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Abstract: The performance of a model based diagnosis system is affected by the selection of
consistency relation in a set of equations with analytical redundancy in a non-linear system. To
investigate aspects due to this, two diagnosis systems of a parallel hybrid truck are designed, and
both static and dynamic issues are considered. A simplified vehicle model is used to exemplify
how a unique expression for the residual generator can be found for one selection of consistency
relation, but not for others, using the same set of equations. A simulation study using the
entire vehicle model is made to investigate how the performance in the diagnosis system is
affected when dynamic equations are either differentiated or integrated. The diagnosis systems
are designed using structural analysis in combination with the algebraic expressions. One key
result is that it is not trivial to find a computational order by hand that fulfills the predefined
conditions on the computational sequence, and therefore systematic methods are valuable.
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1. INTRODUCTION

Diagnosis is used to detect and isolate faults in a system.
There are several approaches to be used, and one of the
more common is consistency based diagnosis (de Kleer et al.,
1992) based on precompiled tests, or residual generators,
as in Blanke et al. (2006). This work analyzes some
fundamental choices when designing residual generators for
dynamic systems. A basis for the analysis is a model of a
hybrid electric powertrain in a heavy duty truck.

When hybridizing a vehicle, new components are added
compared to a conventional vehicle, e.g. electric machines,
battery, and power electronics. It is important to monitor
these components due to safety issues since a fault in the
high voltage system is fatal. It is also important to monitor
the powertrain to avoid damaging components when a
fault in another component has occurred. It is especially
important to protect the battery that is expensive and may
degrade fast if e.g. large power flows are used in the battery.
High powers in the electrical components may be caused by
a fault in e.g. the power electronics or the electric machine.

1.1 Problem formulation

A diagnosis system can be based on one or several residual
generators, which are constructed from a set of model
equations with analytical redundancy. In this investigation
there is one more equation than unknowns in the set
of equations used to construct the residual generators,
and the equation not used in the just-determined part
is the consistency relation. The selection of consistency
relation affects the performance of the diagnosis system
when a non-linear system is monitored. How the selection of
the consistency relation affects the diagnosis performance
is investigated by designing two diagnosis systems for a
parallel hybrid truck. The investigation is done using a
simplified model to exemplify some key issues and the
entire vehicle model in a simulation study.

2. BACKGROUND

This section consists of two parts. First, when designing
the diagnosis systems described in Section 3.4, a well

known method called structural analysis is used. There
are several different approaches and notations in the field,
which are briefly described in Section 2.1. Secondly, a
dynamic equation can in a computational sequence either
be integrated or differentiated, and the notation used for
this is given in Section 2.2.

2.1 Structural analysis

Structural analysis is an efficient tool when designing a
model based diagnosis system. The analysis is based on a
bipartite graph, including information about the variables
that are included in each model equation. Based on this
graph a Dulmage-Mendelsohn decomposition (Dulmage
and Mendelsohn, 1958) gives information about what part
of the model that is overdetermined and thereby can be
monitored. There are several efficient tools available to
find subsets of the model with analytical redundancy, and
some of these are discussed and compared in Armengol
et al. (2009). Overdetermined sets are of special interest
since they are used to construct residuals, and are denoted
e.g. ARRs (Cassar and Staroswiecki, 1997), possible con-
flicts (Pulido and Gonzalez, 2004), and MSOs (Krysander
et al., 2008).

The first developed algorithms finding sets of equations with
analytical redundancy one (MSOs) do not consider how to
find the algebraic expressions for the residual generators.
Recent algorithms that consider invertibility and how
differential equations are solved in the residual generators
have been developed, see e.g. de Flaugergues et al. (2009).
These algorithms investigate the properties of the MSOs,
but do not provide the user information about which
consistency relations that are possible to use to achieve
wanted properties of the residual generators. Svärd and
Nyberg (2010) analyzes the characteristics of the system
for every possible consistency relation. This is done by first
using structural analysis to find the overdetermined sets of
equation, and the computational order of the unknowns is
found using Dulmage-Mendelsohn decomposition after a
consistency relation is selected. The algebraic expressions
are then used in the algorithm to analyze if predefined
constraints of the residual generator is fulfilled. Such
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Fig. 1. The modeled truck is a parallel hybrid with the
connection of the electrical and conventional parts of
the powertrain between the clutch and the gearbox.

constraints may e.g. be that differential equations only
can be solved by differentiating or integrating a signal,
and that a unique residual generator is to be found. These
properties may vary depending on the selection of the
consistency relation in a set of equations, and therefore all
possible residual generators are to be investigated. This
methodology is used in this paper.

2.2 Dynamic equations

The system used in this investigation is based on model
equations, g, including dynamics

g(x1, ẋ1, x2, z) = 0 (1)

where x1 is a vector of unknown dynamic variables, x2 is a
vector of unknown algebraic variables, and z is a vector of
known signals. The relation between a variable x1,i ∈ x1
and ẋ1,i is given in the dynamic equation

d

dt
x1,i = ẋ1,i (2)

that can be used in a computational sequence using
two different methods or computational causalities, here
causality is used for short (Frisk et al., 2010):

derivative causality is when x1,i is differentiated to

obtain ẋ1,i, i.e. ẋ1,i := d
dtx1,i

integral causality is when ẋ1,i is integrated to obtain
x1,i, i.e. x1,i :=

∫
ẋ1,i dt+C, where C is the initial value

of x1,i.
mixed causality is when a system can be solved using

both derivative and integral causality

3. SIMULATION ENVIRONMENT

The simulation environment consists of a vehicle model
and a diagnosis system. Parts of the environment will
be described below and the entire description is given
in Sundström (2011).

3.1 Vehicle model

The modeled vehicle is a long haulage electric parallel
hybrid truck configured as in Figure 1. The models of the
components in the vehicle are based on the model library
developed in the Center for Automotive Propulsion Sim-
ulation (CAPSim, 2009), and the QSS toolbox (Guzzella
and Amstutz, 1999). Modifications to these models are
carried out to model a truck instead of a passenger car,
and to include the possibility to induce faults in the models
as well as to add sensor noise. The models in the electric
components and the clutch are given below since these are
key components in the later described diagnosis systems.

Battery The battery is modeled using a Thévenin
equivalence circuit, i.e. a voltage source and an inner
resistance connected in series. The capacity and nominal
voltage are 9 kWh and 256 V, respectively.

Table 1. The intensity of the noise added to
the sensor signals in the model.

Sensors Noise power
Ib,sens 0.01
Iem,sens 0.01
Uem,sens 0.01
ωice,sens 0.01
ωgb,sens 0.01

Electric machine The electric machine is able to convert
electric power to mechanical power and vice verse. A
voltage, Uem, is applied on the component, resulting in
a torque on the outgoing shaft. The torque, Tem, is
proportional to the armature current, Iem

Iem =
Uem − kiωem

Rem
(3a)

Tem = Iemka (3b)

where ωem is the angular speed of the machine (Guzzella
and Sciarretta, 2007). The model is parametrized as a
33 kW DC machine with constant magnetic flux. The
parameter values of the resistance, Rem, torque constant,
ka, and speed constant, ki, set to 0.044 Ω, 0.50 Nm/A, and
0.51 Vs/rad, respectively. In an ideal machine, ki and ka
are equal, and are defined by Kφ, where K is a machine
constant that depends on the design parameters of the
machine, and φ is the magnetic flux produced by the stator.
This model can be used to represent a permanent magnet
synchronous machine, that is a common machine type in
HEVs due to its high efficiency (Chau et al., 2008).

Power electronics The model of the power electronics is
assumed to be an ideal component

Pb = Pem ⇐⇒ IbUb = IemUem (4)
where Pb and Pem are the electrical power from the battery
and motor, and Ub and Ib the battery voltage and current.

Clutch There is a model of the clutch to handle starts and
gear shifts. When the clutch is fully engaged or disengaged,
the clutch is modeled as an ideal component, but the model
is more complex when there is slip in the clutch.

3.2 Sensors

The sensors available for the diagnosis system used in the
simulation study are given in Table 1. The measurement
signal, y, is given by the noise free signal, y∗ added with
noise, ν̃

y = y∗ + ν̃ (5)
To simulate measurement noise a Band-Limited White
Noise block in Simulink is used with the noise powers
according to Table 1.

3.3 Faults

To model that the battery, power electronics, or the electric
machine may break down, two parameter values and two
voltages in these models have the possibility to be modified.
Note that these faults are only examples of how a fault in
these components can be represented in the model. The
following modifications of the signals are introduced to
model the faults where the nominal signals are denoted by
the superscript nom:

fem,ka : ka = (1 + fem,ka) knoma

fem,R : R = (1 + fem,R)Rnom
em

fpe : Uem = (1 + fpe)U
nom
em

fb,sc : Ub = (1 + fb,sc)U
nom
b

where fb,sc models that all cells in the battery are not
used due to an internal short circuit, fpe is a fault in the



Table 2. Values of the faults induced in the
model. The voltage Uem is between 0− 200 V.

Faults Value
fem,ki -0.5
fem,R -0.5

fpe -0.5
fb,sc -0.5

fem,U,sens 20 V

power electronics, and fem,ka and fem,R are two faults in
the electric machine.

The voltage sensor in the electric machine is monitored in
the diagnosis systems. A fault in the sensor is modeled as
an offset fault

Uem,sens = Uem + fem,U,sens (6)

When a fault is induced in the model, the value of the fault
is given in Table 2.

3.4 Diagnosis systems

The diagnosis systems this investigation is based on are
described in Sundström (2011), where they are denoted
Diagnosis systems 2 and 3. Diagnosis system 2 consists of
four tests and theoretically achieves full isolability. This
diagnosis systems is compared with a modified diagnosis
system in a simulation study in Section 5, while one test in
System 3 is the basis for the study about algebraic loops in
Section 4. This test consists of 35 of the overall 46 model
equations of the vehicle, and the residual generator has two
solutions due to a nonlinear algebraic loop. To investigate
why no unique solution is found for this residual generator,
a simplified example based on seven equations is used.

Below two key issues are briefly described; how the
dynamics in the residual generators are handled, and that
the model used in the diagnosis systems are not valid in
all operating modes.

Dynamic residual generators Two of the four tests in
the Diagnosis system 2, that is used in the simulation
study, include dynamics since the connection between the
resulting torque on the wheels and the acceleration of the
vehicle is used in the corresponding residual generators.
The residual generators are presented in Sundström (2011)
and are expressed in the form

r̃ = aω̇gb + b (7a)

where ωgb is the outgoing angular velocity from the gearbox,
a is the sum of the effective inertia and mass of the vehicle,
and b is the net torque acting on the wheels. By filtering r̃
in (7a) the residual r is obtained

r =
α

p+ α
r̃ =

α

p+ α
(aω̇gb + b) (7b)

Now, it is possible to compute r in (7b), without calcu-
lating a differentiated signal using a transformation. The
conditions for this to be possible is that a is a constant and
b a function of known signals, and the residual is filtered
as in (7b) (Frisk and Nyberg, 2001). Using the state

Γ = r − αaωgb (7c)

we obtain that the residual generator in (7b) can be
expressed as

Γ̇ = −αΓ− α2aωgb + αb (7d)

r = Γ + αaωgb (7e)

Model not valid The model of the clutch used in the
diagnosis systems is only valid when the clutch is fully
released. This results in that when the clutch is disengaged
or there is slip in the clutch, corresponding test quantities

Table 3. Permuted structural model of the
system given in (8) except e1 that is chosen
to the consistency relation. Equations e2 and
e3 form an algebraic loop for Iem and Uem.

ω Ub ω̇ Ib Uem Iem
e7 X
e6 X
e5 X X
e4 X X
e3 X X X X
e2 X X X

are not updated and no faults are to be detected. There
are also demands on that a gear has to be selected and the
voltage to the electric machine is to be above a threshold
for the test quantities to be updated.

4. ALGEBRAIC LOOPS

Algebraic loops, as well as that the unknown variables
are not invertible, may occur in the just-determined parts
of the MSOs. There are several numerical and analytical
solving methods available to solve algebraic loops. Linear
algebraic loops are e.g. easily solved, but other algebraic
loops may demand a large computational effort to solve
and a solution is not always obtained. Maple is here used
to investigate if it is possible to analytically find a unique
expression for the residual generator.

The possibility to find a unique residual generator given
a set of equations in an MSO varies with the chosen
consistency relation. This is exemplified with the reduced
set of model equations in the MSO used in one test in
Diagnosis system 3, as indicated in Section 3.4

e1 : Te + kaIem︸ ︷︷ ︸
Tem

−Tl(ω)− Jtotω̇ = 0

e2 :
Uem − ωki

Rem
− Iem = 0

e3 : IbUb − IemUem = 0

e4 : Uoc − Ub −RbIb = 0 (8)

e5 :
d

dt
ω − ω̇ = 0

e6 : Ub − y1 = 0
e7 : ω − y2 = 0

where ω is an angular speed, Jtot the inertia of the vehicle,
Uoc and Rb the open source voltage and the inner resistance
in the battery, Tl the lumped torque due to losses in the
vehicle, Te the torque from the engine, and y1 and y2 are
sensor signals. The torques Te and Tl are in this example
assumed to be known.

If e1 is selected as the consistency relation, the permuted
structural model of the just-determined part, i.e. {e2− e7},
is given in Table 3. The corresponding computational order
would be:

C = ({ω}, {e7}), ({Ub}, {e6}), ({ω̇}, {e5}),
({Ib}, {e4}), ({Iem, Uem}, {e2, e3}) (9)

indicating that ω is computed from e7, Ub is computed from
e6 and so forth. The pair ({Iem, Uem}, {e2, e3}) indicates
that there is an algebraic loop, that also can be seen in
Table 3. This loop has the non unique solution

Iem = − ωki
2Rem

±

√(
ωki

2Rem

)2

+
IbUb

Rem
(10)

If one of e2 or e3 is used as consistency relation instead of
e1, there is no algebraic loop in the just-determined part.
Since the variables in the substitution chain are invertible,



a unique residual generator can therefore be expressed. The
computational order of the unknown variables if e.g. e2 is
used as the consistency relation will be

C = ({ω}, {e7}), ({Ub}, {e6}), ({ω̇}, {e5}),
({Ib}, {e4}), ({Iem}, {e1}), ({Uem}, {e3}) (11)

Note that since consistency based diagnosis is used, it is
possible to construct a test that is based on a residual
generator with several solutions. As long as at least one
of the possible residuals is close to zero, the test will not
react

|r(tk)| = min{|r1(tk)|, |r2(tk)|, ..., |ri(tk)|}, i ≥ 2

However, the computational complexity of the system
increases if more than one residual are to be evaluated
in a test.

4.1 Series wound electric machine

In the example above the magnetic field, φ, created by the
stator or armature is assumed to be constant. This is the
case in permanent magnet synchronous machines, that is
the machine type mainly used for vehicle propulsion in
hybrid electric vehicles. But if a series wound machine is
used instead, that e.g. is used in starter motors (Hambley,
2005), e1 and e2 in (8) are modified to

e1 : Te + kaI
2
em︸ ︷︷ ︸

Tem

−Tl(ω)− Jtotω̇ = 0 (12a)

e2 :
Uem

Rem + ωki
− Iem = 0 (12b)

due to that φ increases linearly with the current in the
rotor and stator according to

φ = kIem (13)

The same variables are included in each equation in (8)
and (12), and therefore the structural models are the same
for the two systems. It is however not possible to chose a
consistency relation that results in a unique expression for
the residual generator in the later system. This is due to
that the algebraic loop in e2 and e3 adds the constraint
that one of these equations needs to be used as consistency
relation. The current Iem is then to be calculated using
e1, but since Iem is not longer invertible in e1, it is not
possible to find a unique residual generator.

5. INTEGRAL AND DERIVATIVE CAUSALITY

In this section differential equations are considered. It is not
possible to state that one of integral, derivative, or mixed
causality always performs best and therefore is preferable.
In general it is not preferable to differentiate a noisy signal,
and not to integrate a signal in a diagnosis system where an
offset occurs since this will lead to drift in the integrator.

In this investigation two diagnosis systems are compared,
one based on mixed causality and one on integral causality.
The basis for these diagnosis systems is Diagnosis system 2
that briefly is described in Section 3.4. Test 3 and Test 4
used in the system include dynamics and are therefore
handled here. In the original system, mixed causality is
used in these two tests. The mass of the fuel consumed,
mf , is solved by using integral causality

mf =

∫
ṁfdt (14)

and a similar equation to e1 in (8) is used as consistency
relation, where wgb is differentiated to compute ω̇gb, leading
to that derivative causality is used. For the computation
the reformulation in (7) is used.

5.1 MCDS and ICDS

The diagnosis system described above where two of the tests
are based on mixed causality, is denoted mixed causality
diagnosis system, or MCDS for short. The MCDS is to be
compared with a system where the following constraints
are to be fulfilled:

• integral causality is used
• the set of equations in the just-determined parts of

the MSOs are globally invertible

This diagnosis system is denoted integral causality
diagnosis system, or ICDS for short.

5.2 Methodology to construct ICDS

The algorithm used to find the ICDS is based on the
algorithm described in Svärd and Nyberg (2010) and briefly
recalled in Section 2.1. In the original algorithm only
the just-determined part of the MSO is considered, i.e.
the consistency relations is not included in the analysis
determining the properties of the residual generators. When
designing ICDS also the consistency relation is included
in the analysis. This only affects the constraint on how
differential equations are to be solved, since all unknowns
are calculated in the just-determined part and therefore
invertibility is not an issue in the consistency relation. The
constraint in Section 5.1 regarding differential equations
states that derivative causality is not to be used in ICDS.
One of the constraints on the analyzed set of equations is
that, without loss of generality, a differentiated variable may
only occur once in the system. Therefore, if a differentiated
signal is included in the consistency relation, the output
from the original algorithm might be that only integrating
causality is used. But if there is a differentiated variable
in the consistency relation, a signal must be differentiated
since it is only known in its undifferentiated form from
the just-determined set of equations. Therefore derivative
causality is used in the residual generator in such a case.

6. RESULTS AND DISCUSSION

One result from this study is the outcome from the
analysis of the diagnosis systems regarding algebraic loops
and different ways of computing differential equations.
The other main result is a simulation study comparing
the performance in the mixed causality diagnosis system
and the integral causality diagnosis system defined in
Section 5.1.

6.1 Selection of consistency relations used in ICDS

Given the five sensors available in the diagnosis systems
used in the study about how differential equations are
solved, 79 MSOs are found. Each equation in an overdeter-
mined part can potentially be selected as the consistency
relation used to construct the residual generator for that
set of equations. For all MSOs there are 2162 residuals
generators to be investigated. In Figure 2 the number of
model equations in each MSO is shown, but also how many
equations that can be selected as consistency relation to
fulfill the requirements in ICDS, i.e. integral causality and
global invertibility. In MSOs 15-79 there is only a small
fraction of the equations that can be used as consistency
relations in the ICDS in order to fulfill these constraints.
These MSOs include an equation similar to e1 in (8), but
computes the torques and angular speeds in different ways.
There are five MSOs that do not have any consistency
relation that fulfills the requirements.

The four tests used in the diagnosis system based on
mixed causality, are included in the set of 74 MSOs that
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Fig. 2. The gray bars indicate the number of equations
in each MSO in the diagnosis systems, and the black
bars indicate the number of equations that can be
selected to consistency relations in each MSO to fulfill
the constraints in the ICDS. The number of MSOs and
equations in MCDS and ICDS are the same, since the
same vehicle model and sensor configuration is used.

fulfills the constraints for ICDS given in Section 5, for at
least one selection of consistency relation. The residual
generators used in Test 1 and Test 2 in the MCDS fulfills
the constraints for ICDS using the selected consistency
relation, and are therefore used unchanged in the new
diagnosis system. In the MSOs used in Test 3 and Test 4
in MCDS, there are two equations that can be selected as
the consistency relation in ICDS. These are

ωgb = ωgb,sens (15)

ωw =
ωgb

uf
(16)

for both tests where ωw and ωgb are the angular speeds at
the wheels and the outgoing shaft of the gearbox, and uf
is the gear ratio in the final gear. When using one of these
consistency relations, ω̇w is calculated using corresponding
equation to e1 in 8. The angular velocity ωw is calculated
by integrating this signal

ωw =

∫
ω̇wdt (17)

to be used in the consistency relation. In the two residual
generators, (15) is used as consistency relation and ωw

in (17) is multiplied with the final gear to calculate ωgb.

The algebraic loop for Iem and Uem considered in Section 4
is not an issue in these two residual generators, since Uem is
known without using any of e2 and e3 in (8). The required
voltage from the power electronics is known in Test 3, and
the sensor measuring Uem is available in Test 4.

6.2 Simulation study

To evaluate how the performance of the diagnosis systems
is affected when differential equations are computed in
different ways, simulations of a long haulage truck are
carried out. The faults are induced one by one in the
simulations, and the driving cycle used is FTP75. Since
Test 1 and Test 2 do not differ in the two diagnosis systems,
the simulation results for these tests are not presented.

The test quantities, T , are based the CUSUM algo-
rithm (Page, 1954) given by

T (tk) = max {0, T (tk−1) + |r(tk)| − ν} (18)
Two parameters are used in the algorithm; ν that is an
offset parameter that corresponds to the model uncertainty
and noise in the residuals, and a threshold J . Normalized
test quantities, Tnorm, are calculated using

Tnorm =
T

J
(19)
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Fig. 3. The normalized test quantities in Tests 3 in the
two diagnosis systems based on mixed and integral
causality when the system is fault free. The tests react
if the signal is above one. No false detection occurs in
the diagnosis systems and the test quantities are well
below the thresholds. Similar results are achieved in
Tests 4.

and the test alarms if Tnorm > 1. The parameters ν and
J in CUSUM are designed to achieve approximately the
same maximum value of Tnorm in the tests in the fault free
case. There are several combinations of ν and J to achieve
this; a smaller value of ν requires a larger value of J and
vice verse.

Initialization of states The state in the transformation
used in MCDS is reinitialized when the model used in the
diagnosis system is getting valid as described in Section 3.4.
The state ww calculated from (17) is reinitialized in the
residual generators used in ICDS. This is done by using a
filtered sensor signal scaled with the final gear

ωw(t0) =
1

τws+ 1

ωgb,sens(t0)

uf
(20)

where t0 is the time when the residual generator is getting
valid, and uf is the final gear.

In the initialization of the states in both MCDS and ICDS,
it is assumed that the monitored system is fault free and
the residual is zero. If the equations used in the expression
for the signal to be integrated are inconsistent with the
monitored system, the integrated signal will drift from
the true value. The test quantity is therefore not updated
during the first 10 seconds after a test has been valid to
be able to detect the fault, and not use a residual that is
close to zero even though the estimation of the signal to
be integrated is inconsistent.

Simulation results In Figure 3, the normalized test
quantities, Tnorm from the simulations in the fault free
case for both diagnosis systems are presented. All test
quantities are well below one, and no false alarm occurs in
the simulations.

The normalized test quantities for Tests 4 (both MCDS
and ICDS) when fem,U,sens occurs are given in Figure 4.
Tests 3 do not react on this fault, as expected, and the
simulation results for these tests are not included. Figure 5
shows Tnorm for Tests 3 when the resistance in the electric
machine is modified.

All five fault modes are fully isolated in the ICDS, and
all except the fault in the voltage sensor in the electric
machine in the MCDS. The reason that fem,U,sens is not
isolated from a fault in the power electronics, is that Test 4
does not react as expected in the MCDS on this fault (see
Figure 4). The normalized test quantity when there is a
fault in the voltage sensor is almost one, and a different
selection of parameters in the CUSUM algorithm possibly
achieves full isolability for the MCDS.
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induced in the voltage sensor in the electric machine
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Fig. 5. The normalized test quantities when fem,R is in-
duced in the model after 400 seconds. Both diagnosis
systems react about 350 seconds after the fault is
induced in the simulation model. The magnitude of
the test quantity in the ICDS is almost twice that of
the MCDS at the end of the simulation.

7. CONCLUSION

The selection of consistency relation affects the performance
of the diagnosis system. Predefined constraints are set up
when selecting MSOs and consistency relations to be used,
but it is not obvious how to select these constraints to
achieve as good performance as possible in the diagnosis
system.

It is shown, by using a realistic example, that algebraic
loops in residual generators can be avoided for certain
selections of consistency relations, but not for others. When
the electric machine type is changed from permanent
magnet to series wound, it was no longer possible to find a
unique residual generator. This is due to that all unknowns
are no longer globally invertible if the algebraic loop is to
be avoided.

By including the consistency relation in the analysis of the
properties of the residual generators, it is possible to avoid
the use of the transformation of the residual generators
that is used in MCDS. In the two tests in the diagnosis
system based on integral causality used in the simulation
study, there are only two of approximately 30 equations
that can be selected to consistency relations to fulfill the
stated constraints. It can be stated that it is not trivial
to find consistency relations in large systems that fulfills
predefined constraints on the diagnosis system. Systematic
methods are therefore valuable.

In this investigation, the parameters used in the model are
identical to those used in the vehicle model, and therefore it
is reasonable to assume that integral causality is preferable,
since sensor noise is included in the models of the sensors.
The simulation study indicates that this is the case. When
a fault is induced in the vehicle model, the test quantities

generally react better in the system based on integral
causality compared to the system based on mixed causality.
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