Hide menu

Abstract



Methods for Cylinder Pressure Based Compression Ratio Estimation


Three methods for compression ratio estimation based on cylinder pressure traces are developed and evaluated for both motored and fired cycles. Two methods rely upon models of polytropic compression and expansion for the cylinder pressure. It is shown that they give a good estimate of the compression ratio, although the estimates are biased. A method based on a variable projection algorithm with a logarithmic norm of the cylinder pressure, which uses interpolation of polytropic models of the expansion and compression asymptotes, is recommended when computational time is an important issue. For motored cycles it yields the smallest bias and confidence intervals for these two methods. For firing cycles a user-specified weighting factor is needed during the combustion phase, which pays off in a smaller estimation bias but also a higher variance. The third method includes heat transfer, crevice effects, and a commonly used heat release model for firing cycles. This method estimates the compression ratio more accurately in terms of bias and variance. The method is more computationally demanding and thus recommended when estimation accuracy is the most important property. In order to estimate the compression ratio as accurately as possible, motored cycles with as high initial pressure as possible should be used.

Marcus Klein and Lars Eriksson

SAE Technical paper series SP-2003, 2006

External PDFShow BibTeX entry

Page responsible: webmaster
Last updated: 2021-11-10