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Abstract: We investigate optimal maneuvers for road-vehicles on different surfaces such as asphalt,
snow, and ice. The study is motivated by the desire to find control strategies for improved future
vehicle safety and driver assistance technologies. Based on earlier presented measurements for tire-
force characteristics, we develop tire models corresponding to different road conditions, and determine
the time-optimal maneuver in a hairpin turn for each of these. The obtained results are discussed
and compared for the different road characteristics. Our main findings are that there are fundamental
differences in the control strategies on the considered surfaces, and that these differences can be captured
with the adopted modeling approach. Moreover, the path of the vehicle center-of-mass was found to
be similar for the different cases. We believe that these findings imply that there are observed vehicle
behaviors in the results, which can be utilized for developing the vehicle safety systems of tomorrow.

1. INTRODUCTION

Motivated by the desire to devise improved safety systems
for vehicles and driver assistance technologies, development
of mathematical models and model-based control strategies
for optimal vehicle maneuvers in time-critical situationshave
emerged as powerful tools during the past years. Even though
the solution to an optimal control problem depends on the par-
ticular choice of model and cost function, the fundamental be-
havior and control strategies found by optimization can be used
as inspiration for, or be integrated in, future safety-systems.

One step towards this is to study the behavior of a vehicle in
a time-critical maneuver under varying road conditions,e.g.,
dry asphalt and snow. Therefore, we investigate a hairpin ma-
neuver, see Fig. 1. The objective is to perform the maneuver
in minimum time, while fulfilling certain constraints on the
control inputs and internal states of the vehicle. This means
that the vehicle, and in particular the tires, are performing at
their limits. We utilize established vehicle and tire modeling
principles, and present a model-based optimal control problem
with the solution thereof for different road conditions. Inaddi-
tion, we investigate how to scale the tire models for different
surfaces. By this study, it is plausible that the understanding
of vehicle dynamics in extreme situations under environmental
uncertainties is increased.

Optimal control problems for vehicles in time-critical situations
have been studied in the literature previously, see (Velenis and
Tsiotras, 2005; Velenis, 2011) for different examples. In (Kelly
and Sharp, 2010) the time-optimal race-car line was investi-
gated, and in (Sharp and Peng, 2011) a survey on existing
vehicle dynamics applications of optimal control theory was
presented. Other examples are (Sundström et al., 2010; Funke
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Fig. 1. An example of a partly snow-covered hairpin turn.

et al., 2012). We presented a method for determining optimal
maneuvers and a subsequent comparison using different meth-
ods for tire modeling in (Berntorp et al., 2013). Further, a com-
parison of optimal maneuvers with different chassis modelswas
treated in (Lundahl et al., 2013). Scaling of nominal tire models
for different surfaces was discussed and experimentally verified
in (Braghin et al., 2006). Even though the vehicle and tire
models utilized in this paper are similar to those presentedin the
mentioned references, previous research approaches focuson a
particular vehicle model on a specific surface. Comparisonsof
optimal control maneuvers for different road conditions have
been made, see (Chakraborty et al., 2011), but are limited to
varying the friction coefficient, and we show that important
tire-force characteristics might be neglected with that approach.
To the best of our knowledge, no comprehensive approach to
perform comparisons of optimal control maneuvers for differ-
ent road conditions has been made, which motivates the study
presented here.

2. MODELING

The vehicle dynamics is modeled with an extended single-track
model together with a wheel model and a Magic Formula tire
model.
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Fig. 2. The single-track model including roll motion about
the x-axis, resulting in a four degrees-of-freedom chassis
model.

2.1 Vehicle Modeling

The vehicle model considered is a single-track model (Kiencke
and Nielsen, 2005; Isermann, 2006) with lumped right and left
wheels. In addition, a rotational degree of freedom about the
x-axis—i.e., the roll—has been added. The coordinate system
is located in the ground plane, at thexy-coordinates of the
center of mass for zero roll angle, see Fig. 2. The motivation
for the single-track model is twofold; first, we are aiming for
models possible to utilize together with dynamic optimization
algorithms. Second, we want to investigate what propertiesof
a vehicle that can be captured with this comparably simple
model. The roll dynamics is of importance, in order to verify
that the vehicle is not overbalancing in the aggressive hairpin
maneuver. The model does not incorporate load transfer, but
the effect of this has previously been investigated in (Lundahl
et al., 2013). The model equations are

mv̇x = FX +mvyψ̇ −mhsφ ψ̈ −2mhcφ φ̇ ψ̇ , (1)

mv̇y = FY −mvxψ̇ −mhsφ ψ̇2+mhφ̈cφ −mφ̇2hsφ , (2)

ψ̈ =
MZ −FXhsφ

Izzc2
φ + Iyys2

φ
, (3)

Ixxφ̈ = FYhcφ +mghsφ + ψ̇2∆Iyzsφ cφ −Kφ φ −Dφ φ̇ , (4)

FX = F f
x cδ +F r

x −F f
y sδ , (5)

FY = F f
y cδ +F r

y +F f
x sδ , (6)

MZ = l f F
f

y cδ − lrF
r
y + l f F

f
x sδ , (7)

wherecφ , sφ are short for cos(φ) and sin(φ), and similarly
for cδ , sδ . Further,m is the vehicle mass,h is the height of
the center of mass,Izz is the vehicle inertia about thez-axis,
∆Iyz = Iyy − Izz, ψ̇ is the yaw rate,φ is the roll angle,δ
is the steering angle measured at the wheels,vx, vy are the
longitudinal and lateral velocities,l f , lr are the distances from
the center of mass to the front and rear wheel base,Fx, Fy
are the longitudinal and lateral forces acting on the front and
rear wheels, andFX, FY and MZ are the resulting tire forces
and moment. The roll dynamics is derived by assuming that
the suspension system can be modeled as a spring-damper
system—i.e., a dynamic system with stiffnessKφ and damping
Dφ .

2.2 Wheel Modeling

The wheel dynamics is given by

Ti − Iwω̇i −F i
xRw = 0 , i = f , r. (8)

Here,ωi are the front and rear wheel angular velocities,Ti are
the driving/braking torques,Iw is the wheel inertia, andRw is
the wheel radius. Slip anglesα f ,αr and slip ratiosκ f ,κr are
introduced following (Pacejka, 2006), and are described by

Table 1. Vehicle parameters used in (1)–(14).

Notation Value Unit

l f 1.3 m
lr 1.5 m
m 2 100 kg
Ixx 765 kgm2

Iyy 3 477 kgm2

Izz 3 900 kgm2

Rw 0.3 m
Iw 4.0 kgm2

g 9.82 ms−2

h 0.5 m
Kφ 178 000 Nm(rad)−1

Dφ 16 000 Nms(rad)−1

α f = δ −atan

(

vy+ l f ψ̇
vx

)

, (9)

αr =−atan

(

vy− lrψ̇
vx

)

, (10)

κ f =
Rwω f − vx, f

vx, f
, (11)

κr =
Rwωr − vx,r

vx,r
, (12)

vx, f = vxcos(δ )+ (vy+ l f ψ̇)sin(δ ), (13)
vx,r = vx. (14)

The vehicle and wheel parameters used in this study are pre-
sented in Table 1.

The nominal tire forces—i.e., the forces under pure slip
conditions—are computed with a simplified Magic Formula
model (Pacejka, 2006), given by

F i
x0 = µxF

i
z sin(Ci

xatan(Bi
xκi −Ei

x(B
i
xκi −atanBi

xκi))), (15)

F i
y0 = µyF

i
z sin(Ci

yatan(Bi
yαi −Ei

y(B
i
yαi −atanBi

yαi))), (16)

F i
z = mg(l − l i)/l , i = f , r, wherel = l f + lr . (17)

In (15)–(17),µx andµy are the friction coefficients andB, C,
andE are model parameters. Combined slip is modeled using
the weighting functions presented in (Pacejka, 2006):

Bi
xα = Bi

x1cos(atan(Bi
x2κi)), (18)

Gi
xα = cos(Ci

xαatan(Bi
xα αi)), (19)

F i
x = F i

x0Gi
xα , (20)

Bi
yκ = Bi

y1cos(atan(Bi
y2αi)), (21)

Gi
yκ = cos(Ci

yκatan(Bi
yκ κi)), (22)

F i
y = F i

y0Gi
yκ , i = f , r. (23)

In contrast to (15)–(23), a more complete form is presented in
(Pacejka, 2006). However, since a single-track vehicle model is
utilized here, the tire models have been recomputed such that
they are symmetric with respect to the slip angleα and the slip
ratio κ .

2.3 Tire-Force Characteristics and Model Calibration

In an optimal maneuver the tires are performing at their limits,
thus implying the need for accurate tire modeling. Given a
set of tire parameters for a nominal surface, (Pacejka, 2006)
proposes to use scaling factors,λ j , in (15)–(23) to describe
different road conditions. This method was used in (Braghin
et al., 2006), where the scaling factors representing surfaces
corresponding to dry asphalt, wet asphalt, snow, and smooth
ice were estimated based on experimental data. Since that study



included a set of different tire brands and models, the results
presented could be seen as a general indication, or at least be
used as guidelines, on how the tire characteristics will vary.
We use the scaling factors from (Braghin et al., 2006) as a
basis for calibrating tire models approximately corresponding
to the force characteristics on the different surfaces. However,
since the nominal tire parameters used in that paper are not
public domain, we use the parameters from (Pacejka, 2006) to
represent dry asphalt. The relative scaling factors, with respect
to dry asphalt, are introduced according to

λdry = 1, λwet =
λ ∗

wet

λ ∗
dry

, λsnow=
λ ∗

snow

λ ∗
dry

, λice =
λ ∗

ice

λ ∗
dry

, (24)

where λ is the scaling factor used in this paper andλ ∗ is
the scaling factor presented in (Braghin et al., 2006). Since a
different set of nominal parameters are used, and since uncer-
tainties in the estimation of the original scaling factors exist—
especially for larger slip values—some inconsistent character-
istics appear for the snow and ice models. The original snow
model will produce a longitudinal forceFx that changes sign for
large slip ratios, which is avoided by adjusting the scalingfactor
for Cx. For the ice model, multiple sharp and narrow peaks in
the resultant force occur. This is adjusted by recomputing the
scaling factor affecting (21), as well as the parametersBx2 and
By2. In addition, the lateral curvature factorEy is adjusted to
smoothen the sharp peak originating from the relations in (15)–
(16), which contributes to the inconsistencies in the resultant
force. The complete set of tire model parameters used are pro-
vided in Table 2. Several of these parameters are dependent on
the normal forceFz on the wheel. Hence, the front and rear
parameter values differ—e.g., the friction coefficientsµx, f and
µx,r .

3. OPTIMAL CONTROL PROBLEM

The time-optimal hairpin maneuver problem is formulated as
an optimization problem on the time-intervalt ∈ [0, t f ]. The
vehicle dynamics presented in the previous section is formu-
lated as a differential-algebraic equation system (DAE) inthe
differential variables (states)x, algebraic variablesy, and the

Table 2. Tire model parameters used to represent
dry asphalt, wet asphalt, snow, and smooth ice.

Parameter Dry Wet Snow Ice

µx, f 1.20 1.06 0.407 0.172
µx,r 1.20 1.07 0.409 0.173
Bx, f 11.7 12.0 10.2 31.1
Bx,r 11.1 11.5 9.71 29.5

Cx, f ,Cx,r 1.69 1.80 1.96 1.77
Ex, f 0.377 0.313 0.651 0.710
Ex,r 0.362 0.300 0.624 0.681
µy, f 0.935 0.885 0.383 0.162
µy,r 0.961 0.911 0.394 0.167
By, f 8.86 10.7 19.1 28.4
By,r 9.30 11.3 20.0 30.0

Cy, f ,Cy,r 1.19 1.07 0.550 1.48
Ey, f -1.21 -2.14 -2.10 -1.18
Ey,r -1.11 -1.97 -1.93 -1.08

Cxα, f ,Cxα,r 1.09 1.09 1.09 1.02
Bx1, f ,Bx1,r 12.4 13.0 15.4 75.4
Bx2, f ,Bx2,r -10.8 -10.8 -10.8 -43.1
Cyκ, f ,Cyκ,r 1.08 1.08 1.08 0.984
By1, f ,By1,r 6.46 6.78 4.19 33.8
By2, f ,By2,r 4.20 4.20 4.20 42.0

inputsu= (T,δ ), according to ˙x= G(x,y,u), and similarly for
the tire dynamics,h(x,y,u) = 0. Introducing the maximum and
minimum limits on the driving/braking torques and the steering
angle, the mathematical optimization problem can be statedas
follows:

minimize t f (25)
subject to Ti,min ≤ Ti ≤ Ti,max, i = f , r (26)

|δ | ≤ δmax , |δ̇ | ≤ δ̇max (27)
(

Xp

Ri
1

)6

+

(

Yp

Ri
2

)6

≥ 1 (28)

(

Xp

Ro
1

)6

+

(

Yp

Ro
2

)6

≤ 1 (29)

x(0) = x0 , x(t f ) = xt f (30)
y(0) = y0 , y(t f ) = yt f (31)
ẋ= G(x,y,u) , h(x,y,u) = 0, (32)

wherex0,y0 andxt f ,yt f are the initial and final conditions, and
(Xp,Yp) is the position of the center-of-mass of the vehicle.
The track constraint for the hairpin turn is formulated using
two super-ellipses. In the implementation, the initial andfinal
conditions are only applied to a subset of the variables.

The strategy for solving the optimal control problem is to use
numerical methods for dynamic optimization. First, consider-
ing the setup of the hairpin turn, it can be concluded from a
physical argument that existence of a solution is guaranteed. In
this study, we utilize the open-source software JModelica.org
(Åkesson et al., 2010), interfaced with the interior-point NLP-
solver Ipopt (Wächter and Biegler, 2006), for solving the opti-
mization problem. A direct collocation method (Biegler et al.,
2002) is employed for discretization of the continuous-time
optimal control problem. In order to achieve convergence inthe
NLP-solver, the hairpin turn problem is divided into smaller
segments and thus solved in 4–8 steps sequentially, where the
previous solution is used as an initial guess to the subsequent
optimization problem. The final optimization solves the whole
problem, thus not implying any suboptimality of the solution.
From a numerical perspective, proper scaling of the optimiza-
tion variables turned out to be essential for convergence. For de-
tails about the optimization methodology, the reader is referred
to (Berntorp et al., 2013).

4. RESULTS

The optimization problem (25)–(32) was solved for each of the
surface models presented in Sec. 2. The road was 5 m wide.
The bounds on the driving/braking torques and tire forces were
chosen as follows:

Tf ,min =−µx, f F
f

z Rw , Tf ,max= 0, (33)
Tr,min =−µx,rF

r
z Rw , Tr,max= µx,rF

r
z Rw, (34)

|F i
x| ≤ µx,iF

i
z, (35)

|F i
y| ≤ µy,iF

i
z, i = f , r, (36)

assuming that the vehicle is rear-wheel driven. Note that the
bounds (35)–(36) on the forces were set for easier conver-
gence, but are mathematically redundant. With the choice ofthe
maximum driving/braking torques in (33)–(34), we introduce a
dependency on the surface. This is motivated since the surface
models adopted in this paper are only identified, and hence
validated, for a certain region in theκ–α plane. Thus, allowing
excess input torques might result in inconsistent behaviorof the
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Fig. 3. Variables of the vehicle model during the time-optimal hairpin maneuver on the different surfaces, plotted as function of
the driven distances. The color scheme is as follows: dry asphalt–blue, wet asphalt–red, snow–green, and smooth ice–black.
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Fig. 4. Trajectory in theXY-plane for the different road sur-
faces. The black rectangles indicate the position and di-
rection of the vehicle each second.

tire force model. Further, from a driver limitation argument the
steering angle and steering rate were constrained according to

δmax= 30 deg , δ̇max= 60 deg/s.

In addition, we constrained the wheel angular velocitiesω f ,ωr
to be nonnegative—i.e., the wheels were not allowed to roll
backwards or back-spin.

With an initial velocity of 25 km/h, the results displayed in
Fig. 3 are obtained. For comparison of the different surfaces,
the model variables are visualized as function of the driven
distances instead of time. Further, the geometric trajectories
corresponding to these control strategies are presented inFig. 4.
We also use the force–slip tire characteristic surfaces as a
basis for analysis, as introduced in (Berntorp et al., 2013)
and hereafter referred to asForce-Slip (FS)-diagrams. This 3D
surface is defined as the resulting force

Fi,res=
√

(F i
x)

2+(F i
y)

2, i = f , r,

as function of the longitudinal slipκ and slip angleα. Plotting
the optimal trajectory in this surface for both front and rear
wheel, respectively, gives an effective presentation of the tire
utilization in two plots, see Figs. 5–8. The time for execution
of the maneuver is 8.48 s, 8.79 s, 13.83 s, and 19.18 s for dry
asphalt, wet asphalt, snow, and smooth ice, respectively.

4.1 Discussion of Characteristics on Different Surfaces

The geometric trajectories of the vehicle center-of-mass,shown
in Fig. 4, are close to each other for the different surfaces.
This result might be unexpected, given the different surface
characteristics. However, if comparing the paths for otherparts
of the vehicle, such as the front or rear wheel, more pronounced
differences are seen as a result of the different slip behavior.
Obviously, the time for completing the maneuver is longer for
the snow and ice surfaces than for asphalt. This is a result ofthe
tire forces that can be realized on these surfaces. Further,the
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Fig. 8. The resulting tire forces for the smooth ice model.

vehicle exhibits large slip in the critical part of the maneuver
on all surfaces except smooth ice. The reason for this difference
becomes evident when examining the force characteristics of
the smooth ice model compared to,e.g., the dry asphalt model.
In Figs. 9 and 10 the longitudinal and lateral tire forces are
shown for these surfaces,cf. Figs. 5 and 8. The tire forces for
smooth ice exhibit a considerably sharper peak and thus decay
faster, with respect to combined slip, than for dry asphalt.This
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Fig. 10. Front tire forces in the longitudinal and lateral wheel
directions for ice, corresponding to Fig. 8.

means that combined slip yields a significantly smaller resultant
force. Thus, to achieve the desired time-optimality on the ice
surface, it is natural to choose a small-slip control strategy.

Comparison of Control Strategies The internal variables of
the vehicle model during the maneuver, see Fig. 3, are similar
for dry and wet asphalt. The similarity is expected, considering
the tire force characteristics in the two cases. As anticipated,
the major difference between the two surfaces is the time for
execution of the maneuver, which is slightly longer for the wet
asphalt surface. This is expected since the maximum tire forces
are lower than for dry asphalt.

The differences between asphalt, snow, and ice when consider-
ing the control strategy are fundamental. First, it can be con-
cluded that the optimal maneuver on snow and ice surfaces are
more proactive in the sense that both the steering angleδ and
braking forces are applied considerably earlier when approach-
ing the hairpin. This is most certainly an effect of the signifi-
cantly reduced tire forces that can be realized on these surfaces
compared to asphalt. The steering angle also differs between
ice and the other surfaces. The reason for this is that the vehicle
employs counter-steering when it starts to slip on asphalt and
snow as it approaches the hairpin. Further, we see that the
roll angle is considerably smaller for the low-friction surfaces,
which is caused by the torque about the roll axis (produced by
the tire forces) being smaller. Moreover, even on dry asphalt
the roll angle is kept below approximately 3.2 deg, verifying
that no unstable modes are excited. The slip ratioκ differs in
amplitude between the road-surfaces. The reason becomes clear
when investigating the FS-diagrams and the corresponding tire
utilization, Figs. 5–8. The peak of the resultant force in the κ–
α plane occurs at smaller slip values for ice, which implies a
control solution with smaller slip angles for minimum-time.
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Discussion on Tire Model Calibration An integral part of the
vehicle model is the tire characteristics. Consequently, different
approaches to model calibration were investigated prior tothe
study. One approach would be to only scale the friction coeffi-
cientsµx andµy, as done in (Chakraborty et al., 2011). How-
ever, the peaks in the tire-force surfaces occur at different lateral
and longitudinal slip combinations, see Figs. 5–8. Also, the
sharpness and width of the maxima and minima change for the
different models. Thus, only changing the friction coefficients
will render different force characteristics—and thus different
optimal solutions—compared to when changing the complete
set of parameters. This is verified by constructing a tire force
model where the dry asphalt parameters are used together with
the friction coefficients corresponding to ice. Performingthe
optimization gives that the optimal solution has significant slip,
on the contrary to the results obtained for the empirical smooth-
ice model; see Fig. 11 for the results obtained by scaling the
friction coefficients only. Another approach to tire model cal-
ibration is to scale the slip stiffness (i.e., the parametersBx
and By in (15)–(17)) in addition to the friction coefficients.
This will change both the inclination and the slip value where
the maximum tire force is attained. However, adjusting these
parameters without considering the parameters corresponding
to combined slip will, in this case, result in multiple sharpand
narrow peaks in the resultant force, which might be unrealistic
from a physical point-of-view.

5. CONCLUSIONS

Optimal vehicle maneuvers under varying road conditions give
valuable insight into the dynamics when the vehicle performs
at the limit. One observation was that tire-force modeling on
different road surfaces using only a scaling of the frictionco-
efficients is insufficient for the maneuver considered, at least

when the tires perform at their limits. Rather, when combined
longitudinal and lateral slip is present, more careful tiremod-
eling may be required. The minimum-time hairpin maneuver,
using tire models representing different road surfaces, gave as a
first major observation that the path through the turn was almost
the same independent of different road-surface characteristics,
such as dry asphalt or ice. Of course, the total execution time is
longer on ice than asphalt, but there are also other differences
which lead to the second major conclusion: The optimal driving
techniques—i.e., the control actions—are fundamentally differ-
ent depending on tire-road characteristics. This is an important
finding since it implies that in order to enjoy the full benefits of
improved sensor information, future safety systems will need to
be more versatile than systems of today. Further, that the path
of the vehicle center-of-mass is almost invariant gives inspi-
ration to look for strategies based on path formulations when
approaching the goal of developing new model-based vehicle
safety systems more robust to road-surface uncertainties.
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