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Abstract
Thermochemical systems appear in applications as widespread as in combustion
engines, in industrial chemical plants and inside biological cells. Science in all these
areas is going towards a more model based thinking, and it is therefore important
to develop good methods for system identification, especially fit for these kind of
systems. The presented systems are described as nonlinear differential equations,
and the common feature of the models is the presence of a boundary between an
oscillating and a non-oscillating region, i.e. the presence of a bifurcation.

If it is known that a certain input signal brings the system to a bifurcation
manifold, and this is the case for many thermochemical systems, this knowledge
can be included as an extra constraint in the parameter estimation. Except for
special cases, however, this constraint can not be obtained analytically. For the
general case a reformulation, adding variables and equally many constraints, have
been done. This formulation allows for efficient use of standard techniques from
constrained optimization theory. For systems with large state spaces the parameter
vector describing the initial state becomes big (sometimes > 1000), and special
treatment is required. New theory for such treatment have been shown, and the
results are valid for systems operating close to a Hopf bifurcation. Through a
combined center manifold and normal form reduction, the initial state is described
in minimal degrees of freedom. Experiment designs are presented that force the
minimal degrees of freedom two be 2 or 3, independently of the dimension of the
state space. The initial state is determined by solving a sub-problem for each step in
the ordinary estimation process. For systems starting in stationary oscillations the
normal form reduction reveals the special structure of this sub-problem. Therefore
it can be solved in a straight-forward manner, that does not have the problem of
local minima, and that does not require any integration of the differential equations.
It is also shown how the knowledge, coming from the presence of a bifurcation, can
be used for model validation. The validation is formulated as a test quantity, and
it has the benefit that it can work also with uncalibrated sensors, i.e. with sensors
whose exact relation to the state variables is not known.

Two new models are presented. The first is a multi-zonal model for cylinder
pressure, temperature and ionization currents. It is a physically based model with
the main objectives of understanding the correlation between the ionization curve
and the pressure peak location. It is shown that heat transfer has a significant effect
on this relation. It is further shown that the combination of a geometrically based
heat transfer model and a dynamical NO-model predicts the correct relationship
between the pressure and ionization peak location within one crank angel degree.
The second developed model is for the mitogenic response to insulin in fat cells.
It is the first developed model for this specific pathway and the model has been
compared and estimated to experimental data. Finally, a 16-dimensional model for
activated neutrophils has been used to generate virtual data, on which the presented
methods have been applied, and on which the performance of the methods were
demonstrated.
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iv Abstract

Finally I would like to come back to my view of why we are working at all, with
anything, and my view of how it most beneficially can be done. I will do it by
restating a part of the wonderful poem ’the Prophet’ by Kahlil Gibran:
You have been told also life is darkness, and in your weariness you echo what was
said by the weary.
And I say that life is indeed darkness save when there is urge.
And all urge is blind save when there is knowledge.
And all knowledge is vain save when there is work;
And all work is empty save when there is love.
And when you work with love you bind yourself to yourself, and to one another,
and to The All
This thesis is a part of my work.

Linköping, May 2004

Gunnar Cedersund



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline and contributions . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical Background 9
2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 System identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Some simple one-dimensional bifurcations . . . . . . . . . . . 15
2.3.2 The Hopf bifurcation . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 The Brusselator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Model Simplification around a Hopf Bifurcation 23
3.1 Center manifold and normal form theory . . . . . . . . . . . . . . . . 23
3.2 A combined transformation . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 For a general bifurcation . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Derivation for the Hopf bifurcation . . . . . . . . . . . . . . . 33

3.3 Extensions of existing theory . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Extension to fifth order . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Extensions to more than one parameter . . . . . . . . . . . . 38

3.4 Transformation of the Brusselator . . . . . . . . . . . . . . . . . . . 39
3.5 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



vi Contents

4 Improved Parameter Estimation 51
4.1 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Starting the estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Reformulating the problem . . . . . . . . . . . . . . . . . . . 53
4.2.2 Finding a feasible point . . . . . . . . . . . . . . . . . . . . . 54

4.3 The first optimization method - by elimination . . . . . . . . . . . . 56
4.3.1 General description . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.3 Properties of the algorithm . . . . . . . . . . . . . . . . . . . 59

4.4 The second optimization method - a reduced gradient method . . . . 60
4.4.1 General description . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.3 Convergence properties . . . . . . . . . . . . . . . . . . . . . 62

4.5 Identification of the Brusselator . . . . . . . . . . . . . . . . . . . . . 62
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Experimental Designs for Estimating the Initial Value Parameters 69
5.1 Simplifications by starting in a steady state . . . . . . . . . . . . . . 70
5.2 Simplifications close to a Hopf bifurcation . . . . . . . . . . . . . . . 72
5.3 The complete algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Properties of the algorithm . . . . . . . . . . . . . . . . . . . 76
5.4 Quenching data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4.1 What is quenching data? . . . . . . . . . . . . . . . . . . . . 77
5.5 Simplifying the initial value sub-problem . . . . . . . . . . . . . . . . 78
5.6 Finding the initial values in the Brusselator . . . . . . . . . . . . . . 82
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Qualitative Model Validation 87
6.1 Detecting erroneous estimations . . . . . . . . . . . . . . . . . . . . . 88
6.2 The test quantity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.1 The idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2.2 Constant inputs . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2.3 Time-varying inputs . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Validation of the Brusselator . . . . . . . . . . . . . . . . . . . . . . 97
6.3.1 The two problems . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.2 Applying the QTQ algorithm . . . . . . . . . . . . . . . . . . 98

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 A Multi-zonal Model for Pressure, Temperature and Ionization
Currents 101
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1.1 Basic engine concepts . . . . . . . . . . . . . . . . . . . . . . 102
7.1.2 The importance of predicting the Pressure Peak Location . . 103
7.1.3 Using the spark plug as an ionization sensor . . . . . . . . . . 105

7.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



Contents vii

7.2.1 The multi-zonal combustion model . . . . . . . . . . . . . . . 108
7.2.2 Addition of geometry and heat transfer . . . . . . . . . . . . 110
7.2.3 The Mass-flow . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.4 The Saitzkoff-Reinmann model . . . . . . . . . . . . . . . . . 114
7.2.5 Dynamical NO concentration . . . . . . . . . . . . . . . . . . 115

7.3 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.3.1 The experimental data . . . . . . . . . . . . . . . . . . . . . . 117
7.3.2 Validation of the model without heat transfer . . . . . . . . . 118
7.3.3 Addition of heat transfer . . . . . . . . . . . . . . . . . . . . 119
7.3.4 Model sensitivity analysis . . . . . . . . . . . . . . . . . . . . 121
7.3.5 Addition of Dynamical NO-model . . . . . . . . . . . . . . . 128

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 A Model for Insulin Signalling to Map-kinase Control in Fat Cells131
8.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.1.1 The mitogenic response to insulin in fat cells . . . . . . . . . 132
8.1.2 Chemical kinetics revisited . . . . . . . . . . . . . . . . . . . 133

8.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.2.1 The first step, including insulin, IR and IRS . . . . . . . . . . 134
8.2.2 The second step, including Sos and Grb2 . . . . . . . . . . . 135
8.2.3 The third step, including GDP and Ras . . . . . . . . . . . . 137
8.2.4 The fourth step, the MAPK-cascade . . . . . . . . . . . . . . 139

8.3 In silico experiments with the model . . . . . . . . . . . . . . . . . . 141
8.3.1 Time-course analysis . . . . . . . . . . . . . . . . . . . . . . . 141
8.3.2 Dose-response curves . . . . . . . . . . . . . . . . . . . . . . . 141
8.3.3 Search for experimentally obtainable oscillations . . . . . . . 143

8.4 Experimental verification . . . . . . . . . . . . . . . . . . . . . . . . 146
8.5 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9 Utilizing the Newly Developed Techniques on a Full-scale Model153
9.1 The spatio-dynamics of neutrophils . . . . . . . . . . . . . . . . . . . 153
9.2 The Olsen model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.2.1 A bifurcation analysis . . . . . . . . . . . . . . . . . . . . . . 156
9.3 Compartmentalization . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.3.1 The compartmentalized models . . . . . . . . . . . . . . . . . 160
9.3.2 Simulated waves . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.4 Model simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
9.5 Forming a qualitative test quantity . . . . . . . . . . . . . . . . . . . 166
9.6 A parameter estimation example with simulated data . . . . . . . . 168
9.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10 Summary and Conclusions 173



viii Contents

A Sufficient Information for Regeneration of all Plots 177
A.1 From Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
A.2 From Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.3 From Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A.4 From Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
A.5 From Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.5.1 Creation of a new zone . . . . . . . . . . . . . . . . . . . . . . 180
A.6 From Chapter 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.7 From Chapter 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

References 187



1
Introduction

1.1 Background

Both the thrill and the difficulty with studying thermochemical systems, is that it
requires knowledge from so many diverse disciplines. Thermochemical systems also
appear in a wide range of applications, and this makes the study even more inter-
esting. This thesis is devoted to system identification of thermochemical systems,
with the main focus on model construction and parameter estimation. Here in the
beginning, to introduce the whole subject, a few examples of different thermochem-
ical systems are given. When reading the examples it will become clear that they
all share a certain type of nonlinearity. The feature they all share is the possibility
for a transition between a stable stationary state and a stable oscillating state, i.e.
the presence of a dynamic instability. The transition between the states will be
caused by variations in choice of operating point, change in outer conditions or by
the choice of control algorithm. This type of nonlinearity is commonly occurring
in thermochemical systems, and it is the main feature pursued in this thesis.

Engine knock

The chemical energy contained in fuel injected in the cylinder of a combustion en-
gine is transformed into heat and mechanical work during the combustion phase.
This process usually takes less than 0.01s, and it is a highly non-equilibrium phe-
nomenon (Heywood, 1988). There is, however, a limit when the process becomes
too non-equilibrium, and this is when there is no longer a continuous spreading of
a laminar flame, but an almost instantaneous auto-ignition of all unburned fuel-air

1



2 Chapter 1 Introduction

Figure 1.1 Plot showing the oscillations in the intra-cylinder pressure dur-
ing engine knock. It is the small oscillations superposed on the
slow variation that are due to the knock. If the knock oscilla-
tions become too big, they are highly dangerous to the engine.
However, an engine usually increases in efficiency as one ap-
proaches the knock conditions, and therefore knock causes a
trade-off between engine safety and efficiency. In series pro-
duced engines today a cylinder pressure sensor is not available,
and that is another reason to develop good models for the cylin-
der pressure that are efficient at these critical points.

mixture (Heywood, 1988). This phenomenon takes place when the pressure and
temperature inside the cylinder become too high, and auto-ignition of this kind
might lead to acoustic waves, travelling inside the cylinder. These pressure waves
can make a little knocking sound and are therefore called engine knock. They can
be seen on a pressure plot (see Figure 1.1), and if they oscillations are big they can
be severely damaging to the engine. This danger is weighted against engine effi-
ciency and performance, since and for most operating situations the engine has the
highest performance just at the onset of these instabilities. Therefore it is of high
importance to understand these instabilities, and to develop an understanding for
how they can best be treated. For combustion engines in production today there
are no pressure sensors showing the oscillations directly (like in Figure 1.1), and
therefore other sensors has to be used. One sensor that has this potential is the
ionization sensor, and a model describing the relationship between the ionization
current, that the sensor can measure, and the cylinder pressure, is developed in
this thesis.

Other technical systems with combustion instabilities

The dynamical instability in the combustion engine explained above, is a spe-
cial case of a general feature, with the potential of appearing in most combus-
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Figure 1.2 One of the simplest set-ups that shows dynamical instabilities
in a combustion system.

tion processes, occurring in closed combustion chambers (Fichera, Losenno and
Pagano, 2001). There are also many other technical applications where these limit
cycles appear, and in many of these cases they are also considered as problem-
atical. One of the simplest examples where these oscillations occur is shown in
Figure 1.2. Further, in Figure of a rocket engine, where these oscillations also oc-
cur, is shown in Figure 1.3. There are models that describe these oscillations, and
also some attempts at dampening them by applying control algorithms (Zaida and
Graf, 1998).

Biological instabilities

Life is essentially a non-equilibrium phenomena, and in nature everything oscillates,
or at least is affected by something that oscillates. In nature it is therefore more
a question of whether there are oscillations at a specific time-scale than whether
there are oscillations at all, in a specific system. One major cycle that goes through
the entire biological system is the circadian rhythm, the rhythm of the day, but
there are many other time-scales. Examples of larger time-scale are the lunar, the
year cycles, and the several-year cycles. The latter appear in e.g. predator-prey
systems (Sturis and Knudsen, 1996). Examples of shorter time-scales are the os-
cillations of the blood glucose level, at the time-scale of hours (Sturis, Knudsen,
O’Meara, Thomsen, Mosekilde, Vauter and Polonsky, 1995), and the metabolic
oscillations governing the glycolysis, at the time-scale of seconds (Hynne, Danø
and Sørensen, 2001). There are many examples of more complicated instabilities,
like bursting and chaotic attractors (see e.g. Figure 1.4) that appear as natural
operating points. Often subsystems with such complex phenomena are also cou-
pled to each other. An example of coupled bursting systems are the coupled β

cells (Sørensen, Petersen and Aslanidi, 2004), and coupled nephrons is an exam-
ple of coupled chaotic attractors (Holstein-Rathlou, Yip, Sosnovtseva and Mosek-
ilde, 2001). For such coupled systems the situation is even more complex. Out of
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Figure 1.3 A rocket engine of this kind is one of the many technical ap-
plications that show sustained thermochemical oscillations.

all of this, two questions often comes to ones mind.

• Why is nature so often choosing oscillating, and sometimes even more com-
plex attractors as operating points; why is it beneficial?

• Are there things here that we, as engineers, could learn when constructing
our own control strategies, or when choosing our own operating points?

Today, the onset of oscillations, or even worse, the onset of chaotic or bursting
oscillations are generally avoided in control strategies. This is because these points,
and the states that lie beyond them, are denoted as unstable states, and unstable
states are considered as non-attractive when building control strategies. Therefore,
if the two questions above could be positively answered, this might affect our whole
view of how to construct human-made systems.

Chemical reactors

Apart from the technical thermochemical systems mentioned above, chemical plants
consists another big and important class of applications that falls within the class of
thermochemical systems. Chemical plants are production systems where the ingo-
ing components, as well as the desired outcome, consists of chemicals or substrates.
There are also biochemical reactors, where one uses real biological components, like
e.g. cells, to govern most of the reactions, and the only things that in those cases
needs to be regulated by the operator are the conditions for the cells. An exam-
ple of the latter is the production of beer (Nguyen, 2004), and there the yeast
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Figure 1.4 Plot showing the bursting behaviour of β cells. In the plot one
and a half burst is shown. When the cells are secreting insulin
to the blood, these bursts must be present. Hence it has be-
come clear that this complex behaviour is the stationary state
that β cells operate in when they are active. A big question
is why nature has found it beneficial to work around such a
complex attractor. Another question is whether we also could
benefit from developing control strategies for our human-made
systems, by letting them operate around these kind of complex
attractors. These two questions are two of the main questions
of this thesis.

cells used for the production, display oscillations in many of the chemicals (Hynne
et al., 2001). However, most chemical plants that are human controlled altogether
are kept at a steady state operating point, but as argued above, this might be a
non-optimal way of control, and a strategy that might eventually be replaced by
others. Finally, it should be said that much of the early developments of model
predictive control was done for chemical reactors. The reason for that was slow
time-scales of these systems, that allowed for computer simulations on-line. For
the same reason, chemical reactors might be one of the prime targets when trying
to apply the methods developed in this thesis to real industrial examples.

Identification of nonlinear systems

This thesis will not study control of thermochemical systems, but will stay at the
level of system identification and diagnosis. However, control theory and system
identification are subjects that are closely linked to each other, and if one can de-
velop good models for a system, that will be beneficial also for control problems.



6 Chapter 1 Introduction

System identification contains everything that has to do with systemizing the avail-
able knowledge of a system into a useful form. Usually this compact form will be
a model and in this thesis, the model structure will always be a system of nonlin-
ear ordinary differential equations (ODEs). The two parts of system identification
that will be in main focus in this thesis are model construction and parameter
estimation. The first part, model construction, is presented in the form of devel-
oped models (Chapters 7, 8 and 9). The second part, parameter estimation, has
been attacked on the method level, and there are presented ways of improving the
estimation, both during the experiment design phase (Chapter 5), during the esti-
mation process (Chapters 4 and 5), and during the validation phase (Chapter 6).
Nonlinear thermochemical systems, of the kind mentioned above, often give rise
to too complex models for ordinary estimation methods to be directly applicable.
Therefore improved methods, that are especially fit for these kind of systems are
greatly desired. The common feature that has been utilized is the existence of a
nonlinearity, or more specifically, the existence of a border between oscillating and
non-oscillating states. Loosely, these borders are called bifurcations, and there is
a rich theory of how the area around these borders can be described. The main
results of this thesis are hence obtained by the application of bifurcation theory, to
the problem of system identification of nonlinear thermochemical systems.

1.2 Outline and contributions

After this introductory chapter, there is one more background chapter, Chapter 2,
that gives a general introduction to the theory used in the thesis. It also introduces
most of the notation that will be used during the rest of the thesis. One of the
main problems with accomplishing this thesis has been to combine the worlds of
bifurcation theory and electro-mechanical engineering, and effort has been put into
finding good notations. This in itself, is therefore the first non-trivial contribution
of the thesis. Chapter 3 goes on with a review of center manifold, and normal
form, theory, and with a review of a nice method that allows for easy calculations
of these transformations. The second half of Chapter 3 then extends the theory
and methods to include higher order terms in the transformation, and hence al-
lows for improvements of the quantitative agreement between the original and the
simplified system. The improvements are shown by application of the theory to a
simple test case. The next three chapters, 4, 5, and 6, present new methods for
improved parameter estimation. Chapter 4 presents two algorithms showing how
one can include the information that a known input signal brings the system to
a bifurcation. It is shown that these methods reduces the degrees of freedom de-
scribing the search space. An example, where this reduced degree of freedom makes
the difference between a successful optimization and an unsuccessful is given. This
improvement is one of the main contributions of the thesis. Chapter 5 presents
theory, that allows the parameters describing the start state, x0, to be described
by minimal (usually 2 or 3) degrees of freedom. It is presented experimental de-
signs that make the given theory applicable. To understand the importance of
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this simplification, one must remember that for large systems, and especially if
they are also compartmentalized, the x0 parameter vector can have dimensions
between 15 and 1000. These improvements, that actually are a continuation of the
developments of Chapter 3 and 4, make these results, according to the author, the
contribution of the thesis with the highest potential. Chapter 6 presents a way to
rule out false estimations, caused by either the convergence to an erroneous local
minima, faults in model structure, or faults in one of the sensors that has been
used for the estimation. It is shown how this knowledge can be utilized to form
a qualitative test quantity, and this test quantity has the benefit that it can work
also with uncalibrated, or non-modelled, sensors. This concludes the method de-
velopment part of the thesis. Chapter 7 describes the first model that has been
developed. It is a model for cylinder pressure, temperature and ionization currents.
The main contribution of this model compared to previously published models is
that it can predict the relationship between pressure and ionization peak location
within one crank angle degree (CAD), while having a non-adiabatic combustion
model. It is also shown why previously published models has had a characteristic
delay of > 2 CAD, compared to measurement data. Chapter 8 contains another
model developed, namely one for the intra-cellular response to insulin in human
fat cells. This is the first model for this pathway that has been published, and
it is shown to agree with published experimental data. A 16-dimensional model
for activated neutrophils was chosen as a large-scale test-case for the new methods
developed in the earlier chapters. This is the content of Chapter 9. Finally, in
Chapter 10, the conclusions of the thesis are summarized, and in the appendix
sufficient information to regenerate all the plots appearing in the thesis is given.
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2
Theoretical Background

This chapter reviews some basic theory that has to do with representation and sys-
tem identification of nonlinear systems in general, i.e. the theory on which Chap-
ters 3, 4, 5, 6 and 9, are built. The chapter starts by introducing the notations
that will be used to describe a system of nonlinear ordinary differential equations
(ODEs). In Section 2.2, a short introduction to system identification is given, and
Section 2.3 gives a short introduction to the theory of bifurcations. It is the com-
bination of these two theories that will lead to some of the main results in the
later chapters. Finally, in Section 2.4, the Brusselator is introduced. This system
contains a simple bifurcation, and will serve as the first example for testing of new
methods.

2.1 Notations

This thesis takes bifurcation theory from nonlinear dynamics and applies it to
system identification. These two areas do not use the same notations, and the
translation between two is non-trivial. For instance are bifurcations usually not
defined for non-autonomous systems whereas control engineering systems deals
almost exclusively with this kind of systems. This problem is treated in Section 2.3.
Here is introduced the basic notations that will be used, and it has been chosen as
a compromise between the notations at use in system identification literature and
that in bifurcation literature. First we will introduce the notations we will use for
a nonlinear ODE.

9



10 Chapter 2 Theoretical Background

A nonlinear ODE

Let the state vector be denoted x, and let the dimension of x be denoted n, i.e.
x ∈ R

n. Further, let the control signals be denoted u. The vector u is a function of
time and its value is known and controllable. Assume that the other inputs to the
system are constant, and included in the parameter vector px. Let the dynamics of
the system be governed by a nonlinear, smooth, function f. With these notations
the system of differential equations is given by

ẋ = f(x, px, u) (2.1)

Sometimes it will be beneficial to consider the u and px vector together. Let this
pair be denoted µ

µ = (px, u)

Note that µ is a time-varying vector, and that all the time-dependence lies in u.
Let the sensor signals be denoted y. Assume that the sensor values are a function
of µ, x, and perhaps some additional parameters py. Further, let the functional
relationship for the vector signals be denoted y(·)

y = y(x, µ, py) (2.2)

The time when the simulation, or when the time series intended for the identifica-
tion starts, can be given or chosen as part of the experiment design. Let this start
time be denoted tstart and let the state vector at this time be denoted x(tstart).
Let x0 be the parameter vector giving the start values

x(tstart) = x0 (2.3)

In most of the thesis we will have chosen the start time so that it is zero, i.e.
tstart = 0. In those cases x(0) = x0.

Equation (2.1), (2.2) and (2.3) fully specifies the system, and we now write
these equations together for future reference. To fully specify which vectors are
dependent on time, and which are not, the time-dependence is here explicit

ẋ(t) = f(x(t), µ(t)) = f(x(t), px, u(t)) (2.4a)
y(t) = y(x(t), px, u(t), py) (2.4b)

x(tstart) = x0 (2.4c)

2.2 System identification
System identification contains everything that has to do with systemizing the avail-
able knowledge of a system into a useful form. Usually this compact form will be
a model, and in this thesis the model will be a system of the general form (2.4).
In this section is given a short introduction to the system identification loop, i.e.
to the steps that are usually carried out when doing system identification. There
are choices between different approaches and methods at the different steps, and
here only a few of them are described. The overall presentation of this section is
inspired by the book Ljung (1999).
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The system identification loop

The available knowledge going into the identification loop usually consists of two
parts: i) a set of experimental data ZN, and ii) knowledge about the actual pro-
cesses. The first step in physically based system identification process is to extract
the knowledge about the way the processes work into the form of the equations.
This form, or set of alternative forms, is called the model structure and at this
initial step it contains uncertainties. These uncertainties take the form of undeter-
mined parameters, and transitions between different forms are also formulated as
variations in parameters. The idea is that these values shall be determined by the
data set ZN. Another component of the system identification procedure is therefore
a selection rule that determines which specific parameter set that best captures all
the information in the data set. Once the best model has been found it is time
for the last step in the system identification procedure, the validation step. The
validation step uses some data not included in the previous identification process,
to see how well the chosen model predicts the data in this data set. If the chosen
model does a sufficiently good job in this test, it is approved. If the model does not
manage the validation step good enough, you have to start over at a previous step
in the system identification loop (which might include doing new experiments).

The process for nonlinear ODEs

Now follows a more detailed description of the various steps in the system identifi-
cation loop. At each step it will be described how the step can be carried out for the
specific case of nonlinear ODEs. These various choices will later be referred to as
the ’standard method’ though it should be emphasized that there exist other meth-
ods, also applicable to this class. The specific model structure of equation (2.4)
brings many difficulties, and at each step some of these difficulties are highlighted.

Step 1: Choosing model structure
Let the vector of all parameters be denoted p. So far three possible parts of this
parameter vector have been introduced: px, py and x0. In many cases the only
parameters that are interesting are the parameters px, and the other parameters
are only included to be able to form the objective function (i.e. to simulate the
system etc.). For this reason it might be beneficial to introduce all parameters
that are not the px parameters. Let this vector be denoted pnx, i.e.

p = (px, pnx) (2.5)

In this thesis pnx will have different compositions depending on the situation.
Referring to equation (2.4) gives pnx = (py, x0), but in Chapter 4 and 5 pnx will
also include n additional parameters, xb, which means that then pnx = (py, x0, xb).
Let us now turn to the problem of forming a model structure based on these
parameters.

For linear time-discrete systems the model structure is usually formulated as a
predictor (Ljung, 1999),

ŷ(t|p) = gpred(p, Zt−1) (2.6)
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i.e. the knowledge of all the data up until the previous time is available, and
useful, to predict the present output. For a nonlinear ODE it is not easy to use
the outgoing data once the simulation has started. Therefore the Y part in, Zt−1,
disappears and gpred is a function of the parameters, p, and the inputs U only.
Such a model structure is generally referred to as an output error, or a simulation
model (Ljung, 1999).

The true system is assumed to behave like

ẋ0 = f(x0, µ0) = f(x0, px,0, u) (2.7a)
y = y(x0, µ0, py,0) + v (2.7b)

x(tstart) = x0,0 (2.7c)

where the dimensions and meanings of the ingoing variables are the same as for
(2.4), except for the measurement noise, v. The subscript in e.g. p0 denotes the
true value of p. Finally the measured input is assumed to be true, i.e. u = u0.
This means that the true system is assumed to behave like the model structure, for
a specific choice of parameters, and the only difference regards the measurements.
One could consider the idea that the true system also has process noise but the
implications of that is outside the scope of this thesis.

Step 2: The experimental data
The experimental data consists, for both linear and nonlinear model structures, of
two parts: ZN = (UN, YN). Here UN contains the inputs UN = {u(t)}Nt=1, and
YN contains the outputs YN = {y(t)}Nt=1. ZN is, however, generated during one
or several experiments, and the important task of designing these to generate as
informative time series as possible is highly dependent on both the chosen model
structure and the chosen methods at the different steps in the identification loop.
For the specific model structure of (2.4) and the methods suggested here, some
important difficulties to consider are the following:

i) Open simulation is done, i.e. the prediction does not use previous ys. There-
fore continuously perturbing a system might not be the same good idea as it
is for prediction error based methods.

ii) Another major problem with system identification of large realistic nonlin-
ear ODE’s is that you have to estimate the initial values x0 along with the
desired parameters px and py. For large systems, and especially for com-
partmentalized systems, the extra degrees of freedom coming from the x0

parameters is a serious problem, and often makes the problem unsolvable
(Schittkowski, 2002). The increase in degrees of freedom also leads to worse
identifiability of the desired parameters. The problems are mainly due to the
fact that the objective function VN(p, ZN) has many local minima for this
particular class of model structures.

The second issue here deals with the problem of estimating the initial values,
and argues that this problem is absolutely essential to solve, or at least diminish,
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in order to do system identification of large nonlinear ODEs. With clever exper-
imental design, these parameters can be constrained in various ways and in this
thesis Chapter 5 is devoted to development of such methods.

Step 3: The selection criteria
The simplest selection criteria is to find the parameters that minimize the sum of
the square of differences between the measured and the simulated output. This
means that if the estimated parameter value is denoted p̂, it can be identified in
the following way:

p̂ = arg min
p

VN(p, ZN) (2.8)

where

VN(p, ZN) =
1

N

N∑
t=1

(y(t) − ŷ(t|p))2 (2.9)

One could consider using other norms. The L1 norm has the benefit that it will
force many of the parameters to be zero, which is beneficial when identifying e.g.
intra-cellular networks (Gustafsson, Hörnquist and Lombardi, 2003). Sometimes it
might also be beneficial to put a harder emphasis on the agreement on some specific
parts of the time series (Ljung, 1999). The finding of the minima is usually solved
by an ordinary iterative optimization method, like e.g. the Levenberg-Marquardt
(Nocedal and Wright, 1999). Another standard book on the subject of parameter
estimation is Schittkowski (2002).

Step 4: The validation step
The validation step can be done in many ways. The simplest way is to say that the
error function VN(p̂, ZN

validate) should be below a given value, but there are also
other test (Ljung, 1999). Here ZN

validate is a special part of the given time series
that has not been used during the estimation phase. Another way of validating
a system could be to see whether the qualitative behaviour of the system is as it
should. This is the idea behind Chapter 6. Further, in Chapter 4, a way is presented
that ensures that no such contradiction exists, for a specific class of qualitative
behaviours, already at the selection phase. That means that with the different
methods that are presented in this thesis, one can choose whether to implement
new optimization algorithms, or whether to do an additional after-treatment, using
the original algorithms. If the validation phase approves the estimated parameters,
p̂, the system identification process terminates. If not, one has to reconsider which
of the previous steps can be done differently, and there re-enter the identification
loop once again.

2.3 Bifurcations
Many of the results in this thesis involves the existence, and usually also the nearby
presence, of a bifurcation. Usually the bifurcation will be of a special type: a super-
critical Hopf bifurcation. It is therefore beneficial to, here in the beginning, make
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clear what a bifurcation is in general and, more specifically, what a supercritical
Hopf bifurcation is.

A bifurcation in general

The word bifurcation comes from a Latin word that means branch, and a branch
is exactly what a bifurcation is. It is a branching between two topologically non-
equivalent flows under the variation of the parameter µ in equation (2.4a). ’Topo-
logically equivalent’ is defined as follows (Wiggins, 1990).

Definition 2.1. Two µ values, µ1 and µ2, with corresponding fix points (x1, µ1)
and (x2, µ2), have topologically equivalent flows if there exists a homeomorphic
mapping ξ : U → V that preserves orientation but not necessarily parametriza-
tion in time. Here U and V are neighborhoods of the first and second fix point,
respectively.

Two entire systems are topologically equivalent if their attractors (fix points,
limit cycles, ...) are equally many and of the same stability. The attractors usually
move or change appearance under all variations in µ, but when they change stability
or have been created/disappeared, a bifurcation is said to have occurred. Since the
attractors govern the qualitative long-term behaviour of the system, you might
loosely say that a bifurcation manifold divides two qualitatively different regions
in the state-parameter space. The exact formulation of a (local) bifurcation is the
following (Wiggins, 1990).

Definition 2.2. A fix point (x, µ) of a one-parameter family of one-dimensional
vector fields is said to undergo a local bifurcation at µ = 0 if the flow for µ near
zero and x near zero is not topologically equivalent to the flow for x near zero and
at µ = 0.

There are bifurcations which are not local. They are called global bifurcations
and are outside the scope of this thesis. Finally let us specify what we will mean
by a bifurcation when we have time-varying inputs.

Definition 2.3. A fixed point (x, µ) = (x, px, u), with constant u, of a one-
parameter family of one-dimensional vector fields is said to undergo a local bi-
furcation at µ = 0 if the flow for µ near zero and x near zero is not topologically
equivalent to the flow for x near zero at µ = 0.

As can be seen the only thing that has been added is the constraint that u should
be constant. This does not mean that only constant u systems are considered but
that a system with time-varying u is said to be in the same topological state at time
ti as the corresponding autonomous system would be with u = u(ti). With this
definition we can now speak of topological states, and hence also of bifurcations,
for non-autonomous systems as well. Now, let us briefly look at some simple one-
dimensional bifurcations, before we go on to the Hopf bifurcation, which is the
central bifurcation in this thesis.
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2.3.1 Some simple one-dimensional bifurcations

Non-trivial bifurcations require that the function f in (2.4a) is nonlinear, but not
that x is multi-dimensional. There are, on the contrary, some quite illustrative
bifurcations that can occur already in one-dimensional systems. A nice feature
from what is called the center manifold, and normal form, theory is that all generic
features of a bifurcation can be extracted from its appearance in the simplest equa-
tions - the normal forms. This means that even though the three one-dimensional
bifurcations introduced here can just as well occur in arbitrarily large system, for
our purpose it is sufficient to study their one-dimensional normal forms. The three
one-dimensional bifurcations that will be mentioned are called the saddle-node bi-
furcation, the transcritical bifurcation, and the pitchfork bifurcation, since they
are the only simple1 one-dimensional bifurcations.

The saddle-node bifurcation
The normal form of the saddle-node bifurcation is (2.10), and the corresponding
bifurcation diagram is the top plot of Figure 2.1.

ẋ = µ − x2 (2.10)

By inspection of the diagram, or by studying the equations, can be seen that, for
positive values of µ, there are two solutions to the equation (2.10) with ẋ = 0. These
are x = ±√

µ and hence they collide at µ = 0 and this is where the bifurcation
occurs. The bifurcation point (x, µ) = (0, 0) is a non-hyperbolic fix point (it has
eigenvalues to the Jacobian with zero real part), as it is for all local bifurcations,
and in this particular bifurcation the fix point ceases to exist once µ turns negative.
Viewed from the other side, this is of course equivalent to the creation of two fix
points out of the ’blue sky’, and this fact has caused this bifurcation to sometimes
be named blue-sky bifurcation. Another common name, which more has to do with
the shape of the bifurcation diagram, is fold bifurcation (Strogatz, 1994).

The transcritical bifurcation
The normal form for the transcritical bifurcation is equation (2.11) and the corre-
sponding bifurcation diagram is the bottom plot of Figure 2.1.

ẋ = µx − x2 (2.11)

As can be seen, either from looking at the equations, or from Figure 2.1, for
this bifurcation there are two fix points on both sides of the bifurcation point
(x, µ) = (0, 0). One fix point is at x = 0 and one at x = µ, and what happens
at the bifurcation is that these exchange stability. Compared to e.g. the saddle
node-bifurcation this is a relatively harmless bifurcation.

1Here the real term for simple bifurcation is co-dimension 1 bifurcation. When accepting bifur-
cations of higher co-dimension there can be arbitrarily many types, already for one-dimensional
systems. These bifurcations are, however, much more rarely appearing in real systems.
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Figure 2.1 Bifurcation diagram over the saddle-node (top), and the tran-
scritical (bottom) bifurcation. What is plotted is the value of
the fix point for each value of µ. For the saddle-node bifurca-
tion, a stable and an unstable bifurcation co-exists for positive
values of µ. At µ = 0, i.e. at the bifurcation point, the two fix
points collide, turn non-hyperbolic, and for negative values of
mu there is no fix point at all. For the transcritical bifurcation
there are always two fix points, one at x = 0 and one at x = µ.
At the bifurcation µ = 0 they exchange stability.

The pitchfork bifurcation
The pitchfork bifurcation has received its name from the form of the bifurcation
diagram. The bifurcation diagram is plotted in Figure 2.2, and the normal form
equation is given in (2.12).

ẋ = µx ± x3 (2.12)

Just as for the transcritical bifurcation there is a fix point at x = 0 that changes
stability at the bifurcation point (x, µ) = (0, 0). What happens in this case, how-
ever, depends on whether the bifurcation is supercritical or subcritical, and this
depends on whether the sign before the third order term is negative or positive,
respectively. In the supercritical case the stable fix point turns unstable just as
two stable fix point are created, and this case is therefore just as harmless as the
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transcritical bifurcation. The only thing that might be a bit uncertain is whether
the system will go to the upper or lower fix point, and if only one of these are
desired. But if the bifurcation is detected, and the system can be perturbed, this
is usually not a problem. The subcritical case on the other hand is as dramatic as
the saddle-node bifurcation. In this case the stable fix point is closed in, and finally
annihilated by the two surrounding unstable fix points. After the bifurcation there
is no stable fix point at all, and just as after the saddle-node bifurcation, the system
will have to go elsewhere.

Remarks

After having introduced these different bifurcations I would like to conclude with
some personal remarks. If one studies systems with bifurcations and considers only
the linearizations, all these bifurcations will look the same: at the bifurcation a
single pole passes the imaginary axis. This is something generally avoided in control
situations, and control systems are designed so that this should never happen. This
short introduction to the various scenarios that can happen, all caused by a single
pole passing the imaginary axis, should make clear that this is not always necessary.
When it is necessary depends on the higher order terms, and without a bifurcation
analysis one can not determine the effect of these terms. If the bifurcation should
turn out to be one of the more dramatic ones, like the saddle-node bifurcation, the
fears were motivated, but if it should turn out to be a e.g. transcritical bifurcation,
nothing serious will happen to the system and it should be quite safe to operate at,
and beyond, this point. In fact, one of the main conclusions of this thesis is that
it might be quite beneficial to operate close to a bifurcation (see Chapters 3 to 6
and 9). One example of a successful parameter estimation for a large-scale model
in systems biology, was also done for yeast cells operating close to a bifurcation
(see Hynne et al. (2001) or Figure 2.3). These cells were operating close to a Hopf
bifurcation.

2.3.2 The Hopf bifurcation
A general Hopf bifurcation

The Hopf bifurcation was first considered by Henri Poincaré (see e.g. Poincaré
(1952)) in the very beginning of the 20th century, further investigated by Andronov
a little bit later into the 20th century, and its properties finally exhausted by Hopf
(see e.g. Wiggins (1990) for historical review). The bifurcation is therefore some-
times, and more correctly, referred to as the Poincaré-Andronov-Hopf bifurcation.
It is a two-dimensional bifurcation, which means that it can only exist in systems
with two or more state variables. Just as for the one-dimensional bifurcations all
systems with a Hopf bifurcation are (locally) topologically equivalent to the cor-
responding normal form, and each system can be mapped back from the normal
form to the original space (see Chapter 3 for an analysis of how to do this, and
Chapter 5 and 9 for two real problem applications utilizing this transformation).
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Figure 2.2 Bifurcation diagram for the two Hopf or the two pitchfork bi-
furcations. For the pitchfork bifurcation the interpretation of
the lying parable is as two fix points that at the bifurcation
meets with the fix point in the middle, and for the Hopf bifur-
cation the lying parable is the amplitude of the oscillations. For
the Hopf bifurcation it is therefore clear that at the bifurcation
the amplitude of the oscillations have grown infinitely small
and the bifurcation is merely the transition from fix oscilla-
tions to stationary steady state. Notice the extreme difference
between the supercritical case (upper plot) and the subcritical
case (lower plot). In the supercritical case the stable fix point
is replaced by another stable attractor, and from a distance
nothing has happened. In the subcritical case, however, the
stable fix-point has been eaten by the surrounding unstable at-
tractor, and after the bifurcation there is no stable attractor in
this area anymore, and the system will have to go elsewhere.
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Figure 2.3 Plot showing simulated vs. experimental data from a quench-
ing experiment, i.e. from a system that has been perturbed
when operating close to a Hopf bifurcation. For a quenching
experiment to substantially change the oscillations, as is done
in both these time series, both the timing and the amplitude
of the perturbation needs to have very precise values. Con-
sidering that this data is taken from a large-scale bio-chemical
model, and during the verification step (see Section 2.2) one
must conclude that the agreement is quite good. This result
is one of the previous indications that it might be beneficial to
operate around a Hopf bifurcation. Picture included from with
permission from the authors.

The normal form for the Hopf bifurcation is

ż = (iω0 + µσ1)z + g3z|z|2 (2.13)

where z, g3, σ1 ∈ C and ω0, µ ∈ R. Always in a Hopf bifurcation the eigenvalues of
the Jacobian, on the center manifold, passes the imaginary axis at the bifurcation
and this means that a limit cycle grows out of a fix point. The bifurcation occurs
at µ = 0, and the frequency of the limit cycle at the bifurcation is ω0. When
regarding stability, however, the sign of Re(g3) determines which of the two com-
pletely different variations of the bifurcation will occur. For Re(g3) < 0 we have a
supercritical Hopf bifurcation and for Re(g3) > 0 a subcritical.

A supercritical Hopf bifurcation

The Hopf bifurcation in equation (2.13) is supercritical if Re(g3) < 0, and then
the qualitative nature of the bifurcation diagram is as shown in the top plot of
Figure 2.2. The bifurcation occurs at (z, µ) = (0, 0) and for µ values below this
point there is only a stable fix-point. At the bifurcation point the fix point becomes
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non-hyperbolic, and for positive values the stable fix point has been replaced by a
stable limit cycle and the fix-point inside the limit cycle is an unstable spiral (fix
point with complex eigenvalues). As µ is increased the limit cycle grows. In the
beginning it grows proportional to the square root of the distance to the bifurcation
point (here µ = 0). In a time plot this corresponds to an increase in amplitude
of the oscillations. This is a local bifurcation, and only affects the local dynamics.
The invariant manifold is still attracting, and it is not until the system has moved
a little bit away from the bifurcation that the oscillations become visible. This
distance can be very small, but for all practical, and even non-analytical, cases it is
never infinitely small. This bifurcation is therefore a relatively harmless bifurcation,
even though the poles has passed the imaginary axes. It is also occurring in many
thermochemical systems, and some examples of this was given already in Chapter 1.

A subcritical Hopf bifurcation

Even though a Hopf bifurcation is detected by a complex pair of eigenvalues of the
Jacobian from the linearization around a stable fix point as a control parameter is
varied, it is not necessarily the relatively harmless case described above. Just as
for the pitchfork bifurcation there is a more ’critical’ variation of the bifurcation,
and just as for the pitchfork bifurcation it is called subcritical2. The bifurcation
diagram is shown in the bottom plot of Figure 2.2, and there one sees that at
the bifurcation the two invariant manifolds coincide and after the bifurcation the
unstable limit cycle has become the new, and unstable, fix point.

2.4 The Brusselator

The Brusselator is a little example that in the simplest case, which is considered
here, consists of only two chemicals, x1 and x2. The reactions that take place are
the following

pA ⇒ x1

pB + x1 ⇒ x2 (2.14)
2x1 + x2 ⇒ 3x1

x1 ⇒
i.e. there is an inflow, or a production of the chemical x1 with the speed pA.
Then x1 can react with pB to form x2, with the velocity pBx1 (assuming ordinary
mass action kinetics), x2 can turn into x1, by collision with x1, with the velocity
x2

1x2, and finally there is an outflow, or a consumption of x1, with the velocity x1.

2To unravel the relationship between the pitchfork and the Hopf bifurcation, write equa-
tion (2.13) in polar coordinates and find that the amplitude part of the equation is undergoing a
pitchfork bifurcation of type (2.12).
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Figure 2.4 A Bifurcation diagram for the Brusselator model. It is known
that the bifurcation occurs at pB = 1+p2

A and that above this
line the steady state of the system is a limit cycle and below
this line it is a fix point.

Writing this as differential equations gives

ẋ1 = pA + x2
1x2 − pBx1 − x1 (2.15a)

ẋ2 = pBx1 − x2
1x2 (2.15b)

These two equations correspond to equation (2.4a) and sometimes we will assume
that the inflow can be controlled, and sometimes not. That means that pA and pB

will always belong to the µ vector, but not always to the px vector, in (2.4). The
dynamics, however, will always be described by equation (2.15). For this system
the stationary dynamics has been fully exhausted analytically (see e.g Strogatz
(1994)). For each pair (pA, pB) there is only one fix point, and it is situated at
(x1, x2) = (pA, pB/pA). If the fix point is stable it is the only stationary state
in the system, and if it unstable it is because it has passed a supercritical Hopf
bifurcation. This takes place at the line pB = 1 + p2

A, and in Figure 2.4 can be
seen that above this line the systems stationary state is oscillating, and below it,
the stationary state is a fix point.
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3
Model Simplification around a Hopf

Bifurcation

This is the first chapter with contributions in it. The first two sections are mainly
a review of existing theory, but from Section 3.3.1 and on there are new results.
The review in Section 3.1 is mainly taken from the textbook Wiggins (1990), even
though it has been rewritten a bit to fit into the rest of the thesis. While Section 3.1
introduces the concepts and basic notations of center manifold and normal form
transformations in general, Section 3.2 is taken from the specific article Ipsen,
Hynne and Sørensen (1998), and deals with the derivation of the hands-on problem
of finding the transformation coefficients. The results starts with an extension of
the theory in Ipsen et al. (1998) in Section 3.3 and then, in Section 3.4, the theory is
implemented and tested on the Brusselator. The simplifications turns out to work
fine and an empirical estimate of how far away one can go from the bifurcation
point is the content of the final results section, Section 3.5. Beside the stand
alone results of this chapter, it also lays a theoretical basis for some of the coming
results. The results in the second half of Chapter 5 depends heavily on these
simplifications, and in Chapter 9 the theory is applied to a real, spatio-temporal,
nonlinear thermochemical model.

3.1 Center manifold and normal form theory

This chapter is only concerned with equation (2.4a), and with constant u, i.e. with
constant µ. The system of study can hence be formulated

ẋ = f(x, µ) = J · x + fnonl(x, µ) (3.1)

23
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where x ∈ R
n and µ ∈ R

s. Here we will also assume that equation (3.1) has a
local bifurcation at (x, µ) = (0, 0). If this has been accomplished by a translation
of the origin in the R

nxs space, the original state-parameter vector will be denoted
(xphys, µphys). In almost all of the derivation, however, µ = 0 will be the only
case considered, but perturbations in µ space, called the unfolding directions, are
important to understand, and the way to extend the theory is sketched, and the
corresponding results are stated, in the end of Section 3.2.1.

The center manifold is an invariant manifold

Let x(t, x(0) = x0) mean the trajectory determined by the starting value x0 and
the dynamic equations (3.1). Then the definition of an invariant manifold is as
follows.

Definition 3.1. Let S ⊂ R
n be a set, then S is said to be an invariant manifold

under the vector field (3.1), if for any x(0) ∈ S we have x(t, x(0) = x0) ∈ S for all
t > 0.

In ordinary terms this means that a system starting on an invariant manifold will,
as time evolves, always remain on the manifold. Around a non-hyperbolic1 fix
point one can introduce the center and the stable spaces as follows.

Definition 3.2. For the dynamical system (3.1) with a non-hyperbolic fix point at
origin the following spaces can be defined

Ec = SpanR(ui)
r
i=1 (3.2)

Es = SpanR(vi)
n−r
i=1 (3.3)

where {ui}
r
i=1 and {vi}

n−r
i=1 are the (right) eigenvectors, of the Jacobian J in (3.1),

corresponding to the eigenvalues with zero and negative real part, respectively. Ec

and Es are called the center and the stable spaces, respectively. Finally SpanR is
only allowing linear combinations that has complex conjugated coefficients in front
of complex conjugated eigenvectors.

Remark: Since the eigenvalues are defined as the solution to a real polynomial
equation, they will either be real or complex conjugated. The same will be true
for the eigenvectors. By the above definition of SpanR, this means that the spaces
Ec and Es will always be real. One could therefore define the spaces Ec and Es

as spanned by real coefficients to real eigenvectors (Wiggins, 1990). Then the real
eigenvectors would be the real and imaginary part of the complex conjugated ui’s
and vi’s. The reason this form is chosen is that we want to be consistent with the
derivation taken from Ipsen et al. (1998).

1A non-hyperbolic fix point is a fix point with a corresponding Jacobian having eigenvalues
with zero real part. Hence, the stability of non-hyperbolic fix points has to be determined by
higher order analysis. All local bifurcation points, i.e. all bifurcations studied in this thesis, are
also non-hyperbolic fix points.
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Denote the vectors in the stable and center space with xs and z, respectively.
Let the elements in z be denoted zi and the elements in xs be denoted xs,i. Then

z =

r∑
i=1

ziui (3.4)

xs =

n−r∑
i=1

xs,ivi (3.5)

where ui and vi are defined in Definition 3.2. Remember the complex conjugated
condition on the coefficient, given in Definition 3.2, making both xs and z real
vectors (but with complex elements).

In the same way as for the stable and unstable spaces we could define an un-
stable space, but this is non-existing for all local bifurcations brought up in this
thesis. Finally, about the eigenvectors, should be said that the corresponding left
eigenvectors of ui and vi will be denoted u∗

i , and v∗i , respectively. They have been
chosen to be bi-orthogonal, i.e.

u∗
i · uj = δij (3.6)

where δij is the ordinary Kronecker delta. The subspaces Ec and Es are tangent
spaces to corresponding invariant manifolds. An invariant manifold that has Ec

as tangent space is called a center manifold. The definition is as follows (Wiggins,
1990).

Definition 3.3. The dynamical system (3.1) with a non-hyperbolic fix point at
origin, has a center manifold, Wc, if Wc is an invariant manifold that can be
locally represented as

Wc = {xz ∈ R
n|xz = z + h(z),∀|z| < δ} (3.7)

where z is defined in equation (3.4) and h(z) is an R
n → R

n function.

This means that all points on the center manifold, that are sufficiently close
to the bifurcation, can be described by r coordinates instead of n. One important
implication of this is that the center manifold will have the same dimension as
the center space. Figure 3.1 illustrates the idea for a two-dimensional system
with a one-dimensional center manifold. For the local one-dimensional bifurcations
described in Section 2.3.1 the center manifold is only one-dimensional and for the
Hopf bifurcation described in Section 2.3.2 the center manifold is two-dimensional.
Now the interesting question is what the dynamics on the center manifold looks
like.

Dynamics on the center manifold

To understand the benefits of the center manifold reduction one should look at
the dynamics. The properties of the dynamics are described by two important
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center
space

stable 
space

center
manifold

z

h(z)

x = z + h(z)

Figure 3.1 The mapping from the center space, Ec, where z =
∑

i ziui lies
to the center manifold Wc of equation (3.7). As can be seen the
center manifold is tangent the center space at the bifurcation,
and h(z) is the vector difference between z and xz.

theorems, and these can be understood once a coordinate transformation from
(x1, ..., xn) to (z1, ..., zr, xs,1, ..., xs,n−r) has been done. The original differential
equation can in these new coordinates be written

ż = Jz · z + g(z, xs) (3.8)
ẋs = Jx · xs + gxs(z, xs)

Theorem 3.1. Existence and dynamics on the manifold

For a system like (3.8) there exists a center manifold. The dynamics of (3.8) on
the center manifold, with |z| sufficiently small, can be described by

ż = Jz · z + g(z, h(z)) (3.9)

Proof. See Wiggins (1990)

Theorem 3.1 shows the existence of a center manifold and that the dynamics
on it is governed by the same functions as before with xs replaced by h(z). The
next theorem deals with the dynamics also when the system starts a little bit away
from the manifold.

Theorem 3.2. Dynamics close to the manifold

i) Suppose the fix point (0,0) of (3.9) is stable (asymptotically stable); then the fix
point of (3.8) is also stable (asymptotically stable). ii) Suppose the fix point (0,0)
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of (3.9) is stable. Then if (z ′(t), xs(t)) is a solution of (3.8), with (z ′(0), xs(0))
sufficiently small, there is a solution z(t) of (3.9) such that as t → ∞

z ′(t) = z(t) + O(e−γt) (3.10)
xs(t) = h(z(t)) + O(e−γt) (3.11)

where γ is a positive constant.

Proof. See Wiggins (1990).

Theorems 3.1 and 3.2 are important since they say that the dynamics of the
original space, around a bifurcation point, can be described by the dynamics on the
center manifold alone. The function h takes you back from the center coordinates
zi to the full physical space x. If you start on the center manifold, once you have
obtained the functions g and h, you can know exactly the dynamics in the full
space by simulating the reduced r-dimensional space only, and if you start off, but
sufficiently close to the manifold, the r-dimensional simulation gives all information
apart from an exponential decay, i.e. the exponential decay to the center manifold
will go in parallel with the dynamics on the center manifold.

Normal form transformations

By making transformations of the kind

z ′ = z + ψ2(z) + ψ3(z) + ... (3.12)

where ψi is an i:th order term in z, you can change the dynamic equation of the
center manifold dynamics from (3.9) to

ż ′ = Az ′ + g ′(z ′) (3.13)

and by choosing the transformation cleverly you can reduce terms from a Taylor
expansion of g ′. There are, however, some terms that cannot be reduced and these
are called resonant terms. When a form has been chosen that contains only resonant
terms, i.e. when all terms that can be eliminated by choosing other variables have
been eliminated, the dynamics is said to be described by its normal form. When
the dimension of the state vector, z, is as low as possible, this form is the simplest
form that can describe this dynamics. It was this form that was used to describe
the local one- and two-dimensional bifurcations in Section 2.3.

Now all the important components and concepts have been explained, and they
sum up to the following.

• Sufficiently close to a bifurcation, everything, except for an ordinary expo-
nential decay, regarding the dynamics is governed by the dynamics on the
center manifold (Theorems 3.1 and 3.2).

• The center manifold can be described by the center space coordinates, i.e.
those pointing in directions where the corresponding eigenvalues have a zero
real part. The relationship is x = z + h(z), where h is a nonlinear function.
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• By choosing a clever transformation h in (3.7), the dynamic equations on the
center manifold can contain only the resonant terms, and that means that all
systems undergoing the same bifurcation can be reduced to the same normal
form.

A systematic way to find this h function for all local bifurcations is found in
the next section. The transformation table for the Hopf bifurcation, allowing the
actual transformation for an arbitrary system to be calculated easily up to third
order, is also included.

3.2 A combined transformation

This section presents the results of the paper Ipsen et al. (1998), where a systematic
approach of how to make a model reduction (simplification) is given. This reduction
includes both the center manifold (reducing the dimension of the dynamics) and
the normal form reduction (simplifying the expression by reducing all non-resonant
terms), for an arbitrary bifurcation, in the same transformation. Furthermore,
the process only involves the solving of linear equations and is therefore easy to
implement and to use in practice. In the previous section was seen that in order
to complete a transformation from equation (3.1), with a bifurcation point in the
origin, to the center manifold dynamics (3.9), and to be able to utilize it (i.e. to
be able to transform back again), two things are sought

• function h, in equation (3.7), transforming from the point on the center space
to points in the physical space, and

• function g, of equation(3.9) governing the dynamics in the reduced space, Ec.
The function h should be chosen in such a way that only resonant terms in
g remain. Therefore a resonance condition should also be put up.

Section 3.2.1 gives the relations for a general local bifurcation. The results
to both the questions listed above are given in Section 3.2.1 with and without
unfolding directions. In Section 3.2.2 these general relationships are applied to the
Hopf bifurcation to generate a transformation table that, in most practical cases,
will be the only thing one needs to understand. The transformation table says how
to use the original differential equation to get the h, g functions, and therefore
also, implicitly, what the resonance condition is.

3.2.1 For a general bifurcation

The article Ipsen et al. (1998) starts by deriving the relationships without the
parameters, and then just puts up the relationships with the possibility of variations
in µ included. The same approach will be done here.
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Without parameters

Since the basic theory and notations are already presented above, the first new
thing in the article is to expand fnonl, g and h in a Taylor expansion according to

fnonl(z + h(z)) =
∑
p

fpzp, h(z) =
∑
p

hpzp g(z, (h(z))) =
∑
p

gpzp
(3.14)

Here p is an index set defined by

p = (p1, ..., pr), zp =

r∏
i=1

z
pi

i (3.15)

Here the functions expanded are all strictly nonlinear (no linear terms included),
and hence the sums in (3.14) all start at |p| = 2, where |p| =

∑
pi. The interpre-

tation of the sums should be clear after the following example.

Example 3.1
Suppose that r = 2, which is the case for e.g. the Hopf bifurcation.
Then p ∈ {(0, 2), (1, 1), (2, 0)}, z = (z1, z2) and the expansions in equation (3.14)
become:

f(z + h(z)) = f(2,0)z
2
1 + f(1,1)z1z2 + f(0,2)z

2
2 + . . . (3.16)

g(z, h(z)) = g(2,0)z
2
1 + g(1,1)z1z2 + g(0,2)z

2
2 + . . .

h(z) = h(2,0)z
2
1 + h(1,1)z1z2 + h(0,2)z

2
2 + . . .

Exchanging g with its Taylor expansion and multiplying from the left with u∗
i ,

in equation (3.9) gives

u∗
i · ż = u∗

i · (J · z +
∑
p

gpzp) (3.17)

⇔
żi = λizi +

∑
p

(u∗
i · gp)zp (3.18)

Scalar equations for elements of z, like (3.18), are called amplitude equations,
and (3.18) is hence the i:th amplitude equation. For the Hopf bifurcation the
two amplitude equations will be complex conjugations of each other and hence
they will both look like (2.13).

Now let us go on with the actual determinations of g and h. A partial result is
shown in the following lemma.

Lemma 3.3. The following relations between the sums describing f, g and h hold∑
p

gpzp = (J − (p · λ)I) ·
∑
p

hpzp +
∑
p

φpzp (3.19)
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where ∑
p

φpzp =
∑
p

fpzp −
∑
p

r∑
j=1

hpzp pj

zj
u∗

j

∑
p ′

gp ′zp ′
(3.20)

Proof. The proof mainly contains a lot of algebraic manipulations. They are as
follows. Inserting the relation x = z+h(z) into the original equation (3.1) (without
parameters for now) gives

(I +
∂h

∂z
) · ż = J · z + J · h(z) + fnonl(z + h(z)) (3.21)

Remembering that ż = J · z + g(z, h(z)) (from (3.9)), and the expansions in (3.14),
the left hand side of (3.21) becomes

(3.21).LHS = (I +
∂

∂z
(
∑
p

hpzp))(J · z +
∑
p

gpzp) =

= (I +
∑
p

r∑
j=1

hpzp pj

zj
u∗

j )(

r∑
k=1

zkλkuk +
∑
p

gpzp) = (3.22)

=

r∑
k=1

zkλkuk +
∑
p

gpzp +
∑
p

hpzp ·
r∑

i=1

piλi + (3.23)

∑
p

r∑
j=1

hpzp pj

zj
u∗

j ·
∑
p

gp ′zp ′

By putting in the expansions (3.14), the right hand side of (3.21) becomes

(3.21).RHS =

r∑
k=1

zkλkuk + J ·
∑
p

hpzp +
∑
p

fpzp (3.24)

Putting the right and left hand sides equal and identifying the introduced entity
φp according to (3.20), the given relationship (3.19) is obtained.

Corollary 3.4. The following relationships between the expansion coefficients of
equation (3.14) holds

gp = (J − (p · λ)I) · hp + φp (3.25)

Proof. Identifying all coefficients of zp in (3.19) gives the formula.

Now this relationship holds sufficient information to find the resonance condi-
tion as well as the desired recurrence relations for finding hp, gp. Once having
introduced the auxiliary projection and orthogonal complement projection func-
tions R and Q, respectively, according to

R · x =
∑

i

(u∗
i · x)ui (3.26)

Q = I − R · x = I −
∑

i

(u∗
i · x)ui (3.27)



3.2 A combined transformation 31

By setting gp = 0 in Corollary 3.4 we can draw the following conclusions.
i) The resonance condition for the normal form and center manifold condition

combined, without including the parameters is

p · λ =

r∑
j=1

pjλj = λi (3.28)

i.e. if there is a λi ∈ λ = (λ1, . . . , λr) so that the relation (3.28) is fulfilled, for this
p and ui direction, u∗

igp can not be eliminated.
ii) When the resonance condition is not fulfilled choosing the elements of hp

according to

u∗
i · hp =

u∗
i · φp

r∑
j=1

pjλj − λi

(3.29)

or for the whole vector by solving

(J − (p · λ)I) · hp = −φp (3.30)

will cause the corresponding gp to be zero.
iii) When the resonance condition is fulfilled, for this p, gp can not be eliminated

by any choice of hp, and (J−(p ·λ)I) is not invertible. For these cases the following
solution is suggested in Ipsen et al. (1998)

(J − (p · λ)I) · hp = −Qφp (3.31)
R · hp = 0 (3.32)

gp = (J − (p · λ)I) · hp + φp (3.33)

This equation does not always have a solution, so it will in practice be solved by
using the pseudo-inverse, obtained by singular value decomposition (SVD).

With parameters

When variations in parameters are also considered, the differential equation is
extended to include the parameters as well. The parameters are supposed constant,
i.e. µ̇ = 0, and therefore these new zero-directions are also a part of the center
space. The name will however be kept, since there are some fundamental differences
between z and µ, and sometimes one needs to distinguish between them. The
derivations are almost identical for this case and therefore the general results and
needed auxiliaries are just stated here, without derivations.

The center manifold is described by a mapping from z and µ to x according to

Wc = {(x, µ)|x = z + h(z, µ)} (3.34)

and the extension of equation (3.9) is
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ż = J · z + g(z, h(z), µ) (3.35)

The Taylor expansions of (3.14) become

fnonl(z + h(z, µ)) =
∑
pq

hpqzpµq, h(z, µ) =
∑
pq

hpqzpµq,

g(z, h(z), µ) =
∑
pq

gpqzpµq,
(3.36)

where q is the analog of p, but for the parameters, i.e.

p = (p1, ..., pr), zp =

r∏
i=1

z
pi

i ,

q = (q1, ..., qs), µq =

s∏
k=1

µ
qk

k ,

(3.37)

The corresponding relation of the one in Corollary 3.4 is

gpq = (J − p · λ) · hpq + φpq (3.38)

where

φpq = fpq +
∑
p ′q ′

hpq

r∑
j=1

u∗
j · g(p−p ′+δj)(q−q ′) (3.39)

and the conclusions i) to iii) given without parameters become
i) The resonance condition for the normal form and center manifold condition

combined is

p · λ =

r∑
j=1

pjλj = λi (3.40)

i.e. if there is a λi ∈ λ so that the relation (3.40) is fulfilled, for this p, gpq can not
be eliminated (for any q).

ii) When the resonance condition not is fulfilled, choosing the elements of hpq
according to

u∗
i · hpq =

u∗
i · φpq

r∑
j=1

pjλj − λi

(3.41)

or for the whole vector by solving

(J − (p · λ)I) · hpq = −φpq (3.42)

will cause the corresponding gpq to be zero.
iii) When the resonance condition is fulfilled, for this p, gpq can not be elimi-

nated by any choice of hpq, and (J − p · λI) is not invertible. For overcoming this
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problem the same approach as for the case without parameters is suggested also
here (Ipsen et al., 1998)

(J − (p · λ)I) · hpq = −Qφpq (3.43)
R · hpq = 0 (3.44)

gpq = (J − p · λ) · hpq + φpq (3.45)

where SVD is still used to solve the over-determined equation. Finally, let us con-
sider the problem of transforming back to the original physical space. As mentioned
in the introduction to this chapter (just below (3.1)) we have denoted the physical
coordinates (xphys, µphys). Let, in these coordinates the bifurcation point be de-
noted (xphys,b, µphys,b). Notice that this is the same bifurcation point that lies in
the origin in the coordinates used in (3.1). With these notations the transformation
from the center space coefficients zi to the physical coordinates (xphys, µphys) are
as follows

xphys = xphys,b +

r∑
i=1

ziui +
∑
pq

hpqzp(µphys − µphys,b)q. (3.46)

This is just the modification of (3.34) with h(z, µ) replaced by the expansion in
(3.36). Notice that µ has been replaced by (µphys−µphys,b) and that this replace-
ment should be done at all places where the parameters appear. Let us now turn
to the specific problem of determining this transformation for a Hopf bifurcation.

3.2.2 Derivation for the Hopf bifurcation

In this subsection the derivation and interpretation of Table 3.1, that describes all
steps to be taken when finding the amplitude equations for a system close to a Hopf
bifurcation, is given. Table 3.1 and its derivation is taken from the article Ipsen
et al. (1998), and in this article the derivation is done up to third order expansions
in state space, and in parameter space, only linear terms are included, and µ is
one-dimensional (s = 1). These limitations will later be expanded to fifth order in
state space (Table 3.2), and to include more than one parameter.

Including third order terms in x, and only up to first order for those terms
including the parameter µ, the nonlinear function fnonl of equation (3.1) has the
following Taylor expansion

fnonl(x, µ) = Fµ · µ + Fxµ(x, µ) +
1

2!
Fxx(x, x) +

1

3!
Fxxx(x, x, x) + . . . (3.47)
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where the terms of the right-hand side are defined according to

Fxx(u, v) =

n∑
i,j=1

∂2f

∂xi∂xj
|xphys,b

uivj

Fxxx(u, v,w) =

n∑
i,j,k=1

∂3f

∂xi∂xj∂xk
|xphys,b

uivjwk

Fµ · µ =

s∑
i=1

∂f

∂µi
|xphys,b

µi, (3.48)

Fxµ(u, µ) =

n∑
i=1

s∑
j=1

∂2f

∂xi∂µj
|xphys,b

uiµj

where n is the dimension of x, and µ is one-dimensional which means that s = 1.
The vectors xphys and µphys are the same as those used in (3.46).

Let us now go into the derivations specific for the Hopf bifurcation. The Hopf
bifurcation has a two-dimensional center space (without counting the parameters),
and the corresponding eigenvalues are two purely imaginary, complex conjugated,
eigenvalues,

λ = (λ1, λ2) = (iω0,−iω0) (3.49)

where ω0 ∈ R. The corresponding eigenvectors are

u = (u1, u2) = (u1, u1) = (u,u) (3.50)

where the last equality simply means that we can drop the index. The p vector is
two-dimensional and the µ vector is one-dimensional

p = (p1, p2) µ = (µ) (3.51)

The resonance condition (3.40) says that only those p that satisfy any of the follow-
ing two relations will appear with a gpq contribution in the amplitude equations.
With (3.49), (3.40) becomes

p1λ1 + p2λ2 = (p1 − p2)λ1 = λ1

p1λ1 + p2λ2 = (p2 − p1)λ2 = λ2 (3.52)

where the first of the equations in (3.52) is fulfilled only if

p1 = p2 + 1 (3.53)

and the second only if
p2 = p1 + 1 (3.54)

Since the two options correspond to the two eigenvalues, and therefore to the two
orthogonal directions, only one of them will appear in each amplitude equation.
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Here we arbitrarily pick the first of these equations, and know that the other ampli-
tude equation is simply the complex conjugate of the first.Applying condition (3.53)
to the amplitude equation (3.18) with i = 1 gives

ż1 = λ1z1 +
∑
pq

gpqzpµq = (3.55)

= (iω0 + g101)z1µ + g210z2
1z2 + . . . (3.56)

where higher order terms than this are dropped in Ipsen et al. (1998). Since z1 = z2,
the index will be dropped according to

(z1, z2) = (z, z) (3.57)

Notice that z will now both denote the scalar, and complex amplitude, and the real
and n-dimensional vector. For this reason we will in the subsequent chapters keep
the index for the scalar and let z always mean the n-dimensional vector. We can
further simplify the notation by letting gp0 be denoted g|p| and g101 be denoted
σ1. With these notational changes (3.55) becomes

ż = (iω0 + σ1µ)z + g3|z|2z (3.58)

Once the amplitude equation has been established, what remains is the deter-
mination of the equation (3.42) to be solved for the non-resonant terms and (3.43)
together with (3.45) to be solved for the resonant terms. Then, once these equa-
tions have been solved, for the specific system in question, the transformation is
complete. The equations to be solved up til third order in pq = p0 expansions,
and to exponent one in those terms containing the parameter, has been given in
Table 3.1. This table is the main theorem of this section, and it is reached by the
following two lemmas.

Lemma 3.5. The coefficients of fnonl in the expansion (3.36) are

f200 =
1

2
Fxx(u, u) (3.59)

f110 = Fxx(u,u) (3.60)

f300 = Fxx(u, h200) +
1

6
Fxxx(u, u, u) (3.61)

f300 = Fxx(u, h110) + Fxx(u, h200) +
1

2
Fxxx(u, u, u) (3.62)

f001 = Fµ (3.63)
f101 = Fxµ · u + Fxx(u, h001) (3.64)

The proof is too long to be included but instead an example of how the first
relation is found is included. Doing the same for all the other terms would constitute
the proof.
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Example 3.2 Finding f200

Finding f200 is the same as replacing x by

x =

r∑
i=1

ziui +
∑
pq

hpqzpµq = (3.65)

= uz + uz + h200z2 + h110|z|2 + h020z2 + h001µ + h101zµ + h011zµ

in equation (3.47), simplifying and identifying the coefficient in front of the z2 term.
For higher order terms this is most easily done by a software like Mathematica but
for this simple example it can be illustrative to see the contributions from the
individual terms in (3.47).

• Fµ ·µ and Fxµ(x, µ) cannot have any contributions since they will only have
terms, once expanded, including a parameter µ. We are looking for z2 terms.

• 1
2Fxx(x,x) is more promising. We find

Fxx(uz + O(z, µ, z2), uz + O(z, µ, z3)) = (3.66)
n∑

i,j=1

∂2f

∂xi∂xj
uiziujzj + O(z, µ, z3) =

1

2
Fxx(u, u)z2 + O(z, µ, z3)

where O(z, µ, z3) means all terms with at least one of the given arguments
to the given order.

• 1
2Fxxx(x,x,x) = O(z, µ, z3) and hence no terms are possible.

Hence f200 = 1
2Fxx(u, u) and this is what we wanted to show with our little

example.

Lemma 3.6. φpq = fpq for all terms included up til the orders included in this
section

Proof. The second sum does not contribute for any order since either the hp ′q ′

term will be zero or the g(p−p ′+δj)(q−q ′) will be zero (due to the nonlinearity of h

or g or to that very few terms of g are indeed nonzero). In general, however this
does not hold, and should higher order terms have been included some φpq might
have been different from fpq (see e.g. Table 3.2).

Theorem 3.7. Table 3.1 contains all necessary equations for transforming an arbi-
trary system with a Hopf bifurcation to and from its amplitude equation. However,
only terms up to third order in pq = p0 terms and only up to single exponents in
unfolding terms are included.

Proof. All terms follow directly from equations (3.42) for the non-resonant terms
and (3.43) together with (3.45) for the resonant terms.



3.3 Extensions of existing theory 37

Transformation table for Hopf bifurcation

A x =uz + uz + h200z2 + h110 |z|2 + h020z2 + h210 |z|2z + h120 |z|2z+

h300z3 + h030z3 + h001µ + (h101z + h011z)µ

B

z2 : (J − γ2I) · h200 = − 1
2
Fxx(u, u)

h020 = h200

|z|2 : (J − γ0I) · h110 = −Fxx(u, u))

z3 : (J − γ3I) · h300 = −Fxx(u, h200) − 1
6
Fxxx(u, u, u)

h030 = h300

z|z|2 : (J − γ1I) · h210 = −Q · (Fxx(u, h110) + Fxx(u, h200)+

+ 1
2
Fxxx(u, u, u))

u∗ · h210 = 0

h120 = h210

µ : (J − γ0I) · h001 = −Fµ

µz : (J − γ1I) · h101 = −Q · (Fxµ(u) + Fxx(u, h001))

u∗ · h101 = 0

h011 = h101

C g3 = u∗ · Fxx(u, h110) + u∗ · Fxx(u, h200) + 1
2
u∗ · Fxxx(u, u, u))

σ1 = u∗ · Fxµ(u) + u∗ · Fxx(u, h001)

D ż = (iω0 + σ1µ)z + g3z|z|2

γk = k ∗ iω0

Q · x = x − (u∗ · x)u

Table 3.1 In this table, all the information that is needed to make a trans-
formation between an arbitrary system with a Hopf bifurcation,
and the normal form, is collected. A is the way (3.46) looks for
the Hopf bifurcation. Notice that z here is the scalar, complex,
coefficient z1, with the index dropped according to (3.57). B

contains the linear equations needed to calculate the hs in the
transformation in A. C describes how to calculate the resonant
coefficients, needed to form the amplitude equation. The ampli-
tude equation is given under D. Fxx(u, v) and all similar terms
are defined in equations (3.47) and (3.48).

3.3 Extensions of existing theory

The derivation of Table 3.1 in the previous section, did only include terms up to
third order in pq = p0 terms and only µz and µ terms in the unfolding directions,
where µ was assumed to be one-dimensional. In this section we will extend Table 3.1
in two ways. First we will include up to 5th order in the p0 terms and second we
will consider varying more than one parameter.
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3.3.1 Extension to fifth order

The resonance condition derived for the z1(= z) equation p1 = p2 + 1 is valid up
to an arbitrary high order and the inclusion of the extra term in the amplitude
equation (as an extension of (3.58)) is simply

ż = (iω0 + σ1µ)z + g3|z|2z + g5|z|4z + . . . (3.67)

where g5 = g320. There is hence only one new resonant term g5, and an expansion
only up to 4’th order would have caused no new terms to appear.

Table 3.2 (included last in the chapter) contains all necessary equations for
calculations of the hp0 and the gp0 up to |p| ≤ 5. The way it is derived is along
the exact same lines as those outlined in Section 3.2.2. First the extended expansion
of x (compare equation (3.66))

x = uz + uz + h200z2 + h110|z|2 + h020z2 + h210|z|2z + h120|z|2z +

+ h300z3 + h030z3 + h400z4 + h040z4 + h220|z|4 + h130|z|2z2 +

+ h310|z|2z2 + h500z5 + h050|z|5 + h410z3|z|2 + h140z3|z|2 + h230|z|4z +

+ h320|z|4z + h001µ + (h101z + h011z)µ

is included in the extended expansion of fnonl(x, µ) (compare equation (3.47))

fnonl(x, µ) = Fµ · µ + Fxµ(x, µ) +
1

2!
Fxx(x, x) +

1

3!
Fxxx(x, x, x) +

+
1

4!
Fxxxx(x, x, x, x) +

1

5!
Fxxxxx(x, x, x, x, x) + . . . (3.68)

Then this expression is simplified, and the coefficients fpq are identified (as in
Lemma 3.5). For this extended expansion φpq = fpq does unfortunately not
hold and the full expression (3.39) has to be used. Finally the equations (3.42)
are formed for the non-resonant terms and the equations (3.43) and (3.45) are
formed for the resonant terms. All terms also included in Table 3.1 are identical
to those in Table 2. The new terms are however substantially more complex in
their appearance. The difference in outcome between 3’rd, and 5’th order for the
example of the Brusselator is included in the last section of this chapter.

3.3.2 Extensions to more than one parameter

When one extra parameter is included, we have s = 2, q = (q1, q2) and µ =
(µ1, µ2), in the general derivations of Section 3.2. For the Hopf bifurcation this
means that each term fpq, gpq and hpq will have four indices, and e.g. f2011 is
the coefficient of the z2

1µ1µ2 term in the expansion of f(z + h(z)). The derivation
of the transformation table, with s = 2, is almost identical to that in 3.2.2. Here
are mentioned only the differences.

The resonance condition is concerned only with the p vector and is hence iden-
tical compared to before. The amplitude equation for the first z-element z1(= z)
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is hence (compare (3.58))

ż = iω0z + g1010µ1z + g1001µ2z + g2100|z|2z =

= iω0z + σ10µ1z + σ01µ2z + g3z | z |2 (3.69)

The second and third order terms of hpq are the same as in the Table 3.1 (except
for the extra index zero). The unfolding terms are, however, different and the new
equations are

J · h0010 = −Fµ1
(3.70)

J · h0001 = −Fµ2
(3.71)

(J − γ1I) · h1010 = −Q(Fxµ1
· u + Fxx(u, h0010)) (3.72)

u∗ · h1010 = 0 (3.73)
h0110 = h1010 (3.74)

(J − γ1I) · h1001 = −Q(Fxµ2
· u + Fxx(u, h0001)) (3.75)

u∗ · h1001 = 0 (3.76)
h0101 = h1001 (3.77)

Finally the transformation back to the physical space is the following

x = uz + uz + h2000z2 + h1100|z|2 + h0200z2 + h0010µ1 +

+ h0001µ2 + h1010zµ1 + h1001zµ2 + h0110zµ1 + h0101zµ2 (3.78)

3.4 Transformation of the Brusselator

In this section the developed theory will be applied to the simple example called
the Brusselator introduced in Chapter 2. The differential equations are

ẋ1 = pA + x2
1x2 − pBx1 − x1 (3.79)

ẋ2 = pBx1 − x2
1x2 (3.80)

The condition for a Bifurcation to occur is pB = 1 + p2
A, and the fix point for a

given (pA, pB) values lies at (pA, pB/pA). The bifurcation point chosen to do the
expansion around in this example is (x1, x2, pA, pB) = (1, 2, 1, 2). The Brusselator
is already two-dimensional, and hence there is no room for contracting directions.
The center space, the center manifold and the physical space will thus cover the
same points, although not described in the same way. However, since the two
transformations, the center manifold reduction and the normal form simplification,
are done in one connected step, it is not possible (or at least not beneficial) to
utilize this.

The transformation is done up to third and fifth order, and in the next section
the difference between the original system, and the transformation back from the
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two amplitude equations are compared.

Example 3.3 Using Table 3.1

At the chosen point the Jacobian is

J(1, 2, 1, 2) =

(
1 1

−2 −1

)
(3.81)

which has as its two eigenvalues λ = ±i. The right and left eigenvectors of the
eigenvalue +i are

u = (−1 − i, 2)T (3.82)
u∗ = 1

4 (2i, 1 + i) (3.83)

In Table 3.1 can be seen that the second order term equations require the terms
φ200 = 1

2Fxx(u, u) and φ110 = Fxx(u,u) , they become

1

2
Fxx(u, u) =

1

2

2∑
i,j=1

∂2f

∂xi∂xj |(1,2,1,2)

uiuj =

=
1

2

(
2 · 2

−2 · 2
)

(−1 − i)(−1 − i) +
1

2

(
2 · 1

−2 · 1
)

(−1 − i)2 +

+
1

2

(
2 · 1

−2 · 1
)

(−1 − i)2 +
1

2

(
0

0

)
2 · 2 = (−4, 4)T (3.84)

Fxx(u,u) = (0, 0)T (3.85)

With these terms the top three linear equations in Table 3.1 for h200, h020 and
h110 become((

1 1

−2 −1

)
− 2i

(
1 0

0 1

))
·
(

h200,1

h200,2

)
= −

(
−4

4

)
(

h020,1

h020,2

)
=

(
h200,1

h200,2

)
(3.86)(

1 1

−2 −1

)
·
(

h110,1

h110,2

)
= −

(
0

0

)
(3.87)

and once solved they give

h200 = h020 =
1

3
(8i,−4 − 8i)T (3.88)

h110 = (0, 0)T (3.89)

The third order terms (starting with z|z|2 :, in Table 3.1) require in the same way

φ300 = Fxx(u, h200)
1

6
Fxxx(u, u, u) = (8 + 12i,−8 − 12i)T

Qφ210 = Q · (Fxx(u, h110) + Fxx(u, h200) +
1

2
Fxxx(u, u, u) =

1

3
(8 + 10i, 2 − 18i)T
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to put up the z|z|2 equations in Table 3.1. The solutions to these equations are

h300 = h030 =
1

2
(9 − 6i,−7 + 9i)T

h210 = h120 =
1

3
(5 − 4i,−10 − i)T

The unfolding terms (µ and µz equations in Table 3.1) require

φ001 = Fµ = (−1, 1)T (3.90)

Qφ101 = Q · (Fxµ(u) + Fxx(u, h001)) = −
1

2
(1 + i,−2i)T (3.91)

These unfolding equations, once put up, gives

h101 = h011 =
1

4
(−1 + i, 2)T (3.92)

h001 = (0, 1)T (3.93)

Finally the two resonant terms of g become

g3 = u∗ · φ210 = (−3,−
i

3
) (3.94)

σ1 = u∗ · φ101 =
1

2
(3.95)

With these terms calculated the transformation under A in Table 3.1, combined
with the transformation back to the physical space in equation (3.46), maps the
normal form coordinates (z, µ) = (0.1+0i, 0) on the physical coordinates (x1, x2) =
(0.812, 2.36033).

Let us now see what happens if we use Table 3.2 instead?

Example 3.4 Using Table 3.2

There is very little qualitative differences between how Table 3.2 is used and how
Table 3.1 was used in the previous example. The same point (1, 2, 1, 2) is used and
hence the terms, and equations, already included in Table 3.1 will be identical.
The new terms are
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h400 = h400 = (−
1456

135
−

16i

3
,−

1636

135
−

356i

135
)T (3.96)

h310 = h130 = (
5

3
−

4i

3
,−3 −

i

3
)T (3.97)

h220 = (
16

9
,−

232

9
)T (3.98)

h500 = h050 = (
925

648
−

18205i

648
,−

761

108
−

4505i

162
)T (3.99)

h410 = h140 = (−
2011

360
−

6989i

360
,−

1507

180
−

328i

15
)T (3.100)

h320 = h230 = (−
190

27
−

871i

54
,−

139

6
−

491i

54
)T . (3.101)

and as seen the term h220 is real just as it should.

Now the question that remains to be answered in this chapter is how well the
simplified dynamics mimics the real behaviour. A related question is how big the
error is from not including the fifth order term when only using Table 3.1. These
two questions are answered in the next section.
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b. 75 ≤ t ≤ 85.

Figure 3.2 Phase plots of the Brusselator model. The dashed line be-
longs to the transformed system, with up to third order terms
included. The solid line corresponds to the directly solved sys-
tem. The two simulations started at the same initial state,
corresponding to z(0) = 1. As the figures shows, the trans-
formed system behaves differently at the beginning compared
to the directly simulated system. However, after a while the
two systems converge to each other. The operating point is
the same as the one in Section 3.4, and the settings of the
integrator can be found in Appendix A.
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b. 75 ≤ t ≤ 85.

Figure 3.3 Phase-plots of the Brusselator model. The dashed line belongs
to the transformed system, with terms up to third order in-
cluded, and the solid line to the directly solved equations. The
two simulations started at the same initial state, corresponding
to z(0) = 0.1. The phase diagram differs very little from each
other, and this is because the initial condition is closer to the
fix-point (cf Figure 3.2). The operating point is the same as
the one in Section 3.4, and the settings of the integrator can
be found in Appendix A.

3.5 Error analysis

When doing a model simplification it is sought to estimate the error that is the
price of the simplification. These contributions come from two sources. The first
source of errors is the approximation of not including the stable directions, i.e. the
projection on to the center manifold. This error is ideally non-existing if the system
starts on the center manifold, but since the center manifold is only approximated
there will always be a contribution from this truncation effect. The second source
of error is the normal form transformation. This is ideally an isomorphic mapping
between two descriptions of the dynamics on the center manifold but since also this
transformation is truncated, there will be an error contribution also from this part.
As with all Taylor expansions these truncations have errors of at least the first non-
included order in the corresponding expansion. In practice these two contributions
are not separable and it is also difficult to analyse when a particular order comes
through. Therefore two pragmatic approaches are used.
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Error in time series

The first method is based on the Root Mean Square (RMS) error which is defined
as

RMS =

√√√√√√
N∑

i=0

(x(ti) − xz(ti))
2

N
(3.102)

where xz is the one obtained through the transformation back from the center
manifold (see equation (3.7)), and x is obtained through direct simulation of (2.1).
Notice that for the Brusselator the bifurcation point does not lie in origin, and it
is therefore necessary to do the full transformation (3.46). The RMS error, used
like this, is the averaged error between two integrations starting in the same point
(which is chosen to lie on the center manifold, x(t = 0) = xz(z(t = 0))). In (3.102)
N is the number of points in the model for which the RMS error is evaluated. RMS
error is applied to the transformation of the Brusselator in the previous section
and then N =100.

Before doing the analysis of (3.102) it might be instructive to just look at some
plots comparing x and xz for various initial values. In Figure 3.2 the initial value is
far away from the bifurcation point, z(0) = 1 and the corresponding perturbation
in x is almost 0.5 in both x1 and x2. In the beginning x and xz goes in totally
opposite directions. Nevertheless, after some time, the systems have approached
the non-hyperbolic fix point and then the errors are hardly visible. If the systems
starts closer to the bifurcation point, like in Figure 3.3 (where z(0) = 0.1), the
difference between x and xz is not visible to the eye. Generally can be said that
for perturbations less than ten per cent (|x| ≤ 0.2), the difference have not been
visible. Figure 3.4 shows simulations where this perturbation has been done in state
space, together with a perturbation of 0.2 in the bifurcation parameter pB. As can
be seen, even this large perturbation in parameter space affects surprisingly little,
considering that only first order terms are included in the unfolding directions.

The feeling that perturbations less than 10 per cent gives no visible outcome is
further studied by the usage of the RMS measure, defined above. RMS plots are
made at 441 different initial values of z(t) for the Brusselator, and the axes named
Im and Re shows the imaginary and real part of the initial value of z(t). The initial
values are taken with a step size of 0.1 and then the RMS values are calculated
for the specific initial value and finally a mesh is made in Matlab which describes
how the error varies for different initial values of z(t). Such a plot is shown in
Figure 3.5. There can be seen that there is no direction where the mismatch is
significantly higher than in a randomly chosen direction. Therefore it seems that
the observations done in the simulations above were the typical situation one would
encounter.
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a. Time plots of xz1 and x1 0 ≤t
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Figure 3.4 Time plots of the two dimensional Brusselator when the bifur-
cation parameter is changed to pB = 1.8, pA is still equal to
1. The initial value is z(0) = 0.1. The plots shows that the
transformation still approximates the Brusselator, even if the
value of the bifurcation parameter is changed. The values of
the parameters and the settings of the integrator can be found
in Appendix A.

Error in derivatives
Another way of estimating the error obtained from the simplification is by compar-
ing the error in ẋ directly. Figure 3.6 is a plot showing this error and it has been
obtained as follows. For each z value tested, (3.7) gives a symbolic expression of
xz(z). At this point the difference

d

dt
(x − xz) = ẋ −

∂xz

∂z
· ż = ẋ − ẋz · (Jż + g(z, h(z))) (3.103)

is calculated. The first equality follows from the chain rule, and the second from
equation (3.9). Here the right hand side was easily calculated by the symbolic
differentiation functions in Mathematica. The error for each z1 obtained in (3.103)
is then plotted against the corresponding z value in the same way as for the RMS
error.

Differences between 3’rd and 5’th order expansions
The question what the difference in error between including and not including the
terms up to fifth order is, was also raised. The difference between third and fifth
order is largest at the beginning of the time series. The fifth order follow the
transient better than the third order. This was shown by calculating the RMS
error for 100 points in the time interval 0 ≤ t ≤ 1. In this time interval the RMS
error for the fifth order transformation is RMS5 = 0.003353 and for the third order
it is RMS3 = 0.126121. In the time interval 9 ≤ t ≤ 10 RMS5 = 0.007313 and
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Figure 3.5 RMS error plot of the Brusselator at different initial values
of z(t). As can be seen there is no direction in which the
agreement is significantly worse than any other. This is not
a proof, but it indicates that one could for this system and
operating point, simulate the transformed system instead of
the original for perturbation sizes less than the 10% observed
in the time-series analysis.

RMS3 = 0.058932. Time plots for the Brusselator at different initial values of z(t)
are shown in Figure 3.7.

3.6 Conclusions

The conclusions from this chapter are:

• That the center manifold theory and normal form theory combined as de-
scribed in Section 3.2 can indeed be used to do a local transformation of a
dynamical system that is valid in the neighborhood of a Hopf bifurcation
with perturbations in both parameter and state space. The simplified equa-
tion will always be two-dimensional and, even more, will always have the
same form (equation (3.58)).

• That tables describing how to do this transformation for fifth order terms in
z and for an arbitrary number of parameter directions have been generated
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Figure 3.6 The difference in derivatives of the two dimensional Brusselator
for different z values. The difference is smaller in the fifth
order, and this mean that the derivatives of the fifth order
transformation will follow the numerically solved system better
than the third order transformation and will therefore be more
accurate.

(see Table 3.2). Previously only up to third order terms and for a single
parameter has been published.

• That with the aid of Mathematica these transformations can easily be done
for a simple system like the Brusselator.

• That for the Brusselator the error is not symmetric towards perturbations in
different directions, but that the difference between a simulation generated
by the simplified system and the original system was not visible to the eye
for perturbations of less than 10%. That means that the transformation is
valid, not only in a mathematical sense, but for situations that might be used
in applications.

• That for larger perturbations than 10% the error eventually increases in its
visibility, but that this can be postponed by adding the fifth order terms in
the expansion (see Figure 3.6).
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a. Time plots for xz1(t) and x1(t)
at the bifurcation point where
z(0)=0.5.
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b. Time plots for xz2(t) and x2(t)
at the bifurcation point where
z(0)=0.5.
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c. Time plots for xz1(t) and x1(t)
at the bifurcation point where
z(0)=0.1.
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d. Time plots for xz2(t) and x2(t)
at the bifurcation point where
z(0)=0.1.

Figure 3.7 Time plots of the Brusselator of the fifth order. The dashed
line belongs to the transformed system and the solid line to the
numerically solved. The figures shows The Brusselator solved
at two different initial values of z(t), and the one closer to the
fix point will of course give the best result. The values of the
parameters and the settings of the integrator can be found in
Appendix A.
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Transformation table for Hopf bifurcation
x = uz + uz + h200z2 + h110|z|2 + h020z2 + h210|z|2z + h120|z|2z+

h300z3 + h030z3 + h400z4 + h040z4 + h220|z|4 + h130|z|2z2+

h310|z|2z2h500z5 + h050|z|5 + h410z3|z|2 + h140z3|z|2 + h230|z|4z+

h320|z|4z + h001µ + (h101z + h011z)µ

z2 : (J − γ2I) · h200 = −1
2Fxx(u, u)

h020 = h200

|z|2 : (J − γ0I) · h110 = −Fxx(u,u))

z3 : (J − γ3I) · h300 = −Fxx(u, h200) − 1
6Fxxx(u, u, u)

h030 = h300

(J − γ1I) · h210 = −Q · (Fxx(u, h110) + Fxx(u, h200) + 1
2Fxxx(u, u, u))

z|z|2 : u∗ · h210 = 0

h120 = h210

z4 : (J − γ4I) · h400 = − 1
24Fxxxx(u, u, u, u) − 1

2Fxxx(u, u, h200) − 1
2Fxx(h200, h200)

−Fxx(u, h300)

h040 = h400

|z|4 : (J − γ0I) · h220 = −1
2Fxx(h110, h110) − Fxx(u, h120) − Fx(h020, h200)

−Fxx(u, h210) − 1
2Fxxx(u, u, h020) − Fxxx(u, u∗, h110)

−1
2Fxxx(u∗, u∗, h200) − 1

4Fxxxx(u, u, u∗, u∗)
+2(u∗ · φ210) · h020 + (u∗ · φ210 + u∗ · φ210) · h110

+2(u∗ · φ210)h200

z2|z|2 : (J − γ2I) · h310 = −Fxx(h110, h200) − Fxx(u, h210) − Fxx(u∗, h300)

−1
2Fxxx(u, u, h110) − Fxxx(u, u∗, h200) − 1

6Fxxxx(u, u, u, u∗)
+(u∗ · φ210) · h110 + 2(u∗ · φ210) · h200

h130 = h310

z5 : (J − γ5I) · h500 = −Fxx(h200, h300) − Fxx(u, h400) − 1
2Fxxx(u, h200, h200)

−1
2Fxxx(u, u, h300) − 1

2Fxxxx(u, u, u, h200)

− 1
120Fxxxxx(u, u, u, u, u)

h050 = h500

z3|z|2 : (J − γ3I) · h410 = −Fxx(h200, h210) − Fxx(h110, h300) − Fxx(u, h310)

−Fxx(u∗, h400) − Fxxx(u∗, h110, h200) − 1
2Fxxx(u, h200, h200)

−1
2Fxxx(u, u, h210) − Fxxx(u, u∗, h300)

−1
6Fxxxx(u, u, u, h110) − 1

2Fxxxx(u, u, u∗, h200)

− 5
120Fxxxxx(u, u, u, u, u∗) + (u∗ · φ210) · h210

+3(u∗ · φ210) · h300

h140 = h410

Table 3.2 Transformation table for the Hopf bifurcation with up to fifth
order terms included. Continued in Table 3.3.
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Transformation table for Hopf bifurcation
z|z|4 : (J − γ1I) · h320 = −Q(Fxx(h120, h200) + Fxx(h110, h210) + Fxx(u, h220)

+Fxx(h020, h300) + Fxx(u∗, h310) + 1
2Fxxx(u, h110, h110)

+1
2Fxxx(u, u, h120) + Fxxx(u, h020, h200)

+Fxxx(u∗, h110, h200) + Fxxx(u, u∗, h210)

+1
2Fxxx(u∗, u∗, h300) + 1

6Fxxxx(u, u, u, h020)

+1
2Fxxxx(u, u, u∗, h110) + 1

2Fxxxx(u, u∗, u∗, h200)

+ 1
12Fxxxxx(u, u, u, u∗, u∗) − 2(u∗ · φ210)h120

−(u∗ · φ210 + 2u∗ · φ210) · h210

−3(u∗φ210) · h300)

h230 = h320

µ : (J − γ0I) · h001 = −Fµ

(J − γ1I) · h101 = −Q · (Fxµ(u, h200) · u + Fxx(u, h001))
µz : u∗ · h101 = 0

h011 = h101

g3 = u∗ · Fxx(u, h110) + u∗ · Fxx(u, h200 + 1
2u∗ · Fxxx(u, u, u))

g5 = Fxx(h120, h200) + Fxx(h110, h210) + Fxx(u, h220 + Fxx(h020, h300)

+Fxx(u∗, h310 + 1
2Fxxx(u, h110, h110) + 1

2Fxxx(u, u, h120)
+Fxxx(u, h020, h200) + Fxxx(u∗, h110, h200) + Fxxx(u, u∗, h210)

+1
2Fxxx(u∗, u∗, h300) + 1

6Fxxxx(u, u, u, h020) + 1
2Fxxxx(u, u, u∗, h110)

+1
2Fxxxx(u, u∗, u∗, h200) + 1

12Fxxxxx(u, u, u, u∗, u∗)) − 2(u∗ · φ210)h120

−(u∗ · φ210 + 2u∗ · φ210) · h210 − 3(u∗φ210)h300

σ1 = u∗ · Fxµ · u + u∗ · Fxx(u, h001)

ż = (iω0 + σ1µ)z + g3z|z|2 + g5z|z|4

γk = k ∗ iω0

Q · x = x − (u∗ · x)u

Table 3.3 Continuation from Table 3.2.



4
Improved Parameter Estimation

This is the first of three chapters presenting new identification methods for systems
of the general structure (2.4), utilizing some kind of bifurcation theory. For the
special model structure of (2.4) the parameter vector p that one seeks to estimate
naturally divides in three sub-vectors, px, x0, and py (see Section 2.1). In this
chapter we will show results for handling the first of these vectors, the px vector.
In the next chapter we will extend the methods to apply also for the x0 vector and
in Chapter 6 we will show results for handling some problematic py vectors. The
method in this chapter is applicable if one knows a specific input, ub, for which
the system undergoes a Hopf bifurcation. It will be shown how this knowledge
can be transformed into a constrained optimization problem, allowing a reduction
in the degrees of freedom describing the px vector. Two different methods for
doing this are presented. The first method is an elimination method and it shows
the benefit of reducing the search space with one degree of freedom most clearly.
However, it has the drawback of forcing the user to choose one specific parameter
to eliminate. The second method is a reduced gradient method, and it does not
have this drawback. It, however, only assures linear convergence.

The chapter starts by rehearsing the basic notations and giving an initial for-
mulation of the problem. The next section reformulates the question so that it can
be fit into the existing constrained optimization formalism, and also introduces a
way to find a feasible starting point for the estimation. Then the elimination and
the projection methods are introduced, and their basic properties are shown. The
two methods are tried out on the Brusselator, and their performance are compared
to a straightforward approach, like the one described in Section 2.2. The chapter
ends with a summary of the conclusions.
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4.1 The problem
We will start with a short rehearsal of the key equations presented in Chapter 2,
before we turn to the specific problem that this chapter is interested in.

In this chapter we will assume that the time series ZN is given, and that it has
been generated from a system of the general structure (cf. (2.4))

ẋ = f(x, µ) = f(x, px, u) (4.1a)
y = y(x, µ, py) (4.1b)

x(tstart) = x0 (4.1c)

The three unknown parameters are collected in a single parameter vector (cf. (2.5))

p = (px, pnx) = (px, py, x0) (4.2)

These parameters are to be estimated from the time series according to the least
square selection criteria (cf (2.8))

p̂ = arg
p

min VN(p, ZN) (4.3)

where (cf (2.9))

VN(p, ZN) =
1

N
ΣN

t=1(y(t) − ŷ(t|p))2 (4.4)

Now, what is added in this chapter is that we know that the system is at a Hopf
bifurcation for a specific input ub. This value might have been obtained through
an analysis prior to (or posterior to) the collection of the time series, but it could
also have been detected by an analysis of the collected time series. If the latter is
the case, let tb denote the time at which this detection was done. Then tb and ub

are related by the following relation

ub = u(tb) (4.5)

We, however, emphasize that it is not necessary to connect ub with a specific time.
Now the question that this chapter poses is the following:

How can one include the knowledge that ub corresponds to a Hopf bifurcation
point, in the identification problem (4.3)?

4.2 Starting the estimation
In this section is described how to reformulate the problem just described into an
ordinary constrained optimization problem. For reasons that will be clear later, it
will be important to start the optimization processes with an initial estimate that
is a bifurcation point, and fortunately there are continuation methods that can do
this. Continuation methods are a part of the applied bifurcation theory, and one
common method is described in Section 4.2.2.
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4.2.1 Reformulating the problem

To understand how to formulate the extra condition that the system is at a Hopf
bifurcation for u = ub, we first need to recall the basic features of a Hopf bifurca-
tion. The two main features defining a Hopf bifurcation that we will later utilize
are the following

• A Hopf bifurcation point (xb, µb) for a dynamical system (4.1a) is a non-
hyperbolic fix point with exactly two purely imaginary critical eigenvalues
(zero real part) to the Jacobian J = ∇xf(xb, µb).

• As the system leaves the bifurcation point, through variations in one of the
parameters µb,i, the complex conjugated pair of eigenvalues will leave the
imaginary axis. This latter condition is called the crossing-criteria. If one of
the critical eigenvalues is denoted λ1 this criteria can be written as (Wiggins,
1990)

d(Re(λ1(xb, µb))

dµb,i
6= 0 (4.6)

From the first of these two criteria we can construct the following test for a bifur-
cation point.

Let λi(x, µ) denote the i:th eigenvalue to the Jacobian of (4.1a) evaluated at
the point (x, µ). Further let FHopf be a scalar function defined by the following
product

FHopf(x, µ) :=
∏
i<j

(λi(x, µ) + λj(x, µ)) (4.7)

Then it follows from the first of the two conditions for a Hopf bifurcation, mentioned
above, that if (xb, µb) is a Hopf bifurcation it must fulfill the following relations

f(xb, µb) = 0 (4.8)
FHopf(xb, µb) = 0 (4.9)

The first of these two relations is fulfilled if and only if (xb, µb) is a fix-point,
and since a Hopf bifurcation point is also a fix-point, then (4.8) is fulfilled for all
Hopf bifurcation points. The equation (4.9), on the other hand, is not fulfilled by
all fix-points. However, since a Hopf bifurcation has one pair of purely imaginary
eigenvalues, one factor in (4.7) will be zero. Therefore also the entire product, i.e.
FHopf will be zero. We thus conclude that both (4.8) and (4.9) will be fulfilled
if (xb, µb) is a Hopf bifurcation point. Let us now see how we can use this test
to reformulate the problem given in Section 4.1 into a constrained optimization
problem.

In the problem given in Section 4.1 we knew that the system was operating
at a Hopf bifurcation point for a specific ub. That means that for the estimated
parameter p̂x to fulfill the given constraint there must exist a state xb such that
(xb, px, ub) fulfills (4.8) and (4.9). Let us re-state this in a more compact way. Let
cHopf denote the n+1-dimensional vector containing both the condition in (4.8)
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and in (4.9). Further let it always be evaluating the u part of the µ vector at ub,
i.e.

cHopf(x, p) := cHopf(x, px) := (fT (x, px, ub), FHopf(x, px, ub)))T (4.10)

Now we can reformulate the original estimation problem (4.3) as follows. The
estimated parameter, p̂ is determined as follows

p̂ := arg
p

min{VN(p, ZN);∃xb so that cHopf(xb, px) = 0} (4.11)

To utilize the techniques from constrained optimization we need to formulate the
constraint into an equality/inequality constraint on the free parameters only. This
is done by including the state vectors xb as additional parameters in the opti-
mization method. That means that we let the the parameter vector p include the
following components

p = (px, py, x0, xb) (4.12)

With this p vector a final reformulation of the problem can be made

Reformulation: The estimated parameter, p̂, defined by (4.12) is identified
in the following way:

p̂ := arg min
p

{VN(p, ZN)} (4.13a)

cHopf(xb, px) = 0 (4.13b)

The original problem has now been transformed to the standard nonlinear opti-
mization problem 4.13a with the nonlinear constraint (4.13b).

Equation (4.13) is the formulation of the problem that will be used in this
chapter. The most apparent drawback of this formulation is that it has introduced
n new parameters, compared to the original estimation problem. As will be shown
in the rest of the chapter, this drawback is outweighed by the presence of the
extra condition. The extra condition vector cHopf has n + 1 dimensions, i.e. one
dimension higher than that of the new parameter vector xb, and therefore the
net effect of adding both xb and cHopf is a reduction of the degrees of freedom
describing the parameter vector.

The two methods presented to solve (4.13) will both require that the starting
point fulfills the condition. For bifurcations there is fortunately a rich literature
with methods for finding such points (Allgower and Georg, 1990). These techniques
are called continuation techniques, and one of these is described in the next section.

4.2.2 Finding a feasible point
In this section a one-dimensional continuation method is presented. Continuation
methods allows for following (continuation) of the attractors (e.g. fix points and
limit cycles) as the parameter µ varies, i.e. it allows for bifurcation diagrams, like
e.g. Figure 2.1 and 2.2, to be drawn. In general the varied parameters are a subset
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to the µ vector, and can hence be multi-dimensional. For our purposes, however,
we only need to vary one parameter at a time. Let the parameter that is varied be
denoted µk. First the three parts of the method are briefly described and then the
actual algorithm is given. The method is described as it is implemented in Janet
(Janet, 2002). For a more formal introduction to the subject, and to other similar
methods, the reader is referred to Allgower and Georg (1990).

Extending the system

First the parameter, µk, on which the continuation shall be done has to be chosen.
Let then this parameter be considered as a state variable, i.e. let the vector x =
(x1, ..., xn)t be extended to xext = (x1, ...xn, pk), and let the parameter vector
be diminished from µ = (µ1, ..., µs) to µdim = (µ1, ..., µk−1, µk+1, ..., µs). This is
only a redistribution of the same number of parameters and variables and a point
(x, p) is therefore equal to a point (xext, µdim) if the corresponding values are the
same. Therefore the condition for an extended point xext,f to be a fix point is
transformed from (4.8) to

f(xext,f, µdim) = 0 (4.14)

which is the basis for calculating the predictor step.

The predictor step

The predictor step is calculated by finding a step in xext, that does not change the
value of f, were it a plane. Therefore it is the solution of the following equation(

df
dx

df
dµk

0 1

)(
∆x

∆µk

)
=

(
0

1

)
(4.15)

Here the constant 1 is arbitrary and the whole last equation is simply added to
obtain a system of equations which has as many unknowns as equations. Since the
system also is linear it has an easily obtainable solution. The solution vector is,
once obtained, added to the original extended vector to obtain the predicted value,
i.e.

x
i+1,pred
ext = xi

ext + (∆x,∆µk) ∗ h (4.16)

where h is the somehow chosen step length.

The corrector step

The predicted value x
i+1,pred
ext is, however, not necessarily on the bifurcation man-

ifold, i.e. the function f(xi+1,pred
ext , µdim) is not necessarily equal to zero. Here

Newton-Rhapson iterations finds the xext that solves the equation (4.14) and the
outcome of these iterations is the corrected value xi+1,corr

ext .
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The algorithm

To summarize the three steps, making up one continuation step they are here
written as an algorithm. The auxiliary algorithm, Newton(x, f, J, acc), means
the Newton-Rhapson root-finding algorithm, for the function f, with Jacobian J,
starting at x, and with the solution, x∗, satisfying |f(x)| < acc.

Algorithm 4.1. One Continuation Step

Input: The starting parameter values of the chosen continuation parameter µi
k as

well as of the full parameter vector µi, corresponding fix point (xi
f, µ

i), step length
h (including direction) and correction accuracy acc.

1. Extending the system: xext = (xf,1, ...xf,n, pi
k)

µdim = (µ1, · · · , µk−1, µk+1, · · · , µr)

2. Calculating the predictor step: Solve

(
df

dxext,1
. . . df

dxi
ext,n+1

0 0 1

) ∆xext,1

...
∆xext,n+1

 =

 0
...
1

 (4.17)

3. Taking the predictor step: xext,pred = xext + ∆xext ∗ h1

4. Correcting: xext,corr = Newton(xext,pred, f(xext, pdim),∇xextf(xext, µdim), acc)

5. return xext,corr

Output: Parameter value µi+1
k after one continuation step and the correspond-

ing fix point (xi+1
f , µi+1

k ).

In Figure 4.1 a one-dimensional continuation plot is included as a first step in
the algorithm depicted there. It is from the Brusselator example of 4.5, and the one-
dimensional continuation line is the vertical line going from (pA, pB) = (0.8, 1.8)
down to (pA, pB) = (0.8, 1.64), which is the bifurcating pB value for this pA.

4.3 The first optimization method - by elimination

This section describes the first method to solve (4.13). First, the steps are ex-
plained, then the steps are combined into the complete algorithm, and third, the
properties of the method are shown.

4.3.1 General description

In this subsection the three parts of the algorithm are explained. The three steps
are: the initial projection, the reduction of the eliminated parameters, and ordinary
optimization from the feasible point in the reduced space.



4.3 The first optimization method - by elimination 57

0.75 0.8 0.85 0.9 0.95 1 1.05

1.5

1.6

1.7

1.8

1.9

2

2.1
Successful continuation/optimization

p
A

p B

initial Projection
Optimization
Bifurcation curve

Figure 4.1 Plot of two continuations done when applying the new methods
to the second sample in Section 4.5. First a projection down to
the bifurcation manifold is done, this is the vertical line and it
is done through the one-dimensional continuation techniques
described in Section 4.2.2. Then an optimization along the
manifold is done, until the optimum just above the point (1,2)
is found.

Finding a feasible point

The way the elimination is done here relies on that the initial estimate, p0 =
(p0

x, p0
y, x0

0, x0
b), is on, or at least close to, the bifurcation manifold. This means

that we want
cHopf(p0

x, x0
b) = 0 (4.18)

If this should not be the case for the initial estimate, i.e. if it would be unfeasi-
ble, it would have to be projected onto the bifurcation manifold as described in
Algorithm 4.1. When cHopf is sufficiently close to zero the exact point on the
bifurcation manifold can be found by means of the Newton algorithm. Note that
one could not do Newton iterations all the way since the function cHopf only has
gradients pointing in towards the bifurcation manifold in closest vicinity of the
manifold.
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Reducing the search space

There are two variables to eliminate, xb and a chosen parameter from px, arbi-
trary called px,k. Then these will be rewritten as functions of the remaining px

parameters. Let the parameters be denoted

p = (px,1, . . . , px,k(px,free), . . . , py, x0, xb(px,free))

where

px,free := (px,1, . . . , px,k−1, px,k+1, . . . ) (4.19)

and where the dependent parameter is chosen to fulfill the constraint (4.10) for
each px,free. In practice the dependent parameter px,k will be determined by
an iterative process like e.g. the Newton-Rhapson method. Let the eliminated
variables be denoted

pelim(px,free) := (px,k(pfree), xb(pfree)) (4.20)

Ordinary optimization in the reduced space

In this algorithm, the choice of ordinary iteration method in the reduced system
is arbitrary. Once the reduction to the reduced space (px,free, py, x0) has been
done the problem is again an ordinary unconstrained optimization problem. In the
algorithm, the Levenberg-Marquardt (LM) method has been chosen (Nocedal and
Wright, 1999).

4.3.2 The algorithm
By putting all three steps above together the algorithm is as follows

Algorithm 4.2. EliminationSolution

Input: Initial estimate of all parameters, p0 = (p0
x, p0

y, x0
0, x0

b), step length (sign
gives direction), h, parameter for projection, px,k, tolerances acc1, acc2, acc3,
perturbation size, pert.

A Initial projection:

A1 if cHopf(x0
b, p0

x) < acc1, then (xi
b, pi

x,k) = (x0
b, p0

x,k), goto A4

A2 else (xi
b, pi

x,k) = (x0
b, p0

x,k)

A3 while cHopf(xi
b, pi

x) > acc1 do ( (xi+1
b , pi+1

x,k ) = OneContinuationStep(xi
b, pi

x,k)
(xi

b, pi
x) = (xi+1

b , pi+1
x,k ))

A4 (xi
b, pi

x,k) = Newton((xi
b, pi

x,k), cHopf,NumPertxb,px,k
(cHopf, pert), acc2)

A5 pi = (p0
x,1, . . . , pi

x,k, . . . , p0
y, x0

0, xi
b)
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B Eliminating the n + 1 parameters:

– p = (px,1, . . . , px,k(px,free), . . . , py, x0, xb(px,free)

– px,free := (px,1, . . . , px,k−1, px,k+1, . . . )

– pelim(px,free) := (px,k(px,free), xb(px,free))

– where pelim = Newton((xb, px,k), cHopf,NumPertpelim
(cHopf, pert), acc2)

determines pelim given px,free

C Ordinary optimization:

• return: p = LM((pi
x,free, py, x0), acc3)

Output: estimated parameter p̂, where cHopf(p̂x, x̂b) < acc, and VN(p̂|ZN) has
a local minimum, when constrained to the bifurcation manifold.

4.3.3 Properties of the algorithm
The two basic features of the method are now stated.

Theorem 4.1. Soundness of method

If a point (px,∗, py,∗, x0,∗) is a minimum of the original estimation problem (4.3),
and it is on the bifurcation manifold, it is also a minimum of the constrained
optimization problem (4.13), given the same time series ZN.

Proof. Assume p∗ = (px,∗, py,∗, x0,∗) is a minimum of the original estimation prob-
lem (4.3), that is also a Hopf bifurcation point. The argumentation in Section 4.2.1
showed that this point will also fulfill cHopf(p∗) = 0 of (4.13). That the original
point is a minimum means that

VN((px,∗, py,∗, x0,∗) ≤ VN((px,∗, py,∗, x0,∗) + δp, ZN) for all δp < ε (4.21)

and hence also the following relation will be fulfilled

VN((px,∗, py,∗, x0,∗) ≤ VN((px,∗, py,∗, x0,∗) + δp, ZN) for all δp < ε

where δp are restricted by cHopf(px,∗, py,∗, x0,∗) + δp) = 0 (4.22)

That means that the given point will be a minimum also to (4.13).

Remark: Notice that even though the algorithm gives an answer that fulfills
(4.13b) this does not mean that the parameter vector describes a Hopf bifurcation.
This is because (4.13b) is only a necessary constraint, and the output of the algo-
rithm could also be another non-hyperbolic point than a Hopf bifurcation point. A
final check, with e.g. a center manifold reduction, a transversality check, or a check
with time series, for the output parameter p̂, must hence be done. This means
that one cannot guarantee that all local minima that are outside of the bifurcation
manifold, will be eliminated as solutions, even though, for minima far away from
the manifold, this will be the case. There might, however, also be added new local
minima to the search space, due to the restriction.
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Theorem 4.2. Benefits of method

The Algorithm 4.2 converges to a minimum (px,∗, xb,∗) on the surface cHopf = 0

with the same convergence as the method chosen under C in the algorithm. The
dimension that the method under C has to work with is one less than the same
algorithm would have had to work with when applied to the original non-constrained
problem.

Proof. In the original non-constrained problem (px, py, x0) are varied indepen-
dently of each other. In Algorithm 4.2 only (px,free, py, x0) are considered in-
dependent of each other, and since dim(px) = dim(px,free) + 1, the degrees of
freedom for search of minima have been reduced by one.

4.4 The second optimization method - a reduced
gradient method

The second optimization method presented is a reduced gradient method. Just as
the first method this method also reduces the degrees of freedom with n + 1 but it
does not do it with the same parameters all the time. On the contrary, it does it
with all parameters, and differently for each step in the integration. This method
will be introduced in the same way as the previous one was, i.e. first with a general
description in words, then with the actual algorithm, and finally with statements
and proofs of its properties. The initial projection is the same as before, but the
rest of the method is taken from Evtushenko (1985).

4.4.1 General description
The method consists of two parts, the initial projection and the extended Cauchy
method.

Finding a feasible point

Also this method needs to start at the bifurcation manifold and hence an initial
projection has to be done. This is done in exactly the same way as for the previous
method using a one dimensional continuation method and a Newton step.

The extended Cauchy equation

The extended Cauchy equation is written (see e.g. Evtushenko (1985)):

dp

ds
= −[∇pVN(p, ZN) + (∇pc(p))Tw(p)] (4.23)

Here we demand dc(p)
ds = 0 for all p(s) solved by (4.23). Hence

dc(p)

ds
= −∇pc(p)[∇pVN(p, ZN) + (∇pc(p))Tw(p)] = 0 (4.24)
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and if the matrix (∇pc(p))(∇pc(p))T is invertible, the matrix w can be solved to:

w(p) = −[(∇pc(p))(∇pc(p))T ]−1(∇pc(p)∇pVN(p, ZN)) (4.25)

Putting this back into equation (4.23) gives

dp

ds
= −∇pVN(p, ZN) + (∇pc(p))T [(∇pc(p))(∇pc(p))T ]−1(∇pc(p)∇pVN(p, ZN)) =

= − M(p)∇pVN(p, ZN) (4.26)

where the projection operator M is defined according to:

M(p) = I − N(p) (4.27)
N(p) = (∇pc(p))T [(∇pc(p))(∇pc(p))T ]−1∇pc(p) (4.28)

4.4.2 The algorithm
Putting the two steps above together, the algorithm becomes:

Algorithm 4.3. Extended Cauchy

Input: An initial estimate p0 = (p0
x, p0

y, x0
0, x0

b), a continuation parameter px,k, a
step length (and direction) h, tolerances and perturbations acci and pertj.

A Initial projection:

A1 if cHopf(x0
b, p0

x) < acc1, then (xi
b, pi

x,k) = (x0
b, p0

x,k), goto A4
A2 else (xi

b, pi
x,k) = (x0

b, p0
x,k)

A3 while cHopf(xi
b, pi

x) > acc1 do ( (xi+1
b , pi+1

x,k ) = OneContinuationStep(xi
b, pi

x,k)
(xi

b, pi
x) = (xi+1

b , pi+1
x,k ))

A4 (xi
b, pi

x,k) = Newton((xi
b, pi

x,k), cHopf,NumPertxb,px,k
(cHopf, pert), acc2)

A5 pi = (p0
x,1, . . . , pi

x,k, . . . , p0
y, x0

0, xi
b)

B Solving the Cauchy problem:

B1 Calculate ∇pVN(p, ZN) = NumPertx(VN(p, ZN), pert),
and M(p) according to (4.27).
RHS(p) = −M(p)∇pVN(p, ZN)

B2 pi+1
pred = ODESolver(p, RHS(p), acc3)

B3 pi+1
corr = Newton(pi+1

pred, cHopf,NumPertpext(c
Hopf, pert), acc2)

– pi+1 = pi+1
corr

B4 if |VN(pi+1, ZN) − VN(pi, ZN)| > acc4 ∗ VN(pi, ZN)
then pi = pi+1 goto B1

– else return: p̂ = pi+1

Output: An estimated state p̂ where cHopf(p̂) < acc2
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4.4.3 Convergence properties
The following two theorems, taken from the book by Evtushenko (1985), shows the
convergence properties and rate of the method.

Introduced the set

Ω := {p ∈ R
I;VN(p, ZN ≤ VN(p0, ZN)), c(p) = 0} (4.29)

Now the first convergence theorem can be stated as

Theorem 4.3. Convergence Theorem

Let the functions defining the problem (4.13) be differentiable on an open set con-
taining Ω, where c(p) = 0 satisfies the constraint qualifications; let the local mini-
mum of VN(p, ZN) be attained on Ω at the unique point x∗. Then the solutions of
the system (4.26) converge to the point x∗ as s → ∞.

Proof. See Evtushenko (1985).

The second theorem tells what the convergence rate is:

Theorem 4.4. The convergence rate of solving a corresponding Cauchy problem,
like (4.26), by means of ordinary integration, is linear.

Remark: Hence it might be advisable to end the iterations with a few steps with
an ordinary quasi-Newton method.

4.5 Identification of the Brusselator
The Brusselator is once again the model used to test the new method. The dif-
ferential equations are the same as always, but the scenario differs a little from
example to example. Let the sensor noise noise be denoted n ∈ N(0, σ), and let
the sensor be measuring the variable x2 in (2.15). Then (2.15) in the form of (2.4)
is

ẋ1 = pA + x2
1x2 − pBx1 − x1 (4.30a)

ẋ2 = pBx1 − x2
1x2 (4.30b)

y = x2 + n (4.30c)

The scenario is as follows. A couple of engineers have the Brusselator in their
chemical tank and they have the possibility to slowly control pA, and pB, but their
absolute values are not yet known. The task is to calibrate the actuator, i.e. to
estimate pA and pB. They decided to fix pA and vary pB in such a way that the
system lies in the vicinity of the bifurcation manifold. Two different samples are
collected:
Sample 1: Here they stopped just before the bifurcation ((pA, pB) = (1, 1.99).
The time series is shown in the upper plot in Figure 4.2. Initial values (x1(0), x2(0)) =
(1, 1.99)
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Sample 2: Now they stopped just after the bifurcation ((pA, pB) = (1, 2.01). The
time series is shown in the lower plot in Figure 4.2. Initial values (x1(0), x2(0)) =
((1.00, 1.88)).

To generate the time series the Runge-Kutta fourth order method has been used
with time-step h = 0.1. The variance of the noise was σ = 0.1. Now we will see
how well an optimization method performs with and without adding the constraint
cHopf.
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Figure 4.2 The first 50 seconds of the time series used for sample 1 and 2.
For the first sample the control parameters to be determined
are put just before the oscillations starts and in problem 2
just after. The series have been integrated and the parameters
necessary for their regeneration are (pA, pB)=(1,1.99) (Sample
1), = (1,1.88) (Sample 2), (x1(0), x2(0))=(1,1.99) (Sample 1),
= (1.00,1.88) (Problem 2). The integrator is a fix step RK(4),
step length 0.1 and σ = 0.1, t ∈ [0, 300].
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Results before adding cHopf

We will study the effect of adding the new constraint on the convergence regions,
but not on other performance measures like the convergence rates etc. Finding the
convergence regions is equivalent to finding the basins of attraction for the correct
minimum, when studying the Cauchy formulation of (4.3). With sufficiently short
iteration steps this determination will not depend on the optimization method.
The equivalent Cauchy formulation is studied, and it is solved with a fourth order
Runge-Kutta method. In terms of the original formulation (4.3) this is equivalent
to a steepest descent method. The integrator is imbedded in a trust-region method
to ensure that it does not take too long time-steps.
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Figure 4.3 The typical behaviour of an estimation process for the first
sample. The fraction pA

pB
converges to the correct value, while

the exact values of pA and pB are missed. The convergence
to pA and pB is also slower than that to the fraction. Since
this convergence process is for Sample 1, there is not sufficient
information in the time-series to find the correct value of pA

and pB. However, the same phenomenon appears also for the
other sample.



4.5 Identification of the Brusselator 65

0.5 1 1.5 2 2.5
1

1.5

2

2.5

3

3.5

4

4.5

5

Estimated p
A

E
st

im
at

ed
 p

B

Figure 4.4 The points to which the optimization process has converged.
As can be seen there are a number of points that have converged
to the correct value, (pA, pB) = (1, 2.01). It can, however, also
clearly be seen that the estimates p̂A and pB are correlated.
When adding the constraint cHopf all the estimates lie clearly
on a line.

Sample 1: Figure 4.3 shows a typical convergence process. Since there is no dy-
namics included in this sample, only the fix point value of x2 is measured. This
value is known to be equal to the fraction pB/pA, and since both these values are
assumed unknown, only the correct fraction can be estimated. For Sample 1 this
is equal to 1.99, and as can be seen in Figure 4.3 the algorithm converges quickly
to a fraction value that is very close to the correct one. It then keeps varying pA

and pB but keeps the fraction constant. Since the true value of pA is 1, it can also
be seen that the algorithm brings pA in the wrong direction.

Sample 2: Here there is dynamics included in the time-series, although not any
transients. Therefore more information than the correct fraction pB/pA can be
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estimated. However, as can be seen in Figure 4.4, it is only the estimations that
have started in the vicinity of the correct value (pA, pB) = (1, 2.01), that will
converge to the global minimum. Initial estimates further away will estimate the
fraction pA/pB correctly, had the time-series been a steady state. This is under-
standable when looking at the objective function in Figure 4.5; it has a clear valley
corresponding to the correct fraction, and only less distinct global minimum in this
valley.
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Figure 4.5 The objective function for the second sample. Here the cor-
rect value of x1(0) has been used when calculating the objec-
tive function. As can be seen there is a valley along the line
pB/pA = 2, i.e. the same relation as in Sample 1 is still dom-
inant. Now, however, there is also a small global minimum
appearing in the valley, and therefore the correct value is ob-
tained for the starting estimates close to the correct one (see
Figure 4.4).

Results after adding cHopf

When adding the new parameters xb together with the new constraint cHopf and
solving the problem with one of the two suggested methods, a typical convergence
process looks like the one in Figure 4.1. As can be seen the initial estimate is first
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V on the Bifurcation curve

Figure 4.6 The objective function on the bifurcation curve, plotted against
the parameter pA. Since there is only one degree of freedom
left pA uniquely determines the objective function. When com-
paring this objective function with the one obtained without
using cHopf (see Figure 4.5) one sees that the cHopf constraint
does indeed simplify the problem.

projected down to the bifurcation manifold (pB = 1+p2
A) and then the optimization

process carries on, staying on the manifold. In Figure 4.6 the objective function on
the bifurcation curve is plotted. As can be seen it is easy to find the only minimum,
and therefore all points converged to the same minimum, the correct one. When
comparing this result with the uncertain estimation in Figure 4.4, we conclude that
the optimization processes have been improved. When comparing Figure 4.6 with
Figure 4.5 we understand that the improvement is due to the reduced degree of
freedom in the search space.
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4.6 Conclusions
System identification of nonlinear ODEs is a difficult problem. One of the diffi-
culties comes from the local minima in the objective function. This, and other,
problems are simplified if one can reduce the search space. Here have been shown
two methods that allow for a reduction in the degrees of freedom describing the
px parameters, i.e. the parameters appearing the differential equation (4.1a). The
methods are applicable for systems known to operate close to a supercritical Hopf
bifurcation. The main idea is to introduce n new parameters xb describing the
fix-point corresponding to the current estimate of the px parameters. Then one
can introduce n + 1 new constraints, cHopf, and the net result is that one degree
of freedom has been reduced. The price for the reduction is that one has to use
more advanced optimization methods. The two presented methods are two stan-
dard constrained optimization methods: one elimination method and one reduced
gradient method. The former has the advantage of translating the problem back to
an unconstrained optimization problem, and therefore allowing the user to choose
an appropriate method for the transformed problem. The second method has the
advantage of not forcing the user to choose a specific parameter to eliminate. The
advantage of the new methods has been shown on the Brusselator.



5
Experimental Designs for Estimating the

Initial Value Parameters

This is the second of three chapters that presents new identification techniques
for systems of the general structure (2.4), utilizing bifurcation theory. We started
the previous chapter by considering the common subdivision of p into the three
sub-vectors, px, x0 and py

p = (px, x0, py) (5.1)

In the previous chapter was shown how one could utilize the knowledge that a
certain input value, ub, corresponds to a bifurcation point. The knowledge was
utilized by introducing the n new parameters xb, which allowed for the given
knowledge to be formulated by n + 1 new constraints cHopf. Since there was one
more constraint than new parameters, the net effect was a reduction in degrees of
freedom describing the px parameters, and two methods was presented that could
handle the constraints.

In this chapter we will introduce new ways of handling the x0 vector. This pa-
rameter vector, in contrast to the px vector, is not particularly interesting in itself,
but is estimated more by necessity when forming the objective function. However,
for systems with large state-spaces, due to e.g. a detailed description of the dynam-
ics, or to the inclusion of spatial aspects, this vector can become big (>1000). In
such cases, this vector alone can make a system identification problem unsolvable,
even when the desired number of parameters is not so large. Therefore, methods
that avoids estimating the x0 parameters as ordinary parameters are sought.

One well-known such method is to let the system start in a steady state. In
this chapter is presented a way of generalizing this simple idea to systems operating
on the center manifold, close to a supercritical Hopf bifurcation. In Chapter 3 we
saw that the center manifold theory allows for a two-dimensional description of

69
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Figure 5.1 An time series that starts in a steady state. Here the system
is only singularly perturbed, but such a simple following is
not necessary. If the time series starts with a stationarity, the
methods of section 5.1 can always be applied, irrespectively of
what happens during the rest of the time series.

any dynamics on the center manifold, irrespectively of how large the original state-
space is. Since we already developed methods that keep track of the (xb, µb)
vector during each step in the optimization process, it is straightforward to do the
center manifold reduction at each step, and then with these parameters, describe
the initial state vector. This is the basic idea behind the new methods presented
in this chapter, and it is thus a combination of the methods from Chapter 3 and
Chapter 4.

The material is structured as follows. In the next section the idea with starting
the system in a steady state is recalled. Section 5.2 gives the basic idea, and the
basic relations behind this chapter. Then, in Section 5.3 and 5.4 the method is
specified for systems with arbitrary initial values (on the center manifold), and for
systems with initial stationary oscillations, respectively. The chapter ends with a
summary of the conclusions.

5.1 Simplifications by starting in a steady state

As a background to the contribution in the next section, this section recalls the
well known advantages of starting at steady state. As in the previous chapter the
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model structure is of the general form (cf. equation (2.4))

ẋ = f(x, µ) = f(x, px, u) (5.2a)
y = y(x, µ, py) (5.2b)

x(tstart) = x0 (5.2c)

where we remind of the convention that the time is chosen so that tstart = 0 unless
otherwise specified. The estimated parameters are determined by (cf (2.8))

p̂ = arg
p

min VN(p, ZN) (5.3)

where (cf (2.9))

VN(p, ZN) =
1

N

N∑
t=1

(y(t) − ŷ(t|p))2 (5.4)

What we are seeking now are ways of handling the parameters x0.
In Figure 5.1 is shown a time series from a system that starts in a steady state

and that is perturbed at time tpert. After the perturbation the system is allowed to
operate freely according to the dynamical equations (5.2a). Here the perturbation
is assumed to be known. Hence if one knows the state of the system before the
perturbation, one knows the state after the perturbation. Let uP be the known
perturbation, and assume that the perturbation was done momentary. Then it can
be formulated as an extra term +uPδ(t−tpert) in the differential equations. When
a situation like this is possible to create, the problem of estimating initial values
is as easy as it can get. No initial values has to be estimated at all, even though
there are dynamics in the time series. This comes from the fact that the presence
of the initial stationarity gives the n extra constraints

f(x0, µ(tsteady)) = 0 (5.5)

where tsteady is any time during which the stationarity is present. If there are
only steady states (no transients) included in the time-series ZN, the problem can
also be reformulated to a nonlinear equation problem. If this latter approach is not
chosen, the x0 parameters can be eliminated by e.g. the Newton method in the same
way as the parameters xb were eliminated in Section 4.3. The situation of Figure
5.1 is, however, often not obtainable, and might sometimes, for other reasons, not
be optimal (even from an identification point of view). Common reasons are the
following

• Sometimes it is not experimentally possible to perturb the system and re-
veal its dynamics, and even a single perturbation might sometimes not reveal
enough of the dynamics of the system. This leads to problems with iden-
tifiability, and to high uncertainties (covariances), of at least some of the
parameters.
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• The perturbation is not possible to do momentary. If this problem is signifi-
cant the state after the perturbation will have to be assumed unknown, and
hence a full state vector x(tpert) has to be estimated anyway. However, the
perturbation will always be non-momentary, and hence this effect will only
be a matter of degree.

• Sometimes it is not possible to have the system at a stationary state. Either
because it is too expensive, or because it is technically impossible, experi-
ments of this type cannot be done. Examples of the latter problem can be
historical or economical models.

When it is not possible (or sufficient) to obtain a situation like the one described
in Figure 5.1, it might still be possible (and sufficient) to bring the system close
to a bifurcation, and then make observations there. To make advantage of this
possibility is the topic of the rest of the chapter.

5.2 Simplifications close to a Hopf bifurcation
The initial value parameters x0 will be parametrized using minimal degrees of
freedom. For each iterative step in the (px, py) estimation x0 will be determined
in a separate initial value optimization step, using the minimal parameters. The
objective of this section is to explain the reasons for and feasibility of this approach.

Parametrizing x0 through z1 and pµ

To understand the common idea of the methods presented, first recall the trans-
formation derived in Chapter 3. There it was shown that a point, xz, in the real
space, but on the center manifold, can be described as (cf. equation (3.46))

xz = xb + z + h(z1, pµ) (5.6)

where z = z1u + z1u is a real vector in the center space and pµ = µ − µb where
(xb, µb) is the bifurcation point in the state-parameter space. Finally h is the
vector between the center space and the center manifold (see Figure 3.1). That
means that if the system is known (or chosen, through the experiment design) to be
operating on the center manifold at the time t = tstart, the initial state parameter
vector x0 can be parametrized as follows

x0(px, xb, z1, pµ) = xb + z + h(z1, pµ) (5.7)

where (xb, px, u(tstart)) would be at the bifurcation point, and µ = (px, u(tstart))+
pµ would be the real (time varying) value of µ.

Dimensionality of the parametrization

In equation (5.7) x0 have been parameterized by four different parameter vectors.
Two of these, xb and px, are already estimated in each step by the methods de-
scribed in the previous section, and hence they do not add new complexity, if the
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new methods are based on the methods of Chapter 4. The other two, z1 and pµ,
are not a part of the estimation processes described in the previous chapter, and
hence they come in as new parameters. Let us now look at the dimension of these
two new parameter vectors. For a Hopf bifurcation, z1 is always a complex scalar,
and for the other one-dimensional bifurcations described in Section 2.3.1, z1 is a
real scalar. The vector pµ on the other hand has, in general, the full dimension
of µ, s, but as we shall see below, experiments can often be designed so that pµ

can be chosen as one-dimensional. In any case, if s + 2 ≤ n, the parameter x0

have more dimensions than the new parameters that are needed to parameterize
it. Hence it is a reduction in degrees of freedom to exchange x0 for z1 and pµ,
according to (5.7).

Optimization problems caused by straight-forward use of z1 and pµ

The major problem in utilizing this parametrization right away is that there is not
a continuous mapping from xb and µb to x0, i.e. for an infinitesimal change in
xb or µb, but with z1 and pµ kept still, the change in x0(px, xb, z1, pµ) will not
always be infinitesimal. This problem comes from the fact that the center manifold
transformation (5.7) is only a local transformation and that a new transformation
is done for each bifurcation point (xb, µb). This is a problem since the transfor-
mation is not unique. For the same bifurcation point, e.g. two different choices of
eigenvectors u and u, in the center manifold transformation, give rise to two differ-
ent parameterizations of the center manifold, and hence to two different values of
x0 given the same z1 and pµ. Now follows a description of how to come around this
problem, and still utilize (5.7) to parameterize x0 in the optimization processes.

The initial value optimization sub-problem

Even though x0(px, xb, z1, pµ) is not uniquely determined vector, but is determined
only after the choice of parametrization, the center manifold, and the dynamics on
it does not depend on the choice of parametrization. The center manifold lies in
the original physical space R

n, and the dynamics is determined by the original
equation (5.2a). The center manifold reduction (5.6) is just a way of describing
this dynamics, and even though the descriptions may vary, the dynamics will be
unique. This can be compared to describing a circle in different coordinate systems.
The vector (r, θ, φ) is not a well-defined vector until one also has determined the
coordinate axis, but independently of the choice of coordinate axis, the circle in
the real space will always be the same. This means that a minimization of the
objective function over all points on the center manifold

min
z1,pµ

V(x0(px, xb, z1, pµ)) (5.8)

also leads to a unique value, i.e. a result independent of the parametrization. The
idea is therefore to solve the sub-problem (5.8), over the two parameters z1 ∈ C and
pµ ∈ R, to determine x0(px, xb, z1, pµ) in (5.7), for each value of the parameters,
px, xb and py. We now summarize this idea in two steps as follows.
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1 Replace x0 from being a freely varied parameter to an auxiliary determined
by the two parameters z1 and pµ according to

x0(px, xb, z1(px, py, xb), pµ(px, py, xb)) = xb + z(px, py, xb) + (5.9)
+ h(z1(px, py, xb), pµ(px, py, xb))

2 The two parameters z1 and pµ are determined from the parameters px, py

and xb according to:

z1(px, py, xb) = arg
z1

min
z1,pµ

VN(px, py, x0(px, xb, z1, pµ), ZN)(5.10a)

pµ(px, py, xb) = arg
pµ

min
z1,pµ

VN(px, py, x0(px, xb, z1, pµ), ZN)(5.10b)

5.3 The complete algorithm
In this section the idea presented in Section 5.2 will be written out algorithm, and
the basic properties of the method will be shown. In the previous chapter xb was
determined in two different ways, first through elimination and then through a
reduced gradient method. Here we will also have use of the xb parameter, and
we will determine it by the first of these methods, the elimination method. The
algorithm of this section will work with the most general case studied above, and
in the next sections we will go to a special case. For the general case the estimated
parameters, p̂, are found as those solving

p̂ = arg
p

min
px,free,py

VN(p, ZN) (5.11)

where

p = (px,free, px,elim(px,free), py, x0(px(px,free), py, xb(px,free)) (5.12)

and where (cf Section 4.3):

px,free := (px,1, . . . , px,k−1, px,k+1, . . . ) (5.13)
pelim(px,free) := (px,k(px,free), xb(px,free)) (5.14)

and, by recalling (5.10)

x0(px, py, xb) := xb + z(px, py, xb) +

+h(z1(px, py, xb), pµ(px, py, xb)) (5.15a)
z1(px, py, xb) := arg

z1

min
z1,pµ

V(px, py, x0(px, xb, z1, pµ), ZN) (5.15b)

pµ(px, py, xb) := arg
pµ

min
z1,pµ

VN(px, py, x0(px, xb, z1, pµ), ZN) (5.15c)

The elimination method has the benefit of calling an ordinary optimization method,
for the eliminated system, and hence it does not limit the user to using only one
type of optimization methods, or to one rate of convergence etc.
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Since elimination methods calls an ordinary optimization method for the op-
timization in the reduced space, the most important thing to specify is how to
calculate the full parameter vector, given only the parameters that are consid-
ered free to vary. Here the only parameters that are considered independent of
each other are px,free and py, and given previous estimates of the dependent pa-
rameters, z1,0, pµ and pelim, the dependent parameters will be estimated in the
following way:

Algorithm 5.1. Fullp(px,free, py, pi
elim, zi

1,0, pi
µ, acc)

Input: The freely varied parameters px,free and py, initial estimates of the depen-
dent parameters pi

elim, zi
1,0 and pi

µ, acceptances acci

1 pelim = Newton(pi
elim, cHopf,NumPertpelim

(cHopf, pert), acc)

2 ẑ1, p̂µ = LM((zi
1,0, pi

µ), VN((px, py, x0(px, xb, z1, pµ)), ZN),∇z1,pµVN, acc)
where x0(px, xb, z1, pµ)) is decided according to (5.15).

3 Return: x0(px, xb, ẑ1, p̂µ)) according to (5.15).

Output: The parameters pelim(px,free), and x0(px, py, xb) calculated according to
(5.14) to (5.15).

Since the full parameter set p can hence be determined by the freely varied
parameters px,free and py only, p will for the rest of this subsection be denoted
p(px,free, py). Hence the objective function can be written VN(p(px,free, py), ZN)
and the following main algorithm will look as follows.

Algorithm 5.2. Fullbifurcation − optimizationalgorithm

Input: A time series ZN collected when the system has, at t = 0 been operating
close to a Hopf bifurcation, a model structure of the form (5.2a), initial estimates of
the needed parameters p0

x,free, p0
y,p0

elim,z1 and p0
µ, acceptances and perturbation

sizes, acci and pertj.

A Initial projection:

A1 if cHopf(x0
b, p0

x) < acc1, then (xi
b, pi

x,k) = (x0
b, p0

x,k), goto A4
A2 else (xi

b, pi
x,k) = (x0

b, p0
x,k)

A3 while cHopf(xi
b, pi

x) > acc1 do ( (xi+1
b , pi+1

x,k ) = OneContinuationStep(xi
b, pi

x,k)
(xi

b, pi
x) = (xi+1

b , pi+1
x,k ))

A4 (xi
b, pi

x,k) = Newton((xi
b, pi

x,k), cHopf,NumPertxb,px,k
(cHopf, pert1), acc2)

A5 pi = (p0
x,1, . . . , pi

x,k, . . . , p0
y, x0

0, xi
b)

B Ordinary optimization:

B1 (p̂x,free, p̂y) = LM((px,free, py), VN(p(px,free, py)),
NumPertpx,free,py(VN(p(px,free, py), pert2), acc)

B2 p̂ = Fullp(p̂x,free, p̂y, p
j
elim, z

j
1,0, p

j
µ, acc3), where p

j
elim, z

j
1,0, p

j
µ are

obtained from the last step of the LM iterations.
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B3 Return p̂

Output: An estimated parameter p̂, fulfilling cHopf(x̂b, p̂x) < acc2.

Remark: The µ value at each point in time will be µ(t) = (p̂x, u(t)) + p̂µ.

5.3.1 Properties of the algorithm
The soundness of the method is given by the following theorem.

Theorem 5.1. Soundness

For time series collected sufficiently close to the bifurcation point, and on the center
manifold, the minima of (5.11) coincides with the minima of (2.8).

Proof. That the system operates sufficiently close to the manifold means that the
error from approximating the center manifold with an expansion will not be signif-
icant. The minima will coincide if

min
u,v

f(u, v) = min
u

min
v

f(u(v), v)

and this is one of the basic results of optimization theory (Nocedal and Wright,
1999).

The benefit of the method is most apparent if the time series have been collected
by an experiment of the following type.

Definition 5.1. By a bifurcation experiment we will mean an experiment where
the system at t = 0 is at a point from where the system can come to the Hopf
bifurcation manifold by varying one parameter µb only. Further the distance from
the bifurcation manifold is so small that the center manifold approximation is valid.

The benefit of the method can then be described by the following theorem.

Theorem 5.2. Benefit

Assume an experiment of the type described in definition 5.1 has given rise to the
time series ZN. Then the algorithm 5.2 will reduce the degrees of freedom describing
the x0 parameters from n, which is the dimension of the state equations, to 3.

Proof. Equation (5.15a) gives the relationship. When a bifurcation experiment, as
described in Definition 5.1 has been done, pµ, in equation (5.15a) can be chosen
as pµ = (0, . . . , pµ,b, 0, . . . ), i.e. it can be described by one degree of freedom only.
Since z1 will always be two-dimensional, the total degrees of freedom describing x0

in (5.15a) will be 3.

5.4 Quenching data
Quenching data can be obtained by a specific experiment performed close to a Hopf
bifurcation. For this type of data a further simplification of the initial value sub-
problem can be obtained. In this section quenching experiments and quenching
data are introduced, whereas the theory will follow in the next section.
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5.4.1 What is quenching data?
Let us now go back to quenching data of the type successfully used in (Hynne
et al., 2001). In Figure 5.2 is shown the result of a successful validation with
the model developed in that paper. The same plot was shown in Chapter 2 (in
Figure 2.3), and then it was included as a motivation for developing methods
for this kind of data. The methods used in the original article did not allow
time series to be included in the estimation data, and this was one of the main
improvements that could be done. The method used there was also not formulated
as a standard optimization problem, and therefore they did not have access to
the standard machinery available for these problems. This was the other main
improvement needed. Since then, in Chapters 3 to 5, we have developed general
methods for systems operating around Hopf bifurcations, and now we are finally
ready to turn back, and see what we have achieved. As can be seen in Figure 5.2,
these time series starts with stationary oscillations, i.e. with the system operating
on the center manifold. Then, at a known point and in a known way, the system
is perturbed away from the stationary state and the response is studied. The
experimental set-up used to collect this data has been considered the standard set-
up supposed available throughout the whole thesis. This set-up has as its main
features that

• The system can be brought to a supercritical Hopf bifurcation by variations
in a single control variable (in (Hynne et al., 2001): through the external
glycolysis concentration)

• Variables can be perturbed with a single pulse, and some of them can be
perturbed so much that the effect on the oscillations is clearly visible (by
hitting the stable manifold). Since many directions can be perturbed, the
given data is, in this aspect, rich of information.

• One has only possibility to measure time-series of one of the chemicals, and
this is the major limitation of the data. These time-series are obtained e.g.
through fluorescence techniques, and therefore, compared to the time-scales
appearing in the dynamics of the system, one can get arbitrarily high sample
frequencies, and thus also arbitrarily many data points.

Finally should be added a comment on why the agreement in Figure 5.2 is so
impressive, and why quenching data is so rich of information. As can be seen in
the schematic drawing in Figure 5.3 a successful quenching of oscillations requires
a precise perturbation. The oscillation quenching is due to the system hitting the
stable manifold (see Section 3.1) and when this is hit the system will follow this
manifold (since it is an invariant manifold) toward to unstable fix point, and then
(since there is noise and since it will never hit the manifold perfectly) slowly spiral
out towards the stable limit cycle. If one changes from the successful perturbation
only slightly, in either phase or amplitude, the stable manifold will be missed and
the projection of the oscillations to the measured variable will hardly change at
all. This high demand on the precision of the perturbation is the reason why the
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Figure 5.2 Plot showing simulated vs. experimental data from a quench-
ing experiment, i.e. from a system that has been perturbed
when operating close to a Hopf bifurcation. For a quenching
experiment to substantially change the oscillations, as is done
in both these time series, both the timing and the amplitude of
the perturbation needs to have precise values. Considering that
this data is taken from a large-scale bio-chemical model, and
the comparison is from the verification step (see Section 2.2)
one concludes that the agreement is quite good. This result
is one of the previous indications that it might be beneficial
to operate around a Hopf bifurcation. Picture included with
permission from the authors.

agreement in Figure 5.2 is so impressive, and why there is such rich information in
quenching data. If one knows ZN is quenching data, some of the steps in the general
algorithm, described in Section 5.3, can be simplified. Now follows a description of
how this can be done.

5.5 Simplifying the initial value sub-problem

One thing that can be simplified in the special case of quenching data is the opti-
mization sub-problem in step 2 in Algorithm 5.1

min
z1,pµ

V(x0(px, xb, z1, pµ))

This is done in two steps, first by parametrizing z1 in pµ and an additional pa-
rameter α, and then by utilizing the interpretation of these two parameters when
performing the optimization.
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perturbation

stable oscillations

stable manifold

Figure 5.3 This figure shows how the oscillations are quenched in a
quenching experiments. The system is perturbed from the sta-
tionary oscillations in one of the coordinate directions (by e.g.
adding a chemical). If the system is perturbed in the exact
right amplitude and the exact correct phase the stable mani-
fold, originating from the unstable fix point in the middle of
the oscillations, will be hit. Since this is an invariant manifold
the system will follow it to the fix point and only after this spi-
ral out to the oscillations again. This particular effect is highly
sensitive to variations in both the phase and the amplitude of
the perturbation and this is the reason why this kind of data
is highly informative.

Formulation in minimal degrees of freedom

For quenching data the initial state vector x(0) lies not only on the center manifold,
but in the stationary limit cycle. Let us now restate the dynamic equation, in its
normal form, on this manifold and also its explicit solution. Let z1 ∈ C denote
the first center space coordinate, ω0 ∈ R the imaginary part of the first critical
eigenvalue, and let σ1 ∈ C and g3 ∈ C be the two complex (scalar) resonant
terms. Finally let pµ ∈ R be the distance from the bifurcation point in the single
control parameter that has been varied in the quenching experiment. Then the
dynamics on the center manifold can (with only up to third order terms included)
be described by (cf. equation (3.58))

ż1 = (ω0i + pµσ1)z1 + g3|z1|2z1 (5.16)

Now let R ∈ C and α ∈ R. An analytical solution to (5.16), describing the
stationary behaviour, is given by

z1(t) =

{
0 if pµσ1 ≤ 0

R exp(i(ω1t + α) if pµσ1 > 0
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where R, ω1 and α are determined by

0 = pµσ1 + Re(g3)|R|2 (5.17a)
ω1 = ω0 + Im(g3)|R|2 (5.17b)

z1(0) = R exp(iα) (5.17c)

By deriving the expression for z1(t) with respect to time, and substituting the
result in equation (5.16) one sees that these expression fulfills the dynamics.

Let Zstat denote the initial stationary part of the oscillations, i.e. if tstat de-
notes the time the stationarity ends, then

Zstat = {u(t), y(t)}tstat

t=0 (5.18)

From equation (5.17c), (5.2b) and equation (5.6) the simulated correspondence to
Zstat can be generated as follows

y = y(x, µ, py) (5.19a)
x = xb + z + h(z1, pµ) t = 0, . . . , tstat (5.19b)

z1 = R exp(i(ω1t + α)) (5.19c)
0 = pµσ1 + Re(g3)|R|2 (5.19d)

ω1 = ω0 + Im(g3)|R|2 (5.19e)

and where pµ and α are still to be determined. Notice that this means that we
can calculate ŷ(t|p) (in (5.4)) for the whole interval t = 0, . . . , tstat. Notice also
that we only have to compute those rows in equation (5.6) that are needed to form
the xis that can be measured. Loosely we can say that the dynamics is calculated,
in the two-dimensional space where it occurs, and then projected to only those
directions that are measured. Specifically, we can do this projection for the time
t = tstart = 0. This means that we can simplify (5.15) into

x0(px, py, xb) := xb + z(px, py, xb) +

+h(z1(px, py, xb), pµ(px, py, xb)) (5.20a)
z1(px, py, xb) = R(px, py, xb)exp(iα(px, py, xb)) (5.20b)
R(px, py, xb) := arg

R
min
pµ,α

VN(px, py, x0(px, xb, α, pµ), Zstat) (5.20c)

α(px, py, xb) := arg
α

min
pµ,α

VN(px, py, x0(px, xb, α, pµ), Zstat) (5.20d)

pµ(px, py, xb) := arg
pµ

min
pµ,α

VN(px, py, x0(px, xb, α, pµ), Zstat) (5.20e)

Notice that the difference between equation (5.15) and (5.20) is that we now only
have to minimize over two degrees of freedom, pµ and α. Previously it was three
degrees of freedom, pµ and z1. The two degrees of freedom, pµ and α, corresponds
to two clearly interpretable quantities, the amplitude and the phase, and this can
be utilized when solving the optimization problem. Let us now see how this can
be done.
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Figure 5.4 This figure shows how tmax and Ay in Algorithm 5.3 is defined.
As can be seen the physical oscillations can be much more
complex than the oscillations in the complex plane.

The optimization

When solving the optimization sub-problem (5.20c) to (5.20e) we can solve it
through an ordinary optimization algorithm, like e.g. the Levenberg-Marquardt
method used earlier. Here, however, we know the analytical solution (equation
(5.19c)), and the interpretation of the two degrees of freedom (R is the amplitude
and α is the phase) in the normal form equation, and this can be utilized to perform
the optimization easier. Other reasons are the desire to have more control of what
is going on, and to avoid the problem of getting stuck in local minima.

We will assume that we have determined the amplitude of the oscillations, Ay,
and the a specific maximum time, tmax, from the time-series of measured of one of
the measured variables (see Figure 5.4). As can be seen in Figure 5.4, the steady
state oscillations in the complex plane are nice, but the oscillations in the physical
space are more complex. It is, however, assumed that there is a unique maximum in
the measured oscillations, considering one period only. It should also be added that
as one approaches the bifurcation, from the unstable side, both the amplitude and
the complexity of the oscillations in the measured variable decreases. This comes
from the fact that for small z, i.e. for small distances from the bifurcation point,
(px, xb), only the linear terms in the transformation h will be dominant. This is also
the reason why the amplitude will grow monotonically as pµ is increased. These
two properties are the reason why α and R (in equation (5.17c)) can be determined
from the amplitude Ay and the time-point tmax by the following simple algorithm.
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Algorithm 5.3. Input: The amplitude Ay, the time at which the measured variable
is at its maximum, tmax, the necessary row in the h function, increments ∆pµ and
∆α

pµ = 0, A(pµ) = 0

while A(pµ) < Ay

α = 0, y(α) = 0, ymin = ∞, ymax = 0

while α ∈ (0, 2π)

if y(α, pµ, tmax) < ymin ymin = y(α), αmin = α

if y(α, pµ, tmax) > ymax ymax = y(α), αmax = α

∗ α = α + ∆α

end while

A(pµ) = ymax − ymin

pµ = pµ + ∆pµ

end while

• return: R(px, py, xb) = R(pµ), α = αmax, pµ(px, py, xb) = pµ

Output: Values of R(px, py, xb), α(px, py, xb) and pµ(px, py, xb)) according to
(5.20c) to (5.20e).

Remark: Note that there are only two degrees of freedom for the three parameters
R, pµ and α. In this algorithm this was solved by only varying pµ and α, and
determine R(pµ) according to (5.17a).

The idea behind the algorithm is to utilize that the amplitude grows monotoni-
cally as the distance pµ increases. The amplitude for each pµ is simply determined
by going through all angles α and detecting the min and max values, measured
in y, and finally by taking the difference between the two. When this is done
for increasing distances pµ the amplitude will increase until it eventually hits the
measured amplitude. This algorithm is simple and has a clearly defined stopping
criterion.

5.6 Finding the initial values in the Brusselator
Let us now go back to the example in Chapter 4.5. In that example were collected
two different time-series: one one the stable side of the bifurcation (Sample 1),
and one on the unstable (Sample 2). Both of the time series were close to the
bifurcation, and this information was shown to be sufficient to determine the correct
parameters (pA, pB) ∼ (1, 2), in both cases. However, in both cases the time series
were treated as stationary time series, i.e. the method described in Section 5.1
was used. That means that there were not estimated any corresponding initial
values for Sample 2, and this problem we turn to now. The problem is solved
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by Algorithm 5.3. By inspection of Sample 2, the measured amplitude, Ay, in
Algorithm 5.3 was estimated as Ay = 0.3270. The value of tmax, in the same
algorithm, was estimated as tmax = 2.6s. The estimation of the parameters px

and xb done earlier gave (p̂x, x̂b) = (1, 2, 1, 2), and the normal form transformation
around this bifurcation point was done in Section 3.4. The relationship between
the distance, pµ from the bifurcation point, and the amplitude of the oscillations,
is given in Figure 5.5. As can be seen the amplitude grows monotonically with the
distance beyond the interesting region, and the assumption behind Algorithm 5.3
is thus valid. In Figure 5.5 can further be seen that the normal form approximation
for distances around the correct distance (pµ = 0.01) is a good approximation, even
though the error eventually increases. The correct distance value was estimated
with an accuracy of 1E − 4 (which was the step length ∆pµ), and the phase α

was estimated to 3.79 rad. The final agreement is shown in Figure 5.6. As can be
seen the agreement between the estimated and measured output is good already
from the beginning of the time series. The correct initial values have thus been
estimated.
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Figure 5.5 The amplitude of the stationary oscillations as a function of
the distance from the bifurcation point. The plot is taken from
the problem on the Brusselator described in Section 5.6. That
the amplitude is growing monotonically with the distance is,
however, a generic feature of the Hopf bifurcation. This is the
feature utilized in Algorithm 5.3.
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Figure 5.6 Plot showing the agreement between the estimated system and
the original time series for the second sample introduced in Sec-
tion 4.5. The initial parameters were estimated by Algorithm
5.3.

5.7 Conclusions

This is the second of three chapters that deals with estimation of the parameter
vector p = (px, x0, py), and in this chapter ways of handling the initial state pa-
rameters x0 have been presented. A well known method is to let the system start
at a steady state, when this is possible. This simple method has been generalized
to allow time series starting on an arbitrarily place on the center manifold sur-
rounding a Hopf bifurcation. This is done by parametrizing x0 in minimal degrees
of freedom, z1 and pµ, using equation (5.7). There are problems associated with
straightforward usage of the new parameters z1 and pµ. These have been overcome
by solving the initial value optimization sub-problem (5.10), for each step in the
(px, py) optimization.

There exists published data, e.g. quenching data (see Figure 5.2), that starts not
only on the center manifold, but in stationary oscillations. For such data the initial
value optimization sub-problem can be further simplified. For the case of stationary
oscillations, on the center manifold, one can parametrize the parameter vector z1,
through the two parameters α and pµ. Then x0 is described by two degrees of
freedom only, and these correspond directly to the phase and the amplitude of the
measured oscillations. It has been shown how the reformulation z(pµ, α) can be
used to perform the initial value optimization sub-problem in a straight-forward
way, with the advantage of avoiding any numerical integration. The possibility of
using α is due to the combination of the center manifold and normal form reduction,
which reveals the special structure of the Hopf bifurcation.
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The parametrization of x0 in pµ and z1, or in pµ and α, can be performed
independently of the original dimension of x0. It has thus been shown how the
handling of the initial state parameters can be simplified when working close to
Hopf bifurcation.
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6
Qualitative Model Validation

The last two chapters have presented new methods for the identification step in the
system identification loop, that incorporate knowledge of where there is a bifurca-
tion in the system. We will now look for another way of using this information. An
alternative to include extra knowledge in the identification step, is to use knowl-
edge to reject estimations, during the validation step in the system identification
loop (see Section 2.2). This chapter presents a test quantity that, by determining
the qualitative behaviour of a system, can be used for model validation. Here qual-
itative determination of a system means determination of if and when a system
has oscillations, and if and when a system has steady state. Determination of the
qualitative behaviour of the real system will be done through spectral analysis (or
by mere inspection), and determination of the qualitative behaviour of the esti-
mated system will be done with continuation methods and bifurcation theory. The
method has the advantage that it can use uncalibrated sensors for determination
of the qualitative behaviour of the real system. An uncalibrated sensor corre-
sponds to unknown py parameters, or sometimes even to unknown y(·) functions
in equation (2.2). We can therefore now, by again considering the parameter vector
p = (px, py, x0), see the relationship between the last three chapters. Chapter 4
considered reductions of the px parameters, which often are the only parameters
one really seeks. This reduces the search space which in turn might e.g. eliminate
some erroneous local minima. Chapter 5 (with usage of theory from Chapter 3)
introduced new ways of handling the x0 parameter. For models with large state-
space descriptions and with few sensors these parameters can otherwise be a severe
problem. Now, this chapter introduces ways of getting around problems associ-
ated with the remaining parameters, namely those in the py vector, and also the

87
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case when the functional form of y(x, p, u) is unknown. This means that after this
chapter we have shown identification improvements for all parts of the parameter
vector p for systems operating in the neighborhood of a Hopf bifurcation.

In Section 6.1 a specification of the problem and conditions of this chapter is
given. In Section 6.2.1 the basic idea behind the test quantity is explained, and in
Sections 6.2.2 to 6.2.3, its exact formulation for constant and time-varying inputs
is given. In Section 6.3, the test quantity is applied to our standard example, the
Brusselator, and in Section 6.4 comes the conclusions.

6.1 Detecting erroneous estimations
Now follows a description of the situation in which this chapter will bring a contri-
bution. First is assumed that the dynamics of the system is modelled by a nonlinear
ODE.

ẋ = f(x, px, u) + fx = f(x, µ) + fx (6.1)

Here the interpretation of all the ingoing symbols are the same as for equation
(2.4a), except for fx which is a fault signal, describing the difference between the
fault-free and the faulty dynamics. It is also assumed that there are only two qual-
itatively different stationary states in the system, oscillations and fix points, and
that there is only one bifurcation in the system, a supercritical Hopf bifurcation. It
is, however, not necessary that neither the bifurcation manifolds nor the basins of
attractions have been determined. It is further assumed that there exists at least
two groups of sensors in the system, yD and yP

yD = yD(x, µ, py) + fD (6.2)
yP = yP(x, µ, py) + fP (6.3)

Here the sensors yD are used to observe the dynamical behaviour of the system,
and the sensors yP are used for the parameter estimation. The two groups are
not necessarily disjoint and they both have sensor faults, fD and fP, modelled as
additive signals.

In the problem one has collected a time-series

ZN = {U, YD, YP} = {u(t), yD(t), yP(t)}Nt=0

Here it is the U and YP part that has been used for the parameter estimation.
Denoting the estimation procedure φ we thus have

φ : {YP, U} → p̂x = px,0 + fest (6.4)

It is assumed that the estimation has already been done. Here the fault fest means
that instead of having estimated the true value px,0 the value px,0 + fest has
been estimated. The fault might be due to a failed estimation, due to e.g. the
convergence to an erroneous local minima. Such a fault is interesting to detect in
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itself if the estimated parameter is used for something else, like e.g. in a control
algorithm. The detection of such a fault is also interesting as a part of the validation
step in the system identification loop. Apart from being the result of an erroneous
convergence the fault can also be due to one of the faults fx and fP, and a detection
of fest is hence useful also for detection of these two faults, i.e. for usage in a
diagnosis system. For a sensor to be one of the sensors denoted yD is only required
that it is dependent on some of the dynamic variables, i.e.

∂yD

∂xi
6= 0 (6.5)

for some xi that is oscillating on the unstable side of the bifurcation. Here should
be emphasized that the exact relation yD(·) is not necessarily known, i.e. the sensor
does not have to be calibrated. It is, however, assumed that yD is continuous.

Now, the problem that this chapter is attacking is to find ways of detecting
faults fest (defined by equation (6.4)), by utilizing one of the uncalibrated sensors
yD combined with the knowledge of which bifurcations that exists in the system.

6.2 The test quantity

In this section the test quantity is defined. First the basic idea is introduced and the
high-level steps of the defining algorithm are given. Then follows a more detailed
description of the three steps in the algorithm, first for constant, and then for
time-varying inputs.

6.2.1 The idea

The basic idea behind the test quantity is very simple and can be summarized
as follows. Even though the exact functional form of yD(·) is not known, the
continuity properties allows for a qualitative determination of the system, like e.g.
when the system is oscillating. Further, since all the attractors and bifurcations
appearing in the system are assumed to be known, continuation methods combined
with basic bifurcation theory, allows for determination of all qualitative behaviours
consistent with the estimated p̂x. If the observed qualitative behaviour of the
system is not among the possible ones, there is a contradiction. The idea is that
such contradictions shall be detected with this test quantity. If, for instance, your
study of the sensor yD tells you that the system is displaying stationary oscillations
at time t = ti, but your study of the topology, corresponding to the estimated
(p̂x, u(ti)) says that there are only stable fix points, you have such a contradiction.
A high-level description of the test quantity is given in Algorithm 6.1.

Algorithm 6.1. QTQ

1. Determine the observed qualitative behaviour, Qo, of the system by usage of
the given time-series YD and U
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2. Determine the possible qualitative behaviours, Qp, determined by the esti-
mated parameters p̂x

3. if the observed qualitative behaviour is among the possible ones return false,
else return true

The difficulty with carrying out the different steps is highly problem specific.
For some systems simple checks will be sufficient, while for others it will be much
more difficult. Here is only given some initial methods, that are applicable to a
certain class of systems, and that can say something during periods when certain
conditions on the inputs are fulfilled. What makes it difficult to use arbitrary inputs
is that it is necessary that the stationary state of the system is determined, not
just a transient phenomenon. The easiest case will be when the external inputs, u

and d, to the system are constant, and when there is only one supercritical Hopf
bifurcation in the system. This case is considered first. Then the case of simple
time-variations on the input is considered and in Chapter 9 the a simple variation
of the test quantity is suggested for a large-scale model.

6.2.2 Constant inputs

Observing the qualitative behaviour of the system

Let qo(t) be the observed qualitative behaviour at time t. Let the possible ob-
servations be: no stationarity, stationary oscillations and steady state. Further let
these three states correspond to the three sets {},{osc} and {fix}, respectively. We
thus seek to determine the following time series

{qo(t)}Nt=1 qo(t) ∈ {{}, {osc}, {fix}}

where

qo(t) =




{} if transient detected
{osc} if stable oscillations detected
{fix} if steady state detected

(6.6)

by using the given time series YD.
If this test quantity is used in online processes the determination will have to

be fully automatized, and then this problem can be quite challenging. In this pre-
sentation, however, we will have in mind cases similar to those of using quenching
data off-line (see Section 5.4) and then we will be able to do the this step in Al-
gorithm 6.1 by simply looking at the time-series. We will therefore, for this step,
only give some of the basic ideas to consider when implementing this step.

The major difficulty when determining Qo is to ensure that it is really the steady
state behaviour of the system that has been observed, and not just a transient. This
is important since bifurcation analysis, which is used to determine Qp, only gives
steady state information of the system, and since the transient and the steady state
behaviour of a system are not necessarily the same. If e.g. the stationary state to a
system is a spiral (i.e. a fix point with complex eigenvalues) the transient to this fix
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point will be oscillating even though the steady state is non-oscillating. Further,
all fix points undergoing a Hopf bifurcation are spirals close to the bifurcation. In
the case of constant inputs, however, the problem is simplified. Then it will suffice
to determine where the transient ends, and then do spectral analysis on these parts
only.

Determining the possible qualitative behaviours of the system

Let qp(t) denote the set of all possible qualitative behaviours at time t. When
there is only a supercritical Hopf bifurcation in the system qp will be made out of
two parts: one constant qp,c and one time-varying qp,t(t)

qp(t) = {qp,c, qp,t(t)} (6.7)

The first part, qp,c makes up all constant attractors in the system, i.e. those
present for all µ. The second part is determined by the relationship between µ(t)
and the bifurcation manifold. If µ(t) is sufficiently far away from the manifold on
the unstable side, the oscillations are assumed visible and qp,t = {osc}. If µ(t)
is less than a certain distance from the manifold, but still on the unstable side,
both oscillations and steady-state would be consistent observations, i.e. qp,t(t) =
{osc, fix}. Let this critical distance be denoted δ. The need for this distance
follows from the fact that a supercritical Hopf bifurcation starts with zero amplitude
oscillations at the bifurcation (see Section 2.3.2). If µ(t) is on the stable side of the
bifurcation manifold we assume that qp,t(t) = {fix}. Here should be noted that if
process noise had been included in equation (6.1), a similar uncertainty distance
would have to have been included also on the stable side. This is due to the fact that
the system then has precursors to the bifurcation, i.e. peaks in the power spectra
might be observable already before the bifurcation has been reached Jeffries and
Wiesenfeld (1985). An algorithm that does all this is given as Algorithm 6.2.

Algorithm 6.2. Qp1

Input: The estimated parameters p̂x, the input u(t) = u, a bifurcating fix point
(x0, µ0), a minimum distance from the bifurcation curve δ for the oscillations to
be definitely visible, step lengths and tolerances h and acc, and the background
attractors qp,c

1. x∗ = InterContinuate( (x0, µ0), (p̂x, u) )

2. λ = Eigenvalues ∇f(x∗, p̂x, u)

3. if( ∃ i,j so λi = λj and Re(λi) > 0)

then if Distance(x∗, p̂x, u) < δ

then qp,t = {osc, fix}

else qp,t = {osc}

else qp,t = {fix}
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4. return qp = {qp,c, qp,t}

5. return (x∗, p̂x, u)

Output: The qualitative behaviours, qp, consistent with the given (p̂x, u); the bi-
furcating fix point corresponding to the given p̂x, u

The first step in the algorithm finds the state vector that corresponds to the
observed u. Since there might be parallel attractors in the state space, this is done
be starting at a point one knows belongs to the right attractor (x0, µ0) and follow-
ing this attractor to the correct x∗. This is the function of the InterContinuate

method. The next step in the algorithm checks whether the fix point is stable or
unstable. If it is stable, it returns {fix}, and if it is unstable it checks whether it is
sufficiently far away to guarantee that there should be oscillations. Now follows a
few remarks on how the algorithm can sometimes be simplified.

Remark 1: Since the system only contains a supercritical Hopf bifurcation, it
can never leave the joint stable fix point/stable limit cycle attractor if it has once
reached it. Therefore, if the system is known to have reached this attractor at some
point during the experiment, the background behaviours, qp,c, can be set to the
null set {}.

Remark 2: If there are no other fix points in the system other than the one un-
dergoing the bifurcation, one can find the fix point (x∗, p̂x, u) without knowing a
starting point (x0, µ) that is a bifurcating fix point. Ordinary integration, and/or
a root-finding algorithm like the Newton-Rhapson method, will then be sufficient.

Remark 3: Sometimes the amplitude of the oscillations will be very low also far
away from the bifurcation manifold. In those cases the distance δ will have to be
set to infinity, or the actual amplitude of the oscillations will have to be determined
with some other method.

If the condition in Remark 2 is not fulfilled the method InterContinuate needs
yet to be specified. It allows for a transition from the fix point that is known to
bifurcate to the bifurcating fix point at the given (p̂x, u). An easy way to solve this
method is by continuation in one direction at a time. This is shown in Algorithm 6.3
suggests.

Algorithm 6.3. InterContinuate

Input: A fix point (x∗, µ∗) that is known to be bifurcating. A parameter µ that one
seeks a bifurcating fix point for, step lengths h and tolerances acc

1. µDiff = µ∗ - µ, xi = x∗, µi = µ∗

2. for i = 1,. . . ,s

while |µDiff,i| > acc
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(xi, µi) = OneContinuationStep(xi, µi, h)

µDiff,i = µDiff,i − h

3. return xi

Output: The bifurcating fix point xi, corresponding to the given µ, and that lies on
the same attractor that (x∗, µ∗) does.

Similarly the Distance sub-algorithm, that estimates the distance from the bifurca-
tion curve to the current fix point can be implemented in many ways. Algorithm 6.4
takes the minimum distance when checking the distance along the coordinate axes
only. It has the benefit of being fast, especially if it is known to be sufficient to
check in one or a few directions (see Section 6.3). The drawback is of course that
the algorithm might give unrealistic values for some cases. An extreme case that
illustrates this is given in Figure 6.1. A more sophisticated, but computationally
more demanding, method would be to continuate simultaneously in all directions
and stop when the first direction hits the bifurcation manifold. This latter choice
would be equal to a numerical approximation of the L2 norm.

Algorithm 6.4. Distance

Input: A fix point (x∗, µ) that might undergo a Hopf bifurcation when µ is varied
in some certain directions, a maximum length tMax, a step length h and desired
accuracies acc.

1. t = 0, shouldIStop = false;

2. for i=1,. . . ,s

• x
j
+ = x∗, x

j
− = x∗, µ

j
i+ = (µ, µi) µ

j
i− = (µ, µi)

3. while( t < tMax )

for i=1,. . . ,s
– (xj+1

+ , µ
j+1
i+ ) = OneContinuationStep(xj

+, µ
j
i+, h)

– if cHopf(xj+1
+ , µ

j+1
i+ ) < acc, then shouldIStop = true;

– (xj+1
− , µ

j+1
i− ) = OneContinuationStep(xj

−, µ
j
i−,−h)

– if cHopf(xj+1
− , µ

j+1
i− ) < acc, then shouldIStop = true;

• t = t + 1;
end for

4. return d = t*h;

Output: An estimated distance d, between the given fix point and the bifurcation
manifold

Finally the check whether the observed qualitative behaviours, qo is among the
possible ones, qp, for each time is a simple inclusion check. Now we will see what
happens if one allows time-varying inputs to the system.
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Figure 6.1 This figure illustrates the potential problem with estimating
the distance from the bifurcation manifold with the simple Al-
gorithm 6.4. In the figure the estimated point is marked with
an x and the algorithm continuates in all axis directions. The
problem is that even though the true distance to the manifold
is quite small (dashed line), the algorithm will estimate it to
infinitely large. In the case of quenching experiments, how-
ever, one knows that the bifurcation can always be reached by
a fairly small perturbation in a single control variable, and then
this problem will not appear.

6.2.3 Time-varying inputs
When the input signals u are allowed to vary over time the algorithms above has to
be altered in different ways. Time-varying inputs also opens up for the possibility
of changes between different qualitative behaviours at different time-points, i.e. it
opens up for the passing of bifurcations, which also complicates the algorithms. As
in the previous section we will first study the problem of determining the observed
behaviours and then go to the problem of determining the possible behaviours.
Here, however, we will have a more complex comparison problem, and therefore we
will treat this separately in the last part of this section.

Observing the qualitative behaviours of the system

Also now we will mainly assume that this step can be done in some simple way, like
e.g. when utilizing quenching data off-line. We still seek to determine qp(t) which
can have one of the three values {},{osc} and {fix}, and they will still denote the
three observations: transient behaviour, stationary oscillations, and steady state.
The only thing that will change is that we demand that u(t) is constant for any
of the values {osc} and {fix} to be possible. However, it might happen that for
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two different constant u windows, two different stationary states will be observed.
If this is the case we will have detected an observed bifurcation. Let the vector
of this detected passings be denoted detectedPassings. It should be noted that
the adding of the presence of a bifurcation could also have been included in the
constant u problem. Then, however, the qualitative change would have to have
been observed before the collection of the time-series. How this adding is included
into the process is described in Algorithm 6.6.

Determining the possible qualitative behaviours of the system

We still let qp(t) denote the set of all possible qualitative behaviours at time t.
Now, however, all predicted passings of bifurcation manifold are detected as well.
They are collected in the array predictedPassings. The new algorithm is as
follows.

Algorithm 6.5. Qp2

Input: The estimated parameters p̂x, the time-series U, a bifurcation fix point
(x0, µ0), a minimum distance δ from the bifurcation manifold for the oscillations to
be definitely visible, step lengths and tolerances h and acc, the background attractors
qp,c.

for i = 1,. . . ,N

1 First the old check as if u had been constant

(qp(i), x∗(i)) = Qp1(p̂x, u(i), (x∗(i − 1), µ(i − 1)), δ)

2 Then check whether the bifurcation manifold has been passed

if (osc ∈ qp,t(i)
∧

osc 6∈ qp,t(i − 1))
∨

(osc ∈ qp,t(i − 1)
∧

osc 6∈ qp,t(i))

then predictedPassings.append( i )

end if

end for

• return {qp(t)}Nt=1, predictedPassings

Output: The predicted qualitative behaviours, the predicted passings of the bifurca-
tion

Comparing the predicted and observed behaviours

Since now both the predicted and the observed behaviours contain an array de-
scribing the passings of the bifurcation the last step in the overall algorithm, the
comparison step, will become more complicated than a simple inclusion check.
Since one might also know that there should be bifurcations for certain us (like
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in the examples in Section 4.5) one might sometimes also want to add such a
knowledge to the test quantity (or to the verification step). Let the indices in the
time series where the observed and the predicted passings of bifurcation points
be denoted observedPassings and predictedPassings, respectively. Further, let
the uncertainty, measured in u, of how accurate one can determine the bifurcation
point be denoted uunc. Finally let the known point where the system is undergoing
a Hopf bifurcation be denoted ub, and the corresponding state vectors be denoted
xb (cf Chapter 4). With these notations we present Algorithm 6.6 for doing the
last step in the high-level Algorithm 6.1.

Algorithm 6.6. Comparison

Input: A predicted p̂x, observed qualitative behaviours {qo(t)}Nt=1, predicted qualita-
tive behaviours {qp(t)}Nt=1, observed passings of the bifurcation manifold observedPassings,
predicted passings of the manifold predictedPassings, known ubif for which the
system should undergo a bifurcation, estimated uncertainties in the bifurcation de-
terminations uunc.

1. First the simple inclusion check

for i = 1,. . . ,N

if qo(t) ∈ qp(t)

then q(t) = true

else q(t) = false

end if

end for

2. Then the passings of the bifurcation points

for i = 1, . . . , observedPassings.length

if ‖u(observedPassings(i)) − u(predictedPassings(i))‖ > ‖uunc‖
then q(observedPassings(i)) = true

end if

3. Then the a priori known bifurcation points

xbif = InterContinuate((x0, µ0), p̂x, ubif))

λ = Eigenvalues∇f(xbif, p̂x, ubif)

if (∃i, j so λi = λj

∧
Re(λi) > 0)

then isUnstable = true

else isUnstable = false

end if

for i = 1, . . . , uunc.length

xbif,i+ = InterContinuate((x0, µ0), p̂x, ubif + uunc,i))
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xbif,i− = InterContinuate((x0, µ0), p̂x, ubif − uunc,i))

λi+ = Eigenvalues∇f(xbif,i+, p̂x, ubif + uunc,i)

λi− = Eigenvalues∇f(xbif,i−, p̂x, ubif − uunc,i)

if (∃j, k so λi+,j = λi+,k

∧
Re(λi+,j) > 0)

then isUnstable+ = true

else isUnstable+ = false

end if

if (∃j, k so λi−,j = λi−,k

∧
Re(λi−,j) > 0)

then isUnstable− = true

else isUnstable− = false

end if

if isUnstable+ 6= isUnstable
∨

isUnstable− 6= isUnstable

then isDetected = true

end if

end for

if isDetected 6= true

then q(t) = true ∀t

4. return QTQ : t → q(t)

Output: the value of the qualitative test quantity for all values of t. Here q(ti) =
true means that the test quantity has reacted at time ti.

The inclusion check in Algorithm 6.6 is straightforward. The reason the pre-
dicted passings and observed passings are compared twice is that they might have
different lengths, and that they therefore will give different agreements in depend-
ing on whose index should be gone though. The last part of the algorithm is simply
a continuation in all different directions that there is an uncertainty uunc in, to
see whether there is a bifurcation within the region of uncertainty. Similarly to the
Distance algorithm there are better alternatives for a general problem, and the
norm problem described in Figure 6.1 will be present also here. However, in the
case of quenching data, a single direction will be sufficient to check, and then this
feature is not a problem.

6.3 Validation of the Brusselator

6.3.1 The two problems
Let us now again come back to the analysis of the two time-series presented in
Section 4.5. The first of these samples was collected just before the bifurcation
and the second just after. For both the samples a parameter estimation was done.
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Figure 6.2 The estimated values for Sample 2 in Section 6.3. Those point
denoted with an x corresponds to an oscillating stationary
state, and those denoted with an o to a steady state. Here the
real system was oscillating and therefore all the o’s are erro-
neous estimates that will be captured by the new test quantity.
In this case it captured over 60% of unsuccessful estimations
by this qualitative check.

The two problems was solved with two different methods, one that utilized the
knowledge of the presence of the bifurcation and one that did not. The former
method converged to the correct value for all initial estimates, while the latter
method only converged to the correct value for those initial estimates starting
sufficiently close to the correct value. Let us now see how many of the erroneous
parameter estimates that will be detected with the methods of Section 6.2.3.

6.3.2 Applying the QTQ algorithm

Figure 4.4 shows the points to which the unconstrained method converged, when
analysing Sample 2, the one collected on the unstable side of the bifurcation man-
ifold. Let us now re-evaluate these estimates from the perspective of a qualitative
analysis.

Step 1: Determining the observed qualitative behaviour
The corresponding yD time-series for Sample 2 was plotted in Figure 4.2. Since
this time-series has already been collected we can solve the first step in the QTQ
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algorithm by mere inspection. As we see in the plot, Sample 2 contains stationary
oscillations during the whole series, i.e. no transients and always clearly visible
oscillations. We therefore set qo(t) = {osc} for all t.

Step 2: Determining the possible qualitative behaviours
Since there is a constant input to this problem we can drop the InterContinuate

algorithm and set qp,c = {}. By some initial simulations we estimate the distance
from the bifurcation manifold for the oscillations to be visible to be δ = 0.005. With
these settings the estimated values can be divided in three groups, corresponding
to the three possible values of qp,t. Such a division is shown in Figure 6.2. Approx-
imately 65% of the estimated parameters correspond to a stationary state. These
erroneous estimates are captured by the QTQ algorithm. It should be added that
many of the estimates that lie in the steady state regime (below the bifurcation line
in Figure 2.4), were initiated in the unsteady regime (above the bifurcation line).
We conclude that an estimation algorithm does not automatically guarantee that
the qualitative behaviour of a system is consistent with the observed qualitative
behaviour, even when the observation and estimation is based on the same time-
series, and even when the initial estimate is in a qualitatively consistent regime.
This qualitative check must therefore be added explicitly, either during the valida-
tion phase, as is suggested in this chapter, or directly during the estimation phase.

Step 3: Comparing the results of the two steps
The qualitative comparison has already been discussed above. Let us therefore turn
to the other part of the comparison, the one that checks whether the bifurcations
are where they should. For this sample, there has been no detected bifurcations in
the time-series, but the system has been tuned to lie just on the unstable side of
the bifurcation (see Section 4.5). A bifurcation has therefore been detected prior
to the collection of the time-series, and the estimated value is (p̂A, p̂B −0.01). The
estimated uncertainty is uunc = 0.005 (only pB is considered as controlled). With
these values put into Algorithm 6.6 89% of the estimates will be rejected. Note
that we have to use Algorithm 6.6 even though there are constant inputs. This
is due to the fact that we have detected bifurcations prior to the collected time
series. As can be seen in Figure 6.3 the remaining estimates are very centralized,
and all lie close to correct parameter value, (pA, pB) = (1, 2.01). It is concluded
that the presented QTQ algorithm has the potential to reject a substantial part of
the erroneous estimates. It is therefore an alternative to changing the estimation
algorithm itself, as suggested in Chapter 4 and 5. The drawback is that with this
method one has to do more optimizations.

6.4 Conclusions

In this chapter has been presented a way of validating the result of an estimation
process. The method studies the dynamics of one of the sensors to see if and when
the system is in an oscillatory or in a steady stationary state. This can be done
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Figure 6.3 The remaining estimates after the ones captured by the QTQ
algorithm has been removed. The estimates are marked with
an x. As can be seen the remaining estimates are centralized
around the correct estimate (pA, pB) = (1, 2.01)

also in the case of uncalibrated sensors, i.e. with py or y(·) is unknown. Then
continuation methods combined with bifurcation theory and supposed knowledge
of the topology of the system is used to determine whether it is possible that
the system has this stationary behaviour at these instances. It is also checked
whether the detected passings, or positions, of a Hopf bifurcation are consistent
with the estimated parameters. If this should not be the case the found estimation
is rejected. The test quantity will be sensitive to faults due to the convergence to
a local minima (see equation (6.4)), faults appearing in the underlying ODE, and
faults in the used sensors.



7
A Multi-zonal Model for Pressure,

Temperature and Ionization Currents

This chapter is the first that deals with system identification in practice, i.e. with
the development of specific models for specific applications. The model presented
is a multi-zonal model for cylinder pressure, temperature, and ionization currents.
The model is designed for a spark-ignited combustion engine and is covering the
time between the Inlet Valve Closure (IVC) and the Exhaust Valve Open (EVO).
The analysis of the model has focused on the relationship between the pressure
peak location (PPL) and the ionization peak location (IPL). Previous models have
systematically predicted the IPL > 2 CAD late, and the reason for this is analysed.
The final model has an experimental agreement for the prediction of IPL within one
crank angle degree (CAD), which is comparable to measurement uncertainty. The
final model, and the analysis during the development are the main contributions
of the chapter.

The material is structured as follows. First the basic concepts of an Otto-
cycle are reviewed in Section 7.1. Then the research trace that this chapter is
following is zoomed in by first explaining the importance of knowing the position
of the pressure curve relative to top dead center (TDC), and then by giving a short
review of previous attempts to predict this by means of measuring the ionization
current. The new model is presented in Section 7.2, and in Section 7.3, the model
is analyzed in a number of ways. Finally, in Section 7.4, the results of the chapter
are summarized.

101
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7.1 Introduction
This section starts by giving the basic concepts of an Otto engine. Then is ex-
plained why it is important to know the position of the pressure curve relative to
the TDC. A cheap way of finding this position is by using the spark plug as an
ionization sensor. This is cheap since the sensor is already present in production
engines for knock detection and misfire, and it therefore only requires further signal
interpretation. The section ends with a short review of previous modelling work
in the area, and with a high-lighting of the observed problem that the rest of the
chapter is attacking.

7.1.1 Basic engine concepts
The Otto-cycle

The four-stroke Otto engine is a machine that converts chemical energy in the fuel
into mechanical energy and heat. As the name implies it operates in four strokes,
see Figure 7.1. In the first stroke (a) the piston is moving downwards as the intake
valve is open. The air-fuel mixture flows into the cylinder due to the pressure
difference in the intake manifold and the cylinder, and this difference is kept by the
movement of the piston. When the piston reaches a point around the Bottom Dead
Center (BDC) the intake valve closes (this point is denoted IVC), and as the piston
moves up (b) it compresses the air-fuel mixture. When the piston reaches a certain
point, before the Top Dead Center (TDC), i.e. its upper turning point, an electric
circuit creates a spark in the gap between the two electrodes in the spark plug (see
Figure 7.7). The point is called the ignition angle, and starts the combustion phase.
During the combustion phase the piston passes TDC and goes into the expansion
phase when the piston moves downward (c). It is during this phase that the internal
energy of the uncombusted gas is converted to mechanical energy. Approximately
when the piston reaches its lower turning point the exhaust valve opens (the exact
point is denoted EVO) and as the piston moves up (d) the combusted gas is pushed
out in the exhaust pipe. After this stroke the Otto-cycle goes back to (a), which
completes the four-stroke cycle. The model that will be presented in this chapter
will only cover the compression, combustion and expansion phases, i.e. the part
between the IVC and the EVO.

When modelling an Otto-cycle, usually the equations are written as a function
of the position of the crank. The most common notation is the angle between the
crank and the axis of the cylinder, see Figure 7.2. This angle will be referred to
as the Crank Angle Degree (CAD), and our convention will be to have it negative
before TDC, zero at TDC, and positive after TDC. In Figure 7.3 we see one of
the most common ways of displaying the cylinder processes, a plot of the cylinder
pressure against the time measured in CAD. We will now go on by explaining why
this is such a relevant plot and why it is important to know the position of this
curve relative to TDC. The reader who wants more background material regarding
general engine concepts is referred to e.g. one of the textbooks Heywood (1988) or
Nielsen and Eriksson (2004).
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Figure 7.1 The four-stroke Otto cycle. In the first stroke (a) the air-fuel
mixture is pressed into the cylinder due to the relatively high
pressure in the intake manifold. After the intake stroke the
compression stroke (b) begins. At some point before Top Dead
Center the ignition angle is passed, and during the expansion
phase (c) the combustion processes are converting the chem-
ical energy in the fuel into mechanical energy and heat. Fi-
nally during the exhaust phase (d) the combusted mixture is
exhausted.

7.1.2 The importance of predicting the Pressure Peak Loca-
tion

The ignition timing problem

In Spark Ignited (SI) engines ignition timing is an important control signal for
the combustion efficiency. The ignition timing alone affects almost every engine
output. In nearly all of todays production engines there is no feedback from the
combustion to the ignition timing; the spark advance is based on a pre-calibrated
system. For such a pre-calibrated system to work well it has to take into account
the many parameters that effect the best timing. Such parameters include e.g.
engine speed, load, air/fuel ratio, fuel characteristics, EGR, coolant temperature,
air temperature and humidity. Taking this into account implies two problems: i)
not all these parameters are measured in todays production engines ii) even if all
these parameters were measured a calibration scheme that determines the optimal
ignition timing with respect to all these parameters would be too expensive to ob-
tain through engine tests. Hence, compromises leading to less than optimal control,
have to be done. Another reason for compromises is that the calibration scheme
has to ensure that engine knock does not occur, and that reasonable performance
over the whole operating range is obtained. A fundamentally different approach
to using a pre-calibrated scheme is to measure the cylinder pressure and use it for
feedback in the control algorithm.

Using the pressure curve

The optimal ignition timing will position the pressure curve in a certain way with
respect to TDC. If the peak of this curve (the pressure peak location (PPL)) comes
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θ

Figure 7.2 Figure showing how the angle θ is defined in this thesis. The
indicated θ is negative and located approximately where the
ignition takes place (10-30 Crank Angle Degrees (CAD) Before
Top Dead Center (BTDC)).
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Figure 7.3 A simulated pressure plotted with against measured pressure,
both as a function of Crank Angle Degree (CAD). Ignition
angle: 27 CAD BTDC. See Appendix A for other parameters.

too early, too much work will be lost during the compression phase. Also if the
peak comes too late the extracted work from the engine will be less than opti-
mal. Usually the optimal position is measured as the one giving the highest torque
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(Maximum Break Torque (MBT)), and depending on e.g. the engine design the
PPL corresponding to MBT varies between 12 and 20 CAD after TDC (Hubbard,
Dobson and Powell, 1976). This is supposed to be due to the varying heat flow
to the walls for the different engine designs. However, with respect to the time-
varying parameters that affect one and the same engine it has been shown that
PPL is almost constant at MBT (Hubbard et al., 1976). A spark control algorithm
that maintains a constant position for the pressure peak (called the peak pres-
sure algorithm), results in an ignition timing that is within 2 CAD of optimum.
The algorithm also gives optimal timing for large changes in parameters that in-
fluence the flame speed, such as the air/fuel ratio and the air humidity ((Hubbard
et al., 1976);(Glaser and Powell, 1981)). One manufacturer has implemented the
peak pressure concept in combination with knock control, and reported a 10% im-
provement in power and a 5% improvement in efficiency (Sawamoto, Kawamura,
Kita and Matshushita, 1987).

One major problem stopping more manufacturers from using such an algorithm
today is that a pressure sensor is currently not installed, and installing such a
sensor would be both expensive and cumbersome, due to the short life-time of
these sensors. However, for estimating PPL also other sensors can be used. Such
a possibility lies in using the spark plug as an ionization sensor and an overview of
the current status with this approach is now given.

7.1.3 Using the spark plug as an ionization sensor

Due to the high temperature and pressure in the cylinder during the combustion
phase, free ions are formed. These ions are measured by applying a voltage across
the two electrodes of the spark plug, and by measuring the resulting current. In
Figure 7.4 the result of such a measurement is shown. As can be seen the obtained
signal is highly complex, and it has been shown to contain much useful information
of various features of the combustion processes. The signal is usually divided into
several phases. The first phase occurs during the ignition, the second during the
early development of the flame, and the last includes the late development of the
flame. These phases are denoted ignition phase, flame-front phase, and the post-
flame phase, respectively. Two of the most common usages of this signal are knock
and misfire detection (Auzins, Johansson and Nytomt, 1995). However, the air-fuel
ratio and many other physical properties of the combustion components are also
visible in the signal (Reinmann, Saitzkoff and Mauss, 1997). Since there is much
(and still much unused) information in this signal, and since the signal is complex,
it is important to understand the physical phenomena that govern the generation
of this current. Hence physical models are sought. Over the years a number of such
models have been developed and usually they have focused on different properties
of the signal. Some examples of modelling attempts are the Yoshiyama-Tomita
model (Yoshiyama, Tomita and Hamamoto, 2000), that bases the model on bomb
experiments; the Calcote model (Calcote, 1957), that models the spark plug as
a Langmuir probe; and different attempts utilizing the Saha equation (Saitzkoff,
Reinmann, Berglind and Glavmo, 1996), (Franke, 2002), (Andersson, 2002). In
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Figure 7.4 Example of a measured ionization current with its three char-
acteristic phases.

this chapter it is the latter research trace that has been followed. One reason for
this is that this family of models are all mainly concerned with understanding the
last part of the ionization curve, the post-flame part. It is namely this part that
is believed to have the highest correlation with the pressure development. Now
follows a review of previous works using this part of the curve to predict the PPL.

Previous modelling of the relation between PPL and IPL

Analogously with the acronym PPL there is also an acronym for Ionization Peak
Location, IPL, and when using it we will always mean the peak in the post-flame
part of the curve. It is not always that this peak is a local maximum value of
the signal. This happens if the strength of this peak is lower than the down-
slope from the flame-front phase, and this happens for some parts of the operating
range. This in combination with the poor signal-to-noise ratio in the ionization
signal leads to an inherent uncertainty already when determining IPL. An early
attempt at solving this problem was done in Eriksson, Nielsen and Nytomt (1996)
and Eriksson, Nielsen and Glavenius (1997), where also the usage of the prediction
of PPL in the peak pressure algorithm was exploited. The idea was based on
the resemblance between the simulated ionization curve from the physically based
model presented in Saitzkoff et al. (1996), and a Gauss function. When analyzing
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the ionization signal it was expressed as a signal in two parts

I(θ) = f(θ)+α1exp(−
1

α2
(θ−α3)2) = β1exp(−

1

β2
(θ−β3)2)+α1exp(−

1

α2
(θ−α3)2)

(7.1)
where the clock modelled with α ′s is the part describing the post-flame part, and
f(θ), which is also modelled as one or two clock functions, models the flame-front
contribution. The symbols αi and βi are model parameters. As can be seen in
Figure 10 in Eriksson et al. (1997) and in Figure 13 in Eriksson et al. (1996) the
agreement between the second peak, when fitted to data, and the measured pressure
peak, for the same data is good, i.e. centered around the x = y line, except for the
very late ignition angles. This good agreement shows that there is high correlation
between the post-flame peak and the PPL. This method is based on a number of
assumptions that implies that the predicted IPL and the predicted PPL coincides.

Further analysis of the assumptions underlying the original Saitzkoff model has
been done in Franke (2002). This analysis includes an analysis of alternative ion
sources to NO in the post-flame phase. One of the conclusions has been that alkali
metals in the atmosphere make a major contribution to thermal ionization, also
at temperatures characteristic of the combustion of diluted mixtures. In Franke
(2002) a further analysis of the relationship between the pressure curve and the
post-flame part of the ionization signal has also been given. This has been done
e.g. by imaging nitric oxide and hydroxyl radicals. The effect of gas flows on this
relationship has been studied, and it has been shown that gas flow does effect the
relationship between the pressure and ionization curves in some situations. There
was shown experimental recordings where the PPL and IPL do not coincide, but
where a model equating the IPL by the PPL would predict the IPL a few degrees
late (see Figure 4.28 in Franke (2002)). Finally the following linear relationship
between the PPL and IPL was suggested

IPL = a + bPPL + cu (7.2)

where, a, b and c, are constant parameters. The last term models the effect of gas
flow, where u is the mean velocity of the gas flow. It was, however, noticed that in
a number of situations the last term, cu, made no significant contribution.

Another recent study of the relationship between PPL and IPL was done in
Andersson (2002). There the original temperature and pressure part of the Saitzkoff
model was replaced by a number of other one- and two-zone models, however, all
of them without including heat transfer. Also here a late prediction of the IPL
was observed (see e.g. Figure 6.5 in Andersson (2002)). It was also shown that
the choice of underlying heat model can change the amplitude of the simulated
ionization current by several orders of magnitude, apart from moving the predicted
IPL several CAD. Another recent work is Andersson (2004), and although it differs
from Andersson (2002) in some aspects, it also emphasizes that the underlying
temperature model has a significant effect on the simulated ionization signal.

In this chapter we will continue this study of the relationship between PPL
and IPL. Based on the previous observation that the choice of underlying temper-
ature model is important, a multi-zonal model has been chosen as the underlying
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temperature model for a model, that is otherwise like the original Saitzkoff model
(Saitzkoff et al., 1996). The presented multi-zonal model is more detailed than
the models tested in the previous works by Andersson, and it will also has the
possibility of including heat transfer, something that is known to have a significant
effect on the temperature development. A zonal model was chosen above a partial
differential equation since it it was believed that such a model structure would lead
too far away from control oriented modelling. The model is presented in Section 7.2
and the analysis and experimental comparison is done in Section 7.3.

7.2 The model

7.2.1 The multi-zonal combustion model

Since the ionization model builds on a combustion model, the latter is presented
first and the former in the next section. The theory is from Nilsson and Eriksson
(2001). This paper presents a general model describing the thermodynamic basis
of a thermo-dynamical model. It, however, includes no suggestions of how to
determine the heat transfer to the walls, the mass transfer between the zones, and
also no details of how to interpret the different zones geometrically. These details
will be added in the subsequent subsections.

The thermodynamic part of the model is valid under the following assumptions

• The combusted zone has such a high temperature that all reactions can be
considered to be in equilibrium, with respect to the time-scale of the temper-
ature and pressure developments.

• The uncombusted zone is so cold that all reactions can be considered frozen,
with respect to the time-scale of the temperature and pressure developments.

• Each zone is a well-stirred tank reactor

• Let V be the volume of the i:th zone, p the pressure, m the mass, R the
gas constant, and T the temperature. Let further the index i, like in mi,
indicate that the mass belongs to the i:th zone. Then the ideal gas law in its
differentiated form, (7.3), is assumed valid for each zone

Vidp + pdVi = RiTidmi + miTidRi + miRidTi (7.3)

• Let dU be the change in internal energy, dQ the heat change, and dW the
work. Then energy conservation (7.4) is valid for each zone

dU = dW + dQ (7.4)

• The pressure can be treated as a function of time only, i.e. modelled as the
same in the in all zones.
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These assumptions leads to the following system of nonlinear DAEs

Adx = B (7.5)

where
dx = [dp dV1 dT1 . . . dVN dTN]T (7.6)

A =



0 1 0 . . . 1 0

a1 p b1 . . . 0 0

c1 p d1 . . . 0 0
...

...
...

. . .
...

...
aN 0 0 . . . p bN

cN 0 0 . . . p dN



B =



dV

RiTi

∑
i 6=1 dm1i

δQ1 +
∑

i 6=1(he,1i − he,1 + R1T1)dm1i

...
RNTN

∑
i 6=N dmNi

δQN +
∑

i 6=N(he,Ni − he,N + RNTN)dmNi


and where the auxiliary variables ai, bi, ci and di are defined as follows

ai = Vi

(
1 − p

Ri

(
∂Ri

∂p

)
Ti

)
bi = −mi

(
Ri + Ti

(
∂Ri

∂Ti

)
p

) (7.7)

ci = −miTi

(
Ti

p

(
∂Ri

∂Ti

)
p

+
(

∂Ri

∂p

)
Ti

)
di = mi

(
cp − Ri − Ti

(
∂Ri

∂Ti

)
p

) (7.8)

See Nilsson and Eriksson (2001) for more details concerning the derivations. In
the matrices appear a few variables whose dependence have not been written out.
The dV variable appearing in the B matrix is a mere function of the time, and
the geometry of the engine. The expression for V can be found in e.g. Nielsen and
Eriksson (2004). The variables R, he (enthalpy), cp (specific heat), and the partial
derivatives (dR

dT )p and (dR
dp )T are all determined by the ordinary state-variables p, T

and V. In practice they are calculated by look-up tables generated by the program
CHEPP (Eriksson, 2004). The last two unknowns, dQ and dm, are treated in
Section 7.2.2 and 7.2.3, respectively.

In practice when solving the system A is inverted, after a suitable scaling given
in Nilsson and Eriksson (2001), and then the system is solved with an ordinary
ODE solver. The system is, however, non-standard also in such a way that it
does not have the same number of zones (i.e states) during the whole simulation.
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First there is only one zone, an uncombusted zone. At the ignition a new zone, a
combusted zone, is created. This zone then grows as more and more uncombusted
air-fuel mixture is burned, and this is formulated as a mass-flow from the unburned
zone to the burned zone (see Section 7.2.3). After the mass of the burned zone has
reached a certain limit, the zone is divided into two. This is done by creating a very
thin zone outside the first zone, which now has all the mass-flow from the unburned
zone. The mass-flow will cause this zone to grow, and divide, in exactly the same
way as the first zone did. In Figure 7.5 the ordering of the zones is displayed. See
Appendix A.5 for more details on the simulations, and also for more details of how
and when new zone is created. Now we will turn to the problem of specifying dQ

and then to specifying dm.

7.2.2 Addition of geometry and heat transfer
First we will give the general equation that is used to calculate the heat transfer,
the Newtons law of cooling. Then we will specify how the three parts, hw, A

and ∆T , determining the cooling equation are calculated. This will lead us to
the introduction of a geometrical interpretation of the otherwise only topologically
coupled zones.

Newtons law of cooling

The temperature difference, ∆T , between the in-cylinder gas and the cylinder walls,
is the source of the energy flow. The base for the heat transfer modelling is New-
ton’s law of cooling, which says that the heat transmitted through the gas-cylinder
contact area A per unit time is given by the following expression

dQ

dt
= hwA∆T (7.9)

First we will present the determination of h and then we will give the three methods
used to determine A. The last of this will include the introduction of a geometrical
interpretation. Finally the ∆T determination is given.

Heat transfer coefficient

There are different ways of determining the coefficient hw in (7.9). We have chosen
the expression presented in Woschni (1967), but with the coefficient C1 and C2

adapted to SI engines. The model is also converted into SI units.

hw =

253B−0.2C1p0.8

(
0.0034(p−pm)TIVCVdispC2

pIVCVIVC
+ Up

)0.8

T0.53
(7.10)

Here pf is the pressure in a firing cycle and pm is the pressure in a motored cycle, a
cycle without combustion. C1 and C2 are motor-type dependent constants. Up is
the mean velocity of the piston. The values and units used are given in Table 7.1.
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B 9.0e-2 [m]
C1 2 [ ]
p [Pa]

pm [Pa]
TIVC 363 [K]
Vdisp 4.94e-4 [m3]
C2 0.44 [ ]

pIVC 6.5e4 [Pa]
VIVC [m3]
Up 4.97 [m/s]
T [K]

Table 7.1 Parameter list for the heat transfer model in equation (7.10).

Various area models

Let us now turn to the problem of determining A in equation (7.9). Three different
methods for this are presented. The first two methods has the advantage of the
overall cylinder pressure not being dependent on the number of zones, and the third
has the advantage of being the most realistic. The first and most simplest method
tested is to consider Ai to be directly dependent of the zonal mass

Ai =
mi

mtot
Atot (7.11)

Here mi is the zones own mass, and mtot is the total mass of the gas in the
cylinder. Ai is the contact area between the i:th zone and the cylinder walls, and
Atot is the total cylinder wall area exposed to the fuel-gas mixture. The second
and more advanced method tested scales the area with the zones volume. The
method is based on the observation that the area of a sphere is proportional to its
volume according to A ∝ V

2
3 . Since the most simple interpretation of the zones

are that they are spherically shaped, a method to calculate the contact area from
this relation is implemented. The equation for the i:th zone is:

Ai =
V

2
3

i∑
i V

2
3

i

Atot (7.12)

Where Vi is the i:th zones volume. The most advanced method for calculating Ai,
used to give the zones their real (in the most simple case, spherical) form, i.e. by
start introducing a real geometry in the model. This has been done below.

Translating topology to geometry

In the geometry that has been included in this model the burned zones are assumed
to be spherical shells with center on the cylinders symmetry axis. The first zone,
that always exists, is the unburned zone. When the combustion starts, the first
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burned zone is created. The center is between the two electrodes in the spark plug,
which is assumed to be positioned on the symmetry axis of the cylinder. As the
piston moves the center is also assumed to move, to approximate the compression
and the expansion of the gas. The movement of the center is modelled in such a
way that the ratio dh/dp is held constant. Here dh is the distance between the
cylinder-head and the center, and dp the distance between the piston and the center
(see Figure 7.5). The inner and the outer radius of each zone (see Figure 7.5), are
calculated recursively for each time-point in the following manner.

1. Integrate the differential equations (7.5) to obtain the volume of each zone.

2. The first burned zone (labelled with 2 in Figure 7.5) is a simply a sphere and
hence there is only one radius, r1, to determine, and this is given uniquely
by the volume and the equation for the sphere.

3. The calculated r1 is also the inner radius for the second combusted zone.
The outer radius of the second combusted zone, r2, is therefore uniquely
determined by the volume of the zone, the radius r1 and the equation for a
truncated spherical shells.

4. The calculated r2 is also the inner radius for the third combusted zone. The
outer radius of the third combusted zone, r3, is therefore uniquely determined
by the volume of the zone, the radius r2 and the equation for a truncated
spherical shell.

5. The calculated r3 is also the inner radius for the fourth zone, etc.

When the zones are truncated, and in what way, is determined by the specific ge-
ometry of the cylinder, and the time-development of the combustion. The formulas
giving the relationship between the radii and the volumes of each zone is just the
difference between the corresponding expressions for simple geometrical shapes,
spheres and cylinders, and these can be found in e.g. Råde and Westergren (1990).

Determining ∆T

With A determined by any of three techniques mentioned above, it is easy to
determine ∆T , which is the only remaining part in equation (7.9). It is simply given
by the difference between the current temperature of the zone and the temperature
of the walls that the zone is in contact with. Here all walls are assumed to have
the same temperature Twall = 470K.

Now we will turn to the problem of determining the mass-flow, that was also
not included in Nilsson and Eriksson (2001), but which is needed to simulate equa-
tion (7.5).

7.2.3 The Mass-flow
There are two types of mass-flows included in the model. The first mass-flow simu-
lates the combustion, i.e. a mass-flow from the uncombusted zone to the combusted
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Figure 7.5 This shows the shells in a typical situation. Zone 3 has inner
radius r1 and outer radius r2

zones. The second mass-flow simulates the high turbulence in the cylinder, and this
mass-flow is a mass-transport between the different burned zones. The progress of
the combustion is modelled by the Vibe function

xb(θ) =
mb

mtot
= 1 − e−a(

θ−|θ0|

∆θ )m+1

(7.13)

where xb is the mass-fraction burned, i.e. the ratio between the burned mass, mb,
and the total mass, mtot, as a function of the crank angle θ. Here θ0 is the angle
at which the combustion starts and ∆θ is the combustion duration. Finally a and
m are adjustable parameters. This is an experimentally developed function, and it
is taken from Heywood (1988)). As can be seen in Figure 7.5 the zones are related
in such a way that it is assumed that all mass-flow simulating the combustion goes
only to the newest burned zone. That means that in Figure 7.5 there is only a
mass-flow of the first type between the zone labelled 1 and the zone labelled 4.

There is also a mass-flow included between the burned zones and it is modelled
as follows. From Heywood (1988) is given the rule of thumb that the mass-flow in
the cylinder is well approximated by half the mean piston speed, i.e.

v = S
ω

2π
(7.14)

where S is the stroke and ω is the engine speed in radians per second. This
expression gives values in agreement with other figures in Heywood (1988) (e.g.
Figure 8-1), and the value of v was therefore chosen to 2.5 m/s. The mass-flow
is then given by the contact area between the zones, and it is assumed that the
flow is equal in both directions (see Figure 7.6). That means that this flow mostly
serves as a sort of heat-transfer between the zones. Now all elements of the A

and B matrices in equation (7.5) are specified and equation (7.5) can be formed.
Let us therefore turn to the problem of calculating the ionization current from the
state-vector x in (7.6).
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v

v
Zone 1 Zone 2

Figure 7.6 Due to in-cylinder gas movements, the zones are exchanging
mass. Mass, with the temperature of zone 1, is flowing from
zone 1 to zone 2. In return the zone gets mass from zone 2
with its temperature.
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Figure 7.7 The two electrodes of the spark plug with the voltage U ap-
plied. The cylinder shaped volume contains the ions and the
free electrons are conducting the current.

7.2.4 The Saitzkoff-Reinmann model

As argued in the introduction to this chapter we are following the research trace
modelling the post-flame part of the ionization signal by thermal ionization. The
model is based on the Saha equation, and this usage was originally suggested in
Saitzkoff et al. (1996). It assumes that all the current flows in a cylinder shaped
control volume put between the spark plug electrodes as shown in Figure 7.7. The
derived relation is (see Saitzkoff et al. (1996) for other assumptions)

I = U
πr2

d

e2

σme

√
8kT
πme

√
φs

√√√√2
(

2πmekT
h2

p

) 3
2 B1

B0
e−

E1
kT

ntot
(7.15)

φs =
[NO] · 106

ntot/NA
(7.16)

ntot =
p

R̃T
NA (7.17)

The way to calculate φs, and the parameter values given in 7.3, are taken from
Andersson (2002). The interpretations of the parameters are given in Table 7.2
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φs Ratio of NO in gas me Electron mass [kg]
mixture [ ] Bi Internal partition

U Measurement voltage [V] function
r Radius of measurement E1 Ionization energy for

cylinder [m] 1st order ionization [J]
d Length of measurement ntot Total particle density

cylinder [m] density [1/m3]
σ Collision cross k Boltzmann’s constant

section [m2] [J/K]
[NO] NO Concentration hp Planck’s constant [Js]

[mol/cm3] e Unit charge constant
R̃ Universal gas constant [ ] [As]
T Temperature of gas [K] NA Avogadro constant
p Cylinder pressure [Pa] [molecule/mol]

Table 7.2 Parameter list for the Saitzkoff-Reinmann equation.

U 80 [V]
r 1 [mm]
d 1 [mm]
σ 0.1 [Å2]

me 9.31 × 10−31 [kg]
B1

B0
1 [ ]

E1 9.25 [eV]
k 1.38 × 10−23 [J/K]
hp 6.63 × 10−34 [Js]
e 1.6 × 10−19 [As]

NA 6.022 × 1023 [mol−1]

Table 7.3 Parameter values in Saitzkoff-Reinmann model.

In the expression the concentration of NO is needed. Here two ways of deter-
mining it have been compared. One assumes the NO concentration to be constant
(Φs = 0.01) and the other determines it by a simple chemical network. This latter
approach is explained in the following section.

7.2.5 Dynamical NO concentration
Usually one divides the reactions occurring in a cylinder in three rate-classes:
frozen, equilibrium and rate-limiting (Heywood, 1988). When simulating the ther-
modynamical development in Section 7.2.1 it was assumed that all reactions in
the cumbusted zones were equilibrium reactions. Now we will have to relax this
assumption for a few reactions. It should here be noted that since there is no
feedback from the calculated NO-concentration to the pressure, volume or temper-
ature, it does not lead to any logical inconsistencies when doing this. Just as in
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Saitzkoff et al. (1996) and Andersson (2002), the extended Zeldovich mechanism
is used to describe the NO-dynamics. It was originally presented in Zeldovich,
Sadovnikov and Frank-Kamenetskii (1974), but this presentation is taken from
Heywood (1988). The assumed reactions are

O + N2  NO + N

N + O2  NO + O

N + OH  NO + H

With the following two assumptions:

1. The content of N is small and changes slowly compared to the content of NO.

2. Concentrations of O, O2, OH, H and N2 can be approximated by their
equilibrium concentrations.

the expression for NO formation is

d [NO]

dt
=

2R1(1 − ([NO]/[NO]e)2)

1 + ([NO]/[NO]e)R1/(R2 + R3)
(7.18)

where

R1 = k+
1 [O]e[N2]e = k−

1 [NO]e[N]e

R2 = k+
2 [N]e[O2]e = k−

2 [NO]e[O]e

R3 = k+
3 [N]e[OH]e = k−

3 [NO]e[H]e

The concentration [ ] is in the unit [mol/cm3] and the reaction rate constants are
listed in Table 7.4. The concentration [NO] is defined as

[NO] =
NNO

V
(7.19)

where NNO is the quantity of NO in [mol] distributed in the volume V. The
equilibrium concentrations are calculated by the CHEPP package (Eriksson, 2004).
If Vb is the volume of the burned zone at question, equation (7.18) can be written
as

d [NO]

dt
=

2R1(1 − ([NO]/[NO]e)2)

1 + ([NO]/[NO]e)R1/(R2 + R3)
− [NO]

1

Vb

dVb

dt
(7.20)

We have now described all parts and all variations of the models that have been
used to do the analysis and we are therefore ready to go to the results part.
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Rate constant
[

cm3

mol×s

]
k+

1 7.6 × 1013e−38000/T

k−
1 1.6 × 1013

k+
2 6.4 × 109 × Te−3150/T

k−
2 1.5 × 109e−19500/T

k+
3 4.1 × 1013

k−
3 2.0 × 1014e−23650/T

Table 7.4 Reaction rate constants for NO formation.

7.3 Model evaluation
The Saitzkoff model has been used in a number of previous works. One common
feature, in the previous works, is that the simulated IPL is 2 CAD or more after
the measured IPL (as discussed in the introduction or see e.g. Table 4.3, 4.4 or
Figure 6.5 in Andersson (2002)). These models have all lacked heat-transfer, and
therefore it is first seen (in Section 7.3.2) whether this feature will be present also
for this model, setting the heat transfer to zero. Then the effect of adding first
the heat transfer (in Section 7.3.3) and later the NO-dynamics (in Section 7.3.5)
is investigated. First, however, a description of the data and of the comparison
technique.

7.3.1 The experimental data
The data was collected on a 2.0 liter turbo charged gasoline engine. The engine
was kept at 2000 revolutions per minute, and a scan was made in ignition angle
and air/fuel ratio. The scan in ignition angle was between 27.0 and 18.1 CAD
BTDC, which corresponds to MBT to MBT + 9. During this scan λ was kept at
1. During the scan in λ, which was between 0.88 and 1.06, the ignition angle was
kept at 27.0. The parameters defining the geometry are given in Table 7.9 and the
values of the parameters are given in Table 7.7.

Throughout the chapter the comparison between the model output and mea-
surements has been done as follows. First the median cycles, with respect to PPL,
were chosen for each operating point. This restriction was chosen since the com-
bustion progress is described by the Vibe function, and since this function has
problems fitting the extreme cycles. The next step was to tune the cycle-to-cycle
dependent parameters to the specific cycle of study. Since some of the parameters
depend on each other there are in effect not so many different degrees of freedom.
Here these were described by variations of the residual gas fraction, xres, and the
combustion duration ∆θ. From these two parameters the initial temperature was
calculated according to the following formula.

Tivc = 1350 ∗ xres + 300 ∗ (1 − xres)

Other cycle-to-cycle dependent parameters are the fraction of the fuel that was
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combusted, η, and the a and m parameters in the Vibe function (7.13). The latter
were, however, for all cycles except those mentioned in the Appendix A, set to the
values given in Table 7.7. This would, however, not be possible if other operating
ranges had been included in the data. After the model has been adjusted to fit the
measured pressure curve for a specific cycle the model’s IPL is compared to the
measured IPL, for the same cycle. For all the operating points there was a clear
peak in the post-flame phase, and the exact value of the IPL was obtained through
visual interpolation.
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Figure 7.8 A comparison between the different models for calculation of
the heat transfer. As a reference we see a pressure plot with no
heat transfer. The choice of model only has a small influence
on the cylinder pressure. See Appendix A for parameters.

7.3.2 Validation of the model without heat transfer

In this section the same discrepancy as in the earlier implementations of the
Saitzkoff model will be reproduced, but this time with the multi-zonal model de-
scribed in Section 7.2. Figure 7.9 and 7.10 shows the result of a simulation with the
heat transfer set to zero, and with a static NO-model (φs = 0.01) . In this simula-
tion 8-10 zones were used, and as can be seen also with this model is the predicted
IPL approximately 2 CAD later than the measured one. The reason the number
of zones is not a constant is that the zones divide when they reach a certain mass
limit, mb, and how many reaches this limit depends on the all the other simulation
parameters. The mass-limit used is given in Table 7.7. The pressure curves can
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Figure 7.9 Simulations done with different heat transfer models and with-
out heat transfer. The data is compared to the measured data,
and all curves has been scaled to have the same maximum
value. It can be seen that simulations with heat transfer re-
sult in a ionization current peak location about 4 CAD earlier
than the measured peak location. But simulation without heat
transfer results in a ionization current peak location about 2
CAD later than the measured peak location. The result of the
latter simulation is consistent with previously published results,
and also serves as a validation for the given implementation

.

be made to agree well for the compression and the early combustion phase. For
the end of the combustion phase the simulated data is higher than the measured,
but this is reasonable since there is no heat transfer included in the model. This
pressure validation (see Figure 7.3 for a pressure validation with heat transfer in-
cluded) together with the reproduction of the late IPL prediction observed earlier,
serves as a validation of the implementation.

7.3.3 Addition of heat transfer
A plot comparing the pressure plots for the different heat transfer models, intro-
duced in Section 7.2.2 is shown in Figure 7.8, and a plot comparing the ionization
curves for the same models is shown in Figure 7.9. As can be seen the curves divide
in two groups, the one without heat transfer in one group, and the three different
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Figure 7.10 A comparison between measured and predicted IPL for the
different heat transfer models. As can be seen all models with
heat release systematically predicts the IPL too early, while,
the one model without heat release predicts it to late. We can
also see that volume based model (as in (7.12)), lies 1-2 CAD
even further away from the x-y line. The chosen operating
points is (θ0, λ) = (24.1, 1).

models with heat transfer in the other. In the pressure graph (Figure 7.8), the dif-
ference between the PPLs for all the models including heat transfer is insignificant,
and the difference between the PPL for any of these models, and the PPL without
heat transfer is about 1 CAD. From Figure 7.9 and 7.10 a bigger difference between
the different heat transfer models can be observed. The IPL prediction with mass
and geometric basis is within one cad, but the volume based calculations differs
approximately 1.5 CAD from the two others. What can also be seen, and what
is more important, is that the introduction of heat transfer models has moved the
IPL 5-8 CAD earlier with respect to the model without heat transfer. The main
conclusion drawn from this is that the choice of heat transfer model is not as im-
portant as the choice of whether one should include it or not. It is also clear that
a model with heat transfer included does no longer have the problem of predicting
the IPL too late, but one the contrary, it predicts it too early. This new problem
is attacked in the next section. After this section it is only the geometrically based
heat transfer model that has been used.
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7.3.4 Model sensitivity analysis

It was shown in the previous section that the inclusion of a heat transfer model
does remove the old problem of predicting the IPL too late, but instead makes the
model predict a too early IPL. This new problem is approached in the following
way. First a sensitivity analysis is done for the parameters in the model, with
geometrically based heat transfer, that effects the difference IPL-PPL. Also other
small variations, like choice of fitting method, and data uncertainty is analysed.
Then the dynamical NO-model, described in Section 7.2.5, is added to the model,
to see whether it can improve the agreement. These analyses serve two purposes.
Firstly, the sensitivity analyses serve as a quantification of of how much the var-
ious parts of the model affect the relative position of the simulated pressure and
ionization curves. Secondly, it serves as an ensurance that the difference observed
in the previous section is really significant, i.e. that it can not be solved by small
variations in e.g. one of the model’s parameters.

Sensitivity to the fitting

The first thing that was tested was how dependent the IPL prediction is on the
fitting of the model to the measured pressure curve. Since no automatic process
has been constructed, this was easiest checked by letting two persons do a fitting on
the same data. The result of this process is shown in Table 7.5, and in Figure 7.11.
The figure also includes data from Table 7.6, which is from the other half of the
data. For this latter half, however, only one fitting was done. It can be seen in
the plot that the difference between the measured and predicted IPL is 3-5 CAD
for all operating points and the difference between the two independent fittings is
less than one CAD. From this we conclude that the prediction of IPL is not highly
sensitive to the fitting process.

Sensitivity to parameter variations

Another sensitivity measure is that of the model with respect to small variations in
the parameters. The result of such a sensitivity analysis is presented in Table 7.7.
It has been generated in the following way. For each parameter appearing in the
model a perturbation with 10% followed by a simulation has been done. For some
parameters, however, a perturbation size of 1% was chosen. This was due to an
either unfortunate formulation of the parameter value, making a 10% perturbation
unrealistically big, or to interdependence between parameters, leading to simulation
problems when perturbing them too much separately from each other. Each such
perturbation results in a simulated PPL and a simulated IPL. Let PPL(x) mean
the PPL value after a perturbation x, and analogously for IPL(x). Further let the
difference between these two values be denoted ∆pi(x), i.e.

∆pi(x) = PPL(x) - IPL(x) (7.21)
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Comparison I Comparison II Measured
θ0 [CAD] Mean Std Mean Std Mean Std

27.0 12.36 0.27 12.44 0.39 16.00 2.14
21.1 16.19 0.52 16.03 0.71 19.45 1.64
24.1 18.26 0.40 18.26 0.48 21.65 4.15
18.1 20.74 1.28 20.05 0.85 25.25 2.75

Table 7.5 Data from two independent fittings on the same data. The first
column specifies the ignition angle for the working point, and for
all points λ was equal to one. The four next columns describe
the mean value and standard deviation for the IPL, obtained
from the two fittings, for each of the operating points. The last
two columns gives the measured mean and standard deviation
of the IPL for the same data. The two independent fittings
have resulted in different xres, and ∆θ, values. The first fitting
was done by Karl-Johan Nogenmyr (Nogenmyr, 2003), and the
second was done by Daniel Claesson (Claesson, 2004). As can
be seen in the data, the standard deviations in the measured
values are quite big. This is a consequence of the large cycle-to-
cycle variations of the ionization currents. On the other hand
the two different estimations have given similar results, and this
indicates the robustness to the fitting process.

Comparison III Measured
λ Mean Std Mean Std

0.8824 11.17 0.44 13.25 1.67
0.9200 11.46 0.62 14.00 2.88
0.9536 12.32 0.50 15.00 1.41
1.0682 14.50 0.75 18.40 0.55

Table 7.6 Mean values and standard deviations of the predicted ionization
peaks, compared with the measured IPLs for the same cycles.
The data spans four different lambda values and for all of them
θ0 has been 27.2. The simulated peaks are also for this part
of the dataset 2–4 CAD earlier then the measured peaks. This
comparison was done by Claesson (Claesson, 2004).
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Figure 7.11 The simulated position of the ionization peaks against the
measured peaks for three independent fittings, with geomet-
rically based heat transfer but without inclusion of the NO-
dynamics. The data is the same as in Tables 7.6 and 7.5. The
lengths of the lines are two standard deviations, and the mean
value is the middle of the line. The large standard deviations
in the measured data are a consequence of the large cycle-to-
cycle variations in the measured ionization current data. As
can be seen the data from the two fittings are almost identical.

Finally let the difference between ∆pi(x) before and after the perturbation be
denoted ∆∆(x)

∆∆(x) = ∆pi(x) − ∆pi(0) (7.22)

It is this ∆∆(x) that has been observed for each parameter perturbation. The reason
why this quantity has been observed, and not e.g. the difference IPL(x) - IPL(0)
is that both the PPL and the IPL will change when a parameter is perturbed.
Therefore, when doing a parameter perturbation before a fit, with the fit done as
described in Section 7.3.1, the cycle-to-cycle dependent parameters will adapt to
keep the PPL fix (equal to the measured value). It is therefore only the difference
∆∆(x) that has the potential of changing the agreement between model and exper-
iments, and this is the reason why this is the quantity observed in the sensitivity
Table 7.7. The generality of the result from the analysis is based on the assumption
that neither the adaption of the cycle-to-cycle dependent parameters nor the choice
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Parameter Value ∆∆(−x) ∆∆(+x) x[%]
C1 2 −0.44 0.47 10
C2 0.44 −0.18 0.33 10

tStop 0.0736 ∼ 0 ∼ 0 10
m 4 0.46 −0.32 10
a 20 0.34 ∼ 0 10

pivc 6.5e4 0.18 ∼ 0 10
Tivc 363 ∼ 0 0.23 10

φ 1 ∼ 0 ∼ 0 10
φres 1 ∼ 0 ∼ 0 10
xres 0.065 0.11 ∼ 0 10

(A/F)s 14.7 ∼ 0 ∼ 0 10
Vb,i+1

Vu
1e-5 0.11 ∼ 0 10

mmax 4.7e-5 ∼ 0 ∼ 0 10
a 3.9e-2 0.34 ∼ 0 10
l 15.9e-2 ∼ 0 ∼ 0 10

Vd 4.96e-4 −0.18 0.33 10
dt 2e-3 ∼ 0 ∼ 0 10

Twall 470 ∼ 0 0.11 1
ω 200 ∼ 0 ∼ 0 1

tStart ∼ 0 ∼ 0 1
θ0 -27 ∼ 0 0.11 1
∆θ 44 0.17 ∼ 0 1
h 2e-5 ∼ 0 ∼ 0 1
η 0.97 ∼ 0 ∼ 0 1
B 9.0e-2 ∼ 0 0.11 1
rc 9.25 ∼ 0 ∼ 0 1
Vc 6.01e-5 ∼ 0 0.10 1
S 0.078 ∼ 0 ∼ 0 1

Table 7.7 Parameters appearing in the model, as well as their affect on
the quantity ∆∆(x) defined in (7.22). The final column gives
the perturbation size used for the each parameter.

of operating point will significantly affect the model agreement. The assumption is
supported by the relative robustness of both the fitting and the choice of operating
point observed in the previous sensitivity analysis (in Figure 7.11).

As can be seen in the sensitivity tables none of the parameters change the differ-
ence with more than 0.5 CAD, and most of them only changes the difference with
less than 0.1 CAD (which has been set to ∼ 0). From this we draw the conclusion
that no single perturbation of a parameter can lead to significant improvements of
the approximately 4 CADs early prediction of the IPL obtained by adding the heat
transfer in Section 7.3.3.
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Twall Temperature at the cylinder wall [K]
C1 Woschni heat transfer constant [ ]
C2 Woschni heat transfer constant [ ]
ω The angular velocity [rad/s]

tStart Simulation start-time [s]
tStop Simulation stop-time [s]

θ0 Ignition angle [CAD]
∆θ Combustion duration [CAD]
m The m parameter for the Vibe function [ ]
a The a parameter for the Vibe function [ ]

pivc Pressure at intake valve close [Pa]
Tivc Temperature at intake valve close [K]

φ Fuel / air equivalence ratio [ ]
φres Fuel / air equivalence ratio in residual gas [ ]
xres Residual gas fraction [ ]

(A/F)s Stoichiometric air/fuel ratio [ ]
h The time-step of the simulation [s]

Vb,i+1

Vu
Fraction of the unburned zone used to
create a new burned zone [ ]

mmax The maximum mass that a boundary zone might have [kg]
η Fraction describing how much fuel is left unburnt [ ]

Table 7.8 Simulation parameters that were increased and decreased in the
sensitivity analysis. A short explanation to each parameter is
also given.

a Crank radius [m]
l Connecting rod length [m]
B Cylinder bore [m]
rc Compression ratio [ ]
Vd Displaced volume [m3]
Vc Clearance volume [m3]
S Piston stroke [m]

dt Distance spark-gap to cylinder head [m]

Table 7.9 Engine parameters that were increased and decreased in the
sensitivity analysis. A short explanation to each parameter is
also given.
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Figure 7.12 The ionization current peak location for simulations done with
different number of zones.

Sensitivity to number of zones

Another uncertainty is the effect of the number of zones chosen. Since it is clear
that the effect of heat transfer is significant, it is interesting to see whether dividing
the heat transfer between few or many zones makes a difference for the zone that
contains the spark plug. In Figure 7.12 the IPL for different number of zones is
plotted. As can be seen, apart from the change between one and two cumbusted
zones, there is no significant change when changing the number of zones. In all
other plots in the thesis 8-10 zones has been used, and for this region the model is
concluded to not be sensitive to the number of zones.

Sensitivity to mass-flow

Another uncertainty in the model is the mass-flow. The mass-flow was set with the
rule of thumb given in equation (7.14). The value was also in agreement with some
experimental recordings in Heywood (1988). The sensitivity to the estimation
of the value of v in (7.14) was checked by varying this parameter with ±100%.
The result is plotted in Figure 7.13, and as can be seen the change in IPL is not
significant. It should, however, be added that a greater uncertainty probably lies
in the way that the mass-flow has been modelled.
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Figure 7.13 Simulated ionization curves for different values of the mass-
flow velocity v, approximated by equation (7.14). The value
has been perturbed with 100% in both directions, and as can
be seen the change of IPL is less than 0.2 CAD. We conclude
that this parameter is not important for the prediction.

Sensitivity to data uncertainty

We also need to estimate the uncertainty contribution from the data. Our main
objective is to see if the observed difference between the predicted and measured
IPL (in Figure 7.11) already lies within the measurement uncertainty or if the
agreement can be further improved. That means that we need to find an upper limit
to the uncertainty. If we find such a limit that is smaller than the observed difference
(from adding the heat transfer in Section 7.3.3) we will conclude that we need to
improve the model further. We approximate the uncertainty in the estimation of
the timing in the sampling to be less than one CAD. The basis for this is that
the data are sampled each CAD. If this approximation is valid, this uncertainty is
of an order of magnitude less than the observed discrepancy by adding the heat
transfer, and it does not violate the conclusion. Another data uncertainty comes
from the calibration of the pressure sensor. An uncertainty in the absolute value
of the measured pressure will affect the fitting process deciding the cycle-to-cycle
dependent parameters. When doing this fitting there are basically two degrees of
freedom, here chosen as xres and ∆θ (see Section 7.3.2). The fitting has been done
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by the heuristically based principle of first fitting the position of the pressure peak
with ∆θ and then fitting the amplitude with the xres parameter. From Table 7.7 we
see that the sensitivity of the observed difference to the xres parameter is almost
zero. From this we draw the conclusion that the observed difference cannot be
explained by uncertainties from the pressure sensor calibration. Finally we have
a big data uncertainty coming from the noise in the ionization sensor. The effect
of the noise is illustrated by the variance plot in Figure 7.11, and as can be seen
this effect is less than the observed discrepancy. However, the ionization sensor
signal also contains systematic noise components. These come from the multitude
of processes that are determining the ionization current. One such is the remaining
effect of the flame-front phase. That means that the observed signal is really a
superposition of a signal that (most likely) has a negative slope and a signal that
has a peak in the post-flame phase. However, independently of the exact shape
of the remaining transient from the flame-front part, as long as it has a negative
slope the real post-flame peak will lie later than the observed peak. That means
that the inclusion of this data uncertainty will (if the assumption of negative slope
holds) increase the difference obtained by adding the heat transfer to the model.
After this discussion of the various uncertainties we draw the conclusion that the
agreement can be further improved, and from the previous sensitivity analysis we
conclude that we need to exploit new model structures to obtain it.

7.3.5 Addition of Dynamical NO-model

In Figure 7.14, 7.15 and Table 7.10 can be seen the result of a fitting of the model
with respect to the same data as earlier, but after including the dynamical NO-
model described in Section 7.2.5. As can be seen, with the difference between the
predicted and the measured IPL is less than one CAD for all working points. We
therefore conclude that the combination of the heat transfer model, introduced in
Section 7.2.2, and the dynamical NO-model , introduced in Section 7.2.5, together
make the model predict the IPL with a high accuracy. It should be emphasized
that one of the strengths of this result is that the agreement has been best for
the most realistic model. All previous models are containing more or less crude
approximations of the features included in this model, and if they would have
modelled a better agreement with the measurements, we would have been forced
to go back to the modelling phase and understand why. Now, however, we have
included all the details that we know, and the results is therefore the desired: A
physically based model that describes the relationship between the position of the
pressure curve and the measured IPL, with an agreement within one CAD.

7.4 Conclusions

This chapter has presented a multi-zonal model for cylinder pressure, temperature
and ionization currents. It has been shown that the reason previously published
models predict a too late IPL position, is that they have not included heat trans-
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Figure 7.14 The agreement between predicted and measured IPL for four
different operating points. The data is taken from Table 7.10
and as can be seen the agreement is within one CAD.

Simulation Measured
θ0 [CAD BTDC] Mean Std Mean Std

27.0 16.67 0.70 16.00 2.14
24.1 18.75 0.86 19.45 1.64
21.1 21.25 1.12 21.65 4.15
18.1 24.41 0.69 25.25 2.75

Table 7.10 Data from simulations done with the dynamical NO-model.
Now the simulated and measured peak positions of the ioniza-
tion currents are within 1 CAD. The standard deviations from
the simulations are approximately 1 CAD.
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a. Ignition angle 27.0 CAD BTDC

0 5 10 15 20 25 30 35 40
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Crank angle degrees

Io
ni

za
tio

n 
cu

rr
en

t [
A

]

Measured data
Simulated with dynamical NO
Simulated with static NO

b. Ignition angle 24.1 CAD
BTDC
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c. Ignition angle 21.1 CAD BTDC
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Figure 7.15 The measured- and simulated ionization current for four dif-
ferent ignition angles are plotted. Plotted is the average
curves, that is the mean value of all the cycles. As can be seen
the simulated plot with dynamical NO shows good agreement
with the measured plot.

fer. The presented model includes a realistic heat-transfer, that together with a
dynamical NO-model is capable of predicting the measured IPL within one CAD.
The final heat transfer model is assuming symmetrical spheres that grows out as
the combustion proceeds. However, two other models have also been tested, and it
was observed that the difference, when predicting the IPL, was bigger between the
models with and without heat transfer, than between the different models including
heat transfer.



8
A Model for Insulin Signalling to Map-kinase

Control in Fat Cells

This chapter is the second of the two that deals with system identification in prac-
tice, i.e. with development and analysis of specific models in specific applications.
While the previous chapter dealt with the development of model for a combustion
engine, this chapter is concerned with cell biology. The differences between these
two applications show how diverse thermochemical systems might appear, and how
general the problem of system identification is. The model presented in this chapter
describes the intra-cellular response to insulin in human fat cells. A motivation of
why such a model is interesting, together with a short review of the necessary the-
ory is given in the first section. Then, in Section 8.2, the actual model is presented.
Section 8.3 presents some basic analysis of the model. The in silico experiments
include: i) time-series analysis, ii) dose-response curves and iii) a search for ex-
perimentally obtainable oscillations. Section 8.4 compares the model simulations
with previously published experimental data. The overall agreement is quite good,
but the fit is not perfect, and some general things can also be improved. This im-
provement, together with a sensitivity analysis, is done in Section 8.5. Section 8.6
contains a discussion of the present accuracy of the model and discusses what the
model can and cannot be used for now. Finally, as in the other chapters, comes a
summary of the results obtained in the chapter.

8.1 Background

This sections starts by giving a general introduction to the specific pathway that
will be modelled, and ends by reviewing the necessary theory for understanding
how this has been done.

131
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8.1.1 The mitogenic response to insulin in fat cells

The main role of insulin in the human body is to regulate the level of glucose (sugar)
in the blood. Insulin is produced in the β-cells in the islands of Langerhans, and
the production increases when the blood glucose level rises. When the production
of insulin increases, the concentration of insulin in the blood also increases, and
this is the signal to the cells that there is glucose in the blood, and that the cells
should change their metabolism to use glucose instead. The conventional view of
how this information is given to the cells is the following. The free insulin molecules
in the blood can dock to certain insulin receptors that are situated all over the cell
membrane (boundary separating the inside from the outside of the cell). When
an insulin molecule has coupled to such a receptor, the receptor and insulin will
form a complex, and this complex will change shape, once the coupling is complete.
The complex now has the potential to bind another molecule, a phosphate group.
This will cause the insulin-receptor complex to change mode, into an active mode.
When the insulin-receptor complex is activated, it has the possibility to bind to
another substrate, called insulin receptor substrate (IRS). Once this substrate has
bound to the complex, and thus forming an even greater complex, the IRS molecule
can also bind a phosphate group. Once this has been done, the IRS molecule will
detach from the Insulin-Receptor-IRS complex and allow for this complex to couple
to another IRS molecule. The decoupled IRS molecule has still got the phosphate
group and it is therefore denoted IRS-P. IRS-P is the active form of IRS, and it
can be used to couple to other substrates, and activate them in a similar fashion.
These activated enzymes will then be capable of activating yet other enzymes and
in this way the original insulin molecule starts a chain reaction, where each step is
activating or deactivating some signalling intermediate in a network of substrates
(see Figures 8.1 to 8.5 for the network included in this model). In a network
there might also be upstream feedbacks back to previous steps in the network (see
e.g. Figure 8.5), and it is the presence of negative feedback loops that makes a
system capable of having oscillations. The activation signal that proceeds into
the cell is usually divided into two major sub-branches. One of these governs the
metabolic response and the other governs the mitogenic. The metabolic response
has to do with things like energy production and consumption, and the mitogenic
response has to do with things like cell growth and division, cell death and protein
transcription. It is only the mitogenic response that is spread by phosphorylation
cascades as described above. In the model presented in this chapter it is only the
mitogenic response of insulin that is included. The model starts with extracellular
insulin concentration and ends with the doubly phosphorylated mitogen activated
protein kinase (MAPK-PP) (see Figure 8.4 and 8.5). MAPK-PP is a protein kinase
(activator) of transcription factors, and once these have been phosphorylated they
go into the cell nucleus, and there start transcription of various proteins. This last
part is not included in the model. The time-scale of the entire response is in the
order of a few minutes, even though some individual reactions equilibrize in the
time scale of micro-seconds. One major reason why it is interesting to model the
response to insulin is the following. The common disease type II Diabetes Mellitus
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(sometimes called age-diabetes), is often caused by insulin non-sensitivity. When
this is the case, the disease can not be cured by adding more insulin to the blood,
and therefore usually other methods has to be used. Since this kind of diabetes is
becoming increasingly more common, and since it is not fully understood what goes
wrong in the cell response, research within this area has a high priority. Considering
the complexity of the system, it is a great help to complement the experiments
with mathematical models. It should, be emphasized that mathematical modelling
can in no way replace real experiments. It can only be a means of structuring the
given information, generating new hypothesis, be a cheap and fast alternative when
testing things not yet tested etc. Now follows a short summary of two standard
ways of translating chemical reactions into ODEs.

8.1.2 Chemical kinetics revisited

In this Subsection follows a short review of the basic theory regarding cellular mod-
elling, a more extensive treatment is found in e.g. Heinrich and Schuster (1996).
When modelling intra-cellular reactions a common way is by assuming continu-
ous concentrations, and collision-based reactions. That means that one considers
reactions of the form

A + B → C v = ? (8.1)

where v is the velocity and the question mark stands for an analytical expression
that consists of chemicals (not necessarily A, B or C), and reaction parameters.
The simplest case is the law off mass-action and another common case, that is often
used when modelling enzymatic reactions, is the Michaeles-Menten expression.

Mass-action kinetics

In the case of mass-action kinetics the reaction velocity in (8.1) is considered pro-
portional to the concentration of A and B. It can be written v = k[A][B] where k

is a reaction constant that in general depends on things like temperature, pressure,
and pH. In cellular models, however, these things are considered constant in time
and, hence, so will the reaction parameters.

Michaeles-Menten kinetics

When reactions include enzymes like in the phosphorylation cascade described in
Section 8.1.1, one often does a combination of several steps in a way that usually is
denoted the Michaeles-Menten approximation. In the simplest case one combines
the following four reactions

S + E → SE v = k1[S][E] (8.2)
SE → S + E v = k2[SE] (8.3)
SE → P + E v = k3[SE] (8.4)

P + E → SE v = k4[P][E] (8.5)
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into the single reaction

S → P v =
k3Etot[S]

KM + [S]
(8.6)

This simplification is possible if one can assume that k4 ∼ 0, and d[SE]
dt ∼ 0. The pa-

rameter Etot is the total enzyme concentration. For a derivation of the relationship,
see e.g. (Heinrich and Schuster, 1996).

8.2 The model
Prior to this work there were no existing (mathematical) model in the literature
that described a connected signal transduction pathway from extracellular insulin
concentration to double phosphorylated MAPK. There are, however, many models
that describe or include parts of the network lying between these two enzymes, and
some of these models have been used as a basis for the construction of this model.
The model is presented in four parts.

i) The first part starts with extracellular insulin concentration and ends with
the activation of the insulin receptor substrate (IRS). This part is assumed common
to both the metabolic and the mitogenic response to insulin and this part of the
model is mainly taken from Sedeghat, Sherman and Quon (2002) which describes
the former of these responses.

ii,iii) The second and third parts of this pathway consists of SOS, Grb2, GDP
and Ras, and these steps are taken from the DOQCS database (Doqcs, 2001) and
the models presented by Bhalla and Iyenger, (Bhalla and Iyenger, 1999).

iv) The final part of the model is known as the MAPK-cascade, and it is one of
the most modelled parts of the pathway. Also here a model by Bhalla and Iyenger
has been used as the base model during the construction.

8.2.1 The first step, including insulin, IR and IRS
The first step of the pathway (Figure 8.1) including insulin, the insulin recep-
tor (IR) and the insulin receptor substrate (IRS), is modelled according (Sedeghat
et al., 2002). Although their model is designed for the metabolic signalling pathway,
these initial reactions are assumed to be the same for the mitogenic pathway(Leng,
Karlsson and Zierath, 2004). The concentration of insulin is given as a parameter
and acts as input to the system. Extracellular insulin binding to IR is modelled as
a reversible reaction (reaction number 12 in Figure 8.1). IR is then autophospho-
rylated (reaction 13) and can only be dephosphorylated after insulin dissociates
from it (reaction 14). The dephosphorylation (reaction 17) is modelled with a mul-
tiplicative factor, PTP, which represents the relative activity of all the protein ty-
rosine phosphatases in the cell that dephosphorylate IR (and IRS, see below). The
phosphorylated receptor can also bind a second insulin molecule, in a reversible re-
action (reaction 15). Both IR-P forms phosphorylate IRS into IRS-P (reaction 16).
This reaction’s dependence on the concentration of IR is modelled as a linear de-
pendence on the fraction of phosphorylated receptors ([IR-insP]+[IR-2ins])/IRp,
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where IRp is a parameter corresponding to the concentration of phosphorylated
receptors during maximal insulin stimulation. The dephosphorylation of IRS-P is
modelled with the factor PTP as explained above (reaction 17). Figure 8.1 gives
a schematic view of these reactions and their respective rate equations are stated
in equations (8.7)-(8.14). Compared to the model in ((Sedeghat et al., 2002)) the
endocytosis of insulin receptors into the cell and the further steps relevant only to
the metabolic pathway, have been excluded from the present model. A detailed
description of the model including all parameters, initial values etc, both for this
and all the other steps is given in Appendix A.6.

Figure 8.1 Schematic view of the first step in the insulin model. Insulin binds
reversibly to the insulin receptor, IR, which then autophosphory-
lates. A second insulin molecule can also bind to the receptor when
it is phosphorylated. The phosphorylated receptors then activates
the insulin receptor substrate, IRS. All activation/deactivation is
done by phosphorylation.

vf12 = Kf12[IR][ins] (8.7)
vb12 = Kb12[IR − ins] (8.8)
v13 = K13[IR − ins] (8.9)
v14 = K14PTP[IR − ins − P] (8.10)

vf15 = Kf15[IR − ins − P] (8.11)
vb15 = Kb15[IR − 2ins − P] (8.12)
v16 = K16[IRS]([IR − ins − P] + [IR − 2ins − P])/IRp (8.13)
v17 = K17PTP[IRS − P] (8.14)

8.2.2 The second step, including Sos and Grb2

The next part of the pathway includes Sos, Grb2 and the negative feedback induced
by MAPK-PP, the last component of the pathway.

Sos and Grb2 reversibly form a complex (reaction number 21 in Figure 8.2),
which then binds to IRS-P (reaction 22), from the previous step, and forms the
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super complex IRS-P-Sos-Grb2. This binding is modelled with the same parameters
as for the binding of the super complex SHCP-Sos-Grb2 in the model of Bhalla
and Iyenger ((Bhalla and Iyenger, 1999) and (Bhalla, Ram and Iyenger, 2002)).
This approximation is supported by the fact that the two complexes IRS-P-Sos-
Grb2 and SCHP-Sos-Grb2 have the same downstream function in the pathway.
Further, MAPK-PP can phosphorylate Sos (reaction 20), and Sos-P can bind to
Grb2 reversibly (reaction 18), but Sos-P-Grb2 can not bind to IRS-P. This has the
effect that the concentration of the complex Sos-Grb2 is reduced, which in turn
reduces the concentration of IRS-P-Sos-Grb2. The extension of this is that the
concentration of MAPK-PP is reduced, which in turns causes a reduced level of Sos
phosphorylation. This feature is a negative feedback and it is one of two included
in the model. The dephosphorylation of Sos-P is modelled as an intrinsic reaction,
i.e. it is only proportional to the concentration of Sos-P itself (reaction 19). The
schematic view of these reactions are shown in Figure 8.2 and their respective rate
equations are stated in equations (8.15)-(8.22). Note that MAPK-PP is shortened
to KPP in the equations.

Figure 8.2 Schematic view of the second step in the insulin model. Sos binds
to Grb2 and forms a complex which then binds to IRS-P (from
the previous step). MAPK-PP (from the last step) phosphorylates
Sos which then also can form a complex with Grb2. However this
complex can not bind to IRS-P. Hence this reaction is a negative
negative feedback for the system.
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vf18 = Kf18[Sos − P][Grb2] (8.15)
vb18 = Kb18[Sos − P − Grb2] (8.16)
v19 = K19[Sos − P] (8.17)

v20 =
V20[KPP][Sos]

[Sos] + k20
(8.18)

vf21 = Kf21[Sos][Grb2] (8.19)
vb21 = Kb21[Sos − Grb2] (8.20)
vf22 = Kf22[Sos − Grb2][IRSP] (8.21)
vb22 = Kb22[IRS − P − Sos − Grb2] (8.22)

8.2.3 The third step, including GDP and Ras

The next part of the pathway is the one preceding the MAPK cascade. Its main
function is the activation of Ras by exchange of its bound GDP group with a GTP-
group. In the model this activation of Ras is catalyzed by the complex Sos-Grb2-
IRS-P (reaction 23 in Figure 8.3). This is an important reaction in this step because
it is the only reaction coupling the previous steps with the MAPK cascade. Another
activator of Ras included in the model is the phosphorylated Guanine nucleotide
exchange factor (GEF) (reaction 24). Both GEF and IRS-P-Sos-Grb2 activate Ras
by enzymatic reactions. Ras is deactivated by GTPase activation protein (GAP),
which also is modelled as an enzymatic reaction (reaction 25). Ras also has an
intrinsic deactivation (reaction 26). GEF and GAP can both be phosphorylated by
Protein kinase C (PKC) (reactions 28 and 30) and have intrinsic dephosphorylation
(reactions 27 and 29). Note that although PKC activates GEF and inactivates GAP
the effect of both these phosphorylations on GTP-Ras phosphorylation is positive.
Also note that there is no feedback from the rest of the system to neither GAP
nor GEF, and hence these two branches (reaction 27-30) gives a certain zero-level
phosphorylation degree. Figure 8.3 shows the reactions. The reaction expressions
for these steps were taken from models on the DOQCS database (Doqcs, 2001).
This database provides several models for this step, including varying number of
reactions. However, the approximation of equating IRS-P-Sos-Grb2 with SHCP-
Sos-Grb2 had to be done also here. Among the existing models the one with the
least number of reactions was chosen for simplicity, and equations (8.23)-(8.30)
state the rate equations.
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Figure 8.3 Schematic view of the third step in the insulin model. The com-
plex IRS-P-Sos-Grb2 (from the previous step) activates GDP-Ras
by phosphorylation into GTP-Ras. GAP and GEF and PKC act as
background signal from other interacting pathways.

v23 =
V23[IRS − P − Sos − Grb2][GDP − Ras]

[GDP − Ras] + k23
(8.23)

v24 =
V24[GEF − P][GDP − Ras]

[GDP − Ras] + k24
(8.24)

v25 =
V25[GAP][GTP − Ras]

[GTP − Ras] + k25
(8.25)

v26 = K26[GTP − Ras] (8.26)
v27 = K27[GAP − P] (8.27)

v28 =
V28PKC[GAP]

[GAP] + k28
(8.28)

v29 = K29[GEF − P] (8.29)

v30 =
V30PKC[GEF]

[GEF] + k30
(8.30)

In Figure 8.4 the first three steps are included to get a full view of the model.
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Figure 8.4 Model of the mitogenic insulin pathway previous to the MAPK cas-
cade with all the previously explained steps included.

8.2.4 The fourth step, the MAPK-cascade

Finally, as the last step in the pathway, is the MAPK-cascade. This is the most
modelled part of the pathway and there is much interesting dynamics taking place,
considering only this part of the pathway. The insulin signals are brought to the
MAPK-cascade through GTP-Ras that binds to Raf-P and forms the complex
GTP-Ras-Raf-P (reaction 31). This complex then phosphorylates MAPKK twice
(reactions 3 and 4). Finally MAPKK-PP phosphorylates MAPK twice and the
doubly phosphorylated MAPK-PP is the end result of the insulin signal included
in this model. In the cell this protein kinase phosphorylates various transcription
factors that eventually enter the cell nucleus and controls transcription of specific
genes. There are two negative feedbacks from MAPK-PP, the first phosphorylates
Sos to Sos-P, as was explained above, and the second is due to an extra phosphory-
lation of the active enzyme RAF-P into the inactive form RAF-PP (reaction loop).
There is also known to be a positive feedback from MAPK to Ras, but this is not
included in the model. The Bhalla and Iyenger model was again chosen in prefer-
ence to others, because it was believed to be most compatible with the previous
steps. This last step in the model is shown in Figure 8.5 and the corresponding
rate equations are given in equations (8.31)-(8.44). Note that MAPK and MAPKK
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Figure 8.5 Schematic view of the MAPK cascade used in the insulin mito-
genic pathway. GTPRas (from the previous step) binds to Raf-P
which then phosphorylates MAPKK to MAPKK-P and MAPKK-
PP. MAPKK-PP then phosphorylates MAPK and MAPK-P. Raf-P
can be phosphorylated by MAPK-PP which makes a negative feed-
back.

are shortened to K and KK, respectively, in the rate equations.

vf31 = Kf31[GTP − Ras][Raf − P] (8.31)
vb31 = Kb31[GTP − Ras − Raf − P] (8.32)

v1 =
V1[PKC][Raf]

[Raf] + k1
(8.33)

v2 =
V2[PP2 − A][Raf − P]

[Raf − P] + k2
(8.34)

v3 =
V3[GTP − Ras − Raf − P][KK]

[KK] + k3
(8.35)

v4 =
V4[GTP − Ras − Raf − P][KKP]

[KKP] + k4
(8.36)

v5 =
V5[PP2 − A][KKP]

[KKP] + k5
(8.37)

v6 =
V6[PP2 − A][KKPP]

[KKPP] + k6
(8.38)

v7 =
V7[KKPP][K]

[K] + k7
(8.39)
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v8 =
V8[KKPP][KP]

[KP] + k8
(8.40)

v9 =
V9[MKP1][KP]

[KP] + k9
(8.41)

v10 =
V10[MKP1][KPP]

[KPP] + k10
(8.42)

vloop =
Vloop[KPP][Raf − P]

[Raf − P] + kloop
(8.43)

v11 =
V11[PP2 − A][Raf − PP]

[Raf − PP] + k11
(8.44)

8.3 In silico experiments with the model
The analysis of the model has been done in four ways: i) Time-course analysis, ii)
Dose-response analysis iii) Search for oscillations, and iv) Sensitivity analysis. i),
ii) and iii) are presented in this section and the sensitivity analysis is presented
together with the parameter estimation in Section 8.5.

8.3.1 Time-course analysis
Time-courses for the response of three different signalling molecules to a step in-
crease in the extra-cellular insulin concentration from 0.1 to 0.01µM are shown in
Figure 8.6. The response for a signalling molecule in the beginning (IR-ins-P), in
the middle (GTPRas-RafP), and for the last step included in the pathway (MAPK-
PP) was analysed. As can be seen the major part of the response (10 to 90 %),
takes 5-10 minutes. This can be considered a realistic response time compared with
what has been found in rat fat cells ((Strålfors and Honnor, 1989), Figure 6). More-
over, the time-courses for the initial steps of the pathway are completed before the
ones at the end. There are, however, as yet no experimental data available for fat
cells and a detailed verification of the model is therefore not possible. A human fat
cell is approximately 100µm in diameter, and less than 2% of this is accounted for
by cytosol (Thom, Stenkub, Karlsson, Önnegren, Nyström, Gustavsson and Strål-
fors, 2003), and this corresponds to a cytosolic volume of less than 30 000(µm)3

per fat cell. Sub-nanomolar concentrations therefore correspond to less than 20 000
particles per cell, which means that a concentration of 1E-7µM (for MAPK-PP)
or 1E-9µM (for RAF-PP) represents about 10 or < 1 particle, respectively, per
cell. This is not realistic in a situation with maximal insulin stimulation and to fix
this is one of two objectives with the parameter estimation done below. The other
objective concerns dose-response curves.

8.3.2 Dose-response curves
Dose-response curves showing how the stationary phosphorylation degree varies
with the extracellular insulin concentration are shown in Figures 8.7, 8.8 and 8.9.
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Figure 8.6 Time-series showing the step-response of various signalling
molecules to insulin. The insulin step is from 0.1 to 0.01 µM and
all the other concentrations are given in µM. The response time
(10 - 90 %) is approximately 5-10 minutes and this is in accordance
with experimental experience. Some of the concentrations, e.g. the
MAPK-PP concentration, is lower than realistic. To fix this is one
of the objectives of the parameter estimation done in Section 8.5.

The phosphorylation degree is presented in the same way as the corresponding
experimental data is. That means that the phosphorylation signal has been nor-
malised to be 100% at the highest stimuli (ins ≈ 0.1µM) and 0% at the low-
est stimuli (ins ≈ 1E-5µM). The actual phosphorylation signal was measured in
slightly different ways for the different enzymes.

• The MAPK phosphorylation degree signal is proportional to the concentra-
tion of MAPK-PP. The concentration of MAPK-P is not measured.

• The IR phosphorylation degree signal is proportional to the number of phos-
phorylation groups sitting on IR-molecules. This means that e.g. double
phosphorylation of an individual IR-molecule contributes the same amount
as two single phosphorylated IR-molecules.

• The IRS phosphorylation degree signal is measured in the same way as the
IR signal.

Since the model has the MAPK-PP concentration explicitly included the steady-
state concentration of this variable is directly comparable to the experimental sig-
nal. The model does not describe double phosphorylation and there is therefore no
variable that directly corresponds to the experimental signals for IR and IRS. Here
it has been assumed that double phosphorylation happens with the same velocity
as the single phosphorylation. It has also been assumed that there is no difference
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Steady state conc. Steady state conc
Variable original parameters estimated parameters

KKP 0.00160429 0.043088
KP 8.39989E-5 0.1118420

KKPP 3.029892E-5 0.02185080
KPP 1.7148E-7 0.175226

SOSP 9.383E-6 0.041455
SOSP-Grb2 1.2764E-5 0.0580822

SOS-Grb2 0.01919 8.499412E-5
GTP-Ras 0.01903 0.063738

GAP 0.001906 0.00190643
GEF-P 0.00118 0.0011840
Raf-P 0.002715 0.013679811

Raf-PP 2.1155E-9 0.0218001
GTP-Ras-Raf-P-c 0.0024812 0.0418525

IR-ins 5.3996E-5 5.399612E-5
IR-ins-P 0.6749 0.6749583

IR-2ins-P 0.2024 0.2024875
IRS-P 0.694927 0.7443392

IRS-PSosGrb2 0.066678 3.163096E-4

Table 8.1 The steady state values for ins = 0.1 µM for the model with literature
parameter values (first column), and with values after the estimation
(second column). All concentrations are given in µM, which means
that before the estimation some of the steady state values are un-
realistically low. As can be seen, after the parameter estimation no
steady state value has this problem.

between finding phosphorylation groups on IR-ins-P and IR-2ins-P. With these as-
sumptions the model equivalence to the experimental signals is given by (IRS-P)
and (IR-ins-P + IR-2ins-P). The actual dose response curves has been obtained
through the continuation methods in the Janet software (Janet, 2002), and the
parameter settings used are described in the appendix.

8.3.3 Search for experimentally obtainable oscillations
Background

In some of the sub-models oscillations has been observed. This has, however,
only been done for unrealistically low parameter values of the kloop parameter,
appearing in equation (8.43). There might, however, be possible to have oscillations
for realistic kloop values by changing other model parameters. If that is possible
that would mean that the Hopf bifurcation must also have moved past the limit of
realistic kloop values. That means that bifurcation analysis might be an efficient
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Figure 8.7 Comparison between the experimental and the simulated dose-
response curves for IR. The experimental uncertainty is approxi-
mately 30%, and the agreement is within the measurement uncer-
tainty both with the original and with the estimated parameters.
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Figure 8.8 Comparison between the experimental and the simulated dose-
response curves for IRS. The experimental uncertainty is approx-
imately 30%, and the agreement is within the measurement uncer-
tainty both with the original and with the estimated parameters.
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Figure 8.9 Comparison between the experimental and the simulated dose-
response curves for MAPK-PP. The experimental uncertainty is
about 30%. As can be seen the inflexion point with the original
parameters is 5-10E-4 µM to the right of the measured inflexion
point. After the parameter estimation the model inflexion point has
been moved 8E-4 µM to the left.

tool to investigate the possibility of this. Should the model investigations show
that there are, at least in the model, experimentally obtainable oscillations, this
statement can later be checked experimentally. That possibility of experimental
comparisons around the Hopf bifurcation would also make the model an excellent
test model for the techniques developed in this thesis. The search included two
parts: search for oscillating areas and bifurcation analysis.

Search for oscillating regions

The previously observed oscillations have only been seen in some of the sub-models
that make up parts of the model presented here. This is natural since there are
no previous models describing the full cascade from insulin to MAPK-PP. An im-
mediate question was therefore whether there were oscillations for corresponding
parameter values of kloop for the full model. The answer is that there are not. A
search was made, also in neighboring parameter areas, but initially no oscillating
regions at all were found for the full model. This search was however not exhaus-
tive. The main effort, however, was done on searching in the sub-model for which
the oscillations had been previously observed. There the previously observed oscil-
lations were reproduced and a search for other regions was done. It gave, however,
not rise to any discovery of new regions not connected with the first region for
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which the system oscillated. The bifurcation analysis was therefore only conducted
for one area, the one found by lowering the kloop parameter.

Bifurcation analysis

The idea was that by varying some of the parameters that can be varied experi-
mentally the value of the parameter kloop, which cannot be varied experimentally,
for which the bifurcation occurs could be brought back to its realistic value. That
means that a bifurcation analysis showing how the Hopf bifurcation manifold lies
in the parameter space is desired. Here this analysis was restricted to only varying
one parameter at a time, i.e. restricted to a number of two-dimensional bifurca-
tion plots. Such a plot is shown in Figure 8.10, where the bifurcation curve in the
kloop−Ktot plane is plotted. Ktot is the total concentration of all the variables in
the final level of the cascade, i.e. the sum of K, K−P, and K−PP, and is maybe the
most reasonable candidate for allowing higher kloop values. As can be seen in the
plot the bifurcation curve moves to higher values of kloop as Ktot increases. The
intuition was therefore right in this case, and the remaining question was therefore
if the effect would be big enough to bring the oscillations to experimentally ob-
tainable regions. What was needed was for the Ktot parameter to move the Hopf
bifurcation two orders of magnitude in the kloop parameter, but as can be seen
in Figure 8.10, Ktot can only move the bifurcation point with a few per cent in
kloop. Therefore the intuition was right, but the quantitative affect was too low.
The same feature was found for all other parameters.

Discussion

The conclusions of the previous section was that no experimentally obtainable
oscillating regimes, within the time-scale searched for here, were found. They have
also never been observed experimentally so the surprise would have been biggest if
there would have been found such regions and especially if these regions would have
been experimentally verified. Since the parameter space is so huge it has not been
possible to make a complete search. There might therefore still be such regions,
they just have to be among those regions that have not yet been searched. From
a biological point of view it is also fairly reasonable that this particular pathway
does not oscillate. The reason for this is that the pathway is regulating e.g. the
cell cycle (cell division), and it would be strange if such a decision to divide would
oscillate between two states. This result, however, means that another model will
have to be used for the final tests of the new methods presented in the previous
chapters of this report. This model will be a neutrophil model and it is presented
in the beginning of the next chapter.

8.4 Experimental verification
As was described in the previous section the simulated dose-response curves has
experimental correspondences for the three proteins IR, IRS and MAPK. This
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Figure 8.10 Showing how the bifurcation line lies in the kloop−kTot plane for
the sub-model of the fat cell model that had shown oscillations.
The idea was that an increase in Ktot would allow kloop to take
higher and more realistic values. The qualitative effect is correct
but it is to small. Realistic kloop values lie at least one order of
magnitude above the ones with observed oscillations and as can be
seen in the plot Ktot can only alter the bifurcation point with a
few percent. Therefore variations in Ktot alone is not sufficient to
find oscillations for realistic kloop values.

data is taken from fat cells and was originally published in ((Danielsson, Karlsson,
Lystedt, Kjolhede, Gustavsson, Nystrom and Strålfors, 2004)). The experimental
data is plotted in the same graphs as the simulated ones (Figure 8.7 to 8.9) and
as can be seen the agreement is, considering the uncertainties in the model, quite
good. The standard deviation of each individual sample is approximately 30% and
therefore the dose-responses of IR and IRS are within the experimental uncertainty.
This is almost true for the MAPK curve as well, but as can be seen in Figure 8.9
the inflexion point of the experimental samples lies approximately 5-10E-4µM to
the left of the simulated inflexion point. This disagreement, together with the
observation of the unrealistically low concentrations in the previous sections, is the
basis for the parameter estimation presented in the next section.

8.5 Parameter estimation

Since there is too little information in the available experimental data to extract
information about all parameters a full parameter estimation approach is not neces-
sary. If one can find, in one way or another, a parameter combination that matches
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the given demands this is as good as any formalized approach ever can do, given
this amount of data. The chosen objectives are the following:

• To move the inflexion point of the MAPK-PP dose response curve 5-10 E-4
µM to the left.

• To keep the inflexion points of the other curves intact.

• To not have any steady-state concentrations less than 1E-5 µM, of activated
enzymes (like MAPK-PP) for a high insulin stimulus (≈ 0.1µM).

• To not change any individual parameter more than 50% from its literature
value.

• To not change more than 10 parameters.

The last two objectives means that we seek to keep as many parameters as close
to the literature values as possible. A change with 50% of any parameter is, with
todays uncertainty of the kinetic parameters, well within the experimental uncer-
tainty range. There is also a cell-type and operating point dependency for these
kinetic parameters, and therefore an adjustment of this kind to match a specific
cell-type and a specific operating point is reasonable. The estimation was done
as follows. First a sensitivity analysis with perturbation in all the parameters
was made. All parameters were perturbed with 50% in both directions and for
each perturbed state two things were measured: the steady-state concentration of
MAPK-PP and the inflexion point of the MAPK dose response curve. The full
sensitivity table is given in the appendix (Table A.2 and A.3), and the important
parameters are extracted into Table 8.2. The parameters that have been extracted
have been chosen by the following two criteria:

• A 50% perturbation gives rise to at least a -0.3E-4µM displacement of the
inflexion point in the MAPK-PP dose-response curve.

• The parameter is not involved in reactions that has a downstream effect on
the IRS and IR curves.

The last criteria is chosen since it was desired not to change the dose-response
curves for IR and IRS. From Table 8.2 can be seen that the direction that increases
the MAPK-PP concentration is the same as the one that moves its inflexion point to
the left. This gives even more confidence to our belief that these two objectives were
good to include as a basis for the parameter estimation. The extracted parameters
were the ones that were chosen for fitting, and in Table 8.2 their final values can
be seen. As can be seen in Table 8.1 and in Figure 8.7, 8.8 and 8.9, the final model
satisfies the given objectives. In Figure 8.11 is shown the same step-response time-
series for the model with these parameters, as was shown in Figure 8.6 with the
original parameters. As can be seen (see also Table 8.1), with these parameters
there are no longer any phosphorylated concentrations less than 1E-3µM. This has
the effect that the negative feedbacks from MAPK-PP become more apparent, and
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literature estimated
parameter value KPP(+50%)

KPP(0%)
KPP(−50%)

KPP(0%) ∆IKPP(+50%) ∆IKPP(−50%) value
V2 6.0 0.2091 13.4365 0.1E − 4 −0.4E − 4 3

PPP2 − A 0.224 0.041589 179.392 0.1E − 4 −1.2E − 4 0.112

k1 66.66667 0.2099 13.2984 0.1E − 4 −0.4E − 4 33.33

V25 10.0 0.2226 11.1461 0.3E − 4 −1.2E − 4 5

k25 1.0104 4.1003 0.0776 −0.7E − 4 0.6E − 4 1.5156

V23 0.02 4.1814 0.0791 −0.5E − 4 0.3E − 4 0.03

k23 0.50505 0.3216 5.2371 0.1E − 4 −0.3E − 4 0.2525

Table 8.2 The parameters that were chosen for the parameter estimation.
The full sensitivity table is given in Table A.2 and A.3. Both
there and here the columns are ordered as follows (from left to
right): parameter name and literature value, relative change in
MAPK-PP steady-state concentration after a ±50% perturba-
tion in this parameter, how many µM the inflexion point of the
MAPK-PP dose-response curve has moved after the same per-
turbations, and the last column contains the final value after the
parameter estimation.

this can be seen e.g. in the damped oscillations in Figure 8.11. The final model is
the main contribution of this chapter and now follows a discussion of its current
status.

8.6 Discussion

Modelling intra-cellular pathways is an active research field that has just started.
At present, lack of well-determined kinetic parameters, uncertainty in how and
which intra-cellular signalling intermediates are interacting, and the lack of ex-
perimental high-troughput data, all contribute to the difficulty of constructing
realistic mathematical models. Realistic models today therefore are highly over-
parametrized, with respect to the available data. However, as can be seen in
Figure 8.7 to 8.9 a model such as the one presented here can anyway, both be-
fore and after the parameter estimation, be agreeing with in vivo data. It must,
however, be emphasized that this does not mean that any of the parameters, or
even that any of the individual reactions, is individually correct, but is only a val-
idation of the model behaviour considered as a whole. This agreement could have
been obtained with many other combinations of parameters, and assumptions of
the ingoing reactions. This agreement could also have been obtained with a much
simpler model, containing e.g. only the measured variables. One could also have
modelled the phosphorylation degree for each enzyme instead of considering the
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Figure 8.11 Simulations showing the step-response of various chemicals to in-
sulin for the final model. The insulin step is from 0.1 to 0.01 µM

and all the other concentrations are given in µM. The response
time (10 - 90%) is still approximately 5-10 minutes but as can be
seen there are now damped oscillations. These were not present
with the original parameters, and they are probably due to that
MAPK-PP, which governs the negative feedbacks, now no longer
has an unrealistically small value.

different states of the same enzyme separately. Such input-output models have,
however, the drawback that they do not include the existing mechanistic under-
standing of how the reactions take place, and they can therefore also not be used to
test different assumptions regarding these mechanisms. These minimal models also
has the drawback that they cannot include mechanistic information as it becomes
experimentally available. A mechanistic model, like this one, can on the other hand
be mapped to a minimal model, and that would be a natural continuation of this
work. Regarding uncertainty of the various parts of the model, the steps after IRS
and ending up in the MAPK-cascade is probably the one to be considered most
uncertain. This is since this is the biggest part of the model for which there has
been done no experimental comparison. It is also only here that an approximation
of equating two different enzymes with each other has been necessary.

8.7 Conclusions
The main contribution of this chapter is a mathematical model that describes the
mitogenic response to insulin. The input to the model is extra-cellular insulin
and the model contains a connected pathway all the way to MAPK-PP, which is
considered to be the last step before the transcription factors. The model agrees
with the existing experimentally obtained dose-response curves, and has a time-
scale of the response that is realistic. The final model has all parameters from
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literature except those in Table 8.2, which have been changed by 50%. This has
been done to further improve the dose-response agreement in Figure 8.9 and to
not have any unrealistically small concentrations. It is assumed that the change
in parameters has been done within their natural range of variations, and that the
adjustments therefore does not make the model more unrealistic. As a help in
choosing parameter adjustments a sensitivity analysis has been done (Tables A.2
and A.3), and this also serves as an important model analysis. The model is highly
over-parametrized, given the current amount of data, and many parameters are
uncertain. Nevertheless, here has been shown that it is possible to get a reasonable
agreement with experimental observations. Some of the sub-models has shown
oscillations, but a search, both with brute force and with bifurcation analysis,
has failed to find any such regions for experimentally obtainable operating points.
Therefore another model will be chosen as the large-scale example in the next
chapter.
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9
Utilizing the Newly Developed Techniques

on a Full-scale Model

In this chapter the new methods developed in Chapters 3 to 6 will be applied to
a full-scale model. The chosen model describes the dynamical behaviour of neu-
trophils and it was first presented in Olsen, Kummer, Kindzelskii and Petty (2003).
The original model only contain two compartments and does therefore not capture
the spatiality of the dynamics (see Figure 9.1). The chapter starts with a short
introduction to neutrophils, and the special behaviour that the modelling work
tries to capture. The original two-compartment model, along with some attempts
to capture also the spatiality is presented in the next two sections. The methods of
Chapter 3, describing how one can simplify a model like this to a two-dimensional
description, are applied to the model in Section 9.4. An example where the qual-
itative test quantity of Chapter 6 is applied to the model is given in Section 9.5,
and the new methods enabling improved parameter estimation techniques are tried
out in Section 9.6. Finally, in Section 9.7, the conclusions of the chapter are given.

9.1 The spatio-dynamics of neutrophils

Neutrophils are a special kind of white blood cells, and they are part of the hu-
man immune system. That means that when an unwanted entity appears in the
body, like e.g. a bacteria or a cancer cell, neutrophils go there to terminate it.
When neutrophils change to termination mode, they change shape and become
oval shaped. Another thing that happens during their activation is the onset of
travelling waves, moving along the direction of the cell. The oscillatory change at
each point in the cell probably is in form of concentration variations, and one of
the chemicals that is oscillating is NADPH. NADPH has fluorescent features that

153
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allows for time-continuous measurements of the concentration at various points in
the cell. Experimental recordings of the wave phenomena are shown in Figure 9.1.
There can be seen that there are many types of waves, some are starting at one
end and travelling over to the other end, and some are starting in the middle, and
going out in both directions. There have been observed a wide spectra of differ-
ent observed wave-like phenomena for the neutrophil, and how and why the cell
changes between them is not known. In some articles by Petty (see e.g. Kindzelskii
and Petty (2002)) is a description of at least 10 different types of oscillations and
waves, varying both in frequency and amplitude, and there is also described how
the changes between these types of waves are correlated to changes in the function-
ality of the cell. Here a model based approach is helpful to help understand what
is going on, and also to come with suggestions for how the transitions between the
various states are made.

9.2 The Olsen model

The first presentation of a model that captures the dynamics of the behaviour was
presented in Olsen et al. (2003), and it will henceforth be referred to as the Olsen
model. This model shows oscillations, i.e. periodically time-varying concentrations,
and its oscillations occur through a supercritical Hopf bifurcation. The model un-
dergoes this bifurcation through parameter variations, and the four most important
of these (the inflow of NADPH, the NADPH oxidase reaction, the presence of mela-
tonin and the peroxidase oxidase reaction) have been confirmed experimentally. It
is therefore possible to take the system to an operating point which is at a su-
percritical Hopf bifurcation, and also to measure a continuous signal (through the
fluorescence of NADPH), and the settings described in Chapters 3 to 6 are therefore
applicable.

The model consists of two compartments: the phagosome, where all superox-
ides used to kill the bacterias reside, and the cytosol, where e.g. NADPH resides.
The reactions taking place in and between the various compartments are given in
Table 9.1. These reactions, together with the rate expression, are sufficient to form
the differential equations. Let the subscript c in [·]c mean that the concentration
is for a chemical in the cytosol, and the subscript p in [·]p that the chemical is in
the phagosome. With the Ris defined in Table 9.1, the equations for the chemicals
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Figure 9.1 Figure showing the experimentally observed waves in the neu-
trophil. As can be seen the waves can be of very different
character. Picture taken from Kindzelskii and Petty (2002).
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in the phagosome are

d[per3+]p

dt
= −R1 + R3 − R4 (9.1)

d[CoI]p

dt
= R1 − R2 + R6 (9.2)

d[CoII]p

dt
= R2 − R3 (9.3)

d[CoIII]p

dt
= R4 − R6 (9.4)

d[H2O2]p

dt
= −R1 + R5 − R15 (9.5)

d[O−
2 ]

dt
= −R4 − 2R5 − R6 − R18 + R19 (9.6)

d[O2]p

dt
= R5 + R6 − R14 − 2R19 (9.7)

d[MLTH]p

dt
= −R2 − R3 − R16 (9.8)

d[MLT ]p

dt
= R2 + R3 − R17 (9.9)

and the equations for the chemicals in the cytosol are

d[NADPH]c

dt
= R10 − R11 − R13 − R19 (9.10)

d[NADP]c

dt
= −2R9 − R12 + R13 (9.11)

d[H2O2]c

dt
= R7 + R11 + fR15 (9.12)

d[O−
2 ]c

dt
= −2R7 + R12 + fR18 (9.13)

d[O2]c

dt
= R7 + R8 − R11 + R12 + fR14 (9.14)

d[MLTH]c

dt
= R13 + fR16 (9.15)

d[MLT ]c

dt
= −R13 + fR17 (9.16)

9.2.1 A bifurcation analysis

The original Olsen model shows oscillations of the kind shown in Figure 9.2. These
oscillations disappear as the parameter k10 is lowered, and they disappear in a
supercritical Hopf bifurcation. Sometimes it can be interesting to see cross-sections
of the bifurcation manifold. Such figures are called bifurcation diagrams, and an
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Table 9.1 The reactions taking place in the original model Olsen et al.
(2003), together with the corresponding reaction velocity ex-
pressions Ri

Reaction Rate expression (Ri) Rate constant
Phagosome reactions:
1. H2O2 + per3+  coI k1[H2O2]p − k−1[coI] k1 = 5.0E7M−1s−1

k−1 = 58s−1

2. CoI + MLTH → coII + MLT k2[coI][MLTH]p k2 = 5.0E7M−1s−1

3. CoII + MLTH → per3+ + MLT k3[coII][MLTH]p k3 = 4E3M−1s−1

4. Per3+ + O−
2 → coIII k4[per3+][O−

2 ] k4 = 2E7M−1s−1

5. 2H+ + 2O−
2 → H2O2 + O2 k5[O2]2p k5 = 1E7M−1s−1

6. CoIII + O−
2 → coI + O2 k6[coIII][O−

2 ]p k6 = 1E7M−1s−1

Cytosolic reactions:
7.2H+ + 2O−

2 → H2O2 + O2 k7[O−
2 ]2c k7 = 5E8M−1s−1

8.  O2 k8 − k−8[O2]c k8 = 12.5µMs−1

k−8 = 4.5E−2s−1

9.2NADP → k9[NADP]2c k9 = 6E7M−1s−1

10. → NADPH k10 k10 = 22 − 35µMs−1

11.NADPH + O2 → H2O2 k11[NADPH]c[O2]c k11 = 1M−1s−1

12.NADP + O2 → O−
2 k12[NADP]c[O2]c k12 = 5E7M−1s−1

13.MLT + NAPDH → NAPD + MLTH k13[MLT ]c[NADPH]c k13 = 1E7M−1s−1

Diffusion terms:
14.O2,p  O2,c k14([O2]p − [O2]c) k18 < 0.1

15.H2O2,p  +H2O2,c k15([H2O2]p − [H2O2]c) k15 = 30s−1

16.MLTHp  MLTHc k16([MLTH]p − [MLTH]c) k16 < 10s−1

17.MLTp  MLTc k17([MLT ]p − [MLT ]c) k16 < 10s−1

18.O−
2,p  O−

2,c k18([O−
2 ]p − [O−

2 ]c) k18 < 0.01s−1

NADPH oxidase:
19.NADPHc + 2O2,p → NADP+

c + 2O−
2,p

Vα(1+α)
L+(1+α)2

[O2]p
KO+[O2]p

V = 288µMs−1

α =
[NADPH]p
KNADPH

L = 550

KO = 1.5µM

KNADPH = 60µM
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Figure 9.2 Time series showing the oscillations appearing in the Olsen
model. There is also seen a comparison between one of the di-
vided models and the original model, where the diffusion values
in the divided model have been set to high values.

example is shown in Figure 9.3. Note that this is a figure of the same kind as
Figure 2.4, where a bifurcation diagram for the Brusselator was plotted. For that
system it was possible to obtain an analytical expression for it (pb = 1 + p2

A), but
here the curve has to be obtained numerically. For large-scale systems it is rarely
the case that analytical solutions exists for these curves and it is therefore none
of the new methods in this thesis requires an analytical solution of these curves.
Figure 9.3 is just one of many bifurcation curves obtained for the system and for
more plots from the analysis, see e.g. Karlsson (2003) or Claussen and Philipsen
(2004). In Claussen and Philipsen (2004) evidence of multi-stability in the model,
is also presented. This means that there are parallel attractors, existing for the
same parameter values.

9.3 Compartmentalization
When capturing a phenomenon like the one in Figure 9.1 one needs to have not only
the right chemicals involved in the right reactions in the model - they also have to
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Figure 9.3 The bifurcation diagram for the neutrophil model and the two
parameters k10 and k8. As can be seen the relation is a very
smooth function.

be at the right place. The models have to supply this information, and if one does
not wish to change the model into partial differential equations, an option is to
divide the existing sub-cellular compartments into virtual sub-compartments. The
term virtual, will henceforth be dropped though it should be clear that the new sub-
compartments are not real cellular compartments, like mitochondria or cell nuclei.
The divided model will, for infinitely fast diffusion, be identical to the original
model. It might therefore turn out that the new model will keep all its good virtues,
and only add the spatial knowledge. The division of an existing compartment into
sub-compartments has two major consequences concerning the re-implementation
of the original flows into, or out from, the non-divided compartments:

• The amount coming into or out from an original compartment is now divided
between several sub-compartments. This causes all terms describing such in-
and outflows to be changed by a multiplicative factor 1/p, where p is the
number of sub-compartments that are sharing the original flow. The same
factor should of course be applied also if the inflow comes from several sub-
compartments of the neighboring compartment that the flow comes from.
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• The volume of the new sub-compartment is smaller, and hence the effect of
an equal inflow, measured in number of particles, gives rise to a larger change,
measured in the concentration of the chemical, since concentration is defined
as amount/volume. It means that each term describing a flow in or out
of the original compartment should be altered by a multiplicative factor of
Vo/Vv, where Vo is the volume of the original compartment and Vv is the
volume of the sub-compartment.

The differential equations describing the reactions taking place inside the orig-
inal compartment is not affected by the division into sub-compartments. This
follows since such reactions are multiplied by an equal volume fraction factor on
both sides, and that they therefore cancel out. Division into sub-compartments
might, however, give rise to so small concentrations that the approximation of con-
tinuous concentrations is a non-neglectable source of error. This is especially true if
the concentrations of the chemicals in the original compartments are low. Between
the sub-compartments there should be added some kind of transport. This is most
easily modelled as diffusion, where the flow in a chemical between two compart-
ments is proportional to the difference in the concentrations of this chemical for the
two compartments. When the size and contact area of the sub-compartments are
equal for all compartments and between all pairs of compartments, respectively,
the proportionality constant will be equal between all sub-compartments. When
this is not the case the proportionality constants have to be modified specifically
for each compartment, but this is not the case in this thesis.

9.3.1 The compartmentalized models
One approach when trying to include the spatiality of the experimentally ob-
served waves in the two-compartment model, is to subdivide to cytosol into sub-
compartments according to the guidelines. The phagosome is not divided since
the waves do not take place in this compartment, and since it is smaller. The
division has been done under two different assumptions. In the first all chemicals
have been present with a unique variable for all compartments. Then the new
equations are the same as equations (9.1) to (9.16), with a one-dimensional dif-
fusion operator on all the cytosolic chemicals. The system was solved through a
one-dimensional fixed-grid division. For the second assumption, however, the new
equations are more non-trivially obtained from the last. The second assumption is
that all chemicals appearing in the cytosol have an infinitely fast diffusion, except
NADP and NADPH. This means that all other chemicals will have the same value
in all sub-compartments. Note the similarity between the assumption of infinitely
fast pressure waves in the previous chapter, which also lead to a variable being
shared between all compartments. To help writing up the modified equations we
have introduced the following notation.

• n is number of sub-compartments of the original cytoplasm

• p is number of sub-compartments of the original cytoplasm that are neighbors
to the phagosome
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• The subscripts []p and []c means that the chemical belongs to the phagosome
or the cytosol, respectively

• R
β
19 is the NADPH oxidase between the phagosome and the compartment cβ

• R20 and R21 are the diffusion expressions between the new sub-compartments
for NADPH and NADP, respectively

• CI = {c0, . . . , cn−1} is the set of all sub-compartments

• C = {i : ci ∈ CI} = {0, 1, 2, . . . , n − 1} are all the indices that corresponds to
a sub-compartment

• P contain all the indices corresponding to a sub-compartment neighboring
the phagosome

• Gi contain all the indices corresponding to a neighboring cytosolic sub-
compartment to ci

• the not mentioned rate reactions Ri are still defined in Table 9.1

With this notation, the new equations are as follows

d[per3+]p

dt
= −R1 + R3 − R4 (9.17)

d[CoI]p

dt
= R1 − R2 + R6 (9.18)

d[CoII]p

dt
= R2 − R3 (9.19)

d[CoIII]p

dt
= R4 − R6 (9.20)

d[H2O2]p

dt
= −R1 + R5 − R15 (9.21)

d[O−
2 ]p

dt
= −R4 − 2R5 − R6 − R18 +

+
2

p

∑
β∈P

R
β
19 (9.22)

d[O2]p

dt
= R5 + R6 − R14 −

2

p

∑
β∈P

R
β
19 (9.23)

d[MLTH]p

dt
= −R2 − R3 − R16 (9.24)

d[MLT ]p

dt
= R2 + R3 − R17 (9.25)
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For the chemicals in the i:th compartment:

d[NADPH]ci

dt
= R10 − R11 − R13 −

n

p
Ri

19 +

+
∑

β∈Gi

R
β
20 (9.26)

d[NADP]ci

dt
= −2R9 − R12 + R13 + (9.27)

+
∑

β∈Gi

R
β
21

and for the chemicals common to all cytosolic compartments:

d[H2O2]c

dt
= R7 +

1

n

∑
β∈C

R
β
11 + fR15 (9.28)

d[O−
2 ]c

dt
= −2R7 +

1

n

∑
β∈C

R
β
12 +

+ fR18 (9.29)
d[O2]c

dt
= R7 + R8 −

1

n

∑
β∈C

(Rβ
11 + R

β
12) +

+ fR14 (9.30)
d[MLTH]c

dt
=

1

n

∑
β∈C

R
β
13 + fR16 (9.31)

d[MLT ]c

dt
= −

1

n

∑
β∈C

R
β
13 + fR17 (9.32)

9.3.2 Simulated waves
There has been done an analysis of the new models with the two assumptions for
varying values of the diffusion constants. For a detailed analysis of the results, see
Karlsson (2003) or Claussen and Philipsen (2004). The general features observed
were the following.

With the assumption of infinitely fast diffusion for all cytosolic chemicals, ex-
cept NADP and NADPH, the model exhibited waves of the kind exemplified in
Figure 9.4, and only for a limited range of diffusion values. For these diffusion
values, there was a sufficient phase between the oscillations in the various com-
partments to imply waves, but there was also present a constant concentration
gradient that was higher than the amplitude of the oscillations. Therefore, the
only kind of wave that could be observed was the one kind of spreading-in-coming-
out type of wave depicted in Figure 9.4. For higher diffusion values, the difference
between the compartments gradually disappeared, and they eventually behaved
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Figure 9.4 The dynamics of the divided model. Here the cytosolic com-
partment of the original model has been divided into 9 sub-
compartments. The pictures are oriented as the experimental
ones of Figure 9.1. Chronologically the first is the top left, the
second the top middle and the last is at the bottom to the right.
As can be seen there is a wave spreading in from the left. That
the most right compartments are all black is because they are
closest to the phagosome, and the NADPH oxidase consumes
there NADPH. A lower concentration of NADPH corresponds
to a darker colour.

like the two-compartment model (see Figure 9.2). For lower diffusion values, the
above mentioned concentration gradients increased even more, and eventually the
oscillations disappeared altogether.

With the above assumption dropped the situation was slightly different, and
for a specific set of diffusion values there was observed travelling waves. These are
depicted in Figure 9.5, and as can be seen the concentration gradient is observed
also here. A plausible explanation for the gradient is the following. For the com-
partments that are neighboring the phagosome there is an additional outflow of
NADPH through the NADPH oxidase. There is, however, no corresponding in-
creased inflow for these compartments. The inflow, is believed to be due mainly to
the hexose monophosphate shunt (Henderson and Chappel, 1996)

glucose − 6 − phosphate + 2NADP+ → (9.33)
riboluse − 5 − phosphate + 2NADPH + CO2
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In the original Olsen model this has been modelled as a constant inflow (k10) of
NADPH, i.e. independently of the concentration of NADP+. A more realistic
approximation would be to have it proportional to the concentration of NAPD+,
i.e. to replace k10 for

k10 → k ′
10 ∗ [NADP+] (9.34)

This inclusion would counteract the gradient, and is a natural candidate for future
work.

9.4 Model simplification

In this section the theory of Chapter 3 is applied to the undivided neutrophil model.
What is examined is how well the dynamics of the transformed two-dimensional
system agree with that of the original system. The comparison is first done by
comparing simulations and then with RMS analysis.

Analysis by comparing time series

The original Olsen model was brought to a Hopf bifurcation by changing the k10

and k8 to 2.1E-5 and 1.25E-5, while having all other parameter values as in Ta-
ble 9.1. Around this point the model was transformed into a one-dimensional
complex equation (cf equation (3.58))

ż1 = (iω0 + µσ1)z1 + g3|z1|2z1 (9.35)

where ω0, σ1 and g3 are determined by the transformation, and µ is k10 − 2.1E-
5. The transformation was done with the formulas in Table 3.1. Equation (9.35)

Figure 9.5 Simulated wave behaviour. As can be seen a concentration
peak starts at the left and moves to the right, just as in some
of the experimental recordings. However, the compartments
neighboring the phagosome (at the right end), have a con-
stantly higher lower concentration. A lower concentration of
NADPH corresponds to a darker colour.
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was then then simulated and the result was transformed back through (cf equation
(3.46))

xz = xb + z + h(z1, µ) (9.36)

where the function h was also determined through Table 3.1. Then the outcome
of this, xz, was compared by simulating with x, which was obtained by simulating
the Olsen model directly. Figures 9.6 and 9.7 show examples of such comparisons.
In the first of these figures the initial values were chosen as z(0) = 10−6, which
corresponds to a perturbation in the original space of approximately 50% for most
of the variables. As can be seen a perturbation of this size does, for most variables,
not cause any difference between the simplified and the original model, that can
be seen with mere inspection. This is quite impressive considering that x is 16-
dimensional and z is 2-dimensional. However, in Figure 9.7 the initial values have
been chosen to z(0) = 4∗10−6 which is four times as far away from the fix point as
in the previous figure. Here can be seen that there is a clearly observable difference
between the dynamical evolution of x and of xz. That means that there is a fairly
sharp limit where the difference goes from non-observable to clearly observable.
Therefore, when using this simplification, e.g. in the optimization subproblems
suggested in Chapter 5 (see e.g equation (5.15)), one should be clear that the
system has not been operating beyond this limit.
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Figure 9.6 Time plots of the undivided Neutrophil model at the initial
value z(0) = 1 · 10−6. The dashed line corresponds to xz in
(9.36) and the solid line to the directly solved system. As can
be seen the agreement is quite good.
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Figure 9.7 Time plots of the undivided Neutrophil model at the initial
value z(0) = 4 · 10−6. The dashed line corresponds to xz in
(9.36) and the solid line to the directly solved system. As can
be seen the agreement is not as good as that for z(0) = 1 ·10−6,
shown in Figure 9.6.

RMS plots

Just as in the small examples of Chapter 3 the time course analysis will here be
complemented with a RMS analysis. The definition of RMS is given in equation
(3.102) and the result of the analysis is given in Figure 9.8. When studying such
a plot it is interesting to see how the error from the transformation depends on
the perturbation. What is especially interesting is to find ways to estimate how far
from the bifurcation point the approximation can be used, given a certain maximum
error. As can be seen the error increases as one leaves the bifurcation point (at z =
0), independently of in which direction the perturbation is made. However, the rate
at which the error increases depends on the direction, and for the (Re(z),Im(z)) =
(1,-1) direction the error increases most rapidly. The relationship is smooth and
that means that perturbations in 8 maximumly spread directions would have given
a good approximation of the relation.

9.5 Forming a qualitative test quantity

Since the model has been shown to include both multi-stability and multiple attrac-
tors (Claussen and Philipsen, 2004), the conditions for the qualitative test quantity
introduced in Chapter 6 are not fulfilled. We will, however, give an example of how
one can utilize the basic ideas behind the test quantity. The exact relationship
between the real NADPH concentration and the measured fluorescence is typically
not known, and therefore the situation is really the one with an uncalibrated sen-
sor yD in equation (6.2). Since it is only possible to measure one chemical on-line,
there are no other sensors in the system and

y = yD = yD(NADPH) (9.37)
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Figure 9.8 RMS error plots of the Neutrophil model, viewing the agree-
ment between the dynamics in the simplified and the original
system, for different initial values. As can be seen the error is
highly dependent on the direction in which the perturbation is
made. However, the curve is fairly smooth, and perturbations
in 8 maximumly spread directions would have given a good
approximation of the manifold.

where the functional relationship yD is not known, but continuous and well-behaved.
In this example there is further a possibility to control the inflow of NADPH, i.e.
the parameter k10 in Table 9.1 is known and controllable. That means that we
have the typical situation of a bifurcation experiment. Let δ be the distance from
the bifurcation point where the oscillations should be observable. Let ub be an
experimentally determined value, where the bifurcation point is. Since there are
no other time-variations in the system we can simply form the test quantity, Tqual

as

Tqual =




true if k10 > ub + δ and yD shows a steady state
true if k10 < ub and yD shows stationary oscillations
false otherwise

This test quantity will work if the system is kept so close to the bifurcation point
that it will not encounter other bifurcations. The test quantity will detect changes
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Figure 9.9 The data generated for the estimation example. It shows the
[NADPH] concentration when the system is operating close to
a Hopf bifurcation.

in the parameters, actuator faults, and oscillating faults in the yD sensor. It will
therefore have all the desired properties of the test quantity described in Section 6.1,
and we have thus shown how simple the basic idea of Section 6.2 can sometimes be
realized.

9.6 A parameter estimation example with simu-
lated data

In Chapter 4 two methods for adding the extra constraint of a Hopf bifurcation were
given. Here one of them, the elimination method, will be tried on the neutrophil
model. The application is formulated as an example.

Example 9.1 Consider the following situation. Time series of NADPH can be
collected for the neutrophil model, and the parameter k10 can be varied continu-
ously, but its real value is not yet known. This is experimentally realistic, since
one can not control the inflow directly, but only increase or decrease the activity of
the hexose monophosphate shunt. Furthermore, all other parameters are assumed
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known, except for the k8 parameter, governing the inflow of oxygen. To estimate
these two parameters, the k10 parameter was varied so that the system was oper-
ating precisely at the Hopf bifurcation point, and then a time series of NADPH
was collected. In this example it is assumed that the real value of NADPH can be
measured directly.

The given time series that was generated is plotted in Figure 9.9. The x-
axis only specifies which sample value it is. In this example p = (px, xb, x0) =
(k10, k8, xb, x0) and in the elimination Algorithm 4.2, pk, the eliminated parameter,
is chosen as k10. For the specific case of a stationary time series xb = x0 and
therefore both x0 and xb are eliminated in the same way. The initial estimate of
px is (2.1E-5,1.25E-5) and the initial estimate of xb (= x0) is the state space values
of the fix point that corresponds to this specific µ(= px) vector. The given start
estimate is not at the bifurcation manifold, but it is close enough for the initial
projection of the algorithm (step A in Algorithm 4.2) to consist only of the Newton
iterations. Since p has been reduced to a 1-dimensional vector the error can simply
be plotted as a graph, and this is done in Figure 9.10. There can be seen that the
minimum is a very clearly defined point, and that there are no other local minima,
and therefore the correct solution was easily obtained, for all chosen initial values.
Without the elimination of k10 the search-space is two-dimensional, and the search
becomes harder. Further, here it can converge to any point on a line including the
correct estimate. In Section 4.5 the same situation appeared, even though then the
original state space model was much smaller .

Finally some implementation details. The original neutrophil model contains
two algebraic relationships, and hence the Jacobian has two constant zero eigen-
values. These gave difficulties, both when finding the inverse of the Jacobian,
and when finding the critical eigenvalues, that are zero precisely at the bifurca-
tion point. Therefore the system was rewritten to a 14 dimensional model, where
per3+ and MLTHc were obtained as auxiliary functions of the other variables. The
relationships are

[per3+]p = CoTot − ([coI]p + [coII]p + [coIII]p)

[MLTH]c = MLTHTot − [MLT ]c − f ∗ ([MLTH]p + [MLT ]p)

where CoTot and MLTHTot are two new parameters in the model describing the
total Co-enzyme and the total MLTH concentration, respectively. The second
modification made was that the constraint function cHopf was not obtained by
multiplying all eigenvalues, like in expression (4.7), but rather by adding only the
two smallest eigenvalues, that were also complex conjugated. That means that
(4.7) was reformulated to

FHopf(xb, µb) := λi + λj

where
λi := arg min{λj : ∃λk so λj = λk and Re(λj) > 0}

These adaptions were sufficient to make the algorithm work for this model.

Through this example we have seen that the elimination method, presented in
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Figure 9.10 The error as a function of the only freely varied parameter k8.
As can be seen the error has a very nice and unique minima,
and therefore when applying the methods of Chapter 4 and 5
to the simple example given here, the problem is very easy to
solve.

Chapter 4 can work, with small adaptions, also for a 16-dimensional system.

9.7 Conclusions

The conclusions of this chapter are as follows:

• A neutrophil model, with an experimentally obtainable Hopf bifurcation has
been implemented and the new methods of this thesis have been applied to
it.

• When doing the center manifold reductions derived in Chapter 3 the agree-
ment is quite acceptable for initial values within z(0) = 1E-6, corresponding
to 50% changes in the physical variables. Outside z(0) = 4E-6, which corre-
sponds to 4 times the previous perturbation, the disagreement is large enough
so that it can be seen by pure inspection (see Figures 9.6 and 9.7).



9.7 Conclusions 171

• Usually the only available sensor is the fluorescence of NADPH, which gives
an unknown relationship to the real NADPH concentration. It has been
shown how a qualitative test quantity of Chapter 6 easily can be formed with
this sensor.

• A simple parameter estimation scenario for the 16-dimensional model, that
clearly shows the benefit of the method, utilizing the bifurcation constraint
cHopf introduced in Chapter 4, was given.
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10
Summary and Conclusions

This thesis has been devoted to system identification of nonlinear thermochemi-
cal systems that contain dynamical instabilities. The results naturally divide in
development of methodology and development of specific models.

Development of new identification methods

The new methods are utilizing that the system is known to contain a transition
between steady states and stationary oscillations. It is also known that the tran-
sition between these states occurs through a supercritical Hopf bifurcation. There
is a rich theory regarding these transitions, and the presented methods have uti-
lized this theory for the problem of system identification. The model structure has
been assumed to be a known nonlinear differential equation. It has further been
assumed that some, but not necessarily all, of the dynamics is observable through
the sensors, and that all the time-varying signals going into the system are known
and controllable. With these assumption the unknown parameters, p, naturally
divide in three parts

p = (px, x0, py)

The first of these parameters, px, appear in the state equations. Here has been
presented a method that reduces the degrees of freedom describing this parameter.
The method can be used if one knows an input signal, that corresponds to a point
on the bifurcation manifold. It has been shown how this knowledge can be used to
form an extra constraint, cHopf, that is zero for all points on the manifold. Two
different methods that can solve the new constrained estimation problem have been
presented, and the advantage of adding the constraint has been shown on both a
2-dimensional and on a 16-dimensional model.

173
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The second of the unknown parameters, x0, corresponds to the unknown initial
state of the system. These parameters are often not interesting in themselves, but
for systems with large state-spaces, this vector can make a problem unsolvable,
even though the parameters one really seeks are few. Through a combined center
manifold and normal form reduction this parameter vector has been described in
minimal degrees freedom. We have shown experiment design that, independently
of the dimension of the original system, force the minimal degrees of freedom to be
2 or 3. The x0 parameters are calculated in a separate sub-problem for each step
in the optimization algorithm. For systems starting in stationary oscillations the
normal form reduction reveals the special structure of this sub-problem. Therefore
it can be solved in a straight-forward manner, that does not have the problem of
local minima, and that does not require any integration of the differential equations.

The last part of the parameter vector, py, corresponds to parameters appearing
only in the sensor equations. It has been shown how the same bifurcation knowledge
as used to simplify the px description can be utilized to validate estimated models.
Under continuity assumptions it was demonstrated how this validation check can
be done also with unknown py values. The validation check was formulated as test
quantity which can be used in a diagnosis system, and it was demonstrated how
it can function as an alternative to implementing the other developed estimation
algorithms.

Development of new models

The first presented model is a zonal model for cylinder pressure, temperature and
ionization currents. It is valid during the compression, combustion and expansion
phase of a spark-ignited four-stroke Otto-engine. It has had as its main focus to
model the relative position between the ionization curve and the pressure curve.
A prediction of the position of the pressure curve relative to the top dead center
is important information for the engine control algorithm. Today, there are rarely
pressure sensors installed in production engines, and therefore using already avail-
able ionization sensing (used for e.g. knock and misfire detection) is an attractive
alternative. It, however, requires further signal interpretation, and to do this in an
optimal way physical models are required. Previous models describing the relation-
ship between the pressure and the ionization positions have predicted the ionization
peak location (IPL) > 2 crank angle degrees too late, in relation to the pressure
peak location (PPL). Here has been shown that this problem disappears with the
inclusion of a realistic heat-transfer in the model. Different heat transfer models
has been compared, and it was demonstrated that the different heat transfer mod-
els have the same qualitative effect. It has also been shown that the difference is
bigger between having and not having a heat transfer models, than between having
different heat transfer models. It has also been shown that the combination of a
geometrically based heat transfer model with a dynamical NO-model predicts the
measured IPL within one crank angle degree.

The second presented model is one for the mitogenic response to insulin in fat
cells. This is the first published model for this specific pathway, and the main result
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is therefore the model structure itself. The presented model agrees with published
data, and after a parameter adjustment the agreement is within measurement un-
certainty, and with all steady-state concentrations in a realistic order of magnitude.
A similar model to this, the Olsen model for activated neutrophils, was chosen for
tests of the newly developed identification methods. The original model captured
the oscillatory part of the dynamics only, and a formulation that compartmental-
izes the model to include also the spatiality of the observed dynamics was made.
Further, a bifurcation analysis revealed that the Olsen model had an experimen-
tally obtainable Hopf bifurcation, and this was chosen as the operating point for
the tests of the developed methods, where their performance were demonstrated.
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A
Sufficient Information for Regeneration of all

Plots

This appendix is here to enable the interested reader to regenerate all important
plots of the thesis. If there should be any uncertainties in how the plots has been
done, also after reading this appendix, the reader is very welcome to contact the
author.

A.1 From Chapter 3
For all the plots in this chapter the simulations were done using a Runge Kutta
pair integrator with variable step length, fourth and fifth order. The simulations
were done in Mathematica, and the given integrator settings were as follows.

PrecisionGoal = 10 (A.1)
AccurencyGoal = 10 (A.2)

Workingprecision = 15 (A.3)

The initial values are given in terms of z(0) under all figures. The bifurcation
point, around which the system has been transformed is the same as in Example 3.4.

For Figure 3.2 and 3.3, the parameters has been chosen to lie in the bifurcation
point.

Figure 3.4, on the other hand, has perturbed pB to 1.8, while keeping pA still
at 1.

177
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Figure 3.5 has also had the parameters at the bifurcation point, and the for this
plot the initial values (measured in z(0)), are given as two of the axis in the plot.
On the last axis (3.102) is plotted.

Also for Figure 3.6 the initial values are given on the axes. However, now the
error in derivative (3.103), is on the last axis. In the last figure in the chapter.

Figure 3.7, the initial values are given in the figure text, the integrator is the
same as for all other plots, the parameters has been kept at the bifurcation point.
However, for the last plot, the expansion up to fifth order has been included. The
coefficients for this transformation is given in Example 3.4.

A.2 From Chapter 4
Figure 4.1 has been obtained by applying Algorithm 4.3 on Sample 2 in Section 4.5.
The initial estimate was (pA, pB, x1,0, x2,0) = (0.8, 1.8, 1, 1.88), and the step length
for the projection was 0.001. The accuracies were here fulfilled by doing 15 Newton
iterations and checking for convergence problems.

For Figure 4.2 all the details have been included in the caption.

Figures 4.3, 4.4 and 4.5 were all obtained by solving the Sample 2 in Section 4.5,
without adding the extra condition cHopf. Here a fix-step Runge-Kutta method,
fourth order was imbedded in a trust-region method. The latter was included
to ensure that the new iterations always implied sufficiently lowering in the ob-
jective function. Starting estimates were chosen in a small box pA ∈ (0.8, 2.2),
pB ∈ (1.8, 2.2), and in a big box pA ∈ (0.5, 2), pB ∈ (1, 5) and the grid resolution
was chosen as 8x8 for both the boxes. The initial time-step for the Runge-Kutta
method was chosen to 0.01.

Figure 4.6 is just the objective function from Sample 2 plotted as a function of
the variable pA when continuating along the bifurcation curve.

A.3 From Chapter 5
The only interesting plots in this Chapter appears in the example. The example is
a continuation of the study started in Chapter 4.

Figure 5.5 is showing the amplitude for different distances to the bifurcation
point in the Brusselator model. The bifurcation point is the (x1, x2, pA, pB) =
(1, 2, 1, 2). The amplitude generated by the transformed system and the original
system are compared. The former is generated through equation (5.17c), with α

varied between 0 and 2π. Here no integration was necessary. The amplitude for the
real system was generated by solving the Brusselator equations, and waiting out
the transient. The transient was approximated to end after 10 000s. The distance,
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pµ, from the bifurcation manifold is in the increasing pB direction. The numerical
integration was done with a standard fix-step Runge-Kutta method. Time-step
was set to 0.01.

Figure 5.6 shows the given time-series (denoted Sample 2) and the estimated,
and transformed, system. The initial value for the latter was determined by pµ =
0.01, and α = 3.79 rad.

A.4 From Chapter 6
Figures 6.2 and 6.3 are just after-treatments of the result from Section 4.5 and
the necessary information for the original generation is given above and for the
after-treatment in the text in Section 6.3.

A.5 From Chapter 7
Here a diagonally implicit Runge-Kutta method was used. The parameters used
in this algorithm are the following.

pert = 1E − 12 (A.4)
initialstep = 0.00001 (A.5)

maxstep = 1 (A.6)
tolerance = 1E − 12 (A.7)

Jacobianrecyclings = 10 (A.8)

For Figure 7.3 the model with geometrically based heat transfer, but with no
NO-dynamics was used. Ignition angle 27 CAD, and λ = 1. All other parameters
are as given in Table 7.7.

Figures 7.8 and 7.9 is obtained with the exact same fitting as in the 7.3. The
only thing that has been exchanged is the heat transfer model. All the given models
were tested (also the one with no heat transfer), but the fit was only done for the
model with geometrically interpretable parameters. No NO-dynamics was included.

Is the same as Figures 7.8 and 7.9, but with more data. Again the fit was
done for the heat transfer model with geometrically interpretable geometry. The
plotted operating point is the same as the second in Table 7.5. No NO-dynamics
was included.

Figure 7.11 is given by Table 7.5 and 7.6. The model with geometrically based
heat transfer, and no NO-dynamics was used all the time.

Figure 7.12 was obtained by varying the mass-limit deciding when a zone should
be divided. Other settings like in Table 7.7. A geometrically based heat transfer,
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with static NO-dynamics was used.

Figure 7.13 was produced by varying the velocity from 2.5m/s to 5 and 0 m/s.
Other parameters like in Table 7.7. A geometrically based heat transfer, with static
NO-dynamics was used.

Figure 7.14 was taken from the four operating points with varying ignition angle
(see legend in figure). The model with dynamical NO was used. The data is taken
from 7.10.

Figure 7.15 is the same as the previous figure, but with one randomly chosen
cycle for each operating point.

A.5.1 Creation of a new zone
A zone is created when the mass passes the given parameter mmax. Then a cer-
tain fraction is taken from the unburned zone (parameter Vb,i+1

Vu
), to create the

new burned zone. The pressure of the new burned zone is the same, due to the
assumption of pressure. The volume is decided as just described. The final thing,
the temperature, is decided according to the following formula

he,u(Tu) = he,b(Tb) (A.9)

where he,u is the enthalpy of the unburned gas, and he,b is the enthalpy of the
burned gas. It should finally be noted that one does not set the number of zones
explicitly, but only the division criteria. How many zones will be divided in practice
depends on the development of the simulation. This is the reason for the ambiguity
when saying that there has been used 8-10 zones.

A.6 From Chapter 8
This section contains a description of the fat cell model as well as sufficient in-
formation to regenerate all the plots and tables. Throughout Chapter 8, both for
the ordinary simulations and for the dose-response curves obtained through con-
tinuation methods, the double order (4,5) Runge-Kutta method has been used as
implemented in the Janet software (Janet, 2002). The parameters used in the inte-
grator are: initial time step = 0.00001, absolute error = 1E-11 and relative error =
1E-7. For the numerical calculation of the ordinary and parameter Jacobian, which
are needed in the continuation method, the perturbation size has been chosen to
1E-11 + 1E-7x, for the ordinary Jacobian, and 1E-7 for the parameter Jacobian.
Here x is the variable that has been perturbed. The initial values that has been
used in all figures are given in Table 8.1, and this corresponds to a steady-state
value for ins = 0.1. In the used implementation the dependent variables in Table
A.1 has been given implicitly by the total concentrations, given in Table A.2 and
A.3, and the initial values of the freely varied variables, given in Table 8.1.
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The models rate equations
d[IR−ins]

dt = Kf12[IR][ins] − Kb12[IR − ins]
−K13[IR − ins]

d[IR−insP]
dt = K13[IR − ins] + Kb15[IR − 2insP]

−Kf15[IR − insP][ins]
−K14[IR − insP]PTP

d[IR−2insP]
dt = Kf15[IR − insP][ins]

−Kb15[IR − 2insP]
d[IRSP]

dt = K16[IRS]([IR − insP] + [IR − 2insP])/IRp

−K17PTP[IRSP] − Kf22[Sos − Grb2][IRSP]
+Kb22[IRSP − Sos − Grb2]

d[SosP]
dt = Kb18[SosP − Grb2] − Kf18[SosP][Grb2]

−K19[SosP] +
V20[KPP][Sos]

[Sos]+k20
d[Sos−Grb2]

dt = Kf21[Sos][Grb2] − Kb21[Sos − Grb2]
−Kf22[Sos − Grb2][IRSP]
+Kb22[IRSP − Sos − Grb2]

d[SosP−Grb2]
dt = Kf18[SosP][Grb2] − Kb18[SosP − Grb2]

d[IRSP−Sos−Grb2]
dt = Kf22[Sos − Grb2][IRSP]

−Kb22[IRSP − Sos − Grb2]
d[GTPRas]

dt =
V23[IRSP−Sos−Grb2][GDPRas]

[GDPRas]+k23
V24[GEFP][GDPRas]

[GDPRas]+k24
−

V25[GAP][GTPRas]
[GTPRas]+k25

−K26[GTPRas] − Kf31[RafP][GTPRas]
+Kb31[GTPRas − RafP]

d[GAP]
dt = K27[GAPP] −

V28PKC[GAP]
[GAP]+k28

d[GEFP]
dt =

V30PKC[GEF]
[GEF]+k30

− K29[GEFP]
d[GTPRas−RafP]

dt = Kf31[GTPRas][RafP]
−Kb31[GTPRas − RafP]

d[RafP]
dt =

V1PKC[Raf]
[Raf]+k1

+
V11[PP2−A][RafPP]

[RafPP]+k11

−
V2[PP2−A][RafP]

[RafP]+k2
−

Vloop[KPP][RafP]
[RafP]+kloop

−Kf31[RafP][GTPRas]
+Kb31[GTPRas − RafP]

d[RafPP]
dt =

Vloop[KPP][RafP]
[RafP]+kloop

−
V11[PP2−A][RafPP]

[RafPP]+k11
d[KKP]

dt =
V3[GTPRas−RafP][KK]

[KK]+k3
+

V6[PP2−A][KKPP]
[KKPP]+k6

−
V5[PP2−A][KKP]

[KKP]+k5

−
V4[GTPRas−RafP][KKP]

[KKP]+k4
d[KKPP]

dt =
V4[GTPRas−RafP][KKP]

[KKP]+k4

−
V6[PP2−A][KKPP]

[KKPP]+k6
d[KP]

dt =
V7[KKPP][K]

[K]+k7
+

V10[MKP1][KPP]
[KPP]+k10

−
V9[MKP1][KP]

[KP]+k9
−

V8[KKPP][KP]
[KP]+k8

d[KPP]
dt =

V8[KKPP][KP]
[KP]+k8

−
V10[MKP1][KPP]

[KPP]+k10
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Auxiliary variables used in the model
[IR] = [IRtot] − [IR − ins]

−[IR − insP] − [IR − 2insP]
[IRS] = [IRStot] − [IRSP]

−[IRSP − Sos − Grb2]
[Sos] = [Sostot] − [Sos − Grb2]

−[IRSP − Sos − Grb2]
−[SosP] − [SosP − Grb2]

[Grb2] = [Grb2tot] − [Sos − Grb2]
−[IRSP − Sos − Grb2]
−[SosP − Grb2]

[GDPRas] = [GDPRastot] − [GTPRas] − [GTPRas − RafP]
[GAPP] = [GAPtot] − [GAP]

[GEF] = [GEFtot] − [GEFP]
[Raf] = [Raftot] − [RafP] − [RafPP]

[GTPRas − RafP]
[KK] = [KKtot] − [KKP] − [KKPP]

[K] = [Ktot] − [KP] − [KPP]

Table A.1 These are the auxiliary variables used in the rate equations
on the previous page. These auxiliaries are due to the pres-
ence of algebraic bonds on the dynamics. Another option is to
introduce separate differential equations for each of auxiliary
variables, and then have these above equations as algebraic con-
straints. This would lead to a zero index differential algebraic
equation system, and since it is numerically more straightfor-
ward to solve an ordinary differential equation, this formulation
was chosen.

A.7 From Chapter 9
For the model simplification plots the following integrator settings has been used.

k12 = 2.105324 · E−5 (A.10)
PrecisionGoal = 13 (A.11)

AccurencyGoal = 13 (A.12)
Workingprecision = 15 (A.13)

this together with the initial values given in z(0) under each plot, as well as the
parameters given in Table 9.1, should be sufficient to regenerate these plots.

Regarding the estimation example in Section 9.6 the used integrator is a diago-
nally implicit Runge-Kutta method, called SDIRK. It exists in the Janet software
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literature estimated
parameter value KPP(+50%)

KPP(0%)
KPP(−50%)

KPP(0%) ∆IKPP(+50%) ∆IKPP(−50%) value
V2 6.0 0.2091 13.4365 0.1E − 4 −0.4E − 4 3.0

PPP2 − A 0.224 0.041589 179.392 0.1E − 4 −1.2E − 4 0.112

k2 15.6565 4.6429 0.0681 −0.3E − 4 0.1E − 4 −
V1 4.0 4.6444 0.0681 −0.2E − 4 0.1E − 4 −

PKC 0.02 5.2013 0.0604 −0.4E − 4 0.3E − 4 −
Raftot 0.2 4.8552 0.065 −0.2E − 4 0.1E − 4 −

k1 66.66667 0.2099 13.2984 0.1E − 4 −0.4E − 4 33.33

V5 6.0 0.4489 3.8783 −0.0E − 4 −0.1E − 4 −
k5 15.6565 2.2156 0.2538 −0.1E − 4 −0.0E − 4 −
V3 0.105 2.2158 0.2538 −0.1E − 4 −0.0E − 4 −

KKtot 0.18 1.4039 0.4631 −0.1E − 4 −0.0E − 4 −
k3 0.159091607 0.6589 1.6975 0.0E − 4 −0.0E − 4 −
V6 6.0 0.4447 3.9879 −0.0E − 4 −0.1E − 4 −
k6 15.6565 2.247 0.2502 −0.1E − 4 −0.0E − 4 −
V4 0.105 2.247 0.2502 −0.0E − 4 −0.0E − 4 −
k4 0.159091607 0.4477 3.9097 −0.0E − 4 −0.1E − 4 −
V9 1.0 0.667 1.9973 −0.0E − 4 −0.0E − 4 −

MKP1 0.0032 0.4447 3.9885 −0.0E − 4 −0.1E − 4 −
k9 0.066667 1.498 0.5007 −0.0E − 4 0.0E − 4 −
V7 0.15 1.499 0.5003 −0.0E − 4 −0.0E − 4 −

Ktot 0.36 1.0394 0.8978 −0.0E − 4 −0.1E − 4 −
k7 0.046296667 0.9462 1.0603 −0.0E − 4 −0.0E − 4 −

V10 1.0 0.6668 1.9985 −0.0E − 4 −0.0E − 4 −
k10 0.066667 1.4994 0.5002 −0.1E − 4 −0.0E − 4 −
V8 0.15 1.4994 0.5002 −0.0E − 4 −0.0E − 4 −
k8 0.046296667 0.6672 1.9949 −0.0E − 4 −0.0E − 4 −

V11 6.0 1.0 1.0 −0.1E − 4 −0.0E − 4 −
k11 15.6565 1.0 1.0 −0.1E − 4 −0.0E − 4 −

Vloop 10.0 1.0 1.0 −0.0E − 4 −0.0E − 4 −
kloop 25.64 1.0 1.0 −0.0E − 4 −0.0E − 4 −
Kb21 0.0168 0.7901 1.2912 1.5E − 4 −1.9E − 4 −
Kf21 0.025 1.1828 0.6346 −1.2E − 4 2.9E − 4 −

Grb2tot 1.0 1.1958 0.5903 −1.3E − 4 3.2E − 4 −
SOStot 0.1 3.9235 0.0844 −0.3E − 4 0.1E − 4 −

Kb18 0.0168 1.0001 0.9996 −0.1E − 4 −0.0E − 4 −
Kf18 0.025 0.9998 1.0002 −0.1E − 4 −0.0E − 4 −
K19 0.0010 1.0003 0.9992 −0.0E − 4 −0.0E − 4 −
V20 10.0 0.9996 1.0004 −0.0E − 4 −0.1E − 4 −
k20 2.5641 1.0003 0.9992 −0.0E − 4 −0.0E − 4 −
K27 0.1 0.9443 1.1806 −0.0E − 4 −0.1E − 4 −

GAPtot 0.0020 0.2226 11.1461 0.4E − 4 −1.2E − 4 −

Table A.2 The sensitivity analysis used in Section 8.5. The changed parameters
are extracted in Table 8.2. Note that the last parameters are given
in Table A.3
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and the following settings has been used.

pert = 1E − 12 (A.14)
initialstep = 0.00001 (A.15)

maxstep = 1 (A.16)
tolerance = 1E − 12 (A.17)

Jacobianrecyclings = 10 (A.18)

the initial estimate, as well as initial values for the integration, is given in the
example.
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literature estimated
parameter value KPP(+50%)

KPP(0%)
KPP(−50%)

KPP(0%) ∆IKPP(+50%) ∆IKPP(−50%) value
V28 25.0 1.0877 0.9173 −0.1E − 4 −0.0E − 4 −
k28 101.87499 0.9443 1.1806 −0.0E − 4 −0.1E − 4 −
K29 0.1 0.979 1.0637 0.1E − 4 −0.3E − 4 −
V30 4.0 1.0317 0.9686 −0.2E − 4 0.1E − 4 −

GEFtot 0.1 1.0322 0.9684 −0.2E − 4 0.1E − 4 −
k30 66.667 0.9791 1.0636 0.1E − 4 −0.3E − 4 −
K26 1.0E − 4 0.9902 1.0099 −0.0E − 4 −0.1E − 4 −
V25 10.0 0.2226 11.1461 0.3E − 4 −1.2E − 4 5

k25 1.0104 4.1003 0.0776 −0.7E − 4 0.6E − 4 1.5156

V24 0.02 1.0323 0.9684 −0.2E − 4 0.1E − 4 −
GDPRastot 0.2 3.1889 0.1041 0.1E − 4 −0.3E − 4 −

k24 0.50505 0.9829 1.0379 0.0E − 4 −0.2E − 4 −
V23 0.02 4.1814 0.0791 −0.5E − 4 0.3E − 4 0.03

k23 0.50505 0.3216 5.2371 0.1E − 4 −0.3E − 4 0.2525

Kb31 0.5 0.2055 14.1294 0.1E − 4 −0.5E − 4 −
Kf31 24.0 4.7655 0.0663 −0.2E − 4 0.2E − 4 −
Kb22 0.1 0.5833 1.8943 3.5E − 4 −5.0E − 4 −
Kf22 0.49998 1.5102 0.3654 −3.1E − 4 6.2E − 4 −
Kb12 0.0033333 1.0 1.0 −0.0E − 4 −0.0E − 4 −
Kf12 1.0 1.0025 0.9926 −4.1E − 4 12.0E − 4 −

IRtot 0.9 1.1059 0.7515 −3.9E − 4 10.2E − 4 −
K13 41.666666 1.0 1.0 −0.0E − 4 −0.0E − 4 −
K14 0.0033333 0.9963 1.0037 6.0E − 4 −6.2E − 4 −
PTP 1.0 0.8598 1.1666 13.9E − 4 −9.2E − 4 −

Kb15 0.3333333 0.9994 1.0014 −0.1E − 4 −0.0E − 4 −
Kf15 1.0 1.0008 0.999 −0.0E − 4 −0.1E − 4 −
K17 0.0232662 0.8644 1.1643 5.3E − 4 −5.9E − 4 −
K16 0.069333333 1.1059 0.7515 −3.9E − 4 10.2E − 4 −

IRStot 1.0 1.5457 0.3324 −3.2E − 4 6.0E − 4 −
IRp 0.897 0.8644 1.1643 5.3E − 4 −5.9E − 4 −

Table A.3 Continuation from Table A.2.
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