Lecture 4
 Simulation of differential-algebraic equations

Erik Frisk

erik.frisk@liu.se
Department of Electrical Engineering
Linköping University
March 9, 2022

LINKÖPING $\begin{aligned} & \text { UNIVERSITY } \\ & \text { UTM }\end{aligned}$

Outline

- Structural index - introduction and definition
- Consistent initial conditions
- Pantelides algorithm - initial conditions and structural index
- Index reduction with dummy derivatives
- Structural index - introduction and definition
- Consistent initial conditions
- Pantelides algorithm - initial conditions and structural index
- Index reduction with dummy derivatives
- Summary

Structural index

An important step in the procedure to transfer the model to C code is to perform index reduction (and find consistent initial conditions). Index reduction requires that you know the index of the model. As we know it is a difficult problem in general to determine index; a method based on model structure is typically used.
Structural index can be defined in many ways. One way, for the DAE

$$
A \dot{x}+B x=0
$$

the structural index is the real index the DAE has for almost all A and B with the same structure.

- direct generalization to non-linear systems
- can be computed with Pantelides algorithm, which will be used also for other purposes

Structural index - introductory example
Let $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ and consider the index 1 model

$$
\begin{aligned}
\dot{x}_{1} & =x_{1}+x_{2}+u \\
0 & =-2 x_{1}+x_{2}
\end{aligned}
$$

The highest differentiated variables are $x_{h d}=\left(\dot{x}_{1}, x_{2}\right)$
DAE has index 1 for almost all coefficients in front of the x variables, only when coefficients in front of \dot{x}_{1} in e_{1} or x_{2} in e_{2} is 0 we have a problem.
Conclusions: we can from the table on the right determine that this model has (structural-)index 1.

$$
F\left(\dot{x}_{1}, x_{1}, x_{2}\right)=0
$$

has low index (locally) if

$$
\left.\frac{\partial F\left(\dot{x}_{1}, x_{1}, x_{2}\right)}{\partial x_{h d}}\right|_{\dot{x}_{1}=x_{1}^{\prime}{ }^{\prime},{ }^{*}, x_{1}=x_{1}^{*}, x_{2}=x_{2}^{*}}
$$

has full rank

Structural index vs. the differential index

Let ν and $\nu_{\text {str }}$ be the index and the structural index respectively for

$$
F\left(t, y^{\prime}, y\right)=0
$$

Unfortunately, both the situations below are possible

$$
\begin{aligned}
\nu & <\nu_{s t r}, & \nu & \leq \nu_{s t r} \\
\nu_{s t r} & <\nu, & \nu_{s t r} & \leq \nu
\end{aligned}
$$

What is the consequence of this for a method that relies on a structural algorithm for index reduction?

Structural index - introductory example

Let $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$

$$
\begin{aligned}
\dot{x}_{1} & =x_{1}+x_{2}+x_{3}+u \\
0 & =-2 x_{1}+x_{2} \\
0 & =x_{1}+x_{2}+u
\end{aligned}
$$

	\dot{x}_{1}	x_{2}	x_{3}
e_{1}	X	X	X
e_{2}		X	
e_{3}		X	

From the table on the right we see that regardless of which coefficient we have for the variables, the DAE has index >1. The DAE has a unique solution since

$$
|\lambda E-A|=\lambda+3 \neq 0, \quad\left(x_{1}, x_{2}, x_{3}\right)=\left(-\frac{1}{3} u,-\frac{2}{3} u,-\frac{1}{3} \dot{u}\right)
$$

Turns out you can determine structural index only by looking at the tables on the right. This is also direct to automatically do for large scale models in general purpose simulation environments.

Outline

- Structural index - introduction and definition
- Consistent initial conditions
- Pantelides algorithm - initial conditions and structural index
- Index reduction with dummy derivatives
- Summary

Now, what was the problem with initial conditions?

For example, remember the DAE from the first DAE lecture

For an initial value problem for an ODE

$$
\dot{x}=f(x, t), \quad x\left(t_{0}\right)=x_{0}
$$

there are no limitations (except domain for f) for the initial condition x_{0}.
For a DAE

$$
F(t, y, \dot{y})=0
$$

it is not sufficient that $\dot{y}\left(t_{0}\right)$ and $y\left(t_{0}\right)$ fulfills

$$
F\left(t_{0}, y_{0}, \dot{y}\left(t_{0}\right)\right)=0
$$

Pantelides algorithm - consistent initial conditions

Finding a consistent initial condition $\left(y\left(t_{0}\right), \dot{y}\left(t_{0}\right), t_{0}\right)$ for a DAE

$$
F(y, \dot{y}, t)=0
$$

with unknown index is a difficult problem in general. By differentiation we can obtain "hidden" conditions on the initial condition.

Pantelides algorithm

Graph theoretical approach to find the conditions that has to be satisfied and solved by a numerical equation solver.

- Good because based on equation structure only, possible to make automatic
- Bad based on equation structure only, does not give analytical results
- Can be used to compute differential index
- Can be used for index reduction. Will come back to this.

$$
\begin{aligned}
& \dot{x}_{1}+x_{2}+x_{3}=f_{1} \\
& x_{1}(t)=f_{2}(t)-\dot{f}_{3}(t) \\
& \dot{x}_{2}+x_{1}=f_{2} \\
& x_{2}=f_{3} \\
& x_{2}(t)=f_{3}(t) \\
& x_{3}(t)=f_{1}(t)-f_{3}(t)-\dot{f}_{2}(t)+\ddot{f}_{3}(t)
\end{aligned}
$$

Here, no freedom at all and the initial conditions has to satisfy

$$
\begin{aligned}
& x_{1}\left(t_{0}\right)=f_{2}\left(t_{0}\right)-\dot{f}_{3}\left(t_{0}\right) \\
& x_{2}\left(t_{0}\right)=f_{3}\left(t_{0}\right) \\
& x_{3}\left(t_{0}\right)=f_{1}\left(t_{0}\right)-f_{3}\left(t_{0}\right)-\dot{f}_{2}\left(t_{0}\right)+\ddot{f}_{3}\left(t_{0}\right)
\end{aligned}
$$

Problem
 We do not want to solve the DAE to find initial conditions!

Pantelides algorithm

We know that given a DAE

$$
F(\dot{y}, y, t)=0
$$

we can differentiate well chosen equation a suitable number of times to obtain a model including all constraints for the initial condition.

$$
\begin{aligned}
F(\dot{y}, y, t) & =0 \\
\frac{d}{d t} F(\dot{y}, y, t) & =0 \\
\frac{d^{2}}{d t^{2}} F(\dot{y}, y, t) & =0 \\
& \vdots \\
\frac{d^{j}}{d t^{j}} F(\dot{y}, y, t) & =0
\end{aligned}
$$

Two questions:

- which equations?
- differentiate how many times?

$$
\begin{aligned}
& e_{1}: \dot{x}_{1}+x_{2}+x_{3}=f_{1} \\
& e_{2}: \dot{x}_{2}+x_{1}=f_{2} \\
& e_{3}: x_{2}=f_{3}
\end{aligned}
$$

Differentiate e_{2} once and e_{3} twice and collect the equations. These 6 equations can be solved for the 6 variables $\left(x_{1}(0), \dot{x}_{1}(0), x_{2}(0), \dot{x}_{2}(0), \ddot{x}_{2}(0), x_{3}(0)\right)$ for a consistent initial condition

$$
\begin{aligned}
& e_{1}: \dot{x}_{1}+x_{2}+x_{3}=f_{1} \\
& e_{2}: \dot{x}_{2}+x_{1}=f_{2} \\
& \dot{e}_{2}: \ddot{x}_{2}+\dot{x}_{1}=\dot{f}_{2} \\
& e_{3}: x_{2}=f_{3} \\
& \dot{e}_{3}: \dot{x}_{2}=\dot{f}_{3} \\
& \ddot{e}_{3}: \ddot{x}_{2}=\ddot{f}_{3}
\end{aligned}
$$

The new $\operatorname{DAE}\left(e_{1}, \dot{e}_{2}, \ddot{e}_{3}\right)$ is index 1 (see next slide) and we had to differentiate e_{3} twice. This is no coincidence.

Initial condition, example

For the model (1-DOF)

$$
e_{1}: \dot{x}_{1}+\dot{x}_{2}=a(t), \quad e_{2}: x_{1}+x_{2}^{2}=b(t)
$$

we can differentiate equation e_{2} to obtain the constraint

$$
\dot{e}_{2}: \dot{x}_{1}+2 x_{2} \dot{x}_{2}=b^{\prime}(t)
$$

and we are done since $\left(\dot{x}_{1}, \dot{x}_{2}\right)$ can be solved for in $\left(e_{1}, \dot{e}_{2}\right)$.
The initial condition is therefore obtained by solving

$$
\begin{aligned}
\dot{x}_{1}\left(t_{0}\right)+\dot{x}_{2}\left(t_{0}\right) & =a\left(t_{0}\right) \\
x_{1}\left(t_{0}\right)+x_{2}^{2}\left(t_{0}\right) & =b\left(t_{0}\right) \\
\dot{x}_{1}\left(t_{0}\right)+2 x_{2}\left(t_{0}\right) \dot{x}_{2}\left(t_{0}\right) & =\dot{b}\left(t_{0}\right)
\end{aligned}
$$

for $\left(x_{1}\left(t_{0}\right), x_{2}\left(t_{0}\right), \dot{x}_{1}\left(t_{0}\right), \dot{x}_{2}\left(t_{0}\right)\right)$. With 4 unknowns and three equations, 1-DOF which we kind of knew.
$e_{1}: \dot{x}_{1}+x_{2}+x_{3}=f_{1}$
$\dot{e}_{2}: \ddot{x}_{2}+\dot{x}_{1}=\dot{f}_{2}$
$\ddot{e}_{3}: \ddot{x}_{2}=\ddot{f}_{3}$
\Rightarrow

$$
\ddot{e}_{3}: \ddot{x}_{2}=\ddot{f}_{3}
$$

$$
\dot{e}_{2}: \dot{x}_{1}=\dot{f}_{2}-\ddot{f}_{3}
$$

$$
e_{1}: x_{3}=f_{1}-\dot{x}_{1}+x_{2}=f_{1}-\dot{f}_{2}-\ddot{f}_{3}+x_{2}
$$

Initial condition, example, cont.

For the model

$$
\dot{x}_{1}=x_{1}+x_{2}, \quad 0=x_{1}+2 x_{2}+a
$$

we can not obtain any new constraints on the initial condition by differentiating the equations.
For every new differentiation, we get a new variable. Differentiation gives

$$
\begin{aligned}
\ddot{x}_{1} & =\dot{x}_{1}+\dot{x}_{2} \\
0 & =\dot{x}_{1}+2 \dot{x}_{2}+\dot{a}
\end{aligned}
$$

These can always be satisfied by choosing a suitable value for $\ddot{x}_{1}\left(t_{0}\right)$ and $\dot{x}_{2}\left(t_{0}\right)$.
From this you can conclude that it is sufficient to solve the original equations for $\left(x_{1}\left(t_{0}\right), \dot{x}_{1}\left(t_{0}\right), x_{2}\left(t_{0}\right)\right)$. (This we already knew since the DAE is index 1)

- Structural index - introduction and definition
- Consistent initial conditions
- Pantelides algorithm - initial conditions and structural index
- Index reduction with dummy derivatives
- Summary

Differentiation a set of equations

Assume a DAE

$$
f(x, \dot{x}, y, t)=0, \quad f: \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R} \rightarrow \mathbb{R}^{n+m}
$$

The highest differentiated variables are interesting, let $z=(\dot{x}, y)$ be a vector with the highest derivatives

$$
f(x, z, t)=0
$$

Find a subset with k equations

$$
\bar{f}(\bar{x}, \bar{z}, t)=0, \bar{x} \in \mathbb{R}^{q}, \quad \bar{z} \in \mathbb{R}^{\prime}
$$

Assume a well formed model, e.g., no dependent set of equations.

What does the situation look like when we can, and cannot, obtain new constraints by differentiating? What separates the two examples?

$$
\begin{aligned}
& \dot{x}_{1}+\dot{x}_{2}=a(t) \\
& x_{1}+x_{2}^{2}=b(t)
\end{aligned}
$$

$$
\dot{x}_{1}=x_{1}+x_{2}
$$

$$
0=x_{1}+2 x_{2}+a
$$

New constraints exists
No new constraints

- Difference is the index of the DAE:s
- A sufficient condition for a DAE to have at most index 1 is that it is possible to solve for highest differentiated variables.
- For semi-explicit DAE:s it is also a necessary condition

Differentiation a set of equations, cont.

Differentiate the set of equations \bar{f} w.r.t. t

$$
\bar{f}_{\bar{x}} \dot{\bar{x}}+\bar{f}_{\bar{z}} \dot{\bar{z}}+\bar{f}_{t}=0
$$

The number of "new" highest derivatives \bar{z}^{\prime} appearing in the differentiated equation is determined by rang $\bar{f}_{\bar{z}}$.

$$
r \leq \min (k, l)=\min (\text { equations, number } z i \bar{f})
$$

With no dependencies it holds that

$$
\operatorname{rang}\left(\bar{f}_{\bar{x}} \bar{f}_{\bar{z}}\right)=k
$$

The conclusion so far is then:

- we get $k-r$ new equations/constraints when differentiating \bar{f}.
- all subsets of equations where $k-r>0$ are useful to obtain new constraints

Since r (number of new highest derivatives) can not be larger than I (number of highest derivatives in \bar{f}), a sufficient condition for $k-r>0$ is

$$
l<k
$$

The above property implies that the set of equations \bar{f} contains fewer highest ordered derivatives than equations. Minimally structurally singular (MSS).

Set of equations is overdetermined with respect to the highest ordered differentiated variables.

What does the situation look like when we can, and cannot, obtain new constraints by differentiating? What separates the two examples?

$$
\begin{array}{ll}
e_{1}: \dot{x}_{1}+\dot{x}_{2}=a(t) & e_{1}: \dot{x}_{1}=x_{1}+x_{2} \\
e_{2}: x_{1}+x_{2}^{2}=b(t) & e_{2}: 0=x_{1}+2 x_{2}+a
\end{array}
$$

New constraints exists, equation e_{2} contains none of the highest ordered differentiated variables \dot{x}_{1} or \dot{x}_{2}.

With \bar{f} equal to e_{2} then $k=1$
and $I=r=0 \Rightarrow$
$k-r=1-0=1$ new
constraints.

No new constraints. Both e_{1} and e_{2} each contain one of the highest ordered differentiated variables \dot{x}_{1} and x_{2} respectively.

With \bar{f} equal to e_{1} or e_{2} then $k=1$ and $I=r=1 \Rightarrow$ $k-r=1-1=0$ new constraints.

Sketch of Pantelides algorithm

Sketch of the basic principles for Pantelides algorithm for a DAE $f(\dot{x}, x, y, t)=0$.
(1) Define $z=(\dot{x}, y)$
(2) Find all subsets of equations where $l<k$, i.e., overdetermined w.r.t. the highest ordered derivatives. If none exists, exit.Differentiate these equations and extend the model with the new equations. Go to step 1.

- There are many, very many, possible subsets. This has to be done in a smart way to not run into complexity problems.
- Solvable!

Pantelides algorithm

A graph theoretical algorithm that do the above efficiently for large systems with no symbolic computations.

An implementation of the algorithm, courtesy Mattias Krysander, can be downloaded from the course website, can come in handy when solving some of the exercises.

In a semi-explicit DAE

$$
\begin{aligned}
\dot{x} & =f(x, y) \\
0 & =g(x, y)
\end{aligned}
$$

the highest differentiated variables $z=(\dot{x}, y)$. DAE has (local) index $0 / 1$ if

$$
\left.\frac{\partial}{\partial z}\binom{f(x, y)}{g(x, y)}\right|_{z=z_{0}}
$$

has full column rank.
Convince yourselves that the DAE has structural index $0 / 1$ if the structure of the DAE has a complete matching with respect to the variables z.

Pantelides on an index 3 DAE

Step 1

$$
\begin{aligned}
& e_{1}: \dot{x}=f(x, y) \\
& e_{2}: \dot{y}=g(x, y, z) \\
& e_{3}: 0=h(x)
\end{aligned}
$$

Highest differentiated variables: (\dot{x}, \dot{y}, z)

Step 2

$$
\begin{aligned}
& e_{1}: \dot{x}=f(x, y) \\
& e_{2}: \dot{y}=g(x, y, z) \\
& \dot{e}_{3}: 0=\frac{d}{d t} h(x)
\end{aligned}
$$

Highest differentiated variables: (\dot{x}, \dot{y}, z)

Pantelides on an index 3 DAE, cont.

Step 3

$$
\begin{aligned}
& \dot{e}_{1}: \ddot{x}=\frac{d}{d t} f(x, y) \\
& e_{2}: \dot{y}=g(x, y, z) \\
& \ddot{e}_{3}: 0=\frac{d^{2}}{d t^{2}} h(x)
\end{aligned}
$$

Highest differentiated vars: (\ddot{x}, \dot{y}, z)

Resulting system of equations (6 equations in 6 unknowns)

$$
\begin{aligned}
& e_{1}: \dot{x}=f(x, y) \\
& \dot{e}_{1}: \ddot{x}=d / d t f(x, y) \\
& e_{2}: \dot{y}=g(x, y, z) \\
& e_{3}: 0=h(x) \\
& \dot{e}_{3}: 0=d / d t h(x) \\
& \ddot{e}_{3}: 0=d^{2} / d t^{2} h(x)
\end{aligned}
$$

$$
\begin{array}{rll}
\ddot{x}=T x \\
\ddot{y}=T y-g \\
0 & =x^{2}+y^{2}-L^{2} & \Rightarrow \\
& \dot{y}=z \\
& \dot{w}=T x \\
\dot{z}=T y-g \\
& 0=x^{2}+y^{2}-L^{2}
\end{array}
$$

Highest differentiated variables are $(\dot{x}, \dot{y}, \dot{w}, \dot{z}, T)$

	T	\dot{x}	\dot{w}	\dot{y}	\dot{z}
e_{1}		X			
e_{2}				X	
e_{3}	X		X		
e_{4}	X				X
e_{5}					

$e_{1}: \quad \dot{x}=w$
$e_{5}^{\prime}: \quad 0=2 x \dot{x}+2 y \dot{y}$
$e_{2}: \quad \dot{y}=z$
$e_{3}: \quad \dot{w}=T x$
$e_{4}: \quad \dot{z}=T y-g$
$e_{5}: \quad 0=x^{2}+y^{2}-L^{2}$

Highest differentiated variables are $(\dot{x}, \dot{y}, \dot{w}, \dot{z}, T)$

Differentiate e_{1}, e_{2}, and \dot{e}_{5}

11 variables and 9 equations, i.e., 2 degrees of freedom. Makes sense $(\approx$ position and velocity)

- Structural index - introduction and definition
- Consistent initial conditions
- Pantelides algorithm - initial conditions and structural index
- Index reduction with dummy derivatives
- Summary

Small example that shows the principle

Index-1 system

$$
\begin{aligned}
& e_{1}: \dot{x}_{1}+\dot{x}_{2}=a(t) \\
& e_{2}: x_{1}+x_{2}^{2}=b(t)
\end{aligned}
$$

Differentiate e_{2} once gives the overdetermined system of equations

$$
\begin{aligned}
& e_{1}: \dot{x}_{1}+\dot{x}_{2}=a(t) \\
& e_{2}: x_{1}+x_{2}^{2}=b(t) \\
& \dot{e}_{2}: \dot{x}_{1}+2 x_{2} \dot{x}_{2}=\dot{b}(t)
\end{aligned}
$$

Replace \dot{x}_{1} for a new algebraic variable x_{1}^{\prime}

$$
\begin{aligned}
& e_{1}: x_{1}^{\prime}+\dot{x}_{2}=a(t) \\
& e_{2}: x_{1}+x_{2}^{2}=b(t) \\
& \dot{e}_{2}: x_{1}^{\prime}+2 x_{2} \dot{x}_{2}=\dot{b}(t)
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& x_{1}=b(t)-x_{2}^{2} \\
& \dot{x}_{2}=\frac{\dot{b}(t)-a(t)}{2 x_{2}-1} \\
&
\end{aligned}
$$

and solve for $\left(x_{1}, x_{1}^{\prime}, x_{2}\right)$. Can be proven to have the same solution set as the original equations.
(a): $\dot{x}=y$
$x(t)=f(t)$
(b) : $\quad \dot{y}=z$
$y(t)=\dot{f}(t)$
(c) : $\quad x=f(t)$
$z(t)=\ddot{f}(t)$

Pantelides states that we should differentiate (c) twice and (a) once. Collecting the equations

$(c):$	$x=f(t)$
$(\dot{c}):$	$\dot{x}=\dot{f}(t)$
$(\ddot{c}):$	$\ddot{x}=\ddot{f}(t)$
$(a):$	$\dot{x}=y$
$(\dot{a}):$	$\ddot{x}=\dot{y}$
$(b):$	$\dot{y}=z$

Example, cont.

The differentiated model is overdetermined (3 unknowns, 6 equations). Introduce an algebraic variable for each differentiated equation

$$
x^{\prime}=\dot{x}, x^{\prime \prime}=\ddot{x}, y^{\prime}=\dot{y}
$$

Important!! Variables $x^{\prime}, x^{\prime \prime}, y^{\prime}$ is here algebraic variables.

$(c):$	x	$=f(t)$
$(\dot{c}):$	x^{\prime}	$=\dot{f}(t)$
$(\ddot{c}):$	$x^{\prime \prime}$	$=\ddot{f}(t)$
$(a):$	x^{\prime}	$=y$
$(\dot{a}):$	$x^{\prime \prime}$	$=y^{\prime}$
$(b):$	y^{\prime}	$=z$

Exactly determined, index 1 DAE (6 unknowns, 6 equations)
Somewhat extreme example where the system turns into a purely algebraic system of equations, but it illustrates a simple case.

Structure of the differentiated system

Principle for index reduction

- Let Pantelides algorithm determine the number of times to differentiateDifferentiate equations according to Pantelides, collect all equationsSimplified: For each differentiated equation, introduce an algebraic variable such that the system becomes exactly determined
- Result: exactly determined index 1 DAE with the same solution set as the original DAE

Step 3 need to be clarified.

Simple if

- Pantelides algorithm only differentiates 1 time and only one new variable is introduced
- How should the situation where equations are differentiated more than once and multiple new variables are introduced simultaneously?
take the differentiated system, by permutations of equations and variables you can always get a Block Lower Triangle (BLT) form w.r.t. the most differentiated variables

Consider one block at a time.

Example - a system of index 2, cont.

The differentiated system $\mathcal{G} x=0$ is not of the type with one-to-one relation between differentiated equation and variable.

The highest differentiated variables are ($\ddot{x}_{1}, \ddot{x}_{2}, \ddot{x}_{3}, \dot{x}_{4}$) and \mathcal{G} consists of a block g_{1}, w.r.t. the highest differentiated variables z_{1}

$$
\frac{\partial g_{1}}{\partial z_{1}}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
2 & 1 & 1 & 1
\end{array}\right)
$$

In these, the three first equations are differentiated; get that part

$$
H_{1}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Choice of variables should be such that index ≤ 1 is retained, i.e., all highest differentiated variables should still be matched. We must choose variables such that the corresponding sub-matrix of H_{1} has full rank.
(a):

$$
x_{1}+x_{2}+u_{1}=0
$$

(b) :

$$
x_{1}+x_{2}+x_{3}+u_{2}=0
$$

(c):

$$
x_{1}+\dot{x}_{3}+x_{4}+u_{3}=0
$$

(d) :

$$
2 \ddot{x}_{1}+\ddot{x}_{2}+\ddot{x}_{3}+\dot{x}_{4}+u_{4}=0
$$

Pantelides gives $\nu=(2,2,1,0)$ and the differentiated system $\mathcal{G} \times=0$ is:

$$
\begin{array}{rr}
(\ddot{a}): & \ddot{x}_{1}+\ddot{x}_{2}+\ddot{u}_{1}=0 \\
(\ddot{b}): & \ddot{x}_{1}+\ddot{x}_{2}+\ddot{x}_{3}+\ddot{u}_{2}=0 \\
(\dot{c}): & \dot{x}_{1}+\ddot{x}_{3}+\dot{x}_{4}+\dot{u}_{3}=0 \\
(d): & 2 \ddot{x}_{1}+\ddot{x}_{2}+\ddot{x}_{3}+\dot{x}_{4}+u_{4}=0
\end{array}
$$

We have introduced $2+2+1=5$ equations, i.e., we need to introduce 5 dummy variables. Which ones? Not as easy as in the first example where there was a one-to-one relation between differentiated equation and new variable. Candidates are ($\left.\dot{x}_{1}, \ddot{x}_{1}, \dot{x}_{2}, \ddot{x}_{2}, \dot{x}_{3}, \ddot{x}_{3}, \dot{x}_{4}\right)$, which 5 to choose?

Example - a system of index 2, cont.

We can choose $\left(\ddot{x}_{1}, \ddot{x}_{3}, \dot{x}_{4}\right)$ or $\left(\ddot{x}_{2}, \ddot{x}_{3}, \dot{x}_{4}\right)$. Choose

$$
\hat{z}^{[1]}=\left(\ddot{x}_{1}, \ddot{x}_{3}, \dot{x}_{4}\right)
$$

these variables will be introduced as dummy variables in the final DAE. We are not done since we yet only have define 3 dummy variables, we must have 5 .

Now look at the differentiated equations, with one less differentiation (these also are part of the system)
(a) :
$\dot{x}_{1}+\dot{x}_{2}+\dot{u}_{1}=0$
(b) :

$$
\dot{x}_{1}+\dot{x}_{2}+\dot{x}_{3}+\dot{u}_{2}=0
$$

(c) :

$$
x_{1}+\dot{x}_{3}+x_{4}+u_{3}=0
$$

Candidates for new dummy variables are ($\dot{x}_{1}, \dot{x}_{3}, x_{4}$). Analyze this sub-model in the same way as before.

The final index 1 DAE is then

Extract the differentiated equations

$$
\begin{array}{lr}
(\dot{a}): & \dot{x}_{1}+\dot{x}_{2}+\dot{u}_{1}=0 \\
(\dot{b}): & \dot{x}_{1}+\dot{x}_{2}+\dot{x}_{3}+\dot{u}_{2}=0
\end{array}
$$

Highest derivatives are $z_{1}=\left(\dot{x}_{1}, \dot{x}_{3}, x_{4}\right)$. Differentiate w.r.t. z_{1} to obtain

$$
H_{1}^{[2]}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)
$$

and here we must choose

$$
\hat{z}_{1}^{[2]}=\left(\dot{x}_{1}, \dot{x}_{3}\right)
$$

as dummy variables and then we have selected our 5 and are done!

$(a):$	$x_{1}+x_{2}+u_{1}=0$
$(\dot{a}):$	$x_{1}^{\prime}+\dot{x}_{2}+\dot{u}_{1}=0$
$(\ddot{a}):$	$x_{1}^{\prime \prime}+\ddot{x}_{2}+\ddot{u}_{1}=0$
$(b):$	$x_{1}+x_{2}+x_{3}+u_{2}=0$
$(\dot{b}):$	$x_{1}^{\prime}+\dot{x}_{2}+x_{3}^{\prime}+\dot{u}_{2}=0$
$(\ddot{b}):$	$x_{1}^{\prime \prime}+\ddot{x}_{2}+x_{3}^{\prime \prime}+\ddot{u}_{2}=0$
$(c):$	$x_{1}+x_{3}^{\prime}+x_{4}+u_{3}=0$
$(\dot{c}):$	$x_{1}^{\prime}+x_{3}^{\prime \prime}+x_{4}^{\prime}+\dot{u}_{3}=0$
$(d):$	$2 x_{1}^{\prime \prime}+\ddot{x}_{2}+x_{3}^{\prime \prime}+x_{4}^{\prime}+u_{4}=0$

which has the same solution set as the original index 2 DAE.
The 9 unknown variables $\operatorname{are}\left(x_{1}, x_{1}^{\prime}, x_{1}^{\prime \prime}, x_{2}, x_{3}, x_{3}^{\prime}, x_{3}^{\prime \prime}, x_{4}, x_{4}^{\prime}\right)$ out of which all are algebraic except x_{2} which appears differentiated of order 2 .

Dummy derivatives summary

- Pantelides algorithm plus a procedure to introduce algebraic variables gives a low-index system with the same solution set as the original DAE
- Is all index related issues thereby solved?
- Pros/cons
- Structural and analytical steps
- Structural index - introduction and definition
- Consistent initial conditions
- Pantelides algorithm - initial conditions and structural index
- Index reduction with dummy derivatives
- Summary
- Three problems have been discussed:
- consistent initial conditions
- determining index
- index reduction
- Pantelides algorithm: a graph theoretical algorithm to find the system of equations to solve for consistent initial conditions given a DAE of arbitrary index
- Pantelides algorithm is a cornerstone for solving all three problems
- Well suited for implementation in a general purpose DAE simulator
- Structural results, not analytical!

Lecture 4

Simulation of differential-algebraic equations

Erik Frisk

erik.frisk@liu.se
Department of Electrical Engineering
Linköping University
March 9, 2022

