiating the equations k times

$$F(y, \dot{y}) = 0$$
$$\frac{d}{dt}F(y, \dot{y}) = 0$$
$$\vdots$$

$$\frac{d^k}{dt^k}F(y,\dot{y})=0$$

This DAE has exactly the same solution set as the original DAE. One major problem: it is overdetermined!

Find the underlying ODE and simulate that one?

38/49

Index reduction through differentiation

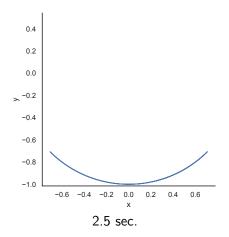
We have done this before, an index 3 example is

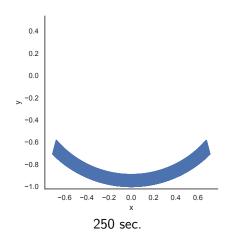
$$e_1 : \dot{x} = w,$$
 $e_3 : \dot{y} = z,$ $e_5 : 0 = x^2 + y^2 - l^2$
 $e_2 : m\dot{w} = -x\lambda,$ $e_4 : m\dot{z} = -y\lambda - mg$

Differentiate the algebraic equation 2 times and we have an index 1 DAE.

- Solution sets to the two
- Initial conditions a difficult problem
- Underlying ODE (UODE) and the original DAE
- Invariants, which are maintained?
- Requires projections or other more or less advanced techniques to fulfill the original algebraic constraints.

Drift in pendulum





41/49

Drift

Theorem

If we apply a method of order p we will (in the example from the last slide)

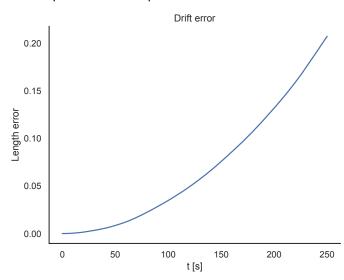
$$||x^2 + y^2 - 1|| \le h^p(At_n + Bt_n^2)$$

What can you do about this drift?

- Baumgarte stabilization
- Projection based methods
- Use another index reduction technique

Drift in pendulum

Drift in the pendulum example



42/49

Baumgarte stabilization

The first (1976) method to stabilize drift. The principle is simple, instead of using the second derivative of the algebraic constraint

$$\ddot{g}=0$$

in the solver you use

$$\ddot{\mathbf{g}} + \alpha \dot{\mathbf{g}} + \beta \mathbf{g} = \mathbf{0}$$

where α and β are chosen such that the zeros of the polynomial

$$s^2 + \alpha s + \beta$$

lies in the left half plane.

Simple to generalize. Kan be tricky to choose parameters α and β with respect to stiffness and other numerical properties.

Baumgarte, example

Consider an index 2 DAE with corresponding differentiated index 1 DAE

$$e_1 : \dot{x} = f(x, y)$$
 $e_1 : \dot{x} = f(x, y)$
 $e_2 : 0 = g(x)$ $\dot{e}_2 : 0 = \dot{g}(x) = g'(x)f(x, y)$

Simulating $\{e_1, \dot{e}_2\}$ will have problems ensuring g(x) = 0. Instead, simulate the index 1 DAE

$$\dot{x} = f(x, y)$$

$$0 = g + \alpha \dot{g}(x) = g(x) + \alpha g'(x)f(x, y)$$

and then then

$$g + \alpha g' = 0 \quad \Rightarrow \quad g \sim e^{-\alpha t}$$

Thus, the constant $\alpha > 0$ stabilizes g.

45/49

Stabilization through projection, cont.

Principle

- \bigcirc Start in a point y_{n-1}, z_{n-1} .
- ② Take a step to \tilde{y}_n, \tilde{z}_n with any method.
- Project! One projection that has been suggested is defined by

$$\min_{y_n} \|\tilde{y}_n - y_n\|, \quad g(y_n) = 0$$

This is a non-linear optimization's problem with constraints.

There are many other ways to project to the surface \mathcal{M} .

Stabilization through projection

Show the basic principle on a semi-explicit DAE with index 2. Not easy to generalize for higher index, see Hairer-Wanner for further discussions.

$$e_1: y' = f(y, z)$$

 $e_2: 0 = g(y)$

Differentiate once

$$0=g_{y}(y)f(y,z)$$

By solving an index 1 DAE (e_1, e'_2) we will not necessarily fulfill $g(y_n) = 0$ at each step, even if we start in a consistent starting point.

46/49

ODE:s with invariants

$$y'=f(y), \quad \varphi(y)=0$$

- Invariants from conservation laws, index reduction
- Difference compared to DAE, over determined
- $\varphi(y) = 0$ is called a first integral if $\varphi(y)f(y) \equiv 0$ in the neighborhood of the solution.
- Linear first integrals is fulfilled for most methods of integration
- Quadratic first integrals is fulfilled by, e.g., symplectic Runge-Kutta
- More complex invariants are normally not fulfilled.

${\it Lecture~2-Simulation~of~differential-algebraic~equations} \\ Simulation~of~DAE~models~and~index~reduction$

Erik Frisk erik.frisk@liu.se

Department of Electrical Engineering Linköping University

February 8, 2022

