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Abstract: Fault tolerant systems are considered, where a nominal system is monitored by a
fault detection algorithm, and the nominal system is switched to a backup system in case of
a detected fault. Conventional fault detection is in the classical setting a trade-off between
detection probability and false alarm probability. For the considered fault tolerant system, a
system failure occurs either when the nominal system gets a fault that is not detected, or
when the fault detector signals an alarm and the backup system breaks down. This means that
the trade-off for threshold setting is different and depends on the overall conditions, and the
characterization and understanding of this trade-off is important. It is shown that the probability
of system failure can be expressed in a general form based on the probability of false alarm and
detection power, and based on this form the influence ratio is introduced. This ratio includes all
information about the supervised system and the backup system that is needed for the threshold
optimization problem. It is shown that the influence ratio has a geometrical interpretation as
the gradient of the receiver operating characteristics (ROC) curve at the optimal point, and
furthermore, it is the threshold for the optimal test quantity in important cases.
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1. INTRODUCTION

Safety is of major concern in many applications [Vil92],
and because of that fault tolerance can be introduced by
means of a back-up system. Then the key mechanism is
situation classification, [BKLS03], followed by a decision
to switch to the back-up system. When designing such
a system, it is very important from an application point
of view to understand the safety implications of design
choices like threshold selection [ÅBF+07]. Such safety
analysis is the topic of this paper, aiming at obtaining
useful and explicit characterizations.

Consider the design of a fault tolerant system in Figure 1.
A fault detector monitors the performance of a nominal
system. This nominal system can be a certain sensor, a
computer that generates a control signal, or (part of) a
plant. The idea is that it is possible to switch to a backup
system whenever appropriate. Here, the backup system is
used after an alarm is issued by the fault detector. The
risk after such a decision is that, before maintenance is
practically possible, the backup system breaks down after
which there is no remedy.

The navigation system in the Swedish fighter Gripen is
designed as in Figure 1. A standard inertial navigation
system, comprising an inertial measurement unit (IMU)
with support sensors, is the nominal system 1. The steering
system has its own set of IMU and support sensors,
from which an AHRS (adaptive heading reference system)
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Fig. 1. Fault tolerant system, where the nominal system
1 is switched to the backup system 2 after the fault
detector signals for an alarm.

provides an independent backup navigation system. The
detector is here called XMON (cross monitoring), and
it compares the two navigations systems using statistical
decision algorithms.

One first fundamental question is of course if the total sys-
tem becomes safer when a diagnosis function and a back-
up system are introduced, and if so, by how much? Another
question is how to formulate specification requirements on
the diagnosis algorithms so that overall system safety is as
good as possible [ÅBF+07]. This also naturally leads to the
question of how to select internal design parameters in the
diagnosis algorithms, like that of selection of a threshold
that balances the rates of missed detection and false alarm.



To get a handle on these questions it is necessary to have
a quantitative method, and this will also be a requirement
from government, e.g. when declaring air worthiness for
aircraft. It should be noted that the main concern here is
the interplay between safety and algorithms, and that this
should not be confused with the more studied problem on
safety of software. It is here assumed that the software is
a correct coding of the specified algorithm following the
procedures for implementation of safety critical systems.

The purpose of this paper is to analyze fault tolerant
systems, like the one illustrated in Figure 1, to obtain
as much useful insight as possible. This means that once
the problem is formulated, different paths of solution are
investigated, which gives alternative characterizations of
the optimal design. Section 2 introduces fault detection
and recapitulates the main performance measures. Sec-
tion 3 gives the basic formulation and expands the prob-
ability of system failure into an expression including false
alarm probability and detection probability. Based on that
expression, an influence factor is defined. It is shown in
Section 4 and 5 how the influence factor characterizes
overall system characteristics and the threshold selection.
Finally, the conclusions are drawn in Section 6.

2. FAULT DETECTION AND PERFORMANCE
MEASURES

In noisy environments, a typical fault detector consist of
a test statistic, also called a test quantity, and a corre-
sponding threshold. The test quantity, T (observations) is
a function of the observations and the detector alarms if
the test statistic exceeds the threshold h, i.e. if

T (observations) > h (1)

The idea is that the test statistic is close to zero in the
fault free case, but not in the faulty case [Ber85]. Thus
if T > h the fault detector alarms and a fault has been
detected.

Two commonly used performance measures for fault de-
tectors are the probabilities of false alarm

PFA(h) = P (T > h|no fault) (2)

and the detection power of a fault f of size f0

PD(h) = P (T > h|f = f0). (3)

The fault size f0 will be a representative size of the
faults causing failures. The dependence of the fault size
on the detection power will therefore not be explicit in the
continuation. Ideally, the false alarm probability should be
zero and the probability of detection one.

3. SYSTEM FAILURE AND FAULT DETECTION

The objective is to analyze fault tolerant systems that
include a fault detection system and the system in Figure 1
will be used to illustrate basic concepts. A discussion on
more general systems is found in Section 5. For the system
in Figure 1, the nominal system is automatically switched
to the backup system when the fault detector alarms. The
alarm may be correct or false and the question is how
to select the threshold of the fault detector to minimize
the probability of system failure (SF). Since the detection
system consists of a test quantity that alarms if it exceeds

a given threshold h, the studied optimization problem is
then

min
h

P (SF) (4)

The event SF is a logical consequence of other events. For
the example system in Figure 1 there are two mutually
exclusive cases where the system fails:

• Nominal system breaks down (¬NOM) without being
detected (¬ALARM).

• The fault detector alarms (ALARM) after which the
backup system breaks down (¬BACKUP).

This example will be used in the following to illustrate
properties that hold in a more general setting. The prob-
ability for system failure is thus

P (SF) = P (¬ALARM ∧ ¬NOM)+

P (ALARM ∧ ¬BACKUP) (5)

Note that all probabilities are conditioned on situation
dependent factors, such as operation time, operational
regulations, maintenance programs, etc.

Expanding the first term in (5) gives

P (¬ALARM ∧ ¬NOM) = P (¬ALARM|¬NOM)P (¬NOM)

= (1 − PD)P (¬NOM)

Assume that alarm and failure of the backup system are
independent events, then the second term in (5) is

P (ALARM ∧ ¬BACKUP) = P (ALARM)P (¬BACKUP)

where

P (ALARM) = P (ALARM|¬NOM)P (¬NOM)

+ P (ALARM|NOM)P (NOM)

= PDP (¬NOM) + PFAP (NOM)

Summing up, the probability for system failure in the
example is given by

P (SF ) = αPFA − βPD + γ (6)

where

α = P (NOM)P (¬BACKUP)

β = P (¬NOM)P (BACKUP)

γ = P (¬NOM)

One can note that P (SF ) is a linear function of the prob-
abilities PFA and PD in the example. This property also
holds in more general cases where the fault tolerant system
switches between different configurations depending on
alarm state. This is studied further in Section 5.

The expression (6) will be used in the following section to
analyze the optimization problem (4). The influence ratio
λ is defined as the ratio of the influence factors for the
probabilities PFA and PD in (6), i.e.

λ =
α

β
(7)

To solve the optimization problem (4), in order to find the
optimal threshold h, is equivalent to solving the problem

min
h

λPFA(h) − PD(h)

This means that the ratio λ includes all information about
the supervised system, the backup system, and the fault
tolerant control strategy that is needed for the threshold
optimization problem.



4. THRESHOLD SELECTION

This section will describe how the parameter λ appears
explicitly in two different contexts concerning optimal
threshold selection. The first is a geometric interpretation
of λ in a tool, called ROC curve, for evaluating perfor-
mance of a test. The second concerns determining the
value of an optimal threshold when an optimal test, a
likelihood ratio test, is used.

4.1 The ROC curve and the influence ratio λ

Given a test statistic T , the false alarm probability and
detection power depend on the threshold value h as can
be seen in (2) and (3). Threshold selection typically is a
compromise between obtaining low false alarm probability
and a high detection power. This compromise can be seen
in a so called receiver operating characteristics (ROC)
curve, where PFA(h) is plotted against PD(h). ROC curves
can also be used to compare different test statistics Ti. For
example, for a given false alarm probability the best test
statistic is the one which gives the highest power PD(h).
That is, the ROC curve is a convenient evaluation tool in
fault detection. The ROC curve for a test that will be used
in Section 4.2 is plotted in Figure 2.

Fig. 2. Example of an ROC curve.

Differentiating (6) with respect to h we get the following
condition for the optimal threshold

α
dPFA(h)

dh
= β

dPD(h)

dh
which gives that

dPD

dPFA
=

α

β
= λ

Thus, for the optimal threshold it holds that the gradient
of the ROC curve equals the influence ratio λ introduced
in (7). The constant λ is dependent only on the prior
probabilities of component failures.

4.2 Optimal threshold selection and the influence ratio λ

An optimal threshold is determined with respect to a given
test quantity. Here, a quite generic setup for the detection

problem is used and the specific test that is used is an
optimal detection test in the detection setup.

A simple but still quite generic model for the fault detec-
tion problem is to decide whether a computed residual is
zero mean or not. The two corresponding hypotheses are
given by

H0 : rk = ek, (8a)

H1 : rk = A + ek. (8b)

Here, rk, k = 1, . . . , N , represent different residuals over
time and/or space, A is a constant given by the fault
response of a representative fault, and ek is white Gaussian
noise with known variance. Many applications can be
recast into this model.

The Neyman-Pearson theorem [Leh91, Kay98] states that
an optimal test quantity is given by the likelihood ratio

T̄ (r1:N ) =
P (r1:N |H1)

P (r1:N |H0)
> h̄ (9)

where h̄ is the threshold. Utilizing the whiteness and
Gaussian property of the noise we get

T̄ (r1:N ) =

1
(2πσ2)N/2 e−

∑N

k=1
(rk−A)2

2σ2

1
(2πσ2)N/2 e−

∑N

k=1
(rk)2

2σ2

= e−
NA2

−

∑N

k=1
2Ark

2σ2 > h̄

Taking logarithm and simplifying give the test quantity

T (r1:N ) =
1

N

N
∑

k=1

rk >
σ2

NA
log h̄ +

A

2
≡ h (10)

which is distributed according to

T (r1:N ) ∈















N
(

0,
σ2

N

)

under H0

N
(

A,
σ2

N

)

under H1

Now the optimal test quantity for the detection setup (8)
has been determined. Next step is to determine the optimal
threshold, i.e. the threshold that minimizes P (SF ). For
this, let Q(x) denote the normal cumulative distribution
function

Q(x) =

∫ x

−∞

ϕ(x) dx

where

ϕ(x) =
1√
2π

e−x2/2

The probability for false alarm and detection are then

PFA = P (T (r1:N ) > h|H0) = 1 − Q

(

h
√

σ2/N

)

(11a)

PD = P (T (r1:N ) > h|H1) = 1 − Q

(

h − A
√

σ2/N

)

(11b)

With the expressions for PFA and PD it is straightforward
to derive the expression for the ROC curve by noting that



h =

√

σ2

N
Q−1(1 − PFA)

PD = 1 − Q

(

Q−1(1 − PFA) −
√

NA2

σ2

)

The last expression shows that PD is a function of the
desired PFA and SNR only.

The optimal threshold is derived by substituting (11) into
(6) and differentiating with respect to h. The condition for
an optimal h is then

βϕ

(

h − A
√

σ2/N

)

= αϕ

(

h
√

σ2/N

)

which is equivalent to

exp

(

− (h − A)2

2σ2/N

)/

exp

(

− h2

2σ2/N

)

= λ

Taking logarithm gives

2Ah − A2

2σ2/N
= log λ

and solving for h gives the solution

h =
A

2
+

σ2

NA
log λ

Comparing the solution with (10) gives that

h̄ = λ

thus, the optimal threshold is in fact equal to the influence
ratio λ. In the calculations, it is assumed that λ is positive.
In the example in Figure 1 this assumption is always
fulfilled. For more general systems, this might not always
be the case. See Section 5 for further discussions.

4.3 Discussion

In Section 3 the influence ratio λ was introduced. Sec-
tions 4.1 and 4.2 have shown that λ is of central impor-
tance concerning threshold selection.

Now, the example in Figure 1 will be used to further
discuss the results. Let p1 and p2 denote the probabilities
of failure of the nominal and backup system respectively.
Then, the probability of system failure, as a function of
detection threshold h, is

P (SF (h)) = (1−p1)p2PFA(h)−p1(1−p2)PD(h)+p1

(12)

Thus, the influence ratio is

λ =
(1 − p1)p2

(1 − p2)p1

For small probabilities pi we have the approximation

λ ≈ p2

p1

This means that, for any designed test quantity, at the
optimal point on the ROC curve it holds that

dPD

dPFA
≈ p2

p1

The geometric interpretation is shown in Figure 3 where
the system property gives the influence ratio and the de-
signed test the ROC curve. It can be seen in the figure that
a larger influence ratio, i.e. a relatively more unreliable
backup system, leads to that the diagnostic system should

prioritize false alarms compared to detection performance.
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Fig. 3. Geometrical interpretation of the influence ratio in
a ROC curve.

When considering a more specific test quantity, like in
Section 4.2, the influence ratio is equal to the optimal
threshold. For the example h̄ ≈ p2/p1 which means that
the detection test (9) becomes

P (r1:N |H1)

P (r1:N |H0)
>

p2

p1

The right hand side is a ratio between the probabilities
of failure for the backup and nominal systems. The left
hand side is, similarly, a ratio between probabilities of the
observations given the no fault mode and the faulty mode.

5. GENERAL SYSTEMS

Discussions in previous sections have mainly focused on
the system in Figure 1. This section will discuss how more
general systems can be handled and show that the results
apply directly. The analysis was based on the fact that we
had the following expression for the probability for system
failure:

P (SF ) = αPFA − βPD + γ

A quite general structure of a fault tolerant system is
that we switch between different system configurations
depending on alarm state. A strategy may for example be
to switch to a backup system or to reconfigure the control
strategy in case of an alarm.

First we will illustrate the results for a strategy for fault
tolerance with a representative example. Then we show
that the linearity property of (6) holds in a general setting.
Finally, we give some examples and a discussion on cases
where the fault detection system does not contribute to
fault tolerance.

5.1 Analysis of a fault tolerant system

In this section an example is studied to show how the
analysis can be extended to more complex systems. The
system relies on three sensors, s1, . . . s3 and is designed



such that it fails if sensor s1 and sensor s2 or s3 fails.
To improve system reliability, a diagnosis system is im-
plemented that supervises sensor s1. In case of a fault on
s1 is detected, the quantity that s1 measures is instead
estimated by an observer that uses sensor s2 as feedback.
A fault tree that describes the complete logic for when a
system failure occurs can be seen in Figure 4. Events ei

or

e2 e3or

bad prediction

and

or

e2
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A

A
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e1not
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Fig. 4. Fault tree for the example system.

represents failure of sensor si, event FA false alarm, event
D that the diagnosis system detects a fault, and event
“observer faulty” means that the observer delivers faulty
estimates even though there is no fault in the system. This
may be, for example, due to a poor process model. The
fault tree was derived using the approach in [ÅBF+07]. It
is assumed that all sensors fail independently.

To be able to make a probabilistic analysis of the system,
we introduce the probabilities

P (ei) = P (sensor si fails) = psi

The fault detection system is characterized by the param-
eters σ2 = 1, A = 1, and N = 5 from Section 4.2. The
probabilities used in the example are set to

pobs = 10−2, ps1 = 2 · 10−1, ps2 = 10−3, ps3 = 10−3

Now, computing the probability for system failure gives

P (SF ) = αPFA − βPD + γ

where

α = (1 − ps1)(pobsps3 + ps2(1 − pobsps3))

β = ps1ps3(1 − pobs)(1 − ps2)

γ = ps1(ps2 + ps3 − ps2ps3)

Thus, the linearity property of P (SF ) holds in this case
and it will be proven below that this also holds in a general
setting. In Figure 5, the probability P (SF ) plotted as a
function of the threshold h where the minimum is clearly
visible.

The function P (SF ) has limit values as h → ±∞ accord-
ing to

lim
h→∞

P (SF ) = γ, lim
h→−∞

P (SF ) = α − β + γ
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Fig. 5. The probability P (SF ) plotted as a function of the
threshold h.

These two limits correspond to values 0 and ∞ of the
threshold h̄ in (9).
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Fig. 6. ROC curve for the example system.

In this case, the test is described in Section 4.2 and the
optimal threshold is h̄ = α/β, i.e.

h̄ =
(1 − ps1)(pobsps3 + ps2(1 − pobsps3))

ps1ps3(1 − pobs)(1 − ps2)
= 4.1

The interpretation of λ = α/β in the ROC curve that was
described in Section 4.1 is illustrated for this example in
Figure 6. In this case the optimal point is characterized by

dPD

dPFA
= λ = 4.1

5.2 Linearity of the system failure probability

Now, we prove that the linearity of P (SF ) holds in a more
general setting than the case in Figure 1. Depending on the
alarm state, the system is configured differently as seen in
the previous example.

If we have no alarm and the original configuration is
used, then we use the notation C1 for the case where the
configuration is working properly and ¬C1 for the case that
it fails. The cases C2 and ¬C2 are defined analogously for
the backup configuration.



Theorem 1. Let S be the supervised event. Then the
system failure probability is given by

P (SF ) = αPFA − βPD + γ

where

α = P (¬C2 ∧ ¬S) − P (¬C1 ∧ S)

β = P (¬C1 ∧ ¬S) − P (¬C2 ∧ S)

γ = P (¬C1)

Proof. As before, the system failure even can be ex-
panded into mutually exclusive cases as:

P (SF ) = P (¬A ∧ ¬C1) + P (A ∧ ¬C2) =

P (¬A ∧ ¬C1 ∧ S) + P (¬A ∧ ¬C1 ∧ ¬S)+

P (A ∧ ¬C2 ∧ S) + P (A ∧ ¬C2 ∧ ¬S)

where A is the alarm event. Expansion of each of the four
terms gives

P (¬A ∧ ¬C1 ∧ S) = P (¬A|¬C1 ∧ S)P (¬C1 ∧ S) =

= P (¬A|S)P (¬C1 ∧ S) = (1 − PFA)P (¬C1 ∧ S)

P (¬A ∧ ¬C1 ∧ ¬S) = P (¬A|¬C1 ∧ ¬S)P (¬C1 ∧ ¬S) =

= P (¬A|¬S)P (¬C1 ∧ ¬S) = (1 − PD)P (¬C1 ∧ ¬S)

P (A ∧ ¬C2 ∧ S) = P (A|¬C2 ∧ S)P (¬C2 ∧ S) =

= P (A|S)P (¬C2 ∧ S) = PDP (¬C2 ∧ S)

P (A ∧ ¬C2 ∧ ¬S) = P (A|¬C2 ∧ ¬S)P (¬C2 ∧ ¬S) =

= P (A|¬S)P (¬C2 ∧ ¬S) = PFAP (¬C2 ∧ ¬S)

Collecting the expressions proves that P (SF ) is linear in
PFA and PD, i.e.

P (SF ) = αPFA − βPD + γ

where the coefficients α, β, and γ are given in the theorem.
�

5.3 Example of superfluous fault detectors

In the analysis in previous sections it was assumed that
both α and β were positive. This is not always the case
as will be illustrated with two examples followed by a
discussion and an interpretation.

First, consider the case shown in Figure 7. Let event ei

or
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A

A

A

e1
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e1 DFAnot

e1
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system failure

alarm

and

and

or

and

and and

or

Fig. 7. Example system.

correspond to the failure of a sensor si. Here, the first
configuration is that we have system failure if event e1

and e2 occur. In case of alarm, the system switches to a
mode where event e3 causes system failure. The detection

system alarms if event e1 is detected, i.e. the supervised
event S is e1. In this case it holds that

β = p1(p2 − p3)

which is negative if p2 < p3. This means that detecting
a fault, even if the alarm is correct, will increase the
probability of system failure. The reason is that even if
we know that sensor s1 has failed, it is still better not to
switch to sensor s3 since sensor s2 is more reliable. It is
therefore better to never alarm and the detection system
is superfluous.

As a second example, consider the same system as in
Figure 7 where the AND-gate indicated by (*) is replaced
by an OR-gate. Then we have

α = (1 − p1)(p3 − p2)

which is negative if p3 < p2. In such a case, a false alarm
has a positive influence on the system safety. The reason
for this is that even if we know that sensor s1 has not failed,
it is still better to switch to sensor s3, since it is more
reliable than sensor s2. Also here the detection system is
superfluous since it is always better to use sensor s3.

6. CONCLUSIONS

In this paper we have considered threshold selection in
fault tolerant systems. One of the fundamental questions
has been to analyze the influence of fault detection prop-
erties on the overall system safety. Two important fault
detection properties are probability of false alarm and
detection power and it has been shown that the probability
of system failure can be expressed in the form (6) for a
general setting. Based on this form, the influence ratio
was introduced in (7). This ratio includes all information
about the supervised system and the backup system that is
needed for the threshold optimization problem. It has been
shown that the influence ratio has a geometrical interpre-
tation as the gradient of the ROC curve at the optimal
point. Furthermore, it was shown that the influence ratio
is the threshold for the optimal test quantity given by the
likelihood ratio in the case studied in Section 4.2. Finally,
two examples were given that illustrate cases where the
fault detectors are superfluous.
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