Hide menu

Abstract



Fuel Optimal Control of an Articulated Hauler Utilising a Human Machine Interface


Utilising optimal control presents an opportunity to increase the fuel efficiency in an off-road transport mission conducted by an articulated hauler. A human machine interface (HMI) instructing the hauler operator to follow the fuel optimal vehicle speed trajectory has been developed and tested in real working conditions. The HMI implementation includes a Dynamic Programming based method to calculate the optimal vehicle speed and gear shift trajectories. Input to the optimisation algorithm is road related data such as distance, road inclination and rolling resistance. The road related data is estimated in a map module utilising an Extended Kalman Filter (EKF), a Rauch-Tung-Striebel smoother and a data fusion algorithm. Two test modes were compared: (1) The hauler operator tried to follow the optimal vehicle speed trajectory as presented in the HMI and (2) the operator was given a constant target speed to follow. The objective of the second test mode is to achieve an approximately equal cycle time as for the optimally controlled transport mission, hence, with similar productivity. A small fuel efficiency improvement was found when the human machine interface was used.

Jörgen Albrektsson and Jan Åslund

2017

External PDFShow BibTeX entry

Page responsible: webmaster
Last updated: 2021-11-10