Lecture 3

Simulation of differential-algebraic equations

Erik Frisk

erik.frisk@liu.se
Department of Electrical Engineering
Linköping University

February 23, 2022

IINKÖPING
 UNIVERSITY

BDF solver

- DASSL is an implementation/code to solve systems of differential-algebraic equations of index 0 or 1
- SUNDIALS is another free, more modern, implementation. Written in C and not Fortran.
- Fairly straightforward (at least on Linux and Mac) to install on your computer if you are used to compiling your own software.
- Installed on charger.ad.liu.se
- Why am I talking about DASSL?
- Basic principle, one-step and multiple step
- A little on what it is good at
- Some principles on details
- An overview of a solver
- Adjoint sensitivity analysis of DAEs
- Modelica
- Snapshot of the language
- Simulation of Modelica models
- Algebraic and dynamical loops/tearing
- Event functions
- Structural index - introduction and definition

Basic principle

For a DAE in the form

$$
\begin{aligned}
F\left(t, y, y^{\prime}\right) & =0 \\
y\left(t_{0}\right) & =y_{0} \\
y^{\prime}\left(t_{0}\right) & =y_{0}^{\prime}
\end{aligned}
$$

the DASSL basic principle is not unique, replace the derivative for a difference approximation and solve the resulting system of equations with a Newton method.
Properties of the DASSL implementation:

- Variable step-length
- Variable order
- Efficient implementation, for example measured in the number of evaluations of the function F.

DASSL - first order step

Replace the derivative with a first order BDF, then

$$
F\left(t_{n+1}, y_{n+1},\left(y_{n+1}-y_{n}\right) / h_{n+1}\right)=0
$$

A direct Newton method to solve for y_{n+1} then becomes

$$
y_{n+1}^{(m+1)}=y_{n+1}^{(m)}-\left(F_{y}+\frac{1}{h_{n+1}} F_{y^{\prime}}\right)^{-1} F\left(t_{n+1}, y_{n+1}^{(m)},\left(y_{n+1}^{(m)}-y_{n}\right) / h_{n+1}\right)
$$

where F_{y} and $F_{y^{\prime}}$ is evaluated in $y_{n+1}^{(m)}$.
With a good stop condition on the iterations so this is approximately how it works. I will now briefly look at:

- higher order algorithm
- strategies for choice of order, step-length
- stop conditions for the Newton iterations
- $F_{y}+\alpha F_{y^{\prime}}$ - iteration matrix (sometimes referred to as the jacobian)
(1) Compute a prediction polynomial $\omega^{P}(t)$ based on k previous time-points
(2) Compute a correction polynomial $\omega^{C}(t)$, equal $\omega^{P}(t)$ on k equidistant $\left(h_{n+1}\right)$ previous time-steps
(Predict next time-step using prediction polynomial

DASSL - a step of order k, cont.

Skips a lot of notation and rather straightforward algebra,

Equations to be solved

$$
\begin{aligned}
\omega_{n+1}^{C}\left(t_{n+1}-i h_{n+1}\right) & =\omega_{n+1}^{P}\left(t_{n+1}-i h_{n+1}\right), i=1, \ldots, k \\
F\left(t_{n+1}, \omega_{n+1}^{C}\left(t_{n+1}\right), \omega_{n+1}^{C}\left(t_{n+1}\right)\right) & =0
\end{aligned}
$$

can be written as the solution to the nonlinear equation

$$
F\left(t_{n+1}, y_{n+1}, \alpha y_{n+1}+\beta\right)=0
$$

i.e. the same form that we had in the one step case (not so surprising)

$$
F\left(t_{n+1}, y_{n+1},\left(y_{n+1}-y_{n}\right) / h_{n+1}\right)=0
$$

but the constants α and β depends on the step length h_{n+1}, order k and y_{n-i} in a non-trivial way. Exactly how is not of main importance here.

Now solve

$$
F(t, y, \alpha y+\beta)=0
$$

by

$$
y^{(m+1)}=y^{(m)}-c \underbrace{\left(\alpha F_{y^{\prime}}+F_{y}\right)}_{\text {iteration matrix } G}{ }^{-1} F\left(t, y^{(m)}, \alpha y^{(m)}+\beta\right)
$$

Each iteration is solved by $G=L U$ factorization. With $\delta^{(m)}=y^{(m+1)}-y^{(m)}$ and $r^{(m)}=c F$ then

$$
\begin{aligned}
L s^{(m)} & =r^{(m)} \\
U \delta^{(m)} & =s^{(m)}
\end{aligned}
$$

To make an iteration, compute G and $L U$ factorize.

$$
y^{(m+1)}=y^{(m)}-c G^{-1} F\left(t, y^{(m)}, \alpha y^{(m)}+\beta\right)
$$

Why is this important? Mostly to state that computation of G and the corresponding LU factorization is a main part (even dominant for large models) of the computational burden for one integration step.
If $F_{y^{\prime}}$ and F_{y} varies slowly over the solution, reuse old already computed \hat{G}. As long as \hat{G} is sufficiently close to G we can expect on convergence.
Supervise convergence speed and compute a new G only when convergence speed is not satisfactorily.

DASSL - stop conditions in Newton iterations

An important aspect is when to stop the Newton iterations. To directly look at $\left\|y^{(m+1)}-y^{(m)}\right\|$ is not always a good idea. Instead, define

$$
d^{(m)}=\frac{\left\|y^{(m+1)}-y^{*}\right\|}{\left\|y^{(m)}-y^{*}\right\|}
$$

and assume that we know an upper bound on $d^{(m)}<\rho$, direct usage of the triangle inequality gives a stop condition

$$
\left\|y^{(m+1)}-y^{*}\right\| \leq \frac{\rho}{1-\rho}\left\|y^{(m+1)}-y^{(m)}\right\|
$$

Use, for example, the largest

$$
\frac{\left\|y^{(m+1)}-y^{(m)}\right\|}{\left\|y^{(m)}-y^{(m-1)}\right\|}
$$

observed so far as an estimate on ρ.
In DASSL, max 4 iterations! If $\rho>0.9$, compute a new G. If the iteration still not converges (4 steps), reduce step length by $1 / 4$. After 10 tries, abort.

Automatic Differentiation

An analytical expression for the iteration matrix/system jacobian

$$
G=F_{y}+\alpha F_{y^{\prime}}
$$

is good for efficiency and accuracy.

How do we get G?

- Encode not only F but also G and send to DASSL.
- Difference approximations of the derivative.

Automatic Differentiation/Algorithm differentiation

- Automatically separate function F into elementary operations.
- The derivative by direct application of the chain rule
- C/C++/Python/Fortran/Julia/Java/..., mature field with many tools
- Some solvers has direct support for automatic differentiation

SUNDIALS

- Written in C with interfaces to Fortran (77 and 2003)
- Designed to be incorporated into existing codes
- Nonlinear and linear solvers and all data use is fully encapsulated from the integrators and can be user-supplied
- Parallelism is directly supported
- Support for GPU computations
- Through the ECP, developing a rich infrastructure of support on exascale systems and applications
- Freely available; released under the BSD 3-Clause license ($>27,000$ downloads in 2019)

See https://computing.llnl.gov/sites/default/files/SUNDIALS_ ECP_Tutorial_2020_Final_0.pdf for a fairly recent presentation of Sundials and its capabilities.

SUNDIALS

SUite of Nonlinear and DIfferential/ALgebraic Equation Solvers

Software library consisting of 6 different solvers, written in C .
https://computing.llnl.gov/casc/sundials

- CVODE(S)

Solves IVP for ordinary differential equation (ODE) systems. Includes sensitivity analysis capabilities (forward and adjoint).

- IDA(S)

Solves IVP for differential-algebraic equation (DAE) systems. Includes sensitivity analysis capabilities (forward and adjoint).

- ARKode

Solves IVP ODE problems with additive Runge-Kutta methods, including support for IMEX methods.

- KINSOL
solves nonlinear algebraic systems.
Lots of functionality not available in vanilla Matlab/Python/Julia.

Sundials - code and documentation

If you are interested in more details, and how the code is organized and works, see the documentation

```
https://sundials.readthedocs.io/en/latest/idas/
```

- Fairly easy to install on Linux/Mac (haven't tried on Windows).
- Installed on charger.ad.liu.se if you want to try.
- Included a, non mandatory, exercise for you to make some first simulations.

Outline

Sensitivity analysis

Motivation

Parameters in models may not be known accurately or need to be determined

- sensitivity to changes
- optimization of variables
- parameter identification based on measurement data

We will revisit this problem, already covered in the ODE module, for

$$
F(\dot{x}, x, t, p)=0
$$

and you'll see that the sensitivity equations are similar to the ODE case. Instead we will spend some time we have a performance measure

$$
G=\int_{0}^{T} g(x, p, t) d t
$$

and a high-dimensional parameter p.

Sensitivity analysis - forward solution

From the ODE part of the course we know how to compute sensitivity of the solution $x(t, p)$ with respect to parameters p

$$
x_{p}=\frac{d x}{d p}
$$

for the ODE

$$
\dot{x}=f(t, x, p), \quad x(0)=x_{0}(p)
$$

as the solution to the linear ODE

$$
\dot{x}_{p}=f_{x} x_{p}+f_{p}, \quad x_{p}(0)=\frac{d x_{0}(p)}{d p}
$$

The corresponding equation for a DAE

$$
F(t, \dot{x}, x, p)=0, \quad x(0)=x_{0}(p)
$$

is derived in the same way (you will do it in an exercise).

Complexity of sensitivity analysis

What happens if the number of parameters is large? We need to solve

$$
\begin{array}{cl}
\dot{x}=f(t, x, p), & x(0)=x_{0}(p) \\
\dot{x}_{p}=f_{x} x_{p}+f_{p}, & x_{p}(0)=\frac{d x_{0}(p)}{d p}
\end{array}
$$

Obtaining forward sensitivities with respect to m parameters is roughly equivalent to solving an DAE system of size $n+m \times n$.
For example, $n=10$ states and $m=20$ parameters leads to 210 states in the sensitivity computation.
What if we are interested in the sensitivity of a scalar, with respect to a large number of parameters

$$
G(x, p)=\int_{0}^{T} g(x, t, p) d t=\int_{0}^{T} g_{x} x_{p}+g_{p} d t
$$

(compare backpropagation in neural networks)
Q: Is there a way to avoid computing all those sensitivities in x_{p} ?

$$
\begin{array}{r}
\dot{y}_{1}+p_{1} y_{1}-p_{2} y_{2} y_{3}=0 \\
\dot{y}_{2}-p_{1} y_{1}+p_{2} y_{2} y_{3}+p_{3} y_{2}^{2}=0 \\
y_{1}+y_{2}+y_{3}-1=0
\end{array}
$$

with the quadrature

$$
G=\int_{0}^{T} y_{3}(t) d t
$$

Then, the question how to efficiently compute

$$
d G / d p=\left(\begin{array}{lll}
1.484 \cdot 10^{6} & -5.932 & 9.899 \cdot 10^{-4}
\end{array}\right)
$$

without computing the 9 sensitivities

$$
\frac{d y_{i}}{d p_{j}}, \quad i \in\{1,2,3\}, j \in\{1,2,3\}
$$

Adjoint sensitivity analysis

Introduce lagrange multipliers λ as

$$
I(x, p)=G(x, p)-\int_{0}^{T} \lambda^{T} F(x, \dot{x}, t, p) d t
$$

Since $F(x, \dot{x}, t, p)=0$

$$
\frac{d}{d p} G(x, p)=\frac{d}{d p} I(x, p)=\int_{0}^{T} g_{x} x_{p}+g_{p}-\lambda^{T}\left(F_{\dot{x}} \dot{x}_{p}+F_{x} x_{p}+F_{p}\right) d t
$$

The problem is, as stated before, x_{p}.

Reminder: Integration by parts

$$
\int_{0}^{T} f(t) g^{\prime}(t) d t=\left.f(t) g(t)\right|_{t=0} ^{T}-\int_{0}^{T} f^{\prime}(t) g(t) d t
$$

Now, first look at the term with \dot{x}_{p} :

$$
\int_{0}^{T} \lambda^{T} F_{\dot{x}} \dot{x}_{p} d t=\left.\lambda^{T} F_{\dot{x}} x_{p}\right|_{t=0} ^{T}-\int_{0}^{T} \frac{d}{d t}\left(\lambda^{T} F_{\dot{x}}\right) x_{p} d t
$$

Our problem today: Assume the low-index DAE

$$
F(t, \dot{x}, x, p)=0, \quad x(0)=x_{0}(p)
$$

and we want to compute the sensitivity $d G / d p$ of the objective function

$$
G(x, p)=\int_{0}^{T} g(x, t, p) d t
$$

Then

$$
\frac{d}{d p} G(x, p)=\int_{0}^{T} g_{x} x_{p}+g_{p} d t
$$

But, as mentioned the x_{p} scales badly $(n \times m)$ with size of p and the system order. How to compute this without going through x_{p} ?

Adjoint sensitivity analysis

Collect all integrands with x_{p} in a separate term. Can we get rid of those?

$$
\begin{aligned}
\frac{d}{d p} G(x, p)= & \int_{0}^{T}\left(g_{p}-\lambda^{T} F_{p}\right) d t- \\
& \int_{0}^{T}\left[-g_{x}+\lambda^{T} F_{x}-\frac{d}{d t}\left(\lambda^{T} F_{\dot{x}}\right)\right] x_{p} d t-\left.\lambda^{T} F_{\dot{x}} x_{p}\right|_{0} ^{T}
\end{aligned}
$$

The function λ is free to choose, why not choose λ as the solution to the adjoint differential equation

$$
\frac{d}{d t}\left(\lambda^{T} F_{\dot{x}}\right)-\lambda^{T} F_{x}+g_{x}=0
$$

- Linear, time-varying!
- Has size $n!$!

We have

$\frac{d}{d p} G(x, p)=\int_{0}^{T}\left(g_{p}-\lambda^{T} F_{p}\right) d t-\lambda^{T}(T) F_{\grave{x}}(T) x_{p}(T)+\lambda^{T}(0) F_{\dot{x}}(0) x_{p}(0)$
with

$$
\frac{d}{d t}\left(\lambda^{T} F_{\dot{x}}\right)-\lambda^{T} F_{x}+g_{x}=0
$$

What about the boundary values? Involves $x_{p}(0)$: easy, we know that one. But $x_{p}(T)$ is not easy and it was exactly to avoid computing x_{p} we did the adjoint approach.

A solution: Since any adjoint solution λ is ok, choose $\lambda(T)$ such that

$$
\begin{equation*}
\lambda^{T}(T) F_{\dot{\chi}}(T)=0 \tag{1}
\end{equation*}
$$

and solve the adjoint sensitivity equations backwards in time.
Note: (1) only works in general for low-index problems, for high index models you need to dig deeper.

1) do a forward sweep and solve the low-index DAE

$$
F(\dot{x}, x, t, p)=0, \quad p=p_{0}
$$

Solution is typically efficiently stored using checkpointing.
2), solve the adjoint DAE

$$
\frac{d}{d t}\left(\lambda^{T} F_{\dot{x}}\right)-\lambda^{T} F_{x}+g_{x}=0, \quad \lambda^{T}(T) F_{\dot{x}}=0
$$

backwards (from T)
3) In the integration, compute the sensitivity by the quadrature

$$
\frac{d}{d p} G(x, p)=\int_{0}^{T}\left(g_{p}-\lambda^{T} F_{p}\right) d t+\lambda^{T}(0) F_{\dot{\chi}}(0) x_{p}(0)
$$

Repetition: Solving a differential equation backwards

Consider the DAE with an end value condition

$$
F(\dot{x}(t), x(t), t)=0, \quad x(T)=x_{T}, \dot{x}(T)=\dot{x}_{T}
$$

To solve backwards, define

$$
y(\tau)=x(T-\tau), \quad t=T-\tau
$$

Then,

$$
\begin{aligned}
& \dot{x}(t)=-\dot{y}(T-t)=-\dot{y}(\tau) \\
& x(t)=y(T-t)=y(\tau)
\end{aligned}
$$

and the DAE in reverse time variables becomes

$$
F(-\dot{y}(\tau), y(\tau), \quad T-\tau)=0, \quad y(0)=x_{T}, \dot{y}(0)=\dot{x}_{T}
$$

$$
\begin{array}{r}
\dot{y}_{1}+p_{1} y_{1}-p_{2} y_{2} y_{3}=0 \\
\dot{y}_{2}-p_{1} y_{1}+p_{2} y_{2} y_{3}+p_{3} y_{2}^{2}=0 \\
y_{1}+y_{2}+y_{3}-1=0
\end{array}
$$

with the quadrature

$$
G=\int_{0}^{T} y_{3}(t) d t
$$

If we compute

$$
d G / d p=\left(\begin{array}{lll}
1.484 \cdot 10^{6} & -5.932 & 9.899 \cdot 10^{-4}
\end{array}\right)
$$

using both forward and adjoint techniques, we get the same result.

Modelica

Modelica

Modelica is a language for specifying mathematical models for a large class of systems.

- equation based and non-causal, equations not assignments
- declarative, not an algorithm (like Simulink)
- object oriented
- multi domain
- continuous and discrete (not time) models, hybrid systems
- mainly developed for simulation
- high index problem more "more common than not"
- Language resources http://modelica.org/

```
- An overview of a solver
```

- Adjoint sensitivity analysis of DAEs
- Modelica
- Snapshot of the language
- Simulation of Modelica models
- Algebraic and dynamical loops/tearing
- Event functions
- Structural index - introduction and definition

Commercial model editors

Modelica standard library v3.2.2 (2016-04-03)

Blocks Continuous, discrete and logical input/output blocks (Continuous, Discrete, Logical, Math, Nonlinear, Routing, Sources, Tables)
Constants Mathematical and physical constants (pi, eps, h, ...)
Electrical Electric and electronic components (Analog, Digital, Machines, MultiPhase)
Icons Icon definitions Math Mathematical functions for scalars and matrices (such as sin, cos, solve, eigenValues, singular values)
Mechanics Mechanical components (Rotational, Translational,
MultiBody)
Media Media models for liquids and gases (about 1250 media, including high precision water model)
SIunits SI-unit type definitions (such as Voltage, Torque)
StateGraph Hierarchical state machines (similiar power as Statecharts)
Thermal Thermal components (FluidHeatFlow, HeatTransfer)
Utilities Utility functions especially for scripting (Files, Streams, Strings, System)

Modelica example

```
Pendulum model of index 3
model Pendulum
    import [Skipped some imports]
    parameter Real phiO = 45*pi/180;
    parameter Real \(L=1, \mathrm{M}=1, \mathrm{~g}=9.82\);
    Real \(x(s t a r t=L * \cos (\) phi0 ) ), dx (start=0) ;
    Real y(start=L*sin(phi0)), dy(start=0);
    Real lambda;
equation
    \(\operatorname{der}(\mathrm{x})=\mathrm{dx}\);
    der \((y)=d y ;\)
    \(\mathrm{M} * \operatorname{der}(\mathrm{dx})=\) lambda*x;
    \(\mathrm{M} * \operatorname{der}(\mathrm{dy})=1 a m b d a * y-\mathrm{M} * g\);
    \(0=x * x+y * y-L * L ;\)
end Pendulum;
```


Example with components from the standard library

```
Electrical circuit
class SimpleCircuit
    Resistor R1(R=10), R2(R=100);
    Capacitor C(C=0.01);
    Inductor L(L=0.1);
    VsourceAC AC;
    Ground G;
equation
    connect(AC.p, R1.p);
    connect(R1.n, C.p);
    connect(C.n, AC.n);
    connect(R1.p, R2.p);
    connect(R2.n, L.p);
    connect(L.n, C.n);
    connect(AC.n, G.P);
end SimpleCircuit;
```


Simulation of Modelica models

The path from a Modelica model to C-code looks something like this

Representation of a general DAE

A DAE has the following components

$$
F(x(t), \dot{x}(t), y(t), u(t), t, \theta, c(t))=0
$$

$x(t)$ vector of dynamic variables
$y(t)$ vector of static variables
$u(t)$ vector of given input/known signals
θ model parameters
$c(t)$ Event functions (more about these later)
I have skipped discrete variables, see book by P. Fritzons for more details.

Translator

- Parse the model file into an AST (Abstract Syntax Tree), a computer representation of the model
- Flatten the model, i.e., resolve all inheritance and component equations
- Change if-expressions to if-equations
if ($a>5.0$)
val = 10.0;
else
val $=20.0$;
end if;
to
val $=$ (if a>5.0 then 10.0 else 20.0);
- Change dot-notation to underbar ("." \rightarrow " _")

$$
R 1 . p . i \rightarrow R 1 _p_{-} i
$$

Now we have the flattened model

model Circuit
Resistor R1;
Resistor R2;
Capacitor C;
Inductor L;
Ground G;
SineVoltage src;
equation
connect(G.p, src.n);
connect(src.p, R1.p);
connect(src.p, L.p);
connect(R1.n, R2.p);
connect(R1.n,C.p);
connect(L.n,R2.n);
connect(L.n, C.n);
connect(C.n,G.p);
end Circuit;

Analyzer and optimizer

Main objectives

(1) Transform the model to state space form (or index 1) through index reductionOptimize the computation of the model (evaluation of F)

Steps

- Basic model analysis, find simple, e.g., linear, equation
- Simplify model by eliminating trivial (and some simple) equations by algebraic manipulation
- Compute index and perform index reduction
- Find algebraic loops (strong components) with respect to the most differentiated variables

$$
\begin{aligned}
& R 1 \cdot R * R 1 \cdot i=R 1 \cdot v ; \\
& R 1 \cdot v=R 1 \cdot p \cdot v-R 1 \cdot n \cdot v ; \\
& 0.0=R 1 \cdot p \cdot i+R 1 \cdot n \cdot i ; \\
& R 1 \cdot i=R 1 \cdot p \cdot i ; \\
& R 2 \cdot R * R 2 \cdot i=R 2 \cdot v ; \\
& R 2 \cdot v=R 2 \cdot p \cdot v-R 2 \cdot n \cdot v ; \\
& 0.0=R 2 \cdot p \cdot i+R 2 \cdot n \cdot i ; \\
& R 2 \cdot i=R 2 \cdot p \cdot i ; \\
& C \cdot i=C \cdot C * \operatorname{der}(C \cdot v) ; \\
& C \cdot v=C \cdot p \cdot v-C \cdot n \cdot v ; \\
& 0.0=C \cdot p \cdot i+C \cdot n \cdot i ; \\
& C \cdot i=C \cdot p \cdot i ; \\
& L \cdot L * \operatorname{der}(L \cdot i)=L \cdot v ; \\
& L \cdot v=L \cdot p \cdot v-L \cdot n \cdot v ; \\
& 0.0=L \cdot p \cdot i+L \cdot n \cdot i ; \\
& L \cdot i=L \cdot p \cdot i ; \\
& G \cdot p \cdot v=0.0 ;
\end{aligned}
$$

```
src.signalSource.y = sin();
src.v = src.signalSource.y;
src.v = src.p.v - src.n.v;
0.0 = src.p.i + src.n.i;
src.i = src.p.i;
L.n.i + R2.n.i + C.n.i + G.p.i
+ src.n.i = 0.0;
L.n.v = R2.n.v;
R2.n.v = C.n.v
C.n.v = G.p.v;
G.p.v = src.n.v;
R1.n.i + R2.p.i + C.p.i = 0.0;
R1.n.v = R2.p.v;
R2.p.v = C.p.v;
src.p.i + R1.p.i + L.p.i = 0.0;
src.p.v = R1.p.v;
R1.p.v = L.p.v;
```


Analyzer and optimizer, cont.

Three main problems I will not address further today

- compute index
- perform index reduction and transform the model equations from a high index formulation to ODE/index-1 DAE
- find consistent initial values

All these are strongly connected and the main content of the next lecture.
From now on, it is assumed the model is index 1 .

Simplified; it is assumed that the model is in the form

$$
F\left(x^{\prime}, x, t\right)=0, \quad c_{i}(t), \quad i=1, \ldots, n_{c}
$$

- The residual function $F\left(x^{\prime}, x, t\right)$ and event functions can now be sent directly to the numerical DAE solver
- This is not exactly how OpenModelica operates, it goes one step further and takes the model into an ODE. More on this later.
- On the course web site there is a (rather incomplete) document that shows by example how OpenModelica transfers a simple model to C-code. Recommended for the interested.

Flat model with index 1 to ODE, OpenModelica

$$
F\left(x^{\prime}, x, y, t\right)=0
$$

If the model is low index, then it is possible to solve for the highest differentiated variables x^{\prime} and y as

$$
\begin{aligned}
x^{\prime} & =f(t, x, y) \\
y & =G(t, x)
\end{aligned}
$$

To generate code there is a need to find a computational scheme for the functions f and G, preferably as a pure substitution chain.
After that, OpenModelica simulates (with DASSL) x as

$$
\dot{x}=f(t, x, G(x))
$$

Remember the initial examples from the first DAE lecture, substitution chains not always possible.

```
- An overview of a solver
```

- Adjoint sensitivity analysis of DAEs
- Modelica
- Snapshot of the language
- Simulation of Modelica models
- Algebraic and dynamical loops/tearing
- Event functions
- Structural index - introduction and definition

Remember simple circuit model

$e_{1}: u_{0}=f(t)$
$e_{2}: u_{1}=R_{1} i_{1}$
$e_{3}: u_{2}=R_{2} i_{2}$
$e_{4}: i_{C}=C \frac{d u_{c}}{d t}$
$e_{5}: u_{L}=L \frac{d i_{L}}{d t}$
$e_{6}: i_{0}=i_{1}+i_{L}$
$e_{7}: i_{1}=i_{2}+i_{C}$
$e_{8}: u_{0}=u_{1}+u_{C}$
$e_{9}: u_{L}=u_{1}+u_{2}$
$e_{10}: u_{C}=u_{2}$

$x_{1}=i_{L}, x_{2}=\left(u_{L}, u_{2}, i_{2}, u_{0}, u_{1}, u_{L}, i_{1}, i_{C}, i_{0}\right)$
$u_{0}=f(t)$
$u_{1}=R_{1} i_{1}$
$u_{2}=R_{2} i_{2}$
$u_{3}=R_{3} i_{3}$
$u_{L}=L \frac{d i_{L}}{d t}$
$i_{0}=i_{1}+i_{L}$
$i_{1}=i_{2}+i_{3}$
$u_{0}=u_{1}+u_{3}$
$u_{L}=u_{1}+u_{2}$
$u_{3}=u_{2}$

$$
\begin{aligned}
\frac{d i_{L}}{d t} & =\frac{1}{L} u_{L} \\
u_{0} & :=f(t)
\end{aligned}
$$

Solve for $\left\{u_{1}, u_{2}, u_{3}, i_{1}, i_{2}, i_{3}\right\}$ in (6 unknowns, 6 equations)

$$
\begin{aligned}
u_{1} & =R_{1} i_{1} \\
u_{2} & =R_{2} i_{2} \\
u_{3} & =R_{3} i_{3} \\
i_{1} & =i_{2}+i_{3} \\
u_{0} & =u_{1}+u_{3} \\
u_{3} & =u_{2} \\
i_{0} & :=i_{1}+i_{L} \\
u_{L} & :=u_{1}+u_{2}
\end{aligned}
$$

Example: BLT form of dynamic part of model

An electrical circuit	
$\mathrm{R} 2 . \mathrm{v}$	$=\mathrm{R} 2 \cdot \mathrm{R} * \mathrm{~L} \cdot \mathrm{i}$
$\mathrm{R} 1 \cdot \mathrm{p} \cdot \mathrm{v}$	$=\mathrm{AC} \cdot \mathrm{VA} * \sin (2 * \mathrm{AC} \cdot \mathrm{f} * \mathrm{AC} \cdot \mathrm{PI} * \mathrm{time})$
$\mathrm{L} \cdot \mathrm{v}$	$=\mathrm{R} 1 \cdot \mathrm{p} \cdot \mathrm{v}-\mathrm{R} 2 \cdot \mathrm{v}$
$\mathrm{R} 1 . \mathrm{v}$	$=\mathrm{R} 1 \cdot \mathrm{p} \cdot \mathrm{v}-\mathrm{C} \cdot \mathrm{v}$
$\mathrm{C} . \mathrm{i}$	$=\mathrm{R} 1 \cdot \mathrm{v} / \mathrm{R} 1 . \mathrm{R}$
$\operatorname{der}(\mathrm{L} . \mathrm{i})$	$=\mathrm{L} \cdot \mathrm{v} / \mathrm{L} \cdot \mathrm{L}$
$\operatorname{der}(\mathrm{C} . \mathrm{v})$	$=\mathrm{C} \cdot \mathrm{i} / \mathrm{C} \cdot \mathrm{C}$

$\operatorname{der}(\mathrm{L} . \mathrm{i})=\mathrm{L} . \mathrm{v} / \mathrm{L}$
$\operatorname{der}(C . v)=$ C.i/C.C
Highest differentiated variables: (R2.v, R1.p.v, L.v, R1.v, C.i, L.i', C.v')

R2.v	R1.p.v	L.v	R1.v	C.i	L.i'	C.v ${ }^{\prime}$
1	1					
1	1	1				
	1		1			
		1	1	1		
				1	1	1

Algebraic loops and Tarjans algorithm/BLT form

With fix point iterations (and contraction conditions) the loop

$$
\begin{aligned}
& x_{1}=f_{1}\left(x_{2}\right) \\
& x_{2}=f_{2}\left(x_{1}\right)
\end{aligned}
$$

can be solved through the iteration

```
NEWx2 = INITx2
repeat
    x2 := NEWx2
    x1 := f1(x2)
    NEWx2 := f2(x1)
until converged(NEWx2-x2)
```

Here it was "clear" where to tear the loop due to the given causality. For a general loop

$$
f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad i=1, \ldots, n
$$

this is not as clear.

Tearing

For a general algebraic loop

$$
f_{i}\left(x_{1}, \ldots, x_{n}\right)=0, \quad i=1, \ldots, n
$$

it is generally a difficult problem to choose how to rewrite as a fix point iteration on the best way; requires knowledge about the analytical expressions, inversion properties, contraction properties etc.
In the course literature, there is a structural method for choosing tearing variables

Good choice of tearing variables is often based on physical insight and therefore it is possible to introduce such information in the model definition (not discussed further here)

Tearing, example 1

Below is a system of equations, which is an algebraic loop.

$$
\begin{array}{ll}
c: & u_{3}=R_{3} i_{3} \\
d: & u_{1}=u_{0}-u_{3} \quad\left(u_{0} \text { known }\right) \\
a: & i_{1}=1 / R_{1} u_{1} \\
e: & u_{2}=u_{3} \\
b: & i_{2}=1 / R_{2} u_{2} \\
f: & i_{1}-i_{2}-i_{3}=0
\end{array}
$$

Choose i_{3} as tearing variable in equation f.
Then we get an equation to solve numerically

$$
f: g\left(i_{3}, i_{1}\left(i_{3}\right), i_{2}\left(i_{3}\right)\right)=\tilde{g}\left(i_{3}\right)=0
$$

For example by Newton iterations

$$
i_{3}^{(k+1)}=i_{3}^{(k)}-\tilde{g}^{\prime}\left(i_{3}^{(k)}\right)^{-1} \tilde{g}\left(i_{3}^{(k)}\right)
$$

Instead, choose i_{1} in equation a as a tearing variable

$$
\begin{array}{lr}
a: & u_{1}-R_{1} i_{1}=0 \\
b: & u_{2}-R_{2} i_{2}=0 \\
c: & u_{3}-R_{3} i_{3}=0 \\
d: & u_{1}+u_{3}-u_{0}=0 \\
e: & u_{2}-u_{3}=0 \\
f: & i_{1}-i_{2}-i_{3}=0
\end{array}
$$

Then we do not get anywhere. No new variable can be computed even though i_{1} is assumed known.

Now, choose a tearing variable, u_{2} in equation b, then it all clears out

$$
\begin{array}{ll}
e: & u_{3}=u_{2} \\
c: & i_{3}=1 / R_{3} u_{3} \\
d: & u_{1}=u_{0}-u_{3} \\
f: & i_{2}=i_{1}-i_{3}
\end{array}
$$

and the following two equations has to be solved, for example by Newton iterations for variables i_{1} and u_{2}
$a:$

$$
u_{1}-R_{1} i_{1}=0
$$

$$
u_{2}-R_{2} i_{2}=0
$$

Simple heuristic on the example

$$
\begin{array}{rlr}
c: & u_{3}=R_{3} i_{3} \\
d: & u_{1}=u_{0}-u_{3} \\
a: & i_{1}=1 / R_{1} u_{1} \\
e: & u_{2}=u_{3} \\
b: & i_{2}=1 / R_{2} u_{2} \\
f: & i_{1}-i_{2}-i_{3}=0
\end{array}
$$

Equation with most variables is f with variables $\left(i_{1}, i_{2}\right.$, and i_{3}. Assume known:

- $i_{1}: u_{1}$ (1 variable)
- $i_{2}: u_{2}, u_{3}, i_{3}, i_{1}, u_{1}$ (5 variables)
- $i_{3}: u_{3}, u_{1}, i_{1}, i_{2}, u_{2}$ (5 variables)

Conclusion: Choose i_{2} or i_{3} as tearing variable.

```
- An overview of a solver
- Adjoint sensitivity analysis of DAEs
- Modelica
    - Snapshot of the language
    - Simulation of Modelica models
    - Algebraic and dynamical loops/tearing
    - Event functions
```

- Structural index - introduction and definition

Event/crossing functions

Modelica

class BouncingBall
constant Real $\mathrm{g}=10$
parameter Real c=0.9, radius=0.1
Real $y($ start $=1)$, velocity (start=0), $x($ start=1)
equation
$\operatorname{der}(x)=0$;
$\operatorname{der}(\mathrm{y})=$ velocity;
der (velocity) =-g;
when height<=radius then
reinit(velocity,-c*pre(velocity))
end when;
end BouncingBall;

- Here it is clear that the zero-crossing is very important for the ball not to fall through the floor
- Important in many simulation problems that certain bounds not are crossed

Automatic generation of event functions

if-expression

$y=$ if $x>z$ then a else $b ;$

- Conditional expressions are translated into if-equations
- direct to generate event functions. In the example above we get

$$
c_{i}(\text { vars })=x-z
$$

- Here it is clear that the modelling can help the compiler to, by itself, figure out important conditions that has to be monitored.

- Fits well into the framework of DASSL and other standard solvers are structured

Conclusion

Reduce to ODE or DAE with index 1?

- Standard solvers can handle fully implicit idex 1 DAE models, why?
- well written code, efficient
- is it really the best?
- Implicit solvers not efficient for non-stiff problems
- Large model often exhibits stiff dynamics
- Dymola/Openmodelica reduces model to ODE (as far as I know), is not DAE index 1 sufficient?
- "Cellier vs. Petzold"

```
- An overview of a solver
- Adjoint sensitivity analysis of DAEs
- Modelica
    - Simulation of Modelica model
    - Algebraic and dynamical loops/tearing
    - Event functions
```

- Structural index - introduction and definition

Structural index - introductory example

Let $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and consider the index 1 model

$$
\begin{array}{rl|ll}
\dot{x}_{1} & =x_{1}+x_{2}+u & & \dot{x}_{1} \\
0 & x_{2} \\
& =-2 x_{1}+x_{2} & e_{1} & X \\
X \\
& e_{2} & & X
\end{array}
$$

The highest differentiated variables are $x_{h d}=\left(\dot{x}_{1}, x_{2}\right)$
DAE has index 1 for almost all coefficients in front of the x variables, only when coefficients in front of \dot{x}_{1} in e_{1} or x_{2} in e_{2} is 0 we have a problem.
Conclusions: we can from the table on the right determine that this model has (structural-)index 1 .

$$
F\left(\dot{x}_{1}, x_{1}, x_{2}\right)=0
$$

has low index (locally) if

$$
\left.\frac{\partial F\left(\dot{x}_{1}, x_{1}, x_{2}\right)}{\partial x_{h d}}\right|_{\dot{x}_{1}=x_{1}^{\prime},,^{*}, x_{1}=x_{1}^{*}, x_{2}=x_{2}^{*}}
$$

has full rank

Let ν and $\nu_{\text {str }}$ be the index and the structural index respectively for

$$
F\left(t, y^{\prime}, y\right)=0
$$

What holds?

$$
\begin{aligned}
\nu & <\nu_{\text {str }}, & \nu & \leq \nu_{\text {str }} \\
\nu_{s t r} & <\nu, & \nu_{\text {str }} & \leq \nu
\end{aligned}
$$

What is the consequence of this for a method that relies on a structural algorithm for index reduction?

This DAE can be shown to have index 1 but structural index larger than 1 (exercise, what is the structural index?)
Well known that structural index can be less than the index, but the example above shows that it can also be the other way around.

Consider the linear DAE

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \dot{x}+x=0
$$

Lecture 3

Simulation of differential-algebraic equations

Erik Frisk

erik.frisk@liu.se
Department of Electrical Engineering
Linköping University
February 23, 2022
1 LINKÖPING
UNIVERSITY

