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Abstract: Designing diagnosis systems for hybrid vehicles include new features compared to
conventional vehicles, e.g. mode switches in the system. The influence of this on the performance
of the diagnosis system is investigated by design and implementation of diagnosis systems on
vehicle level. The diagnosis systems are based on two sensor configurations, one consisting
of many sensors and one of few sensors. The diagnosis systems detect specific faults, here
specifically faults in the electrical components in a hybrid vehicle driveline, but the methodology
is generic. There is a connection between the design of the energy management and the diagnosis
system, and this interplay is of special relevance when models of components are valid only in
some operating modes. In the systems implemented, the diagnosis system based on few sensors
is more complex and includes a larger part of the vehicle model than the system based on more
sensors.
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1. INTRODUCTION

There are possibilities to increase the efficiency of automo-
tive drivelines using hybrid technology. The highest relative
fuel saving can be obtained in city buses and garbage trucks
with many start and stops, but also a small relative saving
in the fuel consumption for long haulage trucks results in
a large amount of fuel. When hybridizing a vehicle, new
components are added compared to a conventional vehicle,
e.g. electric machines, battery, and power electronics. These
components need to be monitored with the same accuracy
as the components used in a conventional vehicle.

One reason for monitoring the system is safety. Faults in
the electrical system may be fatal due to the high voltage
in the system. It is also possible that a truck starts to move
from stand still, due to a fault in the system, resulting in
that a torque is applied by the electric machine. It is also
of relevance to protect components from breaking down if a
fault occurs, and here it is especially important to protect
the battery due to its high cost.

The demands on the diagnosis systems in a conventional
vehicle has been increased over a long period of time.
Therefore such diagnosis systems have been developed
and refined step by step to achieve the performance of
today’s systems. In a hybrid electric vehicle (HEV), many
new components are added. Monitoring these leads to new
challenges since there are many different operating modes
in an HEV, and there is a freedom in choosing operating
points of the components via the energy management. One
example is that the electric components are either active
or not.

The objective of this work is to study key topics for overall
monitoring and diagnosis on vehicle level of hybrid vehicles.
A main topic is a study on how the choice of the sensor
configuration affects the model based diagnosis system.

2. SIMULATION PLATFORM

To investigate the interplay between vehicle, control, and
driver with emphasis on monitoring and diagnosis, a

simulation platform in Simulink has been developed. The
simulation platform includes descriptions of the truck,
driver model, control and energy management algorithms,
and different diagnosis systems. The diagnosis framework
used in the paper is consistency based diagnosis using
precompiled tests, or residuals, see for example Blanke et al.
(2006) or the references therein. For logical foundations of
the approach, see for example de Kleer et al. (1992).

The structure of the platform is given in Figure 1. The
vehicle model is based on models of the components with
a fixed interface to be able to easily change a component
model without modifying the rest of the model. In Figure 1,
the lower dashed line has a special meaning in that the
levels above are simulated as a time-continuous system,
whereas the level below is simulated at a fix sample rate.
Here, the diagnosis system is updated at a rate of 80 Hz,
since this reflects a real application. In the platform, the
models of the vehicle, environment and driver are based on
the model library developed in the Center for Automotive
Propulsion Simulation (CAPSim, 2009). Modifications to
these models are carried out to model a truck instead of
a passenger car, and to include the possibility to induce
faults in the models and to add sensor noise.
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Fig. 1. The structure of the implemented platform. Above
the first horizontal line the faults are modeled, be-
tween the lines the models of the vehicle, driver,
and environment, and the lowest level contains the
diagnosis system described in Sections 3 and 4.



2.1 Environment

The environment contains information about the driving
cycle, and ambient temperature and pressure. In the
simulations the driving cycle FTP75 is used.

2.2 Driver model

The model of the driver is a PI-controller using the
information from the actual speed and the reference speed
from the driving cycle. The model also handles gear
selection and when to engage or disengage the clutch.

2.3 Vehicle model

The vehicle modeled is a long haulage truck with a total
weight of 40.000 kg. The configuration of the driveline is a
parallel hybrid, see Figure 2.

Fuel tank
Combustion
engine

Clutch

Buffer
Electric
machine

Mechanical
join

Gear
box

Chassis

Fig. 2. The modeled truck is a parallel hybrid with the
connection of the electrical and conventional parts of
the driveline between the clutch and the gearbox.

Since the objective with this work is to study the interaction
between the components in the vehicle, it is preferable to
use basic component models. It is though easy to add
more advanced models of the components. The models of
the battery, electric machine, power electronics, and the
clutch are described below, since these components are of
interest in the diagnosis systems. The other components
are described in Sundström et al. (2010).

Battery The battery is modeled as a voltage source and
an inner resistance. The capacity and nominal voltage are
9 kWh and 256 V, respectively.

Electric machine The electric machine is able to convert
electric power to mechanical power and vice verse. A
voltage, Uem, is applied on the component, resulting in
a torque on the outgoing shaft. The machine used is the
one in CAPSim, where the model is that the torque Tem is
proportional to the armature current, Iem, and that the
speed of the machine, ωem, strongly is connected to the
voltage Uem

Iem =
Uem − kaωem

R
(1a)

Tem = Iemki (1b)

The model is parametrized as a 33 kW DC machine
with constant magnetic flux with parameter values of the
resistance, R, torque constant, ki, and speed constant, ka,
are set to 0.044 Ω, 0.50 Nm/A, and 0.51 Vs/rad, respectively.
In an ideal machine, ki and ka are equal, and are defined by
KΦ, where K is a machine constant that depends on the
design parameters of the machine, and Φ is the magnetic
flux produced by the stator. In HEVs it is common to use a
permanent magnet synchronous machine (Chau et al., 2008)
due to its high efficiency, and models according to Guzzella
and Sciarretta (2007) and others are to be included in the
platform.

Power electronics The model of the power electronics is
included in the electric machine and is assumed to be an
ideal component

Pb = Pem ⇐⇒ IbUb = IemUem (2)

where Pb and Pem are the electrical power from the battery
and motor, and Ub and Ib the voltage and current in the
battery.

Clutch There is a model of the clutch to handle starts
and gear shifts. When the clutch is engaged or disengaged,
the clutch is modeled as an ideal component, but the model
is more complex when there is a difference in the rotational
speeds on the in- and outgoing axles.

2.4 Controller and energy management

There are several approaches to develop a well perform-
ing energy management, e.g. the global optimal solu-
tion (Lin et al., 2003) using dynamic programming, or
finding equivalent-consumption minimization strategies
(ECMS) (Sciarretta and Guzzella, 2007). In this inves-
tigation a less complex energy management is used in order
to focus on the diagnosis systems.

The basic idea in the developed energy management is
to charge the battery via the electric machine instead of
using the mechanical brakes and later use this energy as
a complement to the combustion engine. To be able to
store as much energy as possible during a retardation, it is
preferred to have a low state of charge, SoC, in the battery
before the retardation. This is achieved by primarily propel
the vehicle via the electrical machine if SoC is larger than
a predefined threshold, SoClow.

2.5 Sensors

The truck is assumed to be equipped with sensors measuring
voltages, currents and rotational velocities. In addition
to these sensors, the torque from the electric machine
is measured in one of the diagnosis systems. This is to
investigate the influence of using many sensors measuring
signals of the electrical components.

2.6 Measurement noise

Noise is added to all sensor signals with arbitrary amplitude.
To simulate measurement noise, a Band-Limited White
Noise block that is updated at 80 Hz is used in the Simulink
model.

2.7 Faults

To model that the battery, power electronics, or the electric
machine may break down, two parameter values and two
voltages in these models have the possibility to be modified.
Note that these faults are only examples of how a fault in
these components can be represented in the model. The
following modifications of the signals are introduced to
model the faults where the nominal signals are denoted by
the superscript nom:

fem,ki : ki = (1 + fem,ki) k
nom
i

fem,R : R = (1 + fem,R)Rnom

fpe : Uem,control = (1 + fpe)U
nom
em,control

fb,sc : Ub = (1 + fb,sc)U
nom
b

where fb,sc models that not all cells in the battery are
used due to an internal short circuit, fpe is a fault in the
power electronics, and fem,ki and fem,R are two faults in
the electric machine.



Sensor faults are modeled as an offset fault, e.g. for the
voltage sensor

Uem,sens = Uem + fem,U,sens (3)

where fem,U,sens possibly is time variant.

When a fault is induced in the model, the value of the fault
is given in Table 1.

Table 1. Values of faults induced in the model.
The voltage Uem varies in the range 0−200 V,

Ub ≈ 250 V and ωgb < 50 rad/s.

Faults Value
fem,ki -0.5
fem,R -0.5

fpe -0.5
fb,sc -0.5

fb,U,sens 20 V
fem,U,sens 20 V

fω,gb 20 rad/s

3. SENSOR CONFIGURATIONS AND THEORETICAL
MAXIMUM FAULT ISOLABILITY

To analyze how the choice of sensor configuration affects the
performance and complexity of the diagnosis system, two
systems using different sensor configurations are developed.
One set of sensors is chosen to achieve a diagnosis system
that is easy to design, and the other set is chosen to use
as few sensors as possible. The sensor configurations will
also be investigated to see how the sensor noise affects the
performance of the diagnosis.

3.1 Sensor configuration 1

The first system includes sensors that measure signals close
to the components that are to be monitored, i.e. the battery,
electric machine and power electronics:

• Tem,sens - torque from electric machine
• ωgb,sens - outgoing speed of gear box
• Ib,sens - current to battery
• Iem,sens - current in electric machine
• Uem,sens - voltage of electric machine

Note that in this system a torque sensor in the electric
machine is used. Torque sensors are normally not used
in series production, but in this case the torque sensor is
included in the system to investigate its impact on the
performance of the diagnosis.

Given a model and a set of sensors it is possible to determine
what detectability and isolability of the faults that are
theoretically possible to achieve. In Krysander and Frisk
(2008) this is done by a structural analysis (Dustegör et al.,
2006; Blanke et al., 2006) of the model. The method is
based on that all variables that are used in every equation
are listed. How the variables are included (e.g. linear,
exponential, differentiated) is not of importance in this
analysis. The structural model using the above described
sensor configuration is shown in Figure 3, where the last
five equations represent the sensor equations and are
modified if a different sensor configuration is used. Given
the set of sensors described above it is possible, under the
assumptions in Krysander and Frisk (2008), to achieve full
isolability of the faults described in Section 2.7.

3.2 Sensor configuration 2

In the second set of sensors used, the number of sensors to
achieve full isolability is minimized to be able to analyze
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Structural model of the parallel model

Fig. 3. The structural model of the truck where 5 sensors
are used in the model. Each row represents an equa-
tion, each column a variable, and the circles indicates
which variables that are included in each equation.
The variables to the left of the dashed lines are un-
knowns, between the lines are possible faults, and to
the right the known variables such as sensor signals
and signals from the controllers.

the impact this choice has on the performance of the
diagnosis system. To find this set, a sensor placement
algorithm (Krysander and Frisk, 2008) is run using the
structural model. If all sensors used are to be monitored,
in addition to the faults described in Section 2.7, three
sensors are required to isolate these faults. There are several
different sets with three sensors that fulfills this, and in the
diagnosis system the following sensor configuration is used:

• ωgb,sens - outgoing speed of gearbox
• Ub,sens,a - voltage of battery
• Ub,sens,b - voltage of battery

As seen there are two sensors measuring the voltage over
the battery. This is required to be able to isolate faults in
the voltage sensors.

4. DIAGNOSIS SYSTEMS DESIGN

Two model based diagnosis systems, using the sensor
sets described above, are implemented in the platform
(Figure 1), monitoring the faults in Section 2.7 without a
model describing how the faults affect the variable. This
means that how the faults affect the signals in the vehicle
model is not known in the diagnosis systems, which is an
advantage since the tests react to any variation to the fault
free model.

A diagnosis system is based on one or several test that
consists of a subset of the equations used in the vehicle
model. There are many such overdetermined sets of
equations, that are sensitive to different sets of faults. The
minimal sets of equations that form an overdetermined part
can be found using the structural model. Combinations
of overdetermined parts of the model are proposed by an
algorithm to achieve maximum isolability of the system in
combination while using as few tests as possible.



4.1 Diagnosis system 1

In the first diagnosis system, five sensors are used as
described in Section 3.1. There are several combinations
of tests that require four tests to achieve full isolability,
and one of these combinations is chosen as the basis to
diagnosis system 1. The tests in this diagnosis system are
relatively small (see Table 2), 2-14 equations are used in
each test. The sets of equations that are used in the tests
form substitution chains, i.e. there are no algebraic loops
that need to be solved. This leads to that it is easier to
design the residual generators.

As an example the first test in the diagnosis system is
discussed. It is based on 2 equations and includes a sensor
equation

r = Uem,sens − Uem (4)

and the assumption that the power electronics works
properly

Uem = Uem,control (5)

This test is sensitive for fpe and fem,U,sens. The information
about which tests that are expected to react on each fault
is summarized in a decision structure in Table 3. Test 1
reacts for example on fpe and fem,U,sens, which also can
be seen in (4) and (5).

Table 2. Number of equations in the tests in
the two diagnosis systems.

# tests # sensors # equations
System 1 4 5 2,9,14,12
System 2 6 3 2,15,29,35,35,36

Table 3. Decision structure in diagnosis sys-
tem 1.

fem,ki fem,R fpe fb,sc fem,U,sens

T1 X X
T2 X X X
T3 X X
T4 X X X

If Test 1 alarms this is explained by either fpe or fem,U,sens.
If also Test 2 alarms the only possible explanation for this
is that the power electronics is broken, given that the only
possibility is single faults. Full fault isolation is possible
since each fault influences different sets of tests (Blanke
et al., 2006).

Model not valid In the second test, ωem is estimated
via the angular speed sensor at the outgoing shaft of the
gearbox, ωgb,sens and the gear ratio, ugb, according to

ωem = ugbωgb,sens (6)

The noise in ωgb,sens is amplified with the gear ratio when
ωem is estimated that later is used in the residual generator.
To get equal test significance for all gears, varying noise
levels has to be considered. Here a simple approach is
adopted where the test is not valid for gears 1-4 where ugb
is large.

CUSUM Due to sensor noise, the residuals will be nonzero
even in a fault free case. To handle this a standard algorithm
called CUSUM (Page, 1954) is used. The algorithm is based
on that a signal, s, is constructed that has a negative
expectation value in a fault free case and positive when
a fault has occurred. The trend of a cumulative sum, g,
of s will then contain information about the status of the
monitored system. The test quantity, T , is calculated as

s(t) = |r(t)| − ν (7a)

g(t+ 1) = g(t) + s(t) (7b)

T (t) = g(t)− min
0≤i<t

g(i) (7c)

where ν is an offset that ensures that E{s(t)} < 0 in the
fault free case. The size of ν reflects the model uncertainty
and noise in the model. The system alarms if T > J , where
J is a threshold and a design parameter, that is set to avoid
false alarms and still achieve fast fault detection.

4.2 Diagnosis system 2

The second system uses as few sensors as possible that
still achieve full isolability in the system according to
the structural analysis. This choice is made to investigate
the impact regarding performance of the system, but also
the complexity in designing the system. All three sensors
are monitored, resulting in that there are 7 fault modes
monitored in diagnosis system 2.

To achieve full isolability 6 tests are needed in this diagnosis
system compared to 4 in system 1. To investigate the
influence of component models, the tests are not valid in
all operating modes. For example, the model of the clutch
used in the residual generators is only valid when the clutch
is engaged. The models of the clutch and combustion engine
are included in 4 of the tests in system 2 (see Figure 2 for
the vehicle configuration). These 4 tests include a derivative
of a signal, which could lead to problems since the signal
is noisy.

The tests in this system include in general more equations
than the tests in system 1. Up to 36 equations are used in
the tests (see Table 2). Note that the entire vehicle model
consists of 46 equations. The decision structure for the
system is given in Table 4.

Algebraic loops In 5 of the 6 sets of equations, substitution
chains form the residual generators. In Test 4 an algebraic
loop has to be solved since the following two equations are
included in the test

Iem =
Uem − ωemka

R
(8a)

Uem =
IbUb

Iem
(8b)

with the solution

Iem = −ωemka
2R

±

√(
ωemka

2R

)2

+
IbUb

R
(9)

These equations are only a small part of the residual
generator, and the entire consistency relation is given in
Sundström et al. (2010).

There are two possible solutions to Iem, and both solutions
are valid in different operating modes. In this case, the
consistency based solution is to alarm when none of the
solutions are consistent with measurement data. Thus, two
residuals are calculated and the residual with the lowest
magnitude is used in CUSUM to calculate the test quantity.
It may happen that a fault that the test should react on has
occurred and the residual corresponding to the incorrect
solution of Iem is small. In such a situation, even though
the residual for the correct Iem solution reacts, it may take
longer for the CUSUM algorithm to accumulate and react.
This is a typical drawback when using a sensor configuration
with few sensors, since larger parts of the model are used
increasing the possibility of multiple solutions.

Dynamic residual generators Four of the six tests include
dynamics in the consistency relation. This means that a



sensor signal, or a signal estimated from control signals
and other sensors, appears in differentiated form. To avoid
problems from differentiating noise, a transformation is
made since the residual can be expressed in the form
r = aω̇gb + b, where a is a constant and b is an arbitrary
function of known signals (Frisk and Nyberg, 2001). The
transformation includes a low pass filter of the residual
generator which is expressed as:

r =
α

p+ α
(aω̇gb + b) (10)

using the state

ω = r − αaωgb (11)

we obtain

ω̇ = α (r − αaωgb) + αb (12)

r = ω + αaωgb (13)

Model not valid The model of the clutch in the diagnosis
system is only valid when the clutch is engaged, and in this
operating mode, the model is that the torques and speeds
on both sides of the clutch are equal. This results in that
if the clutch is disengaged or there is a slip in the clutch,
the four tests that include the model of the clutch are not
valid. After the clutch pedal is released by the driver, the
residuals in the corresponding tests are not updated in
3 seconds.

Tests 5 and 6 are noise sensitive for small Uem, so voltages
close to zero needs to be handled. Therefore the tests are
not updated when |Uem| < 1 V respectively 10 V depending
on the test.

Reinitialization of the state in the low pass filter If a test
has been “not valid” due to one of the reasons described
above, the test has to be reactivated and the state in the
residual generator (12) has to be reinitialized. When the
state is reinitialized, it is assumed that the system is fault
free and r = 0 in (11). This leads to an error in the state if
the system is faulty since then the assumption that r = 0
is incorrect. The signal ωgb is noisy and therefore an error
in the initialization of the state may occur even in a fault
free case. To decrease this error, the ωgb that is used in
the initialization of the state is filtered. The error will fade
out with time and the residual will be non-zero after some
time if the system is faulty. During the fade out period, the
CUSUM algorithm is not updated during 10 seconds after
the test has become valid, in order to avoid an erroneous
decision whether the test is to react or not. The drawback
with this is that the tests that use a dynamic residual
generator and filter may be inactive a significant part of
the time, thereby reducing the performance of the system.
For example, a test that includes all limitations described
above is only updated during 30% of the simulated test
cycle.

Table 4. Decision structure in diagnosis sys-
tem 2.
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5. RESULTS AND DISCUSSION

To evaluate the performance of the diagnosis systems,
simulations of a long haulage truck are carried out. The
type of problems that are handled here, e.g. the impact
of the number of sensors on the performance of the
diagnosis, and the interplay between diagnosis and the
energy management, are of interest, since these issues will
also occur in reality when developing diagnosis systems.
In the simulations, the faults are induced one by one to
evaluate performance.

The performance, of the diagnosis systems vary, e.g. time
to detect and isolate a fault. The system based on few
sensors is e.g. more dependent on the energy management
compared to the other system.

5.1 Diagnosis system 1

The diagnosis system based on 5 sensors has 5 states, where
2 states are used for iterative equation solving. In addition
there are 4 states, one for each test, for the CUSUM tests.
Normalized test quantities, Tnorm, are calculated using the
parameters in CUSUM (Section 4.1)

Tnorm =
T

J
(14)

and the test alarms if Tnorm > 1. The system performs as
expected, and all faults are detected and isolated in a few
seconds.

As an illustration, Figure 4 shows Tnorm when fem,R is
induced in the model after 400 seconds. Tests 2 and 3 react
on this fault, as expected according to the decision structure
in Table 3. The performance of the system detecting fem,R,
is representative for all faults that are to be detected.

0 500 1000 1500

0

0.2

0.4

0.6

0.8

1

T1_norm

0 500 1000 1500
0

1000

2000

3000

4000

5000

T2_norm

0 500 1000 1500
0

1000

2000

3000

T3_norm

Normalized tests, f
em,R

0 500 1000 1500

0

0.2

0.4

0.6

0.8

1

T4_norm

time [s]

Fig. 4. The tests alarm if the normalized test quantity is
larger than one. The fault fem,R is induced in the
model after 400 seconds and Test 2 and 3 react as
expected.

5.2 Diagnosis System 2

Diagnosis system 2 is based on 3 sensors and has 33 states,
where 10 states are used for iterative equation solving.
In addition there are 6 states, one for each test, for the
CUSUM tests. Normalized test quantities are calculated
as in (14).



All faults are detected. However, only five of the faults
are fully isolated. The reasons are as follows. When the
torque constant in the electric machine has changed, i.e.
the fault fem,ki, this is not detected in Test 6 as expected
from the structural analysis and the decision structure in
Table 4. This means that this fault can not be isolated
from fω,gb,sens. Also when the resistance, i.e. fem,R also in
the electric machine, has changed is not detected in Test 4,
see Figure 5. This means that this fault can not be isolated
from fpe. Improvements can be sought by using variable
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Fig. 5. The figure shows the normalized tests when there is
a fault in the resistance in the electric machine. Test 4
does not react on the fault as it should do according
to the structural analysis.

parameters in the CUSUM algorithm that changes with
the operating points of the vehicle, to adapt to varying
fault sensitivity.

For the five faults that are fully isolable the result is
obtained within 100 seconds. There are a number of reasons
that it takes longer than for Diagnosis system 1. One reason
is that an algebraic loop is not uniquely solved in one of the
tests. Another reason is that some of the tests are not valid
at all times, here because the model of the clutch is not
valid in all operating modes, |Uem| is small, or that a low
gear is used. In the four tests based on dynamic residual
generators, the states in the filters need to be reinitialized
when the system is reactivated. The assumption that the
system is fault free is used in the reinitialization of the
state, and an alternative to this, which possibly increases
the performance of the diagnosis, is to instead use the
previous valid value of the residual in the initialization.

6. CONCLUSIONS

In hybrid vehicles there are new features compared to
conventional vehicles, like for example mode switches. The
influence of these properties and of the sensor configuration
on diagnosis has been studied by design, implementation
and comparative simulation studies. Specifically, two diag-
nosis systems based on different sensor configurations are
studied.

According to the structural analysis of the model, full fault
isolability is possible in both sensor configurations. For
the first sensor configuration, full isolability is achieved in
the implemented diagnosis system. For the second case,

full isolability is not reached by the implemented system,
since for example, a change in the torque constant ki
can not be isolated from a fault in the gearbox speed
sensor. The discrepancy between the model analysis and
the performance of the implemented diagnosis systems
stems from the fact that the influence of the faults on
the system in relation to the noise level is not taken into
account in the model analysis.

There is no major complexity difference in the design and
implementation between the two diagnosis systems. Due
to the sensor configuration in the system based on few
sensors, the tests are larger and therefore slightly more
computational demanding.

The system model is not valid in all operating conditions,
for example due to mode switching or the incomplete
clutch model. This leads to that some tests are deactivated
during a significant part of the time, which leads to
decreased detection performance. When deactivations
and activations of tests are common, fast and reliable
initialization of the dynamic tests are important. Here, a
well designed energy management procedure can choose a
pattern of operating points, and thereby positively affect
the diagnosis performance. In summary, the developed
simulation platform has proven a suitable environment for
studying overall monitoring and diagnosis for hybrid vehicle
powertrains.
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