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Abstract: Optimal control policies for a diesel-electric powertrain in transient operation are
studied. In order to fully utilize the extra degree of freedom available in a diesel-electric
powertrain, compared to a conventional powertrain, the engine-speed is allowed to vary freely.
The considered transients are steps from idle to target power. A non-linear four state-three input
mean value engine model, incorporating the important turbocharger dynamics, is used for this
study. The study is conducted for two different criteria, fuel optimal control and time optimal
control. The results from the optimization show that the optimal controls for each criteria can be
divided into two categories, one for high requested powers and one for low requested powers. For
high power transients the controls for both criteria follow a similar structure, a structure given
by the maximum torque line and the smoke-limiter. The main difference between the criteria
is the end point and how it is approached. The fuel optimal control builds more kinetic energy
in the turbocharger, reducing the necessary amount of kinetic energy in the system to produce
the requested power. For low power transients the optimal controls deal with the turbocharger
dynamics in a fundamentally different way.
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1. INTRODUCTION

New legislative demands for emissions and increasing oil
prices have renewed the interest for alternative powertrain
concepts. One such concept is the diesel-electric power-
train, such as the BAE Systems TorqETM, see Fig. 1,
where there is only an electric link between the diesel
engine and the electric load. This adds an extra degree
of freedom to the powertrain since the engine speed can
be chosen freely. This offers potential for increasing the
performance of the powertrain, due to the torque char-
acteristic of the electric machine, as well as potential
reduction in consumption, due to the freedom of choosing
the operating point of the diesel engine. The absence of
an energy storage makes the system more restricted and
difficult to manage, compared to a hybrid.

This paper studies how to best take advantage of the
extra freedom available in the diesel-electric powertrain.
In related articles concerning optimal transient control of
diesel-engines different optimization methods are used to
minimize pollutants during transient operation for known
engine speeds, see Benz et al. (2011); Kyrtatos et al. (2003)
or, as in Nilsson et al. (2011, 2012) the optimal engine
operating point trajectory for a known engine power
output trajectory is derived. The diesel engine is modeled
as an inertia with a Willans-line efficiency model. The
optimal solution is found using dynamic programming and
Pontryagins maximum principle. Due to the more detailed
and complex non-linear model used in this paper such
methods aren’t feasible. The problem is solved using the
ACADO Toolkit, an open-source framework for automatic
control and dynamic optimization, that uses multiple

Fig. 1. BAE Systems TorqETM powertrain

shooting together with sequential quadratic programming,
see Houska et al. (2011).

The contribution of this paper is the study of the optimal
control from idle to a target power for two different criteria
with the engine output power and engine speed considered
free variables during the transient. A nonlinear, four state,
three input mean value engine model (MVEM) is used in
the study and provided, fully parametrized, in this paper.
This MVEM incorporates the important turbocharger
dynamics as well as the nonlinear multiple input-multiple
output nature of the diesel engine. The model is also
continuous in the studied interval in compliance with the
non-linear program solver of the ACADO Toolkit.



2. MODEL

The focus in the paper lies on optimal control of diesel
engine transients. Therefore the generator model is sim-
plified, i.e. the generator efficiency is constant and the
maximum power of the generator is constant over the
entire speed range. The generator time constant is also
assumed to be much faster than the time constant of the
engine.

The modeled engine is a 6-cylinder 12.7-liter SCANIA
diesel engine with a fixed-geometry turbine and a waste-
gate for boost control. The states of the MVEM are
engine speed, ωice, inlet manifold pressure, pim, exhaust
manifold pressure, pem, and turbocharger speed, ωtc and
the controls are fuel flow, uf , wastegate position, uwg,
and generator power, Pgen. The MVEM consists of two
control volumes, intake and exhaust manifold, and four re-
strictions, compressor, engine, turbine, and wastegate. The
control volumes are modeled with the standard isothermal
model, using the ideal gas law and mass conservation.
The engine and turbocharger speeds are modeled using
Newton’s second law. The governing differential equations
of the MVEM are:

dωice
dt

=
1

Jgenset
(Tice −

Pgen
ωice

) (1)

dpim
dt

=
RaTim
Vis

(ṁc − ṁac) (2)

dpem
dt

=
ReTem
Vem

(ṁac + ṁf − ṁt − ṁwg) (3)

dωtc
dt

=
Pt − Pc
ωtcJtc

− wfricω2
tc (4)

For more in-depth information on the structure and details
of the diesel engine model see Eriksson (2007); Wahlström
and Eriksson (2011), from where the equations in the
following section are collected. Descriptions and the pa-
rameters and constants used in the engine model can be
found in Appendix A. The model has been adapted to
ensure that there are continuous derivatives.

3. COMPONENT MODELS

3.1 Compressor

The compressor model consists of two sub-models, one
for the massflow and one for the power consumption. In
order to avoid problems for low turbocharger speeds and
transients with pressure ratios Πc < 1 a variation of the
physically motivated Ψ Φ model in Eriksson (2007) is used.

Πc,max =

(
ω2
tcR

2
cΨmax

2cpTamb
+ 1

) γa
γa−1

(5)
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ṁc,corrpamb/pref√

Tamb/Tref
(7)

Pc =
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(8)

The full compressor model has three tuning parameters
Ψmax,ṁc,corr,max, and ηc.

3.2 Engine Gas Flow

The engine gas flow model consist of two sub-models, one
for air flow and on for fuel flow.

ṁac =
ηvolpimωiceVD

4πRaTim
(9)

ṁf =
10−6

4π
ufωicencyl (10)

λ =
ṁac

ṁf

1

(A/F )s
(11)

To avoid problems for ṁf = 0 a new variable is defined

φλ = ṁac − λminṁf (A/F )s (12)

where λmin is the lower limit set by the smoke-limiter. The
gas flow model has one tuning parameter, ηvol.

3.3 Engine Torque

The net torque of the engine, Tice, is modeled using three
torque components, and one efficiency model.

Tice =Tig − Tfric − Tpump (13)

ηig =ηig,ch

(
1− 1

r
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c

)
(14)
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Tfric =
VD
4π

105
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2
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)
(16)

Tpump =
VD
4π

(pem − pim) (17)

The net torque, Tice is limited by the maximum torque
of the engine, Tice,max(ωice), shown in Fig. 3. The torque
model has five tuning parameters, ηvol, cfr,i, i ∈ [1, 2, 3],
and ηig,ch.

3.4 Exhaust Temperature

The engine out temperature model is based on ideal
gas Seliger cycle. The temperature drop in the exhaust
manifold is not modeled so the engine out temperature and
exhaust manifold temperature are assumed to be equal.

qin =
ṁfqHV
ṁf + ṁac

(18)
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cvaTimr
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(19)

Tem =ηscΠ
1−1/γa
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+ Timr
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c

)
(20)

The engine out temperature model has two tuning param-
eters ηsc, and xcv.

3.5 Turbine

The turbine model consists of submodels for the turbine
massflow and turbine power production. The turbine mass-
flow model is modeled with the standard restriction model
and using that half the expansion occurs in the rotor and
the other half in the stator, see Eriksson (2007):

Π∗
t = max

(√
Πt,

(
2

γe + 1

) γe
γe−1

)
(21)



Fig. 2. Structure of the MVEM. The modeled components
as well as the connection between them.

The ACADO Toolkit requires that the functions are con-
tinuous and therefore Π∗

t =
√

Πt is used which is valid
down to Πt = 0.30 corresponding to an exhaust manifold
pressure of pem ≈ 3.3pamb, which is sufficient for the
transients studied. The massflow model is then given by:

Π∗
t =
√

Πt (22)

Ψt (Π∗
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2γe
γe − 1
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2
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)
(23)

ṁt =
pem√
ReTem

ΨtAt,eff (24)

Pt =ṁtcpeTemηt

(
1−Π

γe−1
γe

t

)
(25)

The tuning parameters of the complete turbine model are
At,eff , and ηt.

3.6 Wastegate

If the standard restriction model is applied to the waste-
gate, choking would occur for exhaust manifold pressures
of pem ≈ 1.8pamb which is well within the normal operating
region. This requires a discontinuity in the model, but
since ACADO Toolkit requires the functions to be con-
tinuous the following non-physical model is used instead:

Ψwg =cwg,1

√
1−Π

cwg,2
wg (26)

ṁwg =
pem√
ReTem

ΨwguwgAwg,eff (27)

The tuning parameters of the wastegate model are cwg,1−2

and Awg,eff .

4. PROBLEM FORMULATION

Two non-linear optimal control problems, minimum time
and minimum energy are studied. They are formulated as
follows:

min

∫ T

0

ṁf dt or min T

s.t. ẋ = f(x, u),

(28)

where x is the states of the MVEM and ẋ is defined by (1)-
(4). The studied transients are steps from idle to a target
power subject to constraints imposed by the components,
such as maximum torque and minimum speed, as well as
environmental constraints, i.e. a limit on φλ set by the
smoke-limiter. The constraints are:

x(0) = idle, ẋ(T ) = 0

Tice ≤ Tice,max(ωice), Pgen(T ) = Preq
ωice ≥ ωice,min, φλ ≥ 0

(29)
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Fig. 3. Time and fuel optimal solutions to different load
transients. The time and fuel optimal transients have
similar structures, given by the smoke-limiter, but
differ in how they meet the end constraints.

In most vehicles the accelerator position can be interpreted
as a power request. The problem in (28)-(29) is thus how
to control the engine in order to be able to satisfy the
operators power request, either as fast as possible, or as
fuel efficient as possible. The end constraint on the state
derivatives is to avoid solutions where the optimal control
ends in an operating point that cannot be maintained. This
is to avoid under- or overshoots in the control strategies.
Not specifying that ω̇ice(T ) ≥ 0 will lead to the engine
transient not taking place at all, the optimal solution is
just to apply Pgen = Preq at t = 0.

However, one could argue that the strict equality in
the derivative end constraint should be replaced by an
inequality, ẋ(T ) ≥ 0 since this would ensure that the
engine can deliver at least the power requested. Therefore
effects of relaxing these constraints are also studied.

5. RESULTS

The optimal torque and speed trajectories to problem (28)-
(29) are shown in Fig. 3 and the corresponding end time
T as well as the fuel consumption and end state values are
shown in Table 1. One observation that can be made is that
the optimal solutions can be divided into two cases. One
case where the time optimal and fuel optimal paths end in
the same operating point (Preq ≤ 100 kW), discussed in
Section 7, and one case where they don’t (Preq ≥ 125 kW),
discussed in Section 6.

6. TRANSIENTS TO HIGH POWER

The time and fuel optimal control trajectories for Preq ≥
125 kW all follow the same pattern as the transients shown
in Fig. 4 where Preq = 170 kW. The time optimal and
fuel optimal control strategies are rather similar for the
first phase of the transient, the difference lies in how they
approach the stationary point. The optimal solution for
both criteria is to put as much energy as possible into
the system in order to build intake manifold pressure and
turbo speed, the difference lies in the fine tuning to meet
the end constraints. This becomes even more apparent



Table 1. Optimal results for different load
transients.

Preq(T ) min T [s] mf [g] ωice(T ) pim(T ) pem(T ) ωtc(T )

25kW
T 0.053 0.108 54.31 101505 102270 799.2
mf 0.192 0.018 54.00 101502 102259 795.4

50kW
T 0.083 0.246 59.53 101996 103035 1022.6
mf 0.348 0.112 59.53 101996 103035 1022.6

75kW
T 0.115 0.417 69.68 102763 104229 1316.6
mf 0.395 0.267 69.68 102763 104229 1316.6

100kW
T 0.165 0.706 93.32 104207 106927 1798.8
mf 0.174 0.601 93.32 104207 106927 1798.8

125kW
T 0.219 1.114 117.06 106682 111284 2377.3
mf 0.265 1.077 113.68 109167 114059 2686.1

150kW
T 0.286 1.689 137.67 111918 119322 3177.8
mf 0.333 1.592 131.73 115468 122916 3494.4

170kW
T 0.334 2.176 152.54 117012 127112 3797.0
mf 0.380 2.018 144.43 121248 131128 4097.4

200kW
T 0.397 2.936 172.63 125505 140527 4672.0
mf 0.440 2.665 161.22 130550 144850 4930.1

225kW
T 0.443 3.595 187.85 133008 153052 5365.8
mf 0.485 3.212 173.50 138638 157391 5578.3

254kW
T 0.491 4.397 204.36 141931 169007 6160.3
mf 0.534 3.864 186.30 148172 173036 6301.3
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Fig. 4. Time and fuel optimal solutions to a load transient
from idle to 170 kW.

when looking at Fig. 3, where both fuel and time optimal
torque-engine speed paths for different required powers are
shown.

6.1 Time optimal high power transients

The time optimal solution approaches the stationary point
from a higher torque, whereas the fuel optimal solution
approaches the stationary point from a lower torque. In

the first phase the optimal solution follows the maximum
torque and the λmin-value set by the smoke-limiter of the
engine. The time optimal solution follows λmin until the
end and actuates the wastegate to get stationarity. When
the wastegate is actuated to control the turbocharger
speed to its target speed the pumping work decreases and
the net torque of the engine increases and the path thus
approaches the end point from a higher torque.

6.2 Fuel optimal high power transients

The fuel optimal solution approaches a different stationary
point, one that has a higher pim, pem, and ωtc but lower
ωice, and consequently higher efficiency. This stationary
point is near the operating point with maximum efficiency
obtainable without using the generator to restrain the
engine speed from increasing as it builds turbocharger
speed. In Fig. 5 it is shown how much energy is stored
as kinetic energy in the turbocharger and engine at the
end of the transient. The fuel optimal control builds less
kinetic energy in the engine, but more kinetic energy in the
turbocharger than the time optimal control. This reduces
the total amount of kinetic energy necessary to be able to
meet Preq. This energy difference scaled with the average
efficiency of the engine is roughly of the same size as the
difference in consumption between the criteria shown in
Table 1. Seeing that the kinetic energy in the engine is
roughly 20 times larger than that in the turbocharger a
lot can be gained by instead increasing the kinetic energy
in the turbocharger and thus decrease the kinetic energy
in the engine. The time constant of the turbocharger is
however larger than that of the engine. When limited by
the smoke-limiter, the kinetic energy in the turbocharger
increases with roughly 10kJ/s, whereas the kinetic energy
of the engine increases with 100kJ/s, causing the two
criteria to approach different stationary points.

The difference in control of the turbocharger dynamics
can be seen in Fig.4 , t ∈ [0.28, 0.4]. Where the time
optimal control follows the smoke-limiter until the end and
fully opens the wastegate to release the excess exhaust
pressure as it approaches its stationary point, the fuel
optimal control decreases and stops the fuel injection while
the wastegate remains closed in order to build/maintain
backpressure to convert to turbocharger speed and con-
sequently intake manifold pressure. The transient ends
with the wastegate being actuated to control the exhaust
manifold pressure to ensure stationarity in pem, ωtc and
pim together with the final value of uf .

In Fig. 6 the change in end time and fuel consumption
as a function of Preq for the fuel optimal versus the
time optimal transients is shown. In the studied interval
the consumption decrease of the fuel optimal solution,
compared to the time optimal solution, increases with Preq
and is between 3 % and 12 %. The corresponding time
increase however decreases with Preq and is between 21%
and 9%.

6.3 End constraint effects on the optimal solution

In order to understand why the optimal control takes on
the form seen in Fig. 4 the optimization procedure is
repeated for different end constraints. Looking at Fig. 7
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where the time and fuel optimal solutions with the end
constraint ẋ(T ) = 0 are compared with the solutions for
ω̇ice(T ) = 0 it’s apparent that the control strategies for uf
and Pgen are governed by the end constraint on the engine
speed derivative. Imposing hard end constraints on the
other state derivatives only shifts the control in time. The
wastegate actuation however cannot be explained by just
that constraint. In Fig. 8 it is shown how the wastegate
actuation changes for different end constraints. The end
constraints are removed one by one to study how the
solution changes. The different end constraints are:

Case A: ω̇ice(T ) = 0, ṗim(T ) = 0, ṗem(T ) = 0

Case B: ω̇ice(T ) = 0, ṗim(T ) = 0, ω̇tc(T ) = 0

Case C: ω̇ice(T ) = 0, ṗem(T ) = 0, ω̇tc(T ) = 0

From there the conclusion can be drawn that the opening
and closing of the wastegate is to bring the turbocharger
speed, and thus also the intake pressure, to its target
stationary value. Then the wastegate opens again in the
final time-step to get stationarity in the exhaust manifold
pressure as well.

6.4 Effects of relaxing the end constraints

In Fig. 9 the optimal solutions for ẋ(T ) ≥ 0 are compared
to the optimal solutions for ẋ(T ) = 0. The optimal
solution stays relatively unaffected, as can be expected the
solutions are a bit shorter in time if the end constraints
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for ẋ(T ) = 0 as well as ω̇ice(T ) = 0.

0.29 0.295 0.3 0.305 0.31 0.315 0.32 0.325 0.33
0

0.2

0.4

0.6

0.8

1

u
w

g

time
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are relaxed. Worth noting is that the fully open-fully closed
actuation of the wastegate disappears. There is also a small
difference between the two criterias as to which constraints
are active. In the time optimal case only the constraints
on ω̇ice and ṗem are active, but in the fuel optimal case
all constraints are active except the constraint on ṗim.



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
60
80

100
120
140

ω
ic

e [
ra

d
/s

]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1

1.1

1.2

x 10
5

p
im

 [
P

a]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1

1.5

x 10
5

p
em

 [
P

a]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

2000

4000

ω
tc

 [
ra

d
/s

]

time [s]

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

50

100

150

u
f [m

g/
cy

cl
e]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.5

1

u
w

g
 [−

]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

10

x 10
4

P
ge

n
 [W

]

time [s]
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Fig. 9. Effects on the time and fuel optimal solution of
relaxing the end constraints.

That is, in the fuel optimal case relaxing the constraints
produces the same solution as in Case A.

7. TRANSIENTS TO LOW POWER

For low requested powers the optimal control looks a bit
different compared to the transients with higher requested
powers discussed in Section 6. For the time optimal case
this change in strategy occurs for roughly Preq ≤ 100 kW
and in the fuel optimal case around Preq ≤ 75 kW. Even
though, for Preq ≤ 100 kW, the time and fuel optimal
controls end in nearly the same operating point they differ
substantially, see Fig. 10.

7.1 Time optimal transients for low requested powers

The time optimal control for low powers is to use the
generator to decrease the engine speed mid-transient, see
Fig. 10. It also ends with departing from the λmin-line
as it approaches the same operating point as the fuel
optimal solution. The fuel consumption punishment for
this is large, up to almost 100 % compared to the fuel
optimal solution, see Fig. 11, but the gain in time is also
substantial, up to 300%.

7.2 End constraint impact on the time optimal control

In order to investigate the nature of the solution the end
constraints are removed and relaxed in the same manner
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Fig. 10. Time and fuel optimal solutions to a load transient
from idle to 50 kW and 70 kW.
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Fig. 11. Change in time and consumption as a function of
Preq.

as in Section 6. In this case, as with the fuel optimal
solution for higher powers, the optimal solution for Case
A is the same as with ẋ(T ) ≥ 0. It can be seen in
Fig. 12 that the generator control is an artifact of requiring
the state derivatives to be zero at the end. If the end
constraints are relaxed the solution is of the same structure
as for Preq ≥ 125 kW. Getting the turbocharger speed
to a stationary point makes the transient almost 3 times
longer, compared to if ω̇tc is allowed to be positive, the
corresponding fuel conusmption also doubles. But since
the objective is to minimize the time until the engine can
deliver a specified power an eventual over- or undershoot
might not be that big of an issue.
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Fig. 12. Time optimal transient and how the solution
changes with the end constraints, Preq = 50 kW.

7.3 Fuel optimal transients for low requested powers

The fuel optimal control for low power transients, as seen
in see Fig. 10, is first to let the engine decelerate slightly
with the wastegate fully closed, building a small amount of
exhaust manifold pressure. Then a burst of fuel is injected,
adding energy in to the system, before the engine is allowed
to decelerate towards its stationary point. During this
deceleration the turbocharger speed and inlet manifold
pressure continues to build. Interesting to note is that the
close-open-close wastegate actuation also appears for low
power transients, see Fig. 10 t ∈ [0.33, 0.4].

7.4 End constraint impact on the fuel optimal control

As was the case for fuel optimal high power transients,
as well as time optimal low power transients, Case A and
ẋ(T ) ≥ 0 produce the same solution. In Fig. 13 the effects
of varying the end constraints are shown. The solution for
case C is very close to ẋ(T ) = 0, the only difference is at
the end, since case C doesn’t require ṗim = 0. The end
constraints that define the solution the most are thus ω̇tc
and ṗem. Requiring that these constraints should be zero
at the end increases the duration of the transient 16 times
and the fuel consumption 2 times. However not specifying
them might lead to over- or undershooting the optimal
point and the solution might thus not be fuel optimal if
the goal is to produce a specific output power.
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Fig. 13. Fuel optimal transient and how the solution
changes with the end constraints, Preq = 50 kW.

8. CONCLUSION

In this paper the characteristics of the fuel and time
optimal control of a diesel-electric engine from idle to
target power has been presented. The dominant effects
have been studied through changing the end constraints
of the optimization problem. It is shown that the optimal
solutions are different for high and low requested powers.
For high power transients the time and fuel optimal
controls are very similar despite the criteria being different.
The optimal control is to put as much energy as possible
into the system, following the smoke-limiter and maximum
torque line. The difference between the two criteria is
which operating point they approach and also the fine
tuning to get there. Whereas the time optimal control
follows the smoke-limiter until the end, the fuel optimal
control cuts off the fuel injection and ends near the
operating point with highest efficiency obtainable without
using the generator. This operating point requires more
kinetic energy in the turbocharger which takes longer to
build, but reduces the total amount of kinetic energy
necessary to produce the requested power.

For low power transients the fuel and time optimal con-
trols differ substantially. This is found to be related to
the requirements that they have to end in a stationary
operating point. How the turbocharger is controlled to a
stationary point is the main difference. The fuel optimal
control is to slowly build turbocharger speed and let the



engine decelerate towards the stationary point, whereas
the time optimal solution utilizes the generator to decrease
the engine speed, mid-transient.
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Appendix A. MODEL DATA

Table A.1. Constants used

Symbol Description Value Unit

pamb Ambient pressure 1.011 · 105 Pa
Tamb Ambient temperature 298.46 K
cpa Spec. heat capacity of air, constant pressure 1011 J/(kg ·K)
cva Spec. heat capacity of air, constant volume 724 J/(kg ·K)
γa Spec. heat capacity ratio of air 1.3964 -
Ra Gas constant, air 287 J/(kg ·K)
cpe Spec. heat capacity of exhaust gas, constant pressure 1332 J/(kg ·K)
γe Spec. heat capacity ratio of exhaust gas 1.2734 -
Re Gas constant, exhaust gas 286 J/(kg ·K)
γcyl Spec. heat capacity ratio of cylinder gas 1.35004 -
Tim Temperature intake manifold 300.6186 K
pes Pressure in exhaust system 1.011 · 105 Pa

(A/F )s Stoichiometric oxygen-fuel ratio 14.57 −
qHV Heating value, diesel 42.9 · 106 J/kg

Table A.2. Parameters used

Symbol Description Value Unit

ncyl Number of cylinders 6 −
VD Engine displacement 0.0127 m3

rc Compression ratio 17.3 −
Jgenset Inertia of the engine-generator 3.5 kg ·m2

Vis Volume of intake system 0.0218 m3

Rc Compressor radius 0.04 m
Ψmax Max. compressor head parameter 1.5927 −

ṁc,corr,max Max. corrected compressor mass-flow 0.5462 kg/s
ηc Compressor efficiency 0.5376 −
ηvol Volumetric efficiency 0.8928 −
ηig,ch Combustion chamber efficiency 0.6774 −
cfr1 Friction coefficient 8.4100 · 10−5 −
cfr2 Friction coefficient −5.6039 · 10−3 −
cfr3 Friction coefficient 0.4758 −
ηsc Non-ideal Seliger cycle compensation 1.0540 −
xcv Ratio of fuel burnt during constant volume 0.4046 −
Vem Volume of exhaust manifold 0.0199 m3

Jtc Turbocharger inertia 1.9662 · 10−4 kg ·m2

wfric Turbocharger friction 2.4358 · 10−5 kg ·m2/rad
At,eff Effective turbine area 9.8938 · 10−4 m3

ηt Turbine efficiency 0.7278 −
cwg,1 Wastegate parameter 0.6679 −
cwg,2 Wastegate parameter 5.3039 −

Awg,eff Effective wastegate area 8.8357 · 10−4 m3


