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Abstract: Optimal control of a wheel loader operating in the short loading cycle is studied in
order to investigate the potentials for fuel consumption reduction while maintaining acceptable
production rates. The wheel loader is modeled as a system with five states and three control
inputs including torque converter nonlinearities. The torque converter is modeled with no lockup
enabling power transmission in both directions. The geometry of the wheel loader boom and
the demanded force in the lift cylinders during lifting are used to ensure that the in-cylinder
pressure remains below component’s limits. The lift-transport section of the short loading cycle
is divided into four phases due to discontinuities in the gearbox ratios and fuel consumption is
calculated in each phase. Time optimal and fuel optimal transients of the system and the power
consumption in each and every component is presented showing the dominance of the torque
converter losses compared to the other components especially in the time optimal solutions. It
is shown that introducing path constraints on the maximum lifting speed of the bucket due to
limitations in hydraulic pumping speed moves the diesel engine operation towards higher speeds
in order to maintain the lifting speed. Trade-off between fuel optimal and time optimal transients
is calculated which is found to be in agreement with the results of experimental studies.

Keywords: Multi phase optimal control, wheel loader model, short loading cycle, torque
converter

1. INTRODUCTION

Wheel loaders are widely used at construction sites in
order to transfer various types of loads. These machines
can be considered as an integrated system of hydraulic,
mechanic and electronic subsystems. Wheel loader oper-
ation includes load lifting and transport tasks where the
implemented strategy for the control of the different sub-
systems affects the fuel consumption and production rates
of the main system. Optimal control of the wheel loader
operation is informative since it highlights the potentials
for the fuel consumption reduction and shortening of the
operational time. The results provide valuable knowledge
in the design of autonomous wheel loader control systems
and strategies, Cobo et al. (1998). According to Frank
et al. (2012) these control systems enable the machine
operator to perform the tasks in a more fuel efficient
way while maintaining acceptable production rates. The
short loading cycle, depicted in Fig. 1 is a frequent wheel
loader application where the load lifting and transport
calls for power in hydraulic subsystem and the driveline.
According to Filla (2011), the cycle can be divided into
two main sections with the highest fuel consumption rates
namely bucket filling and lift-transport. Fuel consumption
in the bucket filling section depends on the geometry of
the bucket and also the load (for example gravel, timber,
rock); whereas, the fuel consumption in the lift-transport
section is comparable for various short loading cycles as

Fig. 1. Numbered sequence of actions in a short loading
cycle, picture from Filla (2011).

the vehicle should always travel towards a load receiver
at a certain distance while the load is lifted to a specific
height. This study is focused on the optimal control of the
wheel loader operation in the lift-transport section of the
short loading cycle while the following are addressed:

• Development of a model for the wheel loader as a
system with five states and three control inputs.

• Representing the lift-transport section of short load-
ing cycle as a four phase optimal control problem
and solving it for minimum fuel consumption and
minimum cycle time.
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Fig. 2. Wheel loader system model showing the interde-
pendence between system components.

• Investigating the power distribution in the system
and calculating the component losses over the cycle.
• Studying the effects of component limitations and

torque converter stiffness on the system transients.
• Illustrating the trade-off between time optimal and

fuel optimal controls as a Pareto front.

The transportation distance is assumed to be known, the
bucket load is set to the maximum capacity of the machine,
and the components are modeled based on the properties
in the product brochure (Volvo (2012)) where PROPT
(TOMLAB (2012)) is the optimal control problem solver
used to solve the multi-phase optimal control problem.

2. WHEEL LOADER SYSTEM MODEL

The wheel loader is modeled by five components namely
diesel engine, lifting system, torque converter (TC), gear-
box and wheels. Fig. 2 shows an overview of the system
components and the interdependence between the compo-
nents. Control inputs to the system are fuel injection per
engine cycle, Umf, bucket acceleration, Uab, and braking
torque, Ub. The system states are engine speed, ωice,
vehicle position, S, vehicle speed, V , bucket height, Hbuc,
and bucket lift speed Vbuc which are determined by solving
the following differential equations:

dωice

dt
=

1

Jice

(
Tice(Umf, ωice)−

Pload(Vbuc, V )

ωice

)
(1)

dS

dt
= V (2)

dV

dt
=
sign(V )

(
Ftrac(Ub, ωice)− Froll

)
Mtot

(3)

dHbuc

dt
= Vbuc (4)

dVbuc
dt

= Uab (5)

where γ is the gear ratio of the gearbox and Pload is the
sum of powers required for lifting, Plift, and traction,
Ptrac, which will be calculated in the sequel.

2.1 Diesel engine

A simplified version of the nonlinear mean value engine
model in Eriksson (2007) is utilized for a 6 cylinder 12 liter
engine (ncyl=6, Vd = 12 L) where ωice, determined by (1),
is the state variable and Umf is the control input. Engine
torque, Tice, is modeled as the subtraction of friction
torque, Tfric, from indicated gross torque, Tig:

Tice(Umf, ωice) = Tig(Umf)− Tfric(ωice) (6)

Tig(Umf) =
ηig qhv ncyl Umf 10−6

4π
(7)

Tfric(ωice) =
Vd 105

4π

(
cfr1 ωice

2 + cfr2 ωice + cfr3

)
(8)

ṁf (Umf, ωice) =
10−6

4π
Umf ωice ncyl (9)

the tuning parameters are ηig and cfr1,2,3 and qhv is the
heating value of the fuel. The limits on the engine torque
Tice,lim(ωice) are modeled by three lines as depicted in
Fig. 7 according to the product brochure.

2.2 Lifting system

The power required for lifting, Plift, is calculated as follows.
Uab is the control input to the system while Hbuc and Vbuc
are the states determined by (4) and (5).

Fload = Mload (g + Uab) (10)

Plift,net = Fload Vbuc , Plift =
Plift,net

ηlift
(11)

where g = 9.81 [m/s2], Mbuc = 10 [ton] is set according
to product brochure and ηlift = 0.9 is assumed as the
hydraulic system’s efficiency. Fig. 3 illustrates the po-
sitioning of lift cylinder(s) (two parallel cylinders) with
respect to the wheel loader boom and body. The vertical
displacement of the boom end is a multiplication of the
lift piston displacement by a variable factor which is a
function of boom angle, θ2. This factor, k(θ2), is calculated
as follows:

θ2 = sin−1(
Hbuc −G

r
), θ1 = tan−1(

r1 cos(θ2)− xc
r1 sin(θ2)− yc

) (12)

Lcyl =

√(
r1 cos(θ2)− xc

)2
+
(
r1 sin(θ2)− yc

)2
(13)

k(θ2) =
∆(r sin(θ2))/∆θ2

∆Lcyl/∆θ2
, r = r1 + r2 (14)

where G is the height of boom-body joint from the ground
level and r1, r2, xc and yc are dimensions illustrated in
Fig. 3 based on product brochure. The maximum lifting
speed, Vlift,max, is achieved when the hydraulic pump
operates at its maximum displacement, Dpump,max, and
delivers the maximum hydraulic flow, Qpump, where the
pump speed is equal to ωice. Knowing the value of k(θ2)
from (14), the maximum bucket lifting speed can be
calculated as:

Apiston = π (r2piston − r2rod) (15)

Qpump = ωice ×Dpump,max ηvolumetric (16)

vpist,max =
Qpump ηcyl,l
Apiston

(17)

Vlift,max = k(θ2) vpist,max (18)

where rpiston, rrod and Dpump,max are taken from product
brochure and it is assumed that ηvolumetric = 0.98 and
ηcyl,l = 0.95. Forces exerted on the boom are calculated
by solving the force equilibrium equations in x and y
directions and moment equilibrium around the boom-body
joint at O:



Fig. 3. The geometry of boom and lift cylinder and acting
forces on the boom, picture from product brochure.

∑
Mo = 0⇒ Fp =

Fload r cos(θ2)

r1 sin(θ1 − θ2)
(19)

The lift cylinder pressure Pcyl can then be calculated as:

Pcyl =
Fp

Apiston
(20)

where Fp is the force exerted on the lift cylinder(s).

2.3 Torque converter

The speed ratio between output and input shafts speed of
the TC is defined as:

φ =
|gearbox speed|

ωice
(21)

TC is modeled according to Guzzella and Sciarretta (2007)
and its output torque is calculated using the TC char-
acteristic curves, ξ and ψ. The middle plot in Fig. 4
shows the normalized values for ξ. When φ > 1 power
is transferred in reverse direction from gearbox side to
engine side. Assuming the TC is 50 % less efficient in
the reverse direction, ξ and ψ are calculated for φ > 1.
As seen in Fig. 4, direct use of ψ in the TC model will
produce discontinuities at φ = 1 which should be avoided.
As a remedy, variable κ is introduced and the torque on
the gearbox side of TC is calculated as follows:

Te,1 = ξ(φ) (
ωice

1000
)2 (22)

Tgb = κ(φ) (
ωice

1000
)2 | sign(γ) | , κ(φ) = ψ(φ) ξ(φ) (23)

where γ is the gear ratio in the gearbox and curve fitted
functions represent κ and ξ values in the model. In order
to study the effects of TC stiffness on the system, κ and
ξ values for a TC with 15 % lower torque output are also
generated (TC 2). The power required for traction is then
calculated as:

Ptrac = Te,1 ωice (24)

2.4 Gearbox and wheels

Aerodynamic losses are neglected due to low vehicle speeds
and only rolling resistant forces are considered. The in-
ertial forces induced by the rotating components in the
powertrain are taken into account by adding the equivalent
mass of the four rotating wheels into the vehicle mass.
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Fig. 4. TC characteristic curves, TC 2 is weaker and
transfers 15% less torque on both directions.

Froll = cr (Mveh +Mbuc) g (25)

Ftrac =
Tw − sign(V )Tb

rw
(26)

Tw = Tgb ηgb γ , Tb = Ub (27)

Mtot = Mveh +Mbuc +
4 Jw
r2w

(28)

where Jw and rw are the wheel inertia and radius, vehicle
mass is Mveh = 32 [ton], cr = 0.03 is the rolling resistance
coefficient and it is assumed that ηgb = 0.9 is the gearbox
efficiency. Using (25) - (28) the vehicle speed, V , and
position, S, in (2) and (3) are determined.

3. PROBLEM FORMULATION

The wheel loader model described in section 2 is developed
in MATLAB 7.13 (2011b), and the problem of finding
the fuel optimal and time optimal system transients is
then formulated and solved using PROPT (TOMLAB
(2012)). The lift-transport section of the short loading
cycle is divided into four phases with constant gearbox
ratio in each. Table 1 shows the general structure of the
multi-phase optimal control problem and the boundary
conditions. Accordingly, the total fuel consumption during
the lift-transport section is calculated as:

Mf =

∫ t1

0

ṁf +

∫ t2

t1

ṁf +

∫ t3

t2

ṁf +

∫ T

t3

ṁf (29)

and minimum fuel and minimum time system transients
are calculated by solving the following optimal control
problems:

min Mf or min T (30)

s.t. ẋ = f(x, u)

where x is the system state and ẋ is determined by (1) - (5).
The distance to/from the reversing point is approximately
1.5 times the circumference of a wheel (6.6 [m]), and
the problem is solved for the same traveling distance in
the reversing and forwarding sections. The zero value of
the state derivatives at t=T ensures stationary operating
conditions at the end of the cycle. Since the problem is
solved in four phases the continuity of the states between
every two successive phase is ensured by applying the
following constraints in PROPT:

xi,tj+1(start) = xi,tj(end) (31)

i ∈ {1, 2, 3, 4, 5} and j ∈ {1, 2, 3}



Table 1. Constraints in the optimal control
problem formulation (ts and te denote the start

and end times of each phase).

Phase 1 Phase 2 Phase 3 Phase 4
Reversing Reversing Forwarding Forwarding
γ=-60 γ=0 γ=60 γ=0

ts = 0 te = t1 ts = t1 te = t2 ts = t2 te = t3 ts = t3 te = T

ωice 57 [rps] - - - - - - -
S 0 - - -6.6 [m] -6.6 [m] - - 0
Vbuc 0 - - - - - - 0
Hbuc 0.7 [m] - - - - - - 5 [m]
V 0 - - 0 0 - - 0
ẋ - - - - - - - 0

The system transients are also subjected to path and box
constraints arising from the components limitations as
follows:

Pcyl ≤ Pcyl,max , Vbuc ≤ Vlift,max , |V | ≤ Vmax (32)

ωice,min ≤ ωice ≤ ωice,max , Tice ≤ Tice,max(ωice) (33)

Solving (30) with PROPT results in oscillatory optimal
control trajectories as depicted in Fig. 5. The cause can be
that the lifting system is modeled with a constant static
efficiency resulting in a flat objective function near the
optimal solution which is insensitive to the oscillations.
The control oscillations are removed by including penalty
terms for oscillations into the cost function formulation as
follows:

min (Mf + k1

∫ T

0

U2
ab + k2

∫ T

0

U2
mf) (34)

or

min (T + k1

∫ T

0

U2
ab + k2

∫ T

0

U2
mf) (35)

s.t. ẋ = f(x, u)

The problem is iteratively solved by decreasing the con-
stants k1 and k2 until the penalty terms become zero.
Using this technique, the system transients remain almost
unchanged while the oscillations get attenuated and the
optimal criterion function value changes less than +1 %.

4. RESULTS

4.1 Fuel optimal and time optimal transients

Fig. 6 shows fuel and time optimal transients of the opti-
mal control problem in (34) and (35) where all constraints
in (32) and (33) are included. The minimum required time
to complete the lift-transport section is 7.18 sec consum-
ing 0.119 Liter fuel, and in the fuel optimal operation,
0.055 Liter fuel is consumed and the cycle time is 27.99
sec. Engine operating points during these transients are
illustrated in Fig. 7. In the time optimal case, the engine
is mostly operated on the maximum torque limit while in
the fuel optimal case the torque limit is never active and
the engine is operated at low speed and torque regions.
In reversing and forwarding sections of minimum time
solutions, first the vehicle is accelerated up to highest cycle
speeds while the bucket is not lifted. Then, the bucket
lifting starts and continues at maximum possible speed
while engine speed is slightly reduced to enable larger
engine output torques such that half of the target end
height is reached at the reversing point. At t = 0 and
t = t2 the vehicle starts moving from stand still but fuel
injection is lower at t = t2. This is because at t = 0 the
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Fig. 5. Adding penalties terms for control oscillations
slightly changes the engine speed trajectory while
removes the oscillations in controls.

engine has started from idling speed and larger amounts
of fuel are required to rev up the engine into high speeds
while at t = t2 it already operates at the maximum speed
and less fuel is required.

In phases two and four the gearbox is in neutral and fuel is
only consumed for engine acceleration and lifting. Higher
engine speeds at t = t2 correspond to higher available
torques at the input to the TC enabling higher vehicle
accelerations in forwarding phase and shorter cycle times
which is the reason for controlling the engine into higher
speeds at the end of phase two. However, lower engine
speeds are selected in phase four since the power is required
only for lifting and high torques are no more desirable
at the TC input. Applying the penalties as described in
section 3, the lower levels of fuel injection are selected in
phase four and kinetic energy of the engine is used for
lifting. This is the reason for negative engine torques seen
in Fig. 7 and also explains the lower engine speeds of the
penalized problem in phase four as illustrated in Fig. 5.

The lower plot in Fig. 8 shows the power consumption at
every instance of the time optimal cycle. It is seen that
approximately the same amounts of energy is consumed
for lifting and traction while TC is the major source of
losses in the system. At t = t2, high torque and speeds
are available at the input to the TC while low powers are
used on the gearbox side since the vehicle has just started
to move and the gearbox speed is low which leads to large
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TC losses at t = t3. The upper plot in Fig. 8 shows that
except very short intervals at the beginning of phase one,
the acceleration and lifting are performed simultaneously
during the fuel optimal cycle. Compared to the time
optimal transients, much less energy is allocated to engine
acceleration and TC losses are lower. Fig. 9 shows speed
ratio and efficiency of the TC during fuel optimal and
time optimal transients where the efficiency is calculated
as described in Guzzella and Sciarretta (2007). In the fuel
optimal transients power is transferred from the engine
side to the gearbox side of the TC in all times (φ < 1)
and the engine is controlled such that the TC achieves
higher efficiencies minimizing the fuel consumption. In the
time optimal case, the power transfer is reversed in a short

0 5 10 15 20 25
0

20

40

60

Time [s]

P
o
w

er
 [

k
W

]

Fuel optimal transients

 

 

Lifting        = % 45.9253

Lift losses   = % 7.6542

Traction     = % 34.1952

T.C. losses  = % 7.1753

G.B. losses  = % 3.7995

Engine acc  = % 1.2505

0 1 2 3 4 5 6 7
0

100

200

300

400

Time [s]

P
o
w

er
 [

k
W

]

Time optimal transients

 

 
Lifting        = % 27.0002

Lift losses   = % 4.5

Traction     = % 30.2505

T.C. losses  = % 16.7816

G.B. losses  = % 3.3612

Engine acc  = % 18.1065

Fig. 8. Energy usage and losses in various components
during the time optimal and fuel optimal transients,
vertical lines are phase boundaries.

0 5 10 15 20 25
0

0.5

1

S
p
ee

d
 r

at
io

 (
φ

)

0 5 10 15 20 25
0

0.5

1

η
T

C

Time [s]

 

 

min T

min M
f

Fig. 9. Speed ratio in the TC during time optimal and
fuel optimal transients, vertical lines are phase bound-
aries.

interval at the end of phase three meaning that the kinetic
energy on the gearbox side is used in lifting.

4.2 System sensitivity to Vbuc,max and Pcyl,max limits

Among the path constraints presented in (32) and (33),
Vmax is never active and ωice,min, ωice,max and Tice,max

are imposed by the vehicle properties in product brochure.
However, the limits for the Vlift,max and Pcyl,max are
modeled based on the wheel loader geometry. Fig. 10
shows the time optimal state variables, the control inputs
and the lift cylinder pressure where combinations of path
constraints on Vbuc and Pcyl are included in the optimal
control problem formulation. It is seen that Pcyl,max is the
constraint with the lowest effects on the system transients.
It only limits Uab in the first phase such that rapid bucket
accelerations are avoided which is seen in blue and black
colored Uab trajectories in Fig. 10. When the Vlift,max

constraint is included, the bucket acceleration starts earlier
and engine speed remains higher during phases 2 & 4
since low engine speeds will result in low lifting speeds
as described in section 2.2. This interval of higher engine
speed increases fuel consumption and cycle time around
2%.

4.3 Trade-off between time and fuel optimal transients

A Pareto front is calculated for both TC 1 and TC 2
described in section 2.3 by solving the following optimal
control problem subjected to all constraints mentioned in
section 3:
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min
(
(W1

Mf

N1
+W2

T
N2

) + k1

∫ T

0

U2
ab + k2

∫ T

0

U2
mf

)
(36)

s.t. ẋ = f(x, u) & W1 +W2 = 1

where W1 and W2 are changed so that the Pareto points
are obtained while N1 and N2 are used to normalize fuel
and time terms in the cost function. Fig. 11 illustrates the
trade-off where all values are normalized by the maximum
time and maximum fuel consumption of TC 2. The weaker
TC has around 1.5 % longer cycle times in the time optimal
case and results in approximately 3 % increase in the fuel
consumption. The interesting result of the Pareto front is
that duration of the fuel optimal cycle can be shortened by
up to 50 % while the fuel consumption only increases by
5 %. On the other hand, only 5 % increase in the duration
of time optimal cycle would reduce the fuel consumption
by 30 %. This is in agreement with the results presented in
Frank et al. (2012) where the trade-off is obtained through
experiments.

5. CONCLUSION

A wheel loader is modeled as a system with five states
and three control inputs. Discontinuities in the torque
converter characteristics are avoided by introducing a new
variable and it is assumed that the torque converter can
also transfer power to the engine side when gearbox rotates
faster than the engine. A multi-phase optimal control
problem is formulated and solved to obtain minimum fuel
and minimum cycle time transient in the lift-transport
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Fig. 11. Trade-off between cycle time and fuel consump-
tion moving from time optimal towards fuel optimal
transients.

section of the short loading cycle. It is shown that the
engine mostly operates on the maximum torque limit in
the time optimal transients and kinetic energy of engine
is used for lifting when gearbox is in neutral near the
end of the cycle. The power consumption and losses in
different components are calculated and it is seen that
the torque converter is the major cause of power losses
during time optimal transients. In the fuel optimal case,
the system is controlled such that the torque converter
operates at higher efficiencies. The effect of including
lift system limitations in the optimal control problem is
studied and it is found that applying these limitation,
the engine speed remains higher in the gearbox neutral
phases of the cycle in order to produce larger powers for
lifting. Finally, the trade-off between fuel consumption and
cycle time is calculated for weak and stiff torque converters
showing that the system with the weaker torque converter
has higher fuel consumptions at all points of the Pareto
front. The gain in the cycle time reduction is calculated
to be larger than the loss in the fuel consumption increase
when the cycle operation time is shortened to 50 % of
the fuel optimal operating cycles. Also, considerable fuel
saving is viable by a slight increase in the duration of the
time optimal cycles.
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chines. Ph.D. thesis, Linköping University, Dissertation,
NO. 1390.

Frank, B., Skogh, L., Filla, R., and Fröberg, A. (2012). On
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