
Improved Drive Cycle Following with an
ILC Supported Driver Model

Lars Eriksson ∗ Mikael Norrlöf ∗∗

∗ Lars Eriksson is with Vehicular Systems, Dept. of Electrical
Engineering, Linköping University, SE-581 83 Linköping, Sweden,

lars.eriksson@liu.se
∗∗Mikael Norrlöf is with Automatic Control, Dept. of Electrical

Engineering, Linköping University, SE-581 83 Linköping, Sweden, and
ABB AB – Robotics, SE-721 68 Väster̊as, Sweden,

mikael.norrlof@liu.se

Abstract: Drive cycle following is important for concept comparisons when evaluating vehicle
concepts, but it can be time consuming to develop good driver models that can achieve accurate
following of a specific velocity profile. Here, a new approach is proposed where a simple driver
model based on a PID controller is extended with an Iterative Learning Control (ILC) algorithm.
Simulation results using a nonlinear vehicle and control system model show that it is possible to
achieve very good cycle following in a few iterations with little tuning effort. It is also possible
to utilize the repetitive behavior in the drive cycle to accelerate the convergence of the ILC
algorithm even further.

Keywords: Vehicle control, learning, powertrain.

1. INTRODUCTION

Driving cycle following is a fundamental part in the
evaluation of new powertrain solutions and their impact
on for example fuel consumption and emissions. There
are several cycles for example the European NEDC, the
American FTP-75, and the comming WLTP. For a fair
comparison between different concepts within each region
it is fundamental that they follow the same driving cycle.
In vehicle tests this can be done by a driver, a driver robot
or in simulation by a driver model. Driver modeling is
in itself a large subject, see Levermore et al. (2014) for
a recent survey, where one application is speed following
of a given trajectory. Differences in speed following can
give rise to variations in fuel consumption and emissions,
where an accurate and repeatable following can reduce the
variations (Holschuh et al., 1991).

The focus here is on control of a vehicle so that it follows
a prescribed velocity trajectory. The main contribution in
this work is the implementation and demonstration of how
a simple driver model that is augmented with the Iterative
Learning Control (ILC) framework (Arimoto et al., 1984;
Moore, 1993; A. Bristow et al., 2006) can quickly achieve
good cycle following. This is the first application of ILC
to vehicle speed tracking for drive cycle following.

2. BACKGROUND ON DRIVE CYCLE FOLLOWING

Drive cycle following is essentially an inverse problem
where gas and brake pedal inputs are to be found (together
with clutch and gear ratios) so that the vehicle follows the
desired trajectory.
1 *This work was supported by the VINNOVA Industry Excellence
Center LINK-SIC.

In the literature there are essentially two approaches, for-
ward simulation and inverse systems modeling, sometimes
called Quasi Steady Simulation (QSS). See Figure 1 for a
schematic illustration of the two approaches, and Guzzella
and Sciarretta (2007); Hofman et al. (2011) for more de-
tails.

In the inverse system or QSS approach, the system is
modeled with the drive cycle as input, using a quasi steady
state assumption for the acceleration between samples the
required wheel force and powertrain torques are propa-
gated through inverse models so that the desired veloc-
ity profile is followed. See Guzzella and Amstutz (1999);
Wipke et al. (1999) for discussions and more details about
QSS approach. Modeling with the inverse system often
requires new tailored models to be developed, which might
be non-trivial for complex systems and furthermore if there
are non-minimum phase behaviors, the inverse is not stable
and even more advanced techniques have to be employed,
see Fröberg and Nielsen (2008) for a discussion.

The other technique, forward simulation, is to use a driver
that tries to follow the specified trajectory, this is es-

Cycle Driver Engine Transm. Wheel Vehicle

Forward simulation

Cycle Vehicle Wheel Transm. Engine

Inverse simulation

Fig. 1. Illustration of forward (top) and inverse (bottom)
simulation (often called QSS), for driving cycle fol-
lowing.

sentially a feedback control strategy where the speed is
tracked using a controller that adjusts the pedals in re-
sponse to tracking errors. An advantage with this approach
is that no tailored model is necessary and it can cope with
arbitrary model complexities. This can be applied both in
simulation as well as to vehicle dynamometer tests. On the
other hand, the quality, and the tuning, of the driver model
will have an impact on how well the driving cycle can be
followed. Concerning drive cycle following systems with
forward approaches there are several papers that cover the
mechatronic design of pedal robots and the control design
for the servos that presses the pedals (Namik et al., 2006;
Alt and Svaricek, 2010), while only a few discuss control
for vehicle speed following (Chen et al., 2013; Eriksson,
2001).

In this paper the forward simulation technique is used,
because it is versatile and easy to apply for different
powertrain configurations. A further motivation for the
ILC modification of the controller is that previous expe-
rience has shown that it is difficult to achieve good drive
cycle following for general powertrains. To illustrate this
point, the experience acquired during an engine concept
evaluation done in Eriksson et al. (2012) is used. To get
a good generic driver model that could cope with varying
powertrain configurations required a development effort
of about 6 months. It is desirable to cut this development
time and have a generic driver model that can easily adapt
to different drivetrains.

3. VEHICLE MODEL

Vehicle drivetrains are non-linear and complex, while the
proposed PID & ILC based driver procedure is simple and
partly relies on linear filters. Therefore, to test the driver
model a complete vehicle model for longitudinal motion
that includes significant nonlinear elements is implemented
and described here. An illustration of the complete vehicle
model is shown in Figure 2. The vehicle model is composed
by:

• a naturally aspirated engine (rate limited throttle
movement, filling and emptying intake manifold dy-
namics, volumetric efficiency for engine flow, torque
model with ignition influence). See Figure 3 for the
Simulink model of the engine.
• Driveline (clutch, stiff driveline, rolling conditions at

the wheel). The clutch model contains the logics for
break up and lock-up of the clutch and its logic keeps
track of the wheel speed as well as the engine speed.
• Vehicle model (longitudinal mass model, rolling resis-

tance, air drag model).

The vehicle model is standard and the reason for including
the model description at this level of detail in this paper
is to highlight that it includes significant nonlinearities as
well as the time constants and time delays that can limit
the gains that can be used in a feedback controller. In
summary the model will not be used in a constructive
way in the control design instead it will be used as a
challenging test case for the approach and it is provided
for completeness of the evaluation.

Fig. 2. Vehicle model implemented in Simulink. Containing
drive cycle specification, driver model, Engine Control
Unit (ECU), Engine model, Clutch and stiff driveline,
and finally a Vehicle body model.

Fig. 3. Engine model inside the vehicle model implemented
in Simulink. The engine model consists of a rate
limiter for the throttle movement, a standard throttle
flow model, intake manifold with isothermal filling
and emptying, volumetric engine flow model and a
torque model.

3.1 Engine Model

The control inputs to the engine model are throttle po-
sition reference αref, fuel mass flow ṁf, ignition timing
∆θign, and additional loads such as air conditioner com-
pressor on or off, uAC , and auxiliary load torque Maux.
Another input to the engine model is the engine speed ωe,
provided as an exogenous input by the clutch and driveline
model, this is motivated by the fact that the engine is not
a completely autonomous system. In particular when the
clutch is locked then the engine speed is dictated by the
interaction between the engine model and the driveline and
vehicle sub-models therefore the engine speed sub-model is
placed in the clutch where the logics for lockup and break
apart is implemented. The first input to the engine model,
see Figure 3, is the throttle reference αref. This input goes
through the throttle servo model which is modeled as a
rate limiter and a conversion from [0. . . 1] to radians. The
throttle angle is then passed to a throttle area function,
that gives the effective area

A(α) = A0 +Amax (1− cos α)

that has a leakage area A0 and the maximum area Amax +
A0 and a simple cos(·) function for the angle to area
dependence. The throttle mass flow is modeled with the
standard isentropic restriction model,

Π(
pds
pus

) = max

(
pds
pus

,

(
2

γ + 1

) γ
γ−1

)
(1a)

Ψ0(Π) =

√
2γ

γ − 1

(
Π

2
γ −Π

γ+1
γ

)
(1b)

ṁat(pus, Tus, pds, A) =ACD
pus√
RTus

Ψ0(Π(
pds
pus

)) (1c)

The air mass flow to the cylinders is modeled using the
volumetric efficiency,

ṁac(N, pim, Tim) =ηvol(N, pim, pem)
VDN pim
nrRTim

(2a)

ηvol(N, pim, pem) =Cηvol(N)
rc −

(
pem
pim

)1/γ
rc − 1

(2b)

where the sub-model for ηvol takes the load dependence
into account. Here Cηvol(N) is modeled as a constant.

The intake manifold pressure dynamics is modeled using
the well known isothemal model with filling and emptying
of mass as the main dynamics,

dp

dt
=
RT

V
(ṁat − ṁac) (3)

which gives the pressure for the mass flow and torque
models.

The engine torque is modeled using the three component
model,

Me =
We

nr 2π
=
Wi,g −Wi,p −Wfr

nr 2π
(4a)

Wi,g =mf qLHV η̃ig (4b)

Wi,p =VD PMEP (4c)

Wfr =2π nrMfr = VD FMEP (4d)

where the following sub-models are used,

η̃ig =(1− 1

rγ−1c

) ·min(1, λc) · ηign · ηig,ch (5)

ηign =1− Cig,2 · (∆θign)2 (6)

PMEP =VD (pem − pim) (7)

FMEP =Cfr,0 + Cfr,1
60N

1000
+ Cfr,2

(
60N

1000

)2

(8)

Here the ignition efficiency is modeled using the deviation
in ignition from the optimal ∆θign and the constant
is Cig,2 = 4.316, from Eriksson and Nielsen (2014).
The friction model has parameters Cfr,0 = 0.97 · 105,
Cfr,1 = 0.15 · 105, and Cfr,2 = 0.05 · 105 from Heywood
(1988). Finally there are delays included in the torque
development, there is a powerstroke delay from the air and
fuel induction and a powerstroke delay from the ignition
timing.

From the engine torque the air condition compressor and
auxiliaries load torques are subtracted from the torque Me,

Me,out = Me −MAC −Maux (9)

where the AC torque is MAC = 30 [Nm]. The engine out
torque is fed to the clutch and driveline model.

3.2 Vehicle Model

The vehicle velocity and driving distance is modeled using
Newton’s second law, where the tractive force from the

wheel driveline is the driving input and the losses rolling
resistance, and air drag oppose the movement.

m
dv

dt
=Ft − Froll − Fair (10a)

ds

dt
=v (10b)

where m is the vehicle mass. Froll and Fair are modeled as,

Froll =mg (fr,1 + fr,1 v) (11)

Fair =
1

2
ρairACD v

2 (12)

where a flat road is assumed. The tractive force comes from
the wheel torque which is the transmission torque minus
the applied brake torque, Ft = Mt−Mbrake

rw
, where rw is the

wheel radius. We are also assuming rolling conditions so
that

ωw rw = v (13)

3.3 Clutch and Transmission Model

The transmission connects the clutch to the wheels and it
is modeled as a mass-less and loss-free transmission, with
gear ratio it.

ωc =it ωw (14a)

Mc it =Mw (14b)

With the rolling condition (13) the vehicle dynamics model
can be translated to an equivalent rotating system, see
Eriksson and Nielsen (2014), and expressed as a rotating
system at the clutch side of the transmission. The clutch
connects the transmission side to the engine and the
total system dynamics is then modeled as follows for the
decoupled mode,

dωe

dt
=

1

Je
(Me,out −Mc) (15a)

dωc

dt
=

i2t
Jw +mr2w

(
Mc −

1

it
(Mbrake − rw (Froll + Fair)

)
(15b)

where Mc is the clutch torque and Je and Jw are engine
and wheel inertias. The clutch torque with lock-up and
break apart is modeled according to Eriksson (2001). In
clutch lockup mode the transferred clutch torque is calcu-
lated from considering a rigid body with total acceleration
determined from the torque balance and total inertia giv-
ing the following expression for the clutch torque in lockup

Mc =
Me,out Jv +Mv Je

Je + Jv
(16)

with the following intermediate variables

Mv =
1

it
(Mbrake − rw (Froll + Fair) (17)

Jv =
Jw +mr2w

i2t
(18)

Equation (16) gives accelerations of the engine and trans-
mission sides that match and the engine and gearbox
side thereby gets a loading/driving torque that is con-
sistent with the acceleration. During gear changes, when
the clutch decouples engine from the vehicle there is no
connection to the wheels and the controller will not have
any possibility to reduce the tracking error of the drive
cycle. This is one of the main reasons for bringing up this
submodel at this level of detail in this paper.

Fig. 4. Driver model inside the vehicle model implemented
in Simulink.

3.4 ECU Model

In the ECU the control functions for fuel injection, throttle
and ignition timing, including an idle speed controller are
included. A torque based structure according to Eriksson
and Nielsen (2014) is used, where there is a driver inter-
pretation and translation to set-points for intake manifold
pressure and finally throttle and ignition control inputs.
The lambda controller is estimating the air flow to the
cylinder via the volumetric efficiency and gives the fuel
flow to the engine. Here it is assumed that the air fuel
ratio controller works perfectly so there is no need for a
feedback controller for λ.

4. SIMPLE PID DRIVER

The driver model, Figure 4, is the same as in Eriksson
(2001). It is a simple but non-linear PID with speed
reference, controlling the gas pedal and brake. In the
controller the brake and gas pedal are not actuated at the
same time and when the clutch is pressed the gas pedal
is released. There is also a reset function of the integrator
coupled to the clutch actuation which mimics that a driver
starts over with the gas after changing the gear. Figure 5
shows the controller and the speed following when the

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140

S
p

e
e

d
 [

k
m

/h
]

Ref

Actual

0 200 400 600 800 1000 1200 1400
−2

0

2

4

E
rr

o
r

[k
m

/h
]

Time [s]

Fig. 5. Simulation results: Top– NEDC speed profile,
Bottom – speed tracking error.

Fig. 6. Driver model augmented with ILC elements uk and
ek, that is a sub-model of the complete vehicle model
implemented in Simulink.

simple PI driver follows the NEDC profile, note that no
fine tuning has been performed since the purpose is not to
make a benchmark between PID and ILC control only to
apply ILC concept to drive cycle following.

5. ILC IMPROVED DRIVER

The basic idea in the ILC framework (A. Bristow et al.,
2006; Arimoto et al., 1984; Moore, 1993) is to use the error
from one iteration of a repetitive action and based upon
this information compute an update to the reference or
control input to the system. Given an abstract system,

ẋk(t) = f(xk(t), uk(t), r(t))

yk(t) = h(xk(t))
(19)

with xk the system state, yk the observed output, r(t)
the desired reference trajectory, t is the time and k the
iteration number. In this paper the system represents
the complete vehicle including the driver controller, see
Sections 3 and 4. The input is therefore the speed reference
and the output is the actual speed of the vehicle. In each
iteration k, t ∈ [0, Tf], for some final time Tf , and it is also
assumed that the states are reset so that xk(0) = x0(0) in
all iterations k > 0. Here, what characterizes an iteration
is that the reference is the same and since the initial state
is also considered to be the same it is possible to iteratively
update the input to achieve improved tracking. A general
first order ILC algorithm is used (Moore, 1993; Norrlöf
and Gunnarsson, 2002),

uk+1(t) = Q(q)(uk(t) + L(q)ek(t)) (20)

where q is the time shift operator, defined as qκe(t) = e(t+
κTs), Ts is the sample time for the discrete time ILC
controller. The error is defined as ek(t) = r(t)−yk(t), i.e.,
the speed tracking error. The control signal uk(t) is applied
as a correction term to the speed profile, which acts as the
input to the driver model, see Figure 6 where the ILC input
and the error computation are included explicitly in the
model. In summary the error from a the most recent run
k is filtered with L(q) and added to the control signal and
then both are smoothed with Q(q) and used as correction
term to the next run k + 1.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

||
e

k
||

2
 /

 |
|e

0
||

2

κ = 0

 = 1

 = 2

 = 3

 = 4

Fig. 7. Normalized 2-norm of the error, ||ek||2||e0||2 , as a function

of iteration for different choices of κ in the ILC
algorithm. The solid line indicates the chosen κ value.

6. SIMULATION RESULTS

6.1 ILC algorithm tuning

In the simulations the sampling time is Ts = 0.1 s, the
filter Q(q) in (20) is chosen as a non-causal filter, realized
as a discrete time second order Butterworth filter with cut-
off frequency 2.5 Hz, applied using the filtfilt operator in
Matlab. L(q) in (20) is chosen as L(q) = γqκ and u0(t) =
0, i.e., no ILC compensation is applied in the initial
iteration. To find the values of the parameters γ and κ
some simple design rules are applied. The static gain from
speed reference to actual speed is close to one, therefore
the gain from error to speed reference compensation, γ, is
chosen close to one, here γ = 0.95. Reducing γ will make
the algorithm more robust to gain errors in the model but
it will also give a slower convergence. A too high gain can
result in overshoot in the compensation, possibly also to a
divergent behavior. The parameter κ relates to the delay
of the system and it is chosen to compensate for it in a
non-causal way. With ILC it is possible to apply the error
before it can be seen speed output and hence effectively
compensate for the error in the system. In Figure 7 the
2-norm of the error is shown for different choices of κ in
the interval 0, 1, . . . , 4 and the corresponding ∞-norm of
the error is provided in Figure 8. With κ = 2 the 2-norm
of the error is monotonically decreasing as a function of
iteration which makes it a good choice for the design.
Also the maximum error is decreasing, although κ = 3
actually has a faster convergence. Considering the 2-norm
and the∞-norm results together, still indicates that κ = 2
is a more robust solution since the error does not start to
increase after some iterations.

6.2 Drive cycle properties

A first simulation of the vehicle over the complete New
European Driving Cycle (NEDC) is shown in Figure 5. The
top diagram shows the speed profile and the lower diagram
shows the speed error. The PID driver model is just tuned
to give a very rudimentary following of the cycle and the

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

Iteration

||
e

k
||

∞
 [

k
m

/h
]

κ = 0

 = 1

 = 2

 = 3

 = 4

Fig. 8. Maximum error, ||ek||∞, as a function of iteration
for different values of the parameter κ in the ILC
algorithm. The solid line indicates the result when
κ = 2.

speed errors are quite large, about 2.5 km/h. The NEDC
driving cycle contains four repetitive segments consisting
of three different start, acceleration, and stop scenarios. At
the end of the cycle a longer segment with higher speed is
included.

With iterative learning control the repetitive actions can
be improved using information from previous iterations of
the same action. From Figure 5 it is clear that within one
driving cycle it is possible to have four iterations of ILC,
considering the first repetitive segments in the cycle. The
first time the cycle is executed, considering the part of
the cycle shown in Figure 9, iterations 0, 1, 2, and 3 are
therefore performed. The second time, iterations 4 to 7 are
performed, and so on. In the simulations the result from
running three drive cycles, i.e., iterations 0 to 11 in the
ILC algorithm, are shown.

6.3 NEDC Results using ILC

When applying the ILC algorithm the speed profile con-
verges to the desired profile in a few iterations. Figure 9
shows the vehicle desired and actual speed for the first
section of the cycle and the speed profiles are seen to
quickly converge to the desired speed.

The final level of the 2-norm after 11 iterations is less
than 10% of the value without ILC. Figure 10 shows the
time profile of the speed error from Figure 9 without ILC,
after 3 ILC iterations or one full drive cycle, after 7 ILC
iterations or two full drive cycles, and after 11 iterations
or three full drive cycles. In Figure 8 the maximum error
is shown and the error is decreased from a level of nearly
2.5 km/h to below 1 km/h after 3 ILC iterations, i.e., one full
drive cycle. This is achieved with very little development
and tuning effort put on the driver model and also on
the ILC algorithm parameters. Analyzing the residual one
sees that the maximum error are attained around the gear
changes where the clutch is engaged and there is no way
of influencing the vehicle speed with the gas pedal as it is
not an available torque input in the decoupled mode.

52 54 56 58 60 62 64 66 68 70
0

2

4

6

8

10

12

14

16

S
p
e
e
d
 [
k
m

/h
]

Time [s]

Reference

k=0

k=11

Fig. 9. Speed tracking for the ILC iterations, showing
how the speed converges to the desired speed profile,
reference speed (solid blue), nominal speed profile,
y0 (solid red), and finally, the speed profile after 11
iterations, y11 (dashed green). The ILC algorithm uses
κ = 2.

52 54 56 58 60 62 64 66 68 70
−1

−0.5

0

0.5

1

1.5

2

2.5

S
p

e
e

d
 e

rr
o

r
[k

m
/h

]

Time [s]

k=0

k=3

k=11

Fig. 10. Speed tracking for the ILC iterations, showing
how errors decrease and come well below the desired
2 km/h error, nominal error without ILC, e0 (red), after
3 iterations, e3 (blue), and after 11 iterations, e11
(green). The ILC algorithm uses κ = 2.

6.4 FTP-75 Results using ILC

The NEDC cycle used in the results in Figures 9 to 8
is regular in shape and repetitive and it is therefore of
interest to apply it to other less smooth and repetitive
cycles. Therefore results from applying ILC with the
same tuning as above to the FTP-75 cycle are shown in
Figures 11 to 13. The full cycle is shown in Figure 11 and
an enlargement of the first section is shown in Figure 12.
Figure 13 shows that the initial error is 6.2 km/h (but it
must be noted that the PID has not been tuned and
optimized) as the focus in the paper is to study how the
ILC behaves. The ILC converges fairly quickly and comes
within 1 km/h.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

S
p

e
e

d
 [

k
m

/h
]

Time [s]

Reference

k=0

k=11

Fig. 11. Speed profile for the FTP-75 cycle with the initial
and final tracking.

50 100 150 200 250 300
0

20

40

60

80

100

S
p
e
e
d
 [
k
m

/h
]

Time [s]

Reference

k=0

k=11

50 100 150 200 250 300

−2

0

2

4

6

S
p
e
e
d
 e

rr
o
r

[k
m

/h
]

Time [s]

k=0

k=3

k=11

Fig. 12. Speed tracking and errors for the first 340 s
section of the FTP-75. The main remaining errors
occur around gearshifts.

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

Iteration

||
e

k
||

∞

 [
k
m

/h
]

Fig. 13. Maximum error as function of iteration number.
It starts with 6.2 km/h and is decreased down to under
1 km/h after 11 iterations.

Analyzing the residual after the learning one sees also for
the FTP-75 that the maximum errors are attained around
the gear changes where the clutch is engaged. In fact con-
tinuing the learning beyond 11, with the current tuning,
increases the error as the errors around gearchanges are
spread out due to the smooting filter.

Even though the FTP-75 is less regular than the NEDC
there is a possibility to introduce some learning during
the cycle. In Figure 11 it is seen that the intial 500 s are
repeated at the end of the cycle where learning can be
introduced and repeated.

6.5 Future work

In the future, extensions to cope with a decoupled driveline
are planned. As pointed out in Figure 7 and Figure 8 the
speed errors are decreasing with the iterations. There are,
however, some occasions where the error cannot decrease,
due to the physics of the driveline. In particular, when the
driveline is decoupled during a gear change, there is no
possibility to affect the vehicle speed during a short period
of time. The ILC algorithm used in the simulation example
is a standard first order ILC algorithm. Since the system
dynamics is time and state dependent it would be natural
to use an optimization based ILC algorithm (Gunnarsson
and Norrlöf, 2001) where time dependent weights can be
used in order to reduce the ILC gain in conditions where
the engine cannot affect the vehicle speed.

In addition, next step involves to implement algorithms
in an experimental platform and perform experiments in
both the vehicular systems engine lab as well as the vehic-
ular systems vehicle propulsion lab that has a complete
vehicle driveline with a driver robot, see Öberg et al.
(2013) for a description of the environment. The result
is simple to implement as the output from the learning
algorithm uk(t) is added directly to the desired speed
profile that is sent as a command to the driver robot that
controls the gas and brake pedals.

7. CONCLUSIONS

A successful demonstration of the improvement that ILC
can give for vehicle speed following in driving cycle sim-
ulations has been shown. The vehicle model used for
longitudinal motion is non-linear and contains the most
significant dynamics and limitations. The ILC algorithm
used is of standard first order type, with a low pass filtering
and the result is achieved with a minimum effort in tuning
of the parameters in both the driver controller and the ILC
algorithm. Faster convergence can be achieved using more
advanced ILC design schemes but the desired maximum
2 km/h speed error with the proposed approach is achieved
already after one iteration on the NEDC. The repetitive
pattern in the NEDC drive cycle was utilized to increase
the convergence speed of the ILC algorithm on a part of
the cycle. The same drive pattern is repeated four times
in the cycle and by utilizing this in the algorithm multiple
ILC iterations can be performed during the same drive
cycle.

REFERENCES

A. Bristow, D., Tharayil, M., and G. Alleyne, A. (2006).
A survey of iterative learning control - a learning-based
method for high-performance tracking control. IEEE
Control Systems Magazine, 96–114.

Alt, B. and Svaricek, F. (2010). Second-order sliding
modes control for in-vehicle pedal robots. In Vari-
able Structure Systems (VSS), 2010 11th International
Workshop on, 516–521. doi:10.1109/VSS.2010.5544545.

Arimoto, S., Kawamura, S., and Miyazaki, F. (1984).
Bettering operation of robots by learning. Journal of
Robotic Systems, 1(2), 123–140.

Chen, G., Zhang, W.g., and Zhang, X.n. (2013). Speed
tracking control of a vehicle robot driver system using

multiple sliding surface control schemes. International
Journal of Advanced Robotic Systems, 10.

Eriksson, L. (2001). Simulation of a vehicle in longitudinal
motion with clutch engagement and release. In 3rd IFAC
Workshop ”Advances in Automotive Control” Preprints.
Karlsruhe, Germany.

Eriksson, L., Lindell, T., Leufven, O., and Thomasson,
A. (2012). Scalable component-based modeling for
optimizing engines with supercharging, E-boost and
turbocompound concepts. SAE International Journal
of Engines, Paper 2012-01-0713, 5(2), 579–595.

Eriksson, L. and Nielsen, L. (2014). Modeling and Control
of Engines and Drivelines. John Wiley & Sons.

Fröberg, A. and Nielsen, L. (2008). Efficient drive cycle
simulation. IEEE Transactions on Vehicular Technol-
ogy, 57(2), 1442–1453.

Gunnarsson, S. and Norrlöf, M. (2001). On the design of
ilc algorithms using optimization. Automatica, 37(12),
2011–2016.

Guzzella, L. and Amstutz, A. (1999). Cae tools for
quasi-static modeling and optimization of hybrid pow-
ertrains. IEEE Transactions on Vehicular Technology,
48(6), 1762–1769.

Guzzella, L. and Sciarretta, A. (2007). Vehicle Propulsion
Systems – Introduction to Modeling and Optimization.
Springer Verlag, 2 edition.

Heywood, J.B. (1988). Internal Combustion Engine Fun-
damentals. McGraw-Hill series in mechanical engineer-
ing. McGraw-Hill.

Hofman, T., Leeuwen, D.V., and Steinbuch, M. (2011).
Analysis of modelling and simulation methodologies for
vehicular propulsion systems. International Journal of
Powertrains, 1(2), 117–136.

Holschuh, N., Winckler, J., Probst, H., and Glinski, K.v.
(1991). Performance of a mechanized driver for mea-
surements of automobile exhaust gas emissions and fuel
economy on chassis dynamometer. Technical report,
SAE Technical Paper 910037.

Levermore, T., Ordys, A., and Deng, J. (2014). A review
of driver modelling. In Control (CONTROL), 2014
UKACC International Conference on, 296–300. doi:
10.1109/CONTROL.2014.6915156.

Moore, K.L. (1993). Iterative Learning Control for De-
terministic Systems. Advances in Industrial Control.
Springer-Verlag, London.

Namik, H., Inamura, T., and Stol, K. (2006). Devel-
opment of a robotic driver for vehicle dynamometer
testing. In Proceedings of 2006 Australasian Conference
on Robotics and Automation. Auckland, New Zealand.

Norrlöf, M. and Gunnarsson, S. (2002). Experimental
comparison of some classical iterative learning control
algorithms. IEEE Transactions on Robotics and Au-
tomation, 18(4), 636–641.

Öberg, P., Nyberg, P., and Nielsen, L. (2013). A new chas-
sis dynamometer laboratory for vehicle research. SAE
International Journal of Passenger Cars - Electronic
and Electrical Systems, 6(1), 152–161.

Wipke, K.B., Cuddy, M.R., and Burch, S.D. (1999). Advi-
sor 2.1: A user-friendly advanced powertrain simulation
using a combined backward/forward approach. IEEE
Transactions on Vehicular Technology, 48(6), 1751–
1761.

