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ABSTRACT

To improve safety, reliability, and efficiency of automotive vehicles
and other technical applications, embedded systems commonly use
fault diagnosis consisting of fault detection and isolation. Since many
systems are constructed as distributed embedded systems including
multiple control units, it is necessary to perform global fault isolation
using for example a central unit. However, the drawbacks with such a
centralized method are the need of a powerful diagnostic unit and the
sensitivity against disconnections of this unit.

Two alternative methods to centralized fault isolation are presented
in this thesis. The first method performs global fault isolation by a
distributed sequential computation. For a set of studied systems, the
method gives, compared to a centralized method, a mean reduction
in maximum processor load on any unit with 40 and 70 % for systems
consisting of four and eight units respectively. The second method in-
stead extends the result of the local fault isolation performed in each
unit such that the results are globally correct. By only considering the
components affecting each specific unit, the extended result in each
agent is kept small. For a studied automotive vehicle, the second
method gives, compared to a centralized method, a mean reduction
in the sizes of the results and the maximum processor load on any
unit with 85 and 90 % respectively.

To perform fault diagnosis, diagnostic tests are commonly used. If
the additional evaluation of tests can not improve the fault isolation
of a component then the component is ready. Since the evaluation of
a test comes with a cost in for example computational resources, it is
valuable to minimize the number of tests that have to be evaluated be-
fore readiness is achieved for all components. A strategy is presented
that decides in which order to evaluate tests such that readiness is
achieved with as few evaluations of tests as possible.

Besides knowing how fault diagnosis is performed, it is also in-
teresting to assess the effect that fault diagnosis has on for example
safety. Since fault tree analysis often is used to evaluate safety, this
thesis contributes with a systematic method that includes the effect of
fault diagnosis in fault trees. The safety enhancement due to the use
of fault diagnosis can thereby be analyzed and quantified.

Keywords: Fault diagnosis; Fault isolation; Distributed diagnosis;
Embedded systems; Fault tree analysis.
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Chapter 1

INTRODUCTION

T here are an increasing number of applications that use embedded
software for control. To improve safety, reliability, and efficiency

of such embedded systems, there is an increasing demand for fault
diagnosis, i.e. to detect and isolate abnormally behaving components,
see for example (Isermann, 2005) where automotive fault diagnosis is
discussed. Fault diagnosis is performed by dedicated diagnostic sys-
tems, and the results are typically used to make autonomous decisions
such as fault tolerant control (FTC), to inform the user, or for repair and
maintenance.

The dominant methodology for fault diagnosis in the AI field is
so called consistency based diagnosis (Hamscher et al., 1992; Dressler
and Struss, 1996), which has strong relationships with the methods
for fault diagnosis used in the engineering disciplines, such as control
theory and statistical decision making (Cordier et al., 2004; Gertler,
1998; Gertler et al., 1995; Basseville and Nikiforov, 1993). Within con-
sistency based diagnosis, a diagnosis is a set of components whose
abnormal behaviors are a consistent explanation to why the system
does not behave as intended. Further, a minimal diagnosis is a mini-
mal such explanation. Considering consistency based diagnosis, fault
isolation can be performed by computing a set of minimal diagnoses
from the diagnostic test results.

Today, many embedded systems include multiple agents (Hayes,
1999; Leen and Heffernan, 2002; Navet et al., 2005; Hristu-Varsakelis

1



2

FIGURE 1.1: Outside and inside of an ECU by Bosch for an Audi per-
sonal vehicle. The ECU includes electronic components and software.

and Levine, 2005) for control and supervision. The agents can share
for example sensor values over a network and the systems have there-
fore moved from being centralized to becoming distributed embedded
systems. Centralized fault isolation can be performed based on all di-
agnostic test results in all agents, and when considering diagnoses, the
result is a set of global diagnoses. The minimal global diagnoses are
the minimal consistent explanations for the abnormal behavior of the
complete system. Similarly, the diagnoses computed based on only
the test results in one agent are denoted local diagnoses.

If each diagnostic system is independent of the other diagnostic
systems then the results from the local fault isolations can be used
directly since for example the sets of local minimal diagnoses in the
agents will together directly form the set of minimal global diagnoses.
However, a component such as a sensor component might be used by
several agents, and the diagnostic system in one agent is therefore de-
pendent on the diagnostic systems in the other agents. Considering
diagnoses, the sets of local diagnoses in the agents are no longer guar-
anteed to form the set of global diagnoses, if the diagnostic systems are
dependent. For such systems, it is therefore no longer possible to di-
rectly use the local fault isolations since the results are not guaranteed
to be globally correct. How to perform local fault isolation in distri-
buted embedded systems such that the results are globally correct is
one of the topics of this thesis.

The background to the four papers presented in this thesis will
be discussed below, and the publications relating to the thesis will be
described. The next chapter will give an overview of the papers and
for each paper state its contributions.
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ECU

FIGURE 1.2: The figure shows a 12 liter industrial engine from Scania
(Scania, 2007). The engine ECU is attached to the side of the engine
and its objective is to supervise the engine for abnormal behavior and
to control the engine such that emissions are minimized and perfor-
mance maximized.

1.1 BACKGROUND TO THE THESIS

The work in this thesis is motivated by diagnostic systems used in
automotive vehicles (Navet et al., 2005; Leen and Heffernan, 2002;
Gertler, 1998; Hristu-Varsakelis and Levine, 2005; Struss and Price,
2003), and in particular that used in a Scania heavy duty vehicle. In
automotive vehicles, the diagnostic systems are implemented in elec-
tronic control units (ECUs). Figure 1.1 shows for example an ECU for
a personal vehicle from Audi while Figure 1.2 shows an ECU attached
to a 12 liter industrial engine from Scania. The diagnostic system in
the Scania ECU is responsible for the supervision of the components
affecting the performance of the engine.

Diagnostic systems in automotive vehicles typically store a diag-
nostic trouble code (DTC) when a component has been detected to be-
have abnormally (SAE, 2003; Price, 1999; ISO, 1999). In for example
personal vehicles following the OBD-II (On Board Diagnostic) stan-
dard, the DTCs can be read out with a standardized OBD-II reader,
such as those shown in Figure 1.3. In the first generations of diagnos-
tic systems used in automotive vehicles, each diagnostic test super-
vised exactly one component for abnormal behavior. Therefore, the
DTCs could be used to state exactly which components that were be-
having abnormally. Due to higher demands on fault diagnosis, such
as reduced emission levels (EU, 2005; EPA, 2005), more components



4 1.1 BACKGROUND TO THE THESIS

FIGURE 1.3: Two different OBD-II code readers, one from Ford (left)
and one from Actron (right) (Amazon, 2007). The readers are con-
nected to the vehicles on-board diagnostic system and are used to col-
lect the DTCs.

have to be supervised by the diagnostic systems. However, it is not
possible to design one new diagnostic test for each additional compo-
nent that should be supervised since the number of sensors is limited.
Therefore, a trend in the automotive industry is the introduction of
diagnostic tests that supervise several components at the same time,
often denoted plausibility tests. Since there is no longer a one to one
relationship between a test and an abnormal component, more elabo-
rate fault isolation algorithms have to be used to be able to isolate the
components that are behaving abnormally among all the components
supervised by the tests. To perform fault isolation for plausibility tests
is one of the motivations for the work presented in this thesis.

Fault isolation can be performed directly using a model of the com-
plete system and a general diagnostic engine, such as the one pre-
sented in (Kleer and Williams, 1987) or similar algorithms. Using such
algorithms, fault isolation can be performed by checking if the model,
the observations, and the normal behavior of all components are con-
sistent. If it is not consistent then it can be concluded that there is
some fault present in the system and further checks can be performed
to gain the global diagnoses. However, since the diagnostic tests used
in automotive vehicles, and especially those in Scania heavy duty ve-
hicles, have good performance, it is an advantage to base the more
elaborate fault isolation on these diagnostic tests. Therefore, this the-
sis studies fault isolation based on diagnostic test results.

In addition to plausibility tests, another trend in automotive vehi-
cles is the inclusion of multiple ECUs, which gives a distributed sys-
tem. For example, Figure 1.4 shows part of the distributed system in
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FIGURE 1.4: The distributed system in current Scania heavy-duty ve-
hicles. The distributed system consists of dozens of ECUs, such as the
CSS crash safety system that is responsible for protecting the driver
and the passengers in case of a road traffic accident.

a Scania heavy duty truck and Figure 1.5 shows a typical distributed
system in a personal automotive vehicle. In the first generations of
distributed automotive systems, each ECU supervised a unique set of
components and the diagnostic systems were therefore independent.
However, due to the increased demands on diagnosis, the diagnostic
systems have started to supervise components physically connected
to and supervised by other ECUs. As described earlier, the local fault
isolation is therefore no longer guaranteed to be globally correct.

1.2 PUBLICATIONS

This thesis includes research that has been presented in the following
publications.

• Earlier versions of Paper I have been presented in peer reviewed
publication (Biteus et al., 2005), in publication (Biteus et al., 2004b),
and in the Licentiate thesis (Biteus, 2005). A shorter version of
the paper has been accepted for publication as journal paper (Bi-
teus et al., 2007).

• An earlier version of Paper II has been presented in peer re-
viewed publication (Biteus et al., 2006a). The paper is partially
based on results presented in the Licentiate thesis (Biteus, 2005).
A shorter version of the paper has been submitted to IEEE Trans-
actions on Control Systems Technology.

• An earlier version of Paper III has been presented in peer re-
viewed publication (Biteus et al., 2006b). A shorter version of
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FIGURE 1.5: The distributed system in a personal automotive vehicle
(AA1CAR, 2007). Multiple ECUs are distributed over the vehicle and
are responsible for control and supervision of different parts of the
vehicle, such as the adaptive cruise control or the airbag control unit.

the paper has been submitted to IEEE Transactions on Systems,
Man, and Cybernetics, Part A: Systems.

• The research later published as (Biteus et al., 2006b) and on which
Paper III is based has been applied for patent protection.

• Paper IV has been published as journal paper (Åslund et al.,
2006). An earlier version of Paper IV has been presented in peer
reviewed publication (Åslund et al., 2005). Related to the paper
is the publication (Biteus et al., 2004a) that describes some rela-
tions between aircraft safety and fault diagnosis.

The following papers relate to diagnosis and have been produced un-
der the Ph.D. thesis project but have not been included in this thesis.

• Part II of the Licentiate thesis (Biteus, 2005) has not been in-
cluded in this thesis. The topic of Part II is simulation based
residual generation. The residuals are constructed such that they
can be used to construct diagnostic tests for embedded systems.
Part II includes the peer-reviewed publication (Biteus and Ny-
berg, 2003) and the earlier publication (Biteus and Nyberg, 2002).



Chapter 2

OVERVIEW AND

CONTRIBUTIONS OF THE PAPERS

T his chapter will give an overview of the four papers presented
in this thesis. To be able to describe the papers, the basic ideas

within fault isolation will first be introduced. After the introduction,
a summary of each paper will be given including its objectives and
contributions.

2.1 INTRODUCTION TO FAULT ISOLATION

The overall objective in fault isolation is to compute a list of possibly
abnormal components, which is ordered such that the components
that most likely are abnormal are ranked high while those that are
less likely are ranked low. The ranking can for example be used by
a repair technician by improving troubleshooting. The components
ranked high are first checked for abnormal behavior, and only after
these have been checked, the other components are checked in de-
scending rank.

2.1.1 Fault Isolation Directly Based on Test Results

Considering diagnostic system based on diagnostic tests, the most di-
rect approach to perform fault isolation is to directly present the diag-
nostic test results for the repair technician or the fault tolerant control

7



8 2.1 INTRODUCTION TO FAULT ISOLATION

system and let the technician or the fault tolerant control system use
these results to isolate the abnormal components. This is the common
approach in automotive vehicles where the test results correspond to
DTCs, see Section 1.1.

2.1.2 Test Results and Diagnoses

Another approach to perform fault isolation is to create a list of ab-
normal components based on the minimal diagnoses. Similar to com-
ponents, it is an advantage to rank the diagnoses since the number of
diagnoses might be high. The most probable diagnosis is ranked first
and the other follow in descending order.

Consider for example the diagnostic system with the diagnostic
tests T1, T2, and T3, the components A, B, and C, and the following
isolation structure.

Test A B C
T1 × ×
T2 × ×
T3 ×

In the isolation structure, a cross means that a test is sensitive to faults
making the corresponding component to behave abnormally. Test T1

is for example sensitive to faults in component A and B. Given that
test T1 and T2 have responded, the conclusion is that component A

or B is abnormal since T1 has responded, and that component B or
C is abnormal since T2 has responded. One diagnosis is in this case
that B is abnormal since this would explain both that test T1 and T2

have responded. Further, two more diagnoses exist, one is that both
A and C are abnormal and another is that A, B, and C are abnormal.
In set notation, these diagnoses are denoted {B}, {A,C}, and {A,B,C},
respectively. Out of these diagnoses, the diagnoses {B} and {A,C} are
minimal since these are the minimal diagnoses, considering subsets,
explaining the diagnostic test results.

A ranking of the components can be based on the minimal diag-
noses by considering the cardinality, i.e. the size, of the diagnoses. For
the minimal diagnoses {B} and {A,C}, the following ranking of abnor-
mal components can be created.

Rank Abnormal comp.
1st B

2nd A and C

Information in non responded tests

Why is not the information that test T3 has not responded used? If
T3 has not responded then it can be concluded that component B is
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FIGURE 2.1: The isolation structure in the engine management system,
which controls and supervises the engine in a Scania heavy duty truck.

behaving normally and component A and C are therefore abnormal
since only these can explain the test results. This type of diagnosis
reasoning is not considered in this thesis since it can lead to incorrect
diagnoses. If for example test T3 has a low probability to detect a fault
in component B, then B might be abnormal even though T3 has not
responded. If the information that T3 has not responded is used then
B will incorrectly be assumed to be normal and A and C will incor-
rectly be stated to be abnormal. By not using the information of non
responded tests, the possibility for the diagnostic system to isolate ab-
normal components is reduced, however it ensures that the diagnostic
system does not give faulty diagnoses.

In automotive applications, the probabilities for false alarms are
typically set low by choosing high enough thresholds for when the
tests should respond. A consequence of the high thresholds is that, in
some cases, the probability for a test to respond due to an abnormally
behaving component is low. Therefore, it is not unlikely that the infor-
mation about non responded tests will lead to faulty diagnoses.

Ranking based on diagnoses with minimal cardinality

For the simple example with three tests, the diagnoses can easily be
computed by hand. However, this is not the case for larger systems,
such as the diagnostic system in the engine management system (EMS)
used in heavy duty trucks from Scania, see Figure 2.1. The figure
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shows the isolation structure for the diagnostic system in the EMS,
where each row corresponds to a test and each column corresponds to
a component. To deal with such larger systems, algorithms exist that
automatically compute the set of minimal diagnoses, see for example
(Reiter, 1987; Hamscher et al., 1992).

Even though automatic algorithms exist, the complexity when com-
puting the diagnoses is in worst case exponentially increasing in the
number of tests, and it is therefore in some cases too computationally
expensive to compute the complete set of minimal diagnoses. One
way to reduce the computational burden is to only consider the diag-
noses with minimal cardinality, i.e. the diagnoses that include a min-
imal number of components, for example the diagnosis {B} in the ex-
ample above. The ranking based on the minimal cardinality diagnoses
would in the example be as follows.

Rank Abnormal comp.
1st B

The focus on the diagnoses with minimal cardinality always re-
moves the components ranked 2nd or lower, while the components
ranked 1st are always kept.

2.1.3 Fault Isolation for Distributed Systems

In distributed systems, a local ranking is based on a set of local di-
agnoses in one agent, while the global ranking is based on the set of
global diagnoses. From the discussion in Chapter 1 follows that if the
diagnostic systems are dependent then the local rankings are not guar-
anteed to be globally correct. This is in contrast to the global ranking,
which is globally correct.

Consider for example a system consisting of two agents that in-
clude diagnostic systems with one test each, such that the isolation
structures for these systems are as follows.

Agent 1
Test A B C
T11 × ×

Agent 2
Test A B C
T21 × ×

Assume that both tests have responded, then the minimal local diag-
noses in the first agent are {A} and {B}, and the minimal local diagnoses
in the second agent are {B} and {C}. Therefore, the local rankings in the
agents are as follows.

Agent 1
Rank Abnormal comp.

1st A or B

Agent 2
Rank Abnormal comp.

1st B or C
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The local rankings are not globally correct, since if both tests are used
to state a global ranking then component B would in both rankings be
ranked first and A and C would be ranked second.

Automotive applications can consist of dozens of agents and in-
clude multiple components used by several agents, similar to compo-
nent B in the example. Therefore, the computation of the global rank-
ing requires access to the minimal global diagnoses. Further, since for
example fault tolerant control can be performed locally in one agent,
the minimal global diagnoses should be available in each agent.

Given this introduction to fault isolation, the four papers presented
in this thesis will now be introduced.

2.2 PAPER I – AN ALGORITHM FOR

COMPUTING THE DIAGNOSES WITH MINIMAL

CARDINALITY IN A DISTRIBUTED SYSTEM

As discussed in the previous section, it is an advantage to have ac-
cess to the global diagnoses in each agent and sometimes these global
diagnoses are focused on to the set of global diagnoses with minimal
cardinality. A centralized approach to compute the global diagnoses
in a distributed system is to transmit all test results from all agents
to a central agent responsible for diagnosis. However, a drawback
with such an approach is that the worst case complexity when com-
puting the minimal global diagnoses increases exponentially with the
number of agents in the system, since the number of tests increases
with the number of agents. A centralized approach therefore requires
a powerful central diagnostic agent, and the system would not be ro-
bust against disconnections of this agent.

2.2.1 Objective

The objective of Paper I is to design an algorithm that computes the set
of minimal cardinality global diagnoses in a distributed cooperation
between the agents in a distributed system. The algorithm should be
designed such that the maximum computational load on any agent is
minimized.

2.2.2 Summary

To fulfill the objective, Paper I designs an algorithm whose main idea
is to distribute parts of the computation of the global diagnoses to
the different agents. Further, instead of computing the minimal cardi-
nality global diagnoses, the algorithm computes independent sets of
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diagnoses such that these directly represent the set of minimal cardi-
nality global diagnoses.

Module diagnoses

Independent sets of diagnoses are in the paper denoted sets of mod-
ule diagnoses. The sets are independent in the sense that a component
included in a diagnosis in one set is not included in a diagnosis in any
other set of module diagnoses. The objective of the designed algo-
rithm is to compute the sets of minimal cardinality module diagnoses.

The module diagnoses will be exemplified for a system consisting
of two agents that have the following isolation structures, and where
both tests have responded.

Agent 1
Test A B C
T11 ×

Agent 2
Test A B C
T21 × ×

The minimal cardinality local diagnoses are {A} in the first agent and
{B} and {C} in the second agent. The minimal cardinality global di-
agnoses are {A,B} and {A,C}. In this example, the sets of minimal
cardinality local diagnoses are the sets of minimal cardinality module
diagnoses, since the diagnosis in the first agent is independent of the
diagnoses in the second agent.

If the sets of minimal cardinality local diagnoses are independent,
then the objective is fulfilled since the sets of minimal cardinality mod-
ule diagnoses are directly available. However, this is not always the
case. This is for example not the case for the three agent system that
has the following isolation structures and where all tests have respon-
ded, since the first and second agent both include the diagnosis {B}.

Agent 1
Test A B C D
T11 × ×

Agent 2
Test A B C D
T21 × ×

Agent 3
Test A B C D
T31 ×

If the sets of local diagnoses are dependent then the set of agents is
instead partitioned into modules, where the sets of local diagnoses in
one module are independent of the sets of local diagnoses in the other
modules. In the three agent example, the set of agents is partitioned
into one module consisting of the first and the second agent and an-
other module consisting of the third agent. The minimal cardinality
module diagnosis is {B} for the first module and {D} for the second
module, and these directly represent the minimal cardinality global
diagnosis {B,D}.

The main advantage when computing the minimal cardinality mod-
ule diagnoses instead of the minimal cardinality global diagnoses, is
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that the maximum load on any agent is reduced from exponentially to
linearly increasing, considering the number of modules in the system.

After the set of agents in a system has been partitioned into mod-
ules based on the current test results, the objective is to compute the
sets of minimal cardinality module diagnoses. The algorithm designed
in Paper I lets each agent compute its own set of minimal local di-
agnoses, and then the sets of minimal cardinality module diagnoses
are computed in a distributed cooperation between the agents in each
module. The distribution further reduces the maximum load on any
agent from linearly increasing to become constant for systems larger
than a certain number of agents.

Evaluation of the designed algorithm

For a set of systems studied in the paper, where each system includes
four agents, there is in mean a 40 % reduction in maximum processor
load on any agent compared to a centralized algorithm. Further, the
gain increases for larger systems, and when the systems for example
include eight agents then there is in mean a reduction of over 99.9 %. If
the centralized algorithm used in the comparison computes the min-
imal cardinality module diagnoses instead of the minimal cardinality
global diagnoses, then the reduction is still over 70 % when using the
designed algorithm for the systems with eight agents. This shows that
for these systems the distribution of computations reduces the max-
imum load with 70 % while the partition of the agents into modules
further reduces the maximum load to a total of over 99.9 %.

The reduction in computational load comes with the drawback that
the load on the network increases due to the cooperation between the
agents. For the studied sets of systems, the number of transmissions
increases from about 50 to about 1 500 for systems with four agents,
while for eight agents it increases from about 110 to about 3 000 trans-
missions. An important conclusion from the evaluation is that both
the gain in processor load and the cost in transmissions for the de-
signed algorithm increase linearly with the number of modules.

2.2.3 Contributions

In summary, the contributions of Paper I are as follows.

• The algorithm that efficiently computes the sets of minimal car-
dinality module diagnoses without first computing the set of
minimal module diagnoses. The sets of minimal cardinality mod-
ule diagnoses are a direct representation of the minimal cardinal-
ity global diagnoses.
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• The strategy of partitioning a system into sub-systems with re-
spect to the test results such that the complexity when perform-
ing global fault isolation reduces from exponentially to linearly
increasing in the number of modules.

2.3 PAPER II – DISTRIBUTED DIAGNOSIS

USING A CONDENSED REPRESENTATION OF

DIAGNOSES WITH APPLICATION TO AN

AUTOMOTIVE VEHICLE

A drawback when using the global diagnoses for repair of an agent or
for fault tolerant control in an agent is that they include many com-
ponents that are not used by the agent, and thereby do not affect the
behavior of the agent. The unaffecting components make the number
of global diagnoses to be unnecessary high and each global diagnosis
unnecessary large. For example, in the automotive application from
Scania, the EMS (engine management system) does not use the cat-
alytic converter component and it is therefore unnecessary to include
the component in the global diagnoses when they are used in the EMS.

2.3.1 Objective

The main objective of Paper II is to develop a method that makes a rep-
resentation of the global diagnoses available in each agent, which does
not include unaffecting components. Further, when the representation
is computed, the maximum computational load on any agent should
be reduced as much as possible.

2.3.2 Summary

To fulfill the objective, a novel type of diagnosis, condensed diagno-
sis, is defined in Paper II. Each agent has a unique set of minimal
condensed diagnoses, where each condensed diagnosis only includes
components affecting the agent but preserves the cardinality of the
global diagnoses.

Assume for example that {A,B,C,D} is a global diagnosis, where
only component A affects the agent. A condensed diagnosis represent-
ing this global diagnosis is a tuple 〈{A}, 3〉, where A is the component
the agent uses, and the number 3 represents the unaffecting compo-
nents B, C, and D such that the cardinality of the global diagnosis
is preserved. The cardinality of the condensed diagnosis 〈{A}, 3〉 is
4 = |{A}|+ 3 and this is equal to the cardinality of the global diagnosis.
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The condensed diagnoses are globally correct since they preserve
the cardinality of the global diagnoses. Consider for example a system
where the global diagnoses are {B} and {A,C} and where the first agent
only is affected by the behavior of component A and B. The condensed
diagnoses are in the first agent 〈{B}, 0〉 and 〈{A}, 1〉 with cardinality one
and two respectively. Based on the condensed diagnoses, the follow-
ing ranking can be created.

Rank Abnormal comp.
1st B

2nd A

Since the condensed diagnoses are globally correct, the ranking coin-
cides with the global ranking.

Due to the removal of the unaffecting components, each condensed
diagnosis represents one or several global diagnoses and the number
of minimal condensed diagnoses in each agent is therefore reduced
compared to the minimal global diagnoses. Due to this reduction in
number of diagnoses, the minimal condensed diagnoses are suitable
to use in fault tolerant control or for repair of the agent since fewer
diagnoses have to be checked before the agent is repaired or controlled
with respect to the abnormal components.

To reduce the maximum computational load on any agent when
the condensed diagnoses are computed, an algorithm is designed that
in a distributed cooperation between the agents computes the sets of
minimal condensed diagnoses in each agent.

Evaluation on an automotive vehicle

To evaluate the condensed diagnoses and the designed algorithm, an
application study is in the paper performed on a part of the distributed
system used in a heavy duty vehicle from Scania. One of the engines
for the vehicles that use the studied distributed system is shown in
Figure 2.2. The engine fulfills the Euro 5 emission restrictions that will
be enforced in Europe in 2009 (EU, 2005).

The part of the distributed system that is studied here includes
three agents: the EMS (engine management system), which controls
and supervises the engine; the selective catalytic reduction system
(SCR), which controls and supervises the after-treatment system in-
cluding for example a catalytic converter; and the coordinator system
(COO), which has a coordinating functionality. The three agents su-
pervise a total of 85 components using over 100 diagnostic tests. Fig-
ure 2.3 shows a schematic overview of the system where a component
supervised by an agent is connected with a line. Three signals from
components are transferred over the network to the other agents.
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The EMS ECU

FIGURE 2.2: The figure shows a 16 liter 500 hp heavy duty truck engine
from Scania (Scania, 2007). The engine management system (EMS) is
attached to the upper part of the engine. This engine fulfills the Euro 5
emission restrictions using among other things a selective catalytic re-
duction system (SCR) for after-treatment of the exhaust gases.

51 84...41 ... 855

Components

EMS SCR COO

Signals

Agents

Network

... 50

FIGURE 2.3: A schematic overview of the distributed system used in
the Scania application.
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The evaluation has shown that if two abnormal components are
present in the system, then the number of minimal condensed diag-
noses is in mean reduced by 70 % compared to the number of minimal
global diagnoses. Further, the reduction in the number of diagnoses
increases with the number of abnormal components and reaches for
example a 90 % reduction for four abnormal components.

Compared to a centralized algorithm that computes the set of min-
imal global diagnoses, the designed algorithm gives a mean reduc-
tion of the maximum processor load on any agent with 50 and 85 %
when the automotive system includes two and four abnormal compo-
nents respectively. Further, the reduction in processor load continues
to increase with the number of abnormal components. In contrast to
Paper I, there is no significant increase in the number of needed trans-
missions.

Condensed diagnoses with minimal cardinality

In addition to the computation of the sets of minimal condensed di-
agnoses, Paper II also includes an algorithm that computes the set of
minimal cardinality condensed diagnoses in each agent. Also this ex-
tended algorithm is applied to the automotive vehicle with results as
those described above.

2.3.3 Contributions

In summary, the contributions of Paper II are as follows.

• The method that makes a representation of the global diagnoses
available in each agent, which only includes components affect-
ing the behavior of the agent.

• The novel concept of condensed diagnosis. The condensed di-
agnoses in one agent preserve the cardinality of the global diag-
noses while excluding all unaffecting components.

• The algorithm that in a distributed cooperation between the agents
computes the set of minimal or minimal cardinality condensed
diagnoses in each agent, without first computing the set of min-
imal or minimal cardinality global diagnoses respectively.

• The application of the condensed diagnoses to the diagnostic
system in an automotive vehicle.
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2.4 PAPER III – DETERMINING THE FAULT

STATUS OF A COMPONENT AND ITS READINESS,
WITH A DISTRIBUTED AUTOMOTIVE APPLICATION

As described in Section 1.1, the introduction of plausibility tests re-
moves the direct relation between abnormal components and tests,
since components might exist that are only suspected to be abnormal.
Further, if the additional evaluation of tests can not improve the fault
isolation of a component then the component is ready. The introduc-
tion of plausibility tests also removes the direct relation between diag-
nostic tests and ready components, since a component might be ready
even though all tests supervising the component have not been evalu-
ated. It is an advantage to get readiness for all components, which can
be achieved by evaluating all tests. However, this approach is in for
example automotive applications not always feasible due to for exam-
ple limited processing power.

2.4.1 Objective

Considering plausibility tests, one objective of Paper III is to decide if
a component is ready, and if it is not ready to decide which tests that
should be evaluated to gain readiness. Another objective is to develop
a strategy that gives readiness for as many components as possible
with as few evaluations of diagnostic tests as possible. Further, since
the focus of this thesis is on fault diagnosis for embedded distributed
systems, the methods designed in the paper should be applicable for
both centralized and distributed systems.

2.4.2 Summary

In the paper, the fault status of a component is defined, which can be
either faulty, suspected, or normal. If a test has responded that only
supervise one component then the fault status of the component is
faulty. If the component is supervised only by responded plausibility
tests then the fault status of the component is suspected. Otherwise,
the fault status of the component is normal.

Consider for example a system with four diagnostic tests that have
the following isolation structure.

A B C D E
T1 × ×
T2 × ×
T3 ×
T4 ×
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If tests T1, T2, and T3 have responded, and test T4 has not yet been
evaluated, then the fault status of component D is faulty since T3 is a
single component test. It is not known if it is component A, B, or C that
have caused test T1 and T2 to respond since they are plausibility tests,
therefore the fault statuses of component A, B, and C are suspected.
Further, there is no indication in the test results that component E is
behaving abnormally, and its fault status is therefore normal. The fol-
lowing ranking can be computed based on the fault statuses.

Fault status Rank Abnormal comp.
Faulty 1st D

Suspected 2nd A or B or C

Normal 3rd E

Readiness

Considering plausibility tests, the paper clarifies when the fault sta-
tus of a component is ready given the information about which tests
that have been evaluated, which that have responded, and which that
could be evaluated in the future. For the example above with four
tests, it can be computed that component D is ready, while compo-
nents A, B, and C are not ready. Components A, B, and C are not
ready since if test T4 is evaluated and responds, then the fault status
of B changes to faulty and the fault status of both A and C change to
normal. Using the clarified relations between tests, fault status, and
readiness, an efficient algorithm is designed that computes the fault
status and readiness for all components.

Evaluation of the fault status and the readiness

The algorithm designed in the paper is applied to both the diagnos-
tic system in the EMS and in the SCR used in a heavy duty vehicle
from Scania. The diagnostic systems are somewhat more complex
than those studied in Paper II and include both more diagnostic tests
and components. In this paper, both the diagnostic system in the EMS

and the SCR consist of about 70 diagnostic tests that supervise about
50 and 60 components respectively.

Compared to an algorithm that directly computes the fault status
and readiness for all components, the designed algorithm gives a re-
duction of the processor load with 80 to 90 % for the EMS and the SCR.

Readiness and meaningful tests

If a component is not ready, then it is interesting to know which diag-
nostic tests that should be evaluated to gain readiness, and these tests
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are denoted meaningful. The paper exactly states which tests that are
meaningful for a given set of not ready components.

Given a set of meaningful tests, a strategy is in the paper designed
that computes which meaningful test that will give the most number
of ready components. For the automotive vehicle affected by two ab-
normal components, the best test will for example in mean give 1.7
new ready components, while the next best test will in mean only
give 1.0 ready components. By evaluating the meaningful tests in the
best order, the number of tests that has to be evaluated is reduced to a
minimum, and thereby reduces for example processor usage.

Extension to distributed systems

Considering distributed systems, the local fault status and readiness
of a component is computed in each agent, while the global fault status
and readiness is computed for the complete system. In the paper, the
relations between the local and global fault statuses and readiness are
clarified. Using the relations, it is for example possible to compute the
global readiness of a component based on the local fault statuses and
local readiness computed in the different agents.

Fault status and diagnoses

The fault status differs from the diagnoses used in Paper I and II in
that the fault statuses give the components that certainly are abnor-
mal, the components that might be abnormal, and the components
that are normal, while each diagnosis is a set of components where the
components abnormal behaviors are consistent with the test results.
A drawback when using the fault status compared to the diagnoses
is that the ranking is not as good as when the minimal diagnoses are
used. As an example, for the responded tests T1, T2, and T3, the min-
imal diagnoses {B,D} and {A,C,D} can be calculated. It can be seen
that, based on the minimal diagnoses, component B will be ranked 1st
together with component D. This is in contrast to the ranking based
on the fault status where only D is ranked first.

The advantage of the fault status and readiness is that the com-
plexity of its computation is linearly increasing in the number of tests
while the computation of the diagnoses is exponentially increasing.
This lower complexity makes it for example possible to compute the
fault status and readiness for the automotive application even when it
is practically intractable to compute the set of minimal diagnoses.

2.4.3 Contributions

In summary, the contributions of Paper III are as follows.
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• The propositions describing the relations between diagnostic plau-
sibility tests, diagnoses, fault status, and readiness, for both cen-
tralized and distributed systems.

• The strategy for scheduling the evaluation of meaningful diag-
nostic tests such that the evaluation of the tests fastest leads to
most ready components.

• The algorithms that efficiently, compared to a direct implemen-
tation, computes the fault status and readiness of all components
and the meaningful diagnostic tests.

• The application of the designed algorithms to the diagnostic sys-
tem in an automotive vehicle.

2.5 PAPER IV – SAFETY ANALYSIS OF

AUTONOMOUS SYSTEMS BY EXTENDED FAULT

TREE ANALYSIS

In contrast to the other papers, which discuss how fault diagnosis can
be performed, Paper IV discusses the effect that fault diagnosis has on
safety.

One approach to increase safety is to let embedded software per-
form autonomous decisions to avoid dangerous situations, and a key
mechanism is the use of fault tolerant control based on fault diagnosis.
Decisions that previously were taken by a pilot or a driver, can now be
taken autonomously by the fault tolerant control system. To be able to
analyze if a system is safe or not, a common approach is to use fault
tree analysis (FTA). Therefore, a natural question in many modern sys-
tems that include sub-systems like fault diagnosis, fault-tolerant con-
trol, and autonomous functions, is how to include the performance of
these algorithms in a fault tree analysis for safety.

2.5.1 Objective

To develop a method that makes it possible to include the performance
of fault diagnosis algorithms in fault tree analysis for safety, and to in-
vestigate the relation between requirements on fault diagnosis perfor-
mance and requirements on system safety.

2.5.2 Summary

A systematic way to include fault diagnosis in fault tree analysis is
proposed in Paper IV. It is shown both how safety can be analyzed
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and how the interplay between fault diagnosis algorithm design in
terms of missed detection rate and false alarm rate is included in the
fault tree analysis. Examples illustrate analysis of diagnosis system
requirement specification and algorithm tuning. As mentioned in Sec-
tion 2.1.2, the false alarm rate and the missed detection rate is the
link to parameter setting of fault diagnosis algorithms, and is thus the
foundation for both requirements on system safety on one hand and
for fault diagnosis algorithm tuning on the other hand.

2.5.3 Contributions

In summary, the contributions of Paper IV are as follows.

• The systematic way of introducing fault diagnosis in fault tree
analysis.

• The generic example illustrating how to transfer requirements
on system safety to performance requirements on the fault diag-
nosis algorithms, and the illustration of an optimization criterion
useful for optimizing the parameters in the algorithms.



Background Theory

CONSISTENCY BASED

DIAGNOSIS

T his chapter will briefly describe the concept of consistency based
diagnosis. The motivation is not to give a complete introduction,

but to introduce the formalism that will be used in the rest of the thesis.
A more thorough introduction to consistency based diagnosis can be
found in for example the collections (Hamscher et al., 1992; Dressler
and Struss, 1996).

CONSISTENCY BASED DIAGNOSIS

A system consists of a set of components C, which should be super-
vised by the diagnostic system. A component is something that can
be diagnosed, such as pipes, sensors, and actuators. The objective of
the diagnostic system is to detect and isolate the components that are
behaving abnormally.

Model based diagnosis compares a model of a system with avail-
able observations. Deviations between the model and the observa-
tions can then be used to draw conclusions of the fault state of the sys-
tem. A component can be in one or several behavioral modes where
each mode describes the behavior of the component using a model.
The objective in consistency based diagnosis is to derive a set of be-
havioral mode assignments to the components in the model, such that
the model, the observations, and the behavioral mode assignments are
consistent with each other.

23
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Model, Observation, and Behavioral Modes

A system is described by its system description, i.e. its model, here de-
noted SD. The system description consists of a set of logical rules, such
as differential equations, system variable inequalities, etc. Similarly,
the observations OBS consist of a set of logical rules, such as observed
values of variables. A component can be in one of several different
behavioral modes, and for each mode the behavior of the component
is described by a model. Typically, each component c ∈ C has an ab-
normal mode AB, which does not have a model, a normal mode ¬AB,
and one or several specific fault modes. The notation AB(c) will be
used when a component c ∈ C is in the abnormal mode.

It is sometimes preferable to only consider the AB and the ¬AB

mode where the AB mode does not have a model. Some of the reasons
for this are that this reduces the number of behavioral modes that has
to be considered, and that only the normal behavior of component has
to be modeled. Therefore, from now on the following assumption is
made.

ASSUMPTION 1: A component c ∈ C can only be in the AB and the ¬AB

mode, where the AB mode does not have a model.

The assumption is, in a different notation, stated in for example the
paper (Kleer et al., 1992). With this assumption, the notation in for
example GDE (Hamscher et al., 1992) can be employed. This notation
replaces the logical expressions with sets, where the sets are used to
represent both conflicts and diagnoses.

EXAMPLE 1: If two components A and B are in the abnormal mode,
this is written in logic form as AB(A) ∧ AB(B) and can be represented
by {A,B} in the set notation. ⋄

Diagnosis

A diagnosis is in general terms an explanation of the behavior of a
system. In consistency based diagnosis, the following definition of
diagnosis is often used.

DEFINITION 1 (Diagnosis (Kleer et al., 1992)): A diagnosis is a set of com-
ponents D ⊆ C such that

SD ∪ OBS ∪ {
∧

c∈D

AB(c) ∧
∧

c∈DC

¬AB(c)}

is consistent.

A diagnosis states a system mode consistent with the system de-
scription and the observations. Given the no fault mode assumption
in Assumption 1, a superset of a diagnosis is also a diagnosis and this
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leads to the notation minimal diagnoses. A diagnosis D is a minimal
diagnosis if there is no proper subset D ′ ⊂ D where D ′ is a diagnosis.
Under Assumption 1, the set of minimal diagnoses completely char-
acterizes all possible diagnoses, i.e. if the set of minimal diagnoses is
known, then the set of all diagnoses is known. As a result of this, only
minimal diagnoses are needed.

EXAMPLE 2: Consider a system with the sensors, denoted component
A and B, and the following system description SD.

¬AB(A) → yA = x

¬AB(B) → yB = x

The system description states that if the component A is not abnormal
then the sensor yA will equal the variable x, and if the component B

is not abnormal then the sensor yB will equal the variable x. Assume
that the following observations OBS have been done.

yA = 1 yB = 2

Consider now the proposed diagnosis D = {A}, for which

(¬AB(A) → yA = x) ∧ (¬AB(B) → yB = x)∧

(yA = 1) ∧ (yB = 2) ∧ AB(A) ∧ ¬AB(B)

is consistent, which shows that D is a diagnosis. Performing the same
consistency check for all different sets of components give the diag-
noses {A}, {B}, and {A,B}. Notice that the empty set ∅ is not a diagnosis.
In the set, the minimal diagnoses are {A} and {B}. ⋄

Conflict

In some diagnostic systems, for example automotive systems, the di-
agnoses are not obtained directly from the model and the observa-
tions. The diagnoses are in these systems instead computed from the
set of conflicts, where a conflict typically is generated when a diagnos-
tic test responds.

DEFINITION 2 (Conflict (Kleer et al., 1992)): A conflict is a set of compo-
nents π ⊆ C such that

SD ∪ OBS ∪ {
∧

c∈π

¬AB(c)}

is inconsistent.

A conflict states a possible mode assignment for some set of com-
ponents that is inconsistent with the observations and the model. A
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set of conflicts is denoted Π. From the conflicts follow the minimal
conflicts. A conflict π is a minimal conflict if there is no proper subset
π ′ ⊂ π where π ′ is a conflict. Similar to diagnoses, under Assump-
tion 1 the set of minimal conflicts completely characterizes all possible
conflicts.

EXAMPLE 3: Continuation of Example 2. Given the system descrip-
tion and the observations, it can be found that the conflict π = {A,B}

exists in the system. This means that the SD, the OBS, and the mode
assignments

¬AB(A) ∧ ¬AB(B)

are inconsistent. Meaning that component A and B can not both be in
the not abnormal mode. ⋄

The relation between conflicts and diagnostic tests will be further
discussed after the relation between conflicts and diagnoses has been
described.

Relation between Conflicts and Diagnoses

The diagnoses can be seen as the logical implication of the set of con-
flicts. A useful relation between diagnoses and conflicts is given in the
following theorem. It is stated in (Kleer, 1991) in a different notation.

THEOREM 1 (Conflicts to diagnoses): Let Π be the set of conflicts. The set
D ⊆ C is a diagnosis if and only if

D ∩ π 6= ∅

for all π ∈ Π.

A diagnosis can be seen as special case of a hitting set, which is
also denoted vertex cover.

DEFINITION 3 (Hitting set): Let F be a set of sets. The set S ⊆
⋃

F∈F F is a
hitting set for the set F if

S ∩ F 6= ∅

for all F ∈ F.

Similar to diagnoses and conflicts, a hitting set S for the set F is a
minimal hitting set if there is no proper subset S ′ ⊂ S where S ′ is a
hitting set for the set F.

From the definitions can be seen that the diagnoses are the hitting
sets for the set of conflicts, compare with Theorem 1. It is also the case
that the minimal diagnoses are the minimal hitting sets for the set of
minimal conflicts. Notice that Assumption 1 has to be true for these
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A B

yA yB

Test
yA − yB = 0

A B

y u

y − f(u) = 0
Test

FIGURE 2.4: The figure shows two different tests that supervise com-
ponents. The left test is described in Example 5 and the right is de-
scribed in Example 6.

relationships to hold. In (Kleer et al., 1992), a proof for these relations
is given. Due to these relations, algorithms for computing minimal
hitting sets, such as (Wotawa, 2001), can be used when computing the
minimal diagnoses.

EXAMPLE 4: Continuation of Example 3. Assume that the conflict π =

{A,B} has been detected by the diagnostic system. From this conflict
the minimal diagnoses {A} and {B} can be calculated. ⋄

DIAGNOSTIC TESTS AND CONFLICTS

The evaluation of diagnostic tests is a common approach used to de-
tect and isolate faults in a system. These tests might for example com-
pare the value of a sensor with some prediction of the value of the
sensor, and if these values fundamentally deviate from each other, it is
concluded that some component or components are behaving abnor-
mally in the system. This type of comparison between a sensor value
and a predicted value is analytical redundancy relation and have been
deeply studied within the fault detection and isolation (FDI) field, see
for example (Gertler, 1998). In consistency based diagnosis, the results
from the tests are stated as conflicts. The two examples below will il-
lustrate the relation between tests and conflicts.

EXAMPLE 5: Consider a system including the two sensor components
A and B, which measure the same temperature, yA = x and yB = x. If
the values of sensor A and sensor B fundamentally deviate, then both
these sensors can not be behaving normally. The conflict is AB(A) ∧

AB(B), which can be written as {A,B} in set notation. One such test
could be to calculate yA −yB and if this value fundamentally deviates
from zero then either A, B, or both are in the abnormal mode. The
example is schematically shown as the left test in Figure 2.4. ⋄
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EXAMPLE 6: Consider now a system including a component A con-
trolled by the actuator signal u and a sensor B with value y, see the
right test in Figure 2.4. A model exists for the component and the sen-
sor when they are in the non-abnormal modes

¬AB(A) → x = f(u)

¬AB(B) → y = x.

A test could be to check if y − f(u) is a small value, i.e. if the model
and the observations are consistent. If these are not consistent, then a
conflict π = {A,B} once again exists in the system. ⋄

The design of tests demands expert domain knowledge and a good
insight into diagnostic systems. See for example (Gertler, 1998; Chen
and Patton, 1999; Patton et al., 2000; Nyberg, 1999a; Frisk, 2001; Krys-
ander, 2006).

MINIMAL CARDINALITY DIAGNOSES

In some applications, the set of minimal diagnoses is focused on to
some smaller set of diagnoses, such as the most probable diagnoses
or the diagnoses with minimal cardinality (Tuhrim et al., 1991), where
the cardinality is the number of abnormal behaving components in a
diagnosis.

DEFINITION 4 (Minimal cardinality diagnoses): Let D be a set of diag-
noses, then the set of minimal cardinality diagnoses is the set

{D ∈ D : |D| = min
D̄∈D

|D̄|}.

The set of minimal cardinality diagnoses includes only those diag-
noses that include the fewest number of components. When consid-
ering repair, it is often natural to start the repair by checking the com-
ponents included in the diagnoses with the fewest number of compo-
nents, and then the other diagnoses are checked in increasing number
of components. If for example the two diagnoses {A} and {B,C} have
been detected. Then, considering only the number of components,
component A should first be checked and if this has been found to be
normal, the components B and C are checked.

For a given set of diagnoses, the number of minimal cardinality di-
agnoses is often, but not always, less than the number of minimal di-
agnoses. These diagnoses can therefore be used to reduce the growth
of the combinatorial explosion that arises when the diagnoses should
be computed in for example embedded distributed systems.
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ABSTRACT

In fault diagnosis, the set of minimal diagnoses is commonly
calculated. However, due to for example limited computation
resources, the search for the set of minimal diagnoses is in some
applications focused on to the smaller set of diagnoses with
minimal cardinality. The key contribution of the present paper
is an algorithm that calculates the diagnoses with minimal car-
dinality in a distributed system. The algorithm is constructed
such that the computationally intensive tasks are distributed
to the different units in the distributed system, and thereby re-
duces the need for a powerful central diagnostic unit.

1 A shorter version of this paper has been accepted for publication as (Biteus et al.,
2007).
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32 1 INTRODUCTION

1 INTRODUCTION

Fault diagnosis is becoming more common in many applications, and
one of the most widespread approaches for diagnosis is the consis-
tency based diagnosis approach developed within the AI field, see
(Kleer and Kurien, 2003) for an overview. In this approach, a diag-
nosis is a set of components whose abnormal behavior is a possible
explanation to why a system does not behave as intended, and a min-
imal diagnosis is a minimal set of such components. Sometimes, it is
computationally intractable to compute the complete set of minimal
diagnoses. Therefore, focusing is used to reduce the search to some
smaller set, for example the most probable diagnoses (Kleer, 1991) or
the diagnoses with minimal cardinality (Tuhrim et al., 1991).

The key contribution of the present paper is a method that calcu-
lates the diagnoses with minimal cardinality in a distributed system.
A distributed system consists of a set of agents, where an agent is a
more or less independent software entity (Weiss, 1999). The diagnoses
can, in distributed systems, be divided into two different levels, global
diagnoses that are diagnoses for the complete distributed system and
local diagnoses that are diagnoses for a single agent. The method de-
signed in this paper first calculates the set of minimal local diagnoses
in each agent. These sets of minimal local diagnoses are then used to
calculate the set of global diagnoses with minimal cardinality.

Our work has been inspired by diagnosis in distributed embedded
systems that are used in automotive vehicles (Gertler, 1998; Hristu-
Varsakelis and Levine, 2005; Struss and Price, 2003) and especially
that in a heavy duty vehicle from Scania. These systems typically con-
sist of precomputed diagnostic tests that are evaluated in the different
agents, which in the automotive industry correspond to electronic con-
trol units (ECUs) (SAE, 2003). The results from the diagnostic tests can
be used to calculate the sets of local diagnoses in the agents. These em-
bedded distributed systems typically consist of ECUs with both limited
processing power and limited RAM memory. Therefore, the method
designed in this paper calculates the global diagnoses with minimal
cardinality in a cooperation between the agents, such that the compu-
tational expensive tasks are distributed between the different agents.

1.1 Related Work

Model based diagnosis has been studied within several different fields,
for example: (i) fault detection and isolation (FDI) methods (Gertler,
1998); (ii) statistical methods (Basseville and Nikiforov, 1993); (iii) dis-
crete event systems where models can be described as some type of au-
tomata (Sampath et al., 1995); and (iv) AI methods (Kleer and Kurien,
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2003; Reiter, 1987). The method developed in this paper is mostly re-
lated to the AI field.

In all four fields, most research has been aimed at the centralized
diagnosis problem. These centralized methods can also be used for
distributed systems by letting a single diagnostic agent collect data
from all agents and then calculate the minimal global diagnoses. How-
ever, it is not always suitable to use a dedicated single diagnostic agent
due to for example limited computing resources in each agent, robust-
ness against agent disconnection, and scalability.

For distributed systems, algorithms exist, for example those de-
signed in (Provan, 2002) and (Kurien et al., 2002), which are aimed
at computing the minimal global diagnoses in a cooperation between
agents. The methods in these papers differ from the method designed
here in that they calculate all minimal global diagnoses. Algorithms
also exist where the agents update the sets of signals transmitted be-
tween the agents, such that of minimal local diagnoses in each agent
are consistent with the global set of signals, see for example (Roos
et al., 2003). These methods differ from the method designed here
in that they do not compute the set of global diagnoses, but only up-
date the local diagnoses. It is straightforward to compute the set of
minimal cardinality global diagnoses from the set of minimal global
diagnoses. However, if only the set of global diagnoses with minimal
cardinality is searched for, then the methods above would require the
unnecessary computation of many global diagnoses. This in contrast
to the method designed in this paper that directly calculates the global
diagnoses with minimal cardinality.

Focusing the diagnoses

In this paper, the set of diagnoses is focused on to the diagnoses with
minimal cardinality. An alternative is to focus set of diagnoses on to
the set of most probable diagnoses. In for example (Kleer, 1991), the set
of most probable diagnoses is computed using a centralized method.
To use a focusing to the set of most probable diagnoses instead of the
set of minimal cardinality diagnoses would give better results. How-
ever, it is computationally more difficult to compute this set and it is
in many applications difficult, or practically impossible, to get good a-
priori probabilities for the failure of the components. It can therefore
be difficult to use the focusing to the most probable diagnoses.

As an alternative to compute the complete set minimal diagnoses,
algorithms exist, such as the centralized algorithm presented in (Kleer
and Williams, 1989), which focus the set of diagnoses by removing the
less likely diagnoses while the diagnoses are computed. Typically is a
limit set on the maximum number of diagnoses that is computed, if the
number of diagnoses exceeds this number while the set of diagnoses is
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FIGURE 1: The distributed system in current Scania vehicles.

computed then the less likely of these diagnoses are removed such that
the limit is not exceeded. The removal of diagnoses can be based on
for example the cardinalities or the probabilities of the diagnoses. This
type of removal reduces the computational complexity, however, by
removing diagnoses, it is not guaranteed that the final set of diagnoses
includes all diagnoses with for example minimal cardinality or highest
probability. This is a difference compared to the method designed in
this paper that aims at computing a complete set of diagnoses.

2 DISTRIBUTED CONSISTENCY BASED

DIAGNOSIS

As an example of a distributed system, one configuration of the em-
bedded system used in the heavy duty vehicles from Scania is stud-
ied, see Figure 1. In this system, there can be up to about 30 ECUs and
roughly between 4 and 110 components are supervised by each ECU.
Since the system consists of multiple ECUs, it would be an advantage
if the different computation capacities in the different ECUs could be
utilized, i.e. a distributed system is preferred.

Inspired by the system described above, a framework useful for
distributed diagnosis is here designed. In this framework, a system
consists of a set of components C, which should be supervised by the
diagnostic systems implemented in a set of agents A. A component
is something that can be diagnosed, such as sensors, actuators, cables,
pipes, etc., and the components can be supervised by one or several
agents.

EXAMPLE 1: Figure 2 shows a typical layout of agents and compo-
nents. The system consists of two agents, a network, and four sensor
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components, i.e. S1 to S4. The sensors S1 and S2 are physically con-
nected to agent A1, while the sensors S3 and S4 are physically con-
nected to A2. A diagnostic test checks the consistent behavior of the
sensors connected to it with dashed lines. The diagnostic test in agent
A1 collects the value of sensor S3 over the network, and uses this to
check the consistency of the sensors S1, S2, and S3. ⋄

S1 S2 S3 S4

21

Network

Agent A Agent A

input output

Test
Diagn.Diagn.

Test

FIGURE 2: A typical layout of agents, network, components, and tests.

2.1 Diagnoses and Conflicts

To reduce the complexity, it is sometimes preferable to only consider
the abnormal and the not abnormal mode, where the abnormal mode
does not have a model. In this paper, only these two modes with-
out fault models are considered and the notation from GDE (Kleer and
Williams, 1987) will be used.

A diagnosis is a set of components D ⊆ C, such that the abnormal
behaviors of the components, the normal behaviors of the remaining
components, the system description, and the observations are consis-
tent (Kleer et al., 1992). A diagnosis D is a minimal diagnosis if there
is no proper subset D ′ ⊂ D where D ′ is a diagnosis. Further, given the
set of diagnoses D, the set of minimal cardinality diagnoses is the set
{D ∈ D : |D| = minD∈D|D|}.

A conflict is generated if a diagnostic test has responded. A con-
flict is a set of components π ⊆ C, such that the normal behaviors of
the components, the system description, and the observations are in-
consistent. A diagnosis is related to conflicts such that a set D ⊆ C

is a diagnosis if and only if it has a nonempty intersection with every
conflict in a set of conflicts.
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2.2 Relation Between Local and Global Diagnoses

A minimal local diagnosis is a minimal diagnosis that is determined
by the set of conflicts in one agent, while a minimal global diagnosis
is determined by all conflicts in all agents. Here, a set of minimal local
diagnoses in agent A is denoted by DA and a set of minimal global
diagnoses is denoted by D.

Due to the distribution of sets of local diagnoses, there is a need
to be able to merge these sets of local diagnoses into a set of minimal
global diagnoses. For this a merge set is used.

DEFINITION 1 (Merge set): A merge set for a collection of sets of sets C is
a set H ⊆

⋃

S∈C,s∈S s, such that for all S ∈ C, s ∈ S exists such that s ⊆ H.

Similarly to minimal diagnoses, a minimal merge set H is minimal
if there is no proper subset H ′ ⊂ H where H ′ is a merge set.

EXAMPLE 2: Consider the collection of sets

C =
{

{{A,B}, {C}} , {{B}, {D}, {A,C}}
}

.

A minimal merge set for this collection is a subset of the set {A,B,C,D}.
One such set is H = {A,B}, and the set

{{A,B}, {C,B}, {C,D}, {A,C}}

is the complete set of minimal merge sets. ⋄

It is straightforward to adapt algorithms used for computing min-
imal hitting sets, e.g. (Reiter, 1987), such that they can be used to com-
pute minimal merge sets. Later, it will be seen that a merge set op-
eration is useful when calculating the global diagnoses with minimal
cardinality. As a partial result, the merge can be used to calculate the
minimal global diagnoses from sets of minimal local diagnoses, i.e.
D = MinimalMergeSets({DA}A∈A).

2.3 Global Diagnoses Represented as Module Diagnoses

If a system can be partitioned into two or more sub-systems that do
not share components with each other, then there will be of no practi-
cal advantage to merge the minimal diagnoses for all such sub-system
even though this would give the minimal global diagnoses. From a
technician’s point of view, the disjoint sets of minimal diagnoses will
in themselves be more easily understandable, since they relate to dif-
ferent independent sub-systems.

This idea can be further exploited by partitioning the set of agents
into sub-systems that are independent considering the minimal local
diagnoses, even though they might share components that are not in-
cluded in the minimal diagnoses. Each such partition of agents is here
denoted a module.
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DEFINITION 2 (Module): Let DA be a set of local diagnoses in agent A. A
set Ā ⊆ A is a module if the intersection (∪A∈Ā∪D∈DA D)∩(∪A6∈Ā∪D∈DA

D) = ∅.

The modules are defined with respect to some sets of local diag-
noses. Therefore, the modules will be different when different sets
of local diagnoses are considered, such as the set of minimal local di-
agnoses, and the set of local diagnoses with minimal cardinality. A
minimal module diagnosis is a minimal diagnosis determined by all
conflicts in all agents in one module.

EXAMPLE 3: Figure 3 shows an example of a system that includes five
agents. A component is connected with a line to an agent if it is in-
cluded in the minimal local diagnoses in the agent. It can be seen that
the agents can be partitioned into two modules when the sets of mini-
mal local diagnoses are considered. ⋄

A B C D E F G

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Module 1 Module 2

C
om

po
ne

nt
s

FIGURE 3: The agents have calculated sets of minimal local diagnoses
that includes the components connected with lines. The agents have
been partitioned into two modules.

The sets of minimal module diagnoses can be computed either
from the minimal conflicts, as indicated by the definition, or with the
following proposition.

PROPOSITION 1: Let Ā be a module, and DA be a set of minimal local di-
agnoses for agent A determined by the set of conflicts ΠA, then the set of

minimal module diagnoses DĀ is the set

DĀ = MinimalMergeSets({DA}A∈Ā).

The minimal global diagnoses can be calculated from all minimal

module diagnoses, D = MinimalMergeSets({DĀ}Ā), which follows
from Proposition 1. The following example is used to illustrate the
relation between minimal local diagnoses, minimal module diagnoses,
and minimal global diagnoses.

EXAMPLE 4: If a system consists of three agents that have calculated
the sets of minimal local diagnoses DA1 = {{A,B}, {C}}, DA2 = {{B, E},
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{C}}, and DA3 = {{F}}, then the set of agents is partitioned, consid-
ering the minimal local diagnoses, into the modules Ā1 = {A1, A2}

and Ā2 = {A3}. This particular partition is a consequence of the fact
that component F is included in a set in DA3 but neither in a set in
DA1 nor in a set in DA2 . The sets of minimal module diagnoses are

DĀ1 = {{C}, {A,B, E}} and DĀ2 = {{F}}.
A merge of the minimal module diagnoses results in the set

MinimalMergeSets({DĀ1 ,DĀ2 }) = {{C, F}, {A,B, E, F}}

and this is the set of minimal global diagnoses. ⋄

2.4 Minimal Cardinality Local, Global, and Module Diagnoses

Since the problem of computing minimal diagnoses is NP-complete
(Friedrich et al., 1990), it is sometimes computationally intractable to
calculate the complete set of minimal diagnoses. To reduce the compu-
tational cost, the search can be focused on the diagnoses with minimal
cardinality, as described in for example (Tuhrim et al., 1991).

The set of minimal cardinality local diagnoses for agent A is de-
noted by DA

mc, the set of minimal cardinality global diagnoses is de-
noted by Dmc, and the set of minimal cardinality module diagnoses (MCMD)

is denoted by DĀ
mc.

A merge of all minimal local diagnoses does form the set of min-
imal global diagnoses. If it would be possible to merge the minimal
cardinality local diagnoses to gain the minimal cardinality global di-
agnoses, then a direct approach to calculate the minimal cardinality
global diagnoses would be available. Unfortunately, a merge of the
minimal cardinality local diagnoses does not result in the minimal car-
dinality global diagnoses, i.e. Dmc 6= MinimalMergeSets({DA

mc}A∈A).
They are in general not even a subset of the merged diagnoses. The in-
equality is exemplified in the following example.

EXAMPLE 5: Consider a system consisting of two agents with the sets
of minimal local diagnoses DA1 = {{C}, {A,B}} and DA1 = {{E}, {A,B}}.
The sets of minimal cardinality local diagnoses are DA1

mc = {{C}} and
DA2

mc = {{E}}. A merge of these sets of diagnoses give

MinimalMergeSets({DA1
mc, DA2

mc}) = {{C, E}}}

while the set of minimal cardinality global diagnoses is

Dmc = {{A,B}, {C, E}}.

The merge of the minimal cardinality local diagnoses did not result in
the set of minimal cardinality global diagnoses. ⋄
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A merge of the sets of MCMD does however give the minimal cardinal-
ity global diagnoses.

PROPOSITION 2: Let DĀ1
mc, . . ., DĀn

mc be the sets of MCMD, then the set of
minimal cardinality global diagnoses is

Dmc = MinimalMergeSets({DĀi
mc}ni=1).

Proposition 2 shows that the definition of a module is sound. How-
ever, the actual merge does not have to be performed according to the
argumentation in Section 2.3.

3 COMPUTING THE MINIMAL CARDINALITY

MODULE DIAGNOSES

From the discussions above, it can be concluded that there is an advan-
tage in calculating the set of MCMD compared to the minimal cardinal-
ity global diagnoses. If the minimal module diagnoses were available,
then the MCMD could directly be identified. On the other hand, if they
were not available, then it would not be an efficient approach to first
calculate the minimal module diagnoses and then identify the set of
MCMD, since it is often more, or even much more, expensive to calcu-
late the minimal module diagnoses than the MCMD. In this paper, the
case is studied where neither the minimal module diagnoses nor the
minimal global diagnoses in themselves are wanted.

In a distributed environment, the minimal module diagnoses could
be calculated by first finding a partition of the agents into modules.
After this, the minimal local diagnoses in the agents in each module is
merged and this results in the set of minimal module diagnoses.

The set of MCMD can be calculated using a similar method. First,
find a lower limit on the cardinality of each element in the set of MCMD

and then merge those of the minimal local diagnoses that are smaller
or equal to the lower limit, hoping that the elements in the set of MCMD

actually have cardinality equal to the lower limit. If no set of MCMD

is found, then the lower limit is increased and the merge is started
again from the first agent. After some iterations, the lower limit is
the cardinality of the elements in the MCMD, and the set of MCMD has
then been found. The following example will be used to exemplify the
method outlined above.

EXAMPLE 6: Consider a module with three agents including the fol-
lowing sets of minimal local diagnoses

DA1 = {{A,B}, {C}} DA2 = {{A}, {B,C,D}} DA3 = {{D}}.
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If all the local diagnoses with cardinality one were merged and this
resulted in a subset of global diagnoses with cardinality one, then this
subset would be the set of MCMD. Therefore, first merge the local di-
agnoses with cardinality one. Agent A1 includes the local diagnosis
{C} that is transmitted to agent A2 where it is merged with the local
diagnosis with cardinality one, resulting in the set {A,C}. From this it
is concluded that the cardinality of each element in the set of MCMD

must be two or greater, the search is therefore restarted but with the
new lower limit set to two.

Both diagnoses in A1 are transmitted to A2 where they are merged
with the diagnosis {A} resulting in the set {{A,B}, {A,C}}. This set is
transmitted to agent A3 where it is merged with {{D}} resulting in the
set {{A,B,D}, {A,C,D}}. Since the cardinality of the diagnoses is three,
once again, the lower limit has to be raised to three and the search has
to be started all over again from agent A1. The last iteration results in
the set {{A,B,D}, {A,C,D}, {B,C,D}} and this is the set of MCMD. ⋄

Even though this simple algorithm does calculate the set of MCMD,
the computational cost can be reduced by partitioning the agents into
smaller modules, sorting the agents into an appropriate order, and to
keep track of which local diagnoses that have been merged in previous
iterations. The algorithm designed in this paper uses these improve-
ments.

3.1 Algorithm for Calculating the Set of MCMD

Algorithm 1 can be used to calculate the set of MCMD and consists of
the same three main parts as the simple approach described in the be-
ginning of Section 3. Firstly, algorithm CalculateModules is used
to partition the set of agents into modules. Algorithm Calculate-
Order is then used to sort the agents in each module into a merge
order R, where (·) is an ordered set. Finally, the minimal local diag-
noses are, with algorithm UpdateAgent, iteratively merged into sets
of MCMD. The correctness of the algorithms is proven in (Biteus, 2005).

Algorithm 1 is designed such that the evaluations of the compu-
tationally and memory expensive UpdateAgent can be distributed
to the corresponding agents. The not so computationally and memory
expensive algorithms CalculateModules and CalculateOrder are
evaluated in some coordinating agent.

3.2 Outline of the Algorithm

Consider Algorithm 1 that ensures the sets of MCMD. First, the mod-
ules are calculated and a merge order R is calculated for each module.
The algorithm starts with a lower limit L on the cardinality of each
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Algorithm 1 Minimal cardinality module diagnoses

Input: All minimal local diagnoses DA for all agents A.
Output: All sets of MCMD, where the set of MCMD in module Ā is the

DĀ
mc.

1: A := CalculateModules(A) [Set of set of agents.]
2: for each Ā ∈ A do
3: R := CalculateOrder(Ā) [Merge order R = (R1, . . . , Rn).]
4: L := a lower bound on the cardinality of each element in the set

of MCMD for the module R.
5: k := 0, R0 := ∅, N := ∅
6: repeat
7: k := k + 1

8: [Lnew,N] := UpdateAgent(Rk, Rk−1,L,N)

9: if Lnew > L then k := 0, L := Lnew [Start again from R1.]
10: until k = n [Rn is the last in R.]
11: DĀ

mc := MinimalDiagnoses(N) [The set of MCMD in Ā.]
12: end for

element in the set of MCMD. A first approximation of L is that each
element in the set of MCMD must be at least as large as the largest
minimal cardinality local diagnosis, considering all agents in R. After
the limit has been calculated, an evaluation of UpdateAgent is per-
formed in each agent with the objective to find the set of MCMD from
the local diagnoses with cardinality less than or equal L.

Algorithm UpdateAgent calculates those diagnoses with cardi-
nality less than or equal to L that would be formed if the minimal
local diagnoses, in agents R1 to Rk, which have a cardinality less than
or equal to L were merged. The result is the output N that is an input
to UpdateAgent for the next agent Rk+1. In an implementation, the
result N should be stored locally in the agent and when needed trans-
mitted to the next agent Rk+1. If any evaluation of UpdateAgent
results in the output N = ∅, i.e. no diagnoses could be found with car-
dinality less than or equal to L, then a new larger Lnew is calculated
and a new search begins from the first agent R1. This new L is chosen
such that N 6= ∅ in the next evaluation of UpdateAgent for the agent
that calculated N = ∅. If the last agent Rn calculates a non-empty set
N, then this set of diagnoses is the set of MCMD for this module and
the algorithm terminates.

3.3 Calculating the Modules – CalculateModules

The smallest possible modules are those that are found when only
the minimal cardinality global diagnoses themselves are considered.
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However, the computational cost to find the set of smallest modules
has to be weighed against the reduction in computational cost when
the sets of MCMD later are computed. Here, a quite simple approach
with low cost is used.

The input to Algorithm CalculateModules is the set of agents A,
for which the set of components XA =

⋃

π∈ΠA π has been computed,
where ΠA is the set of conflicts in agent A. The set XA = ∪D∈DAD,
since the set of minimal diagnoses are exactly characterized by the set
of minimal conflicts, and Definition 2 can therefore be directly trans-
lated into an algorithm that partitions the set A into modules.

3.4 Calculating the Merge Order – CalculateOrder

By changing the ordering of the agents, the computational cost of Al-
gorithm 1 might change dramatically. The cost to calculate the order-
ing must however once again be weighted against the reduction of
computational cost in the rest of Algorithm 1.

Simulation experiments have shown that the computational cost
for the rest of Algorithm 1 varies substantially for different orderings
of R, and unfortunately, it varies also substantially for different local
diagnoses for the same type of system. Simulations have shown that
an ordering of the agents such that the agent with the smallest number
of minimal cardinality local diagnosis is first, and then the rest of the
agents follow in ascending number, results in a low average value of
the computational cost. The input to CalculateOrder is a module
found with CalculateModules. The output is an ordered set R ⊆ A,
where each Ri ∈ R points at some agent.

3.5 Calculation the Set of MCMD – UpdateAgent

Function UpdateAgent is shown in Algorithm 2. When the main al-
gorithm evaluates UpdateAgent with input (Rk, Rk−1,L) this func-
tion call is sent to agent Rk. The agent that receives this function call
should calculate the diagnoses with cardinality less than or equal to
L in the set resulting from the merge of the local diagnoses with car-
dinality less than or equal to L in agents R1 to Rk. Since agent Rk−1

has already calculated a set of such diagnoses but for agents R1 to
Rk−1, the desired diagnoses can be calculated from the result in Rk−1

and the local diagnoses with cardinality less than or equal L in Rk.
Variable l is the number of times that the agent has been called with
UpdateAgent(·). The result of the algorithm (variable N) is saved for
use by the next agent. If Rk is the last agent and N 6= ∅ then N is the
set of MCMD.

EXAMPLE 7: Consider a module where two agents have calculated the
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Algorithm 2 UpdateAgent

Input: Rk, Rk−1, L, and N. Require DRk in agent Rk. If l = 1, i.e. the
first evaluation of the algorithm in Rk, then Dprevious := ∅, and
Dstore := ∅.

Output: Lower limit L and N, which is the subset of merged diag-
noses for agents {R1, . . . , Rk} with cardinality 6 L.

1: DL := {D ∈ D : |D| 6 L}

2: D := D\DL

3: if k = 1 then [The first agent in R.]
4: N := DL [New diagnoses from Rk.]
5: else if k > 1 then
6: Tl := N in Rk−1 [New diagnoses from Rk−1.]

7: M1 := MinimalMergeSets({DL,
⋃l

j=1 Tj})

8: M2 := MinimalMergeSets({Dprevious, Tl})

9: Dnew := M1 ∪ M2 ∪ Dstore

10: N := {D ∈ Dnew : |D| 6 L} [New diagnoses from Rk.]
11: Dstore := Dnew\N

12: if N = ∅ and N has previously been non-empty then
13: L := min(minD∈Dstore

|D|,minD∈D |D|) [New lower limit.]
14: end if
15: Dprevious := Dprevious ∪ DL

16: end if

sets of minimal local diagnoses

DA1 = {{C}, {B,D}, {B, E, F}} DA2 = {{B}, {C, E}, {D,E, F}},

which should be used to calculate the set of MCMD {{B,C}, {B,D},
{C, E}}. The first value of the lower limit L is 1, see Section 3.2.

A1 finds the local diagnoses with cardinality less than or equal to
L, i.e. diagnosis {C}, which is transmitted to A2. Agent A2 merges the
received diagnosis with its own local diagnoses with cardinality less
than or equal to 1, resulting in the set M1 = {{B,C}} and this is one of
the MCMD.

More MCMD might exist since neither the local diagnosis {B,D} nor
{C, E} have been considered to be part of a minimal cardinality mod-
ule diagnosis. Agent A1 therefore transmits the diagnosis {B,D} to A2.
The second agent now merges its own local diagnoses that have not
previously been considered and have a cardinality less than or equal
2 with all diagnoses received from the first agent, resulting in the set
M1 = {{C, E}}. It also merges the newly received diagnosis with its
own local diagnoses that have been considered in the previous itera-
tion, resulting in the diagnoses M2 = {{B,D}}. To conclude, the set of
MCMD is {{B,C}, {C, E}, {B,D}}. ⋄
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4 EVALUATION OF THE ALGORITHM

To increase the understandability and to point out the advantages of
Algorithm 1, it will here be compared to a centralized algorithm that is
based on the often used method for computing the minimal diagnoses
given in (Kleer and Williams, 1987).

4.1 The Test Suite Used in the Evaluation

To evaluate the designed algorithm, an application including a distri-
buted system consisting of multiple agents is needed. Unfortunately,
only two of the agents in the Scania application described in Section 2
are available and this is not sufficiently many agents since the gains of
the designed algorithm is primarily seen for larger systems. Therefore,
the algorithm will be evaluated for a suite of test cases whose construc-
tion is inspired by diagnostic systems used in automotive applications
and notably the diagnostic system described in Section 2. Each test
case will be exactly defined by a set of parameters that describes the
characteristics of the diagnostic system. Since each test case is defined
by a set of parameters, it is possible to evaluate how the complexity
and the number and size of the minimal condensed diagnoses scale
when the different parameters are changed.

Each test case consists of n agents with nt diagnostic tests that have
responded in each agent, thereby creating nt conflicts in each agent.
The tests that have not been evaluated or have not responded is not in-
cluded in the definition of the test case. Each test monitors nc/t com-
ponents2 with an overlap of noverlap components between the tests.
The agents are partitioned into sets of na/m agents3 such that there is a
connection of ncon components between two sequential agents within
each set and none between the sets. Each set of connected agents will
by this construction be a module. With these parameters, each test case
is exactly defined. In the studied automotive application described in
the beginning of Section 2, ncon is commonly low compared to the
number of supervised components, while noverlap might vary from 0
to nc/t − 1.

Table 1 shows the isolation structure for the test case where nt = 3,
nc/t = 3, noverlap = 1, ncon = 1, and na/m > 1. This test case has
approximately one and a half faulty components per agent, which can
be compared to the automotive application that typically could have
between zero and two faulty components in each agent.

2 c/t = components per test.
3 a/m = agents per module.
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TABLE 1: Isolation structure for a test case that includes 3 diagnostic
tests per agent.

Component
Agent Test c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 . . .

Agent A1 T11 × × × overlap
︸ ︷︷ ︸

T12 × × ×

T13

︷ ︸︸ ︷

overlap × × ×
Agent A2 T21 × × ×

...
...

︷ ︸︸ ︷

connection

...
...

...

4.2 The Centralized Algorithm

The centralized algorithm is based on the method given in (Kleer and
Williams, 1987). In the method, the set of diagnoses is initialized to the
empty diagnosis. If a diagnosis has an empty intersection with a con-
flict, then the diagnosis is extended to several new diagnoses where
each new diagnosis includes the old diagnosis and one component
from the conflict. The non-minimal extended diagnoses are then re-
moved. The diagnoses are extended until all conflicts have been con-
sidered and the result is the set of minimal diagnoses.

In the centralized algorithm, all conflicts from all agents are trans-
mitted to a central agent. The central agent then partitions the con-
flicts into modules using the same method as used by Algorithm 1.
The method in (Kleer and Williams, 1987) is then used to compute the
sets of MCMD for each module. However, since only the set of MCMD is
wanted, the method is modified such that, after each extension, the di-
agnoses with a cardinality higher than the cardinality of the MCMD are
removed. Simulations indicate that it is most efficient to only remove
the non-minimal diagnoses after the last conflict has been considered,
therefore this approach is chosen.

4.3 The Number of Needed Operations and Transmissions

To compare the two algorithms, the number of non-trivial transmis-
sions and operations are computed. For each diagnosis or conflict
that is transmitted on the network, the number of transmissions is as-
sumed to be equal to the cardinality of the diagnosis or conflict. The
operations that are considered non-trivial are described below.

When partitioning the agents into modules, one agent is first as-
signed to one module, and to check if the agent shares components
with any of the other agents requires one operation per agent not as-
signed to any module. For the centralized algorithm, one operation
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is needed to check if each diagnosis has an empty intersection with a
conflict, and one operation is needed to extend the diagnosis. For Al-
gorithm 1, the computation of the local diagnoses, and row 7 and 8 in
Algorithm 2 contribute with non-trivial operations. The minimal local
diagnoses are computed with the unmodified method in (Kleer and
Williams, 1987) and the computation contributes with the operations
described above for the centralized algorithm, plus one operation for
each extended diagnosis that is checked for non-minimality consider-
ing one non-extended diagnosis. Row 7 and 8 have been implemented
as a straightforward cross product of the input sets, and therefore con-

tribute with |DL| · |
⋃l

j=1 Tj| plus |Dprevious| · |Tl| operations.

4.4 Comparing the Algorithms

The complexity of the algorithms can for some test cases be stated ana-
lytically. One such test case is the one with parameter values ncon = 0

and noverlap = 0. For such a test case, each agent is a module and the
centralized algorithm requires a maximum of

n(n − 1)

2
+ 2

nnt

c/t
− 1

nc/t − 1
· n

operations in one agent, while Algorithm 1 only requires

n(n − 1)

2
+ 2

nnt

c/t
− 1

nc/t − 1

operations. The first part is from the module partitioning and the sec-
ond from the computation of the sets of MCMD.

For this test suite, Algorithm 1 requires fewer or the same num-
ber of operations as the centralized algorithm. For other test cases, if
the number of operations that arise from the merge in Algorithm 2,
i.e. row 7 and 8, is not sufficiently distributed between the different
agents, then Algorithm 1 might be less efficient than the centralized
algorithm.

Evaluation for a test suite of systems

To compare the algorithms for other test cases, the number of oper-
ations has been counted during execution. Consider the test suite
where nt = 3, nc/t = 3, noverlap = 1, na/m = 4, ncon = 1, and
the number of agents n is varied between one and twelve. The sets of
MCMD have been calculated using the two algorithms and the number
of needed operations and transmissions have been counted. Figure 4
shows the maximum number of operations in any agent and the sum
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FIGURE 4: Max number of operations in any agent.

of all operations in all agents for Algorithm 1. Due to the number of
agents per module na/m = 4, the set of agents is partitioned into mod-
ules such that agent one to four is included in the first module, five to
eight in the second, etc. It can be seen that the maximum load increases
exponentially when the size of the systems are increased from one to
four agents since the first module includes up to na/m = 4 agents. For
systems with five or more agents, the maximum load for Algorithm 1
reaches a constant value due to the distribution of processor load onto
the different agents. The maximum load for the centralized algorithm
increases linearly with the number of modules since all sets of min-
imal cardinality module diagnoses are computed in the same agent.
The linearity can for example be seen by considering the number of
operations for four, eight, and twelve agents.

If the module partitioning had not been used, then the number
of operations will continue to grow exponentially for systems with
5 or more agents. The module partitioning reduces the complexity
from exponentially to linearly increasing. The difference in complexity
growth gives a reduction of 40 % in the maximum load on any agent
when the system consists of four agents, and it increases to 70 % when
the system consists of eight agents. Evaluations have shown that if the
centralized algorithm computes the minimal cardinality global diag-
noses instead of the minimal cardinality module diagnoses, then the
reduction in computational load would be much higher, for example
is a reduction of over 99.9 % achieved for the system with eight agents.
The sum of operations shows that there is no major overhead for Al-
gorithm 1 compared to the centralized algorithm.
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FIGURE 5: Number of transmissions on the network.

The number of operations needed for computing the module parti-
tioning increases linearly with the number of agents in the system and
is included in the number of operations. However, evaluations have
shown that for this tests suite these operations do not start to affect the
maximum number of operations in Algorithm 1 until the 109:th agent.

For the test suite, the number of transmissions increases linearly
with the number of modules for Algorithm 1 and with the number of
agents for the centralized algorithm, see Figure 5.

Conclusions from the evaluation

The important conclusions from this test suite are that, Algorithm 1
is more efficient than the centralized algorithm for the test cases with
three agents or more and that both the gain in operations and the cost
in transmissions for Algorithm 1 increase linearly with the number of
modules.

Is Algorithm 1 always more efficient than the centralized algorithm
for systems with three agents or more? To answer this question, a test
suite is constructed inspired by the automotive application. The vari-
ables nt and nc/t are varied between one and three, ncon is varied
between 0 and nc/t − 1, and n is varied between one and twelve. Sim-
ilar to the test suite studied above, the designed algorithm is also for
this test suite on average more efficient than the centralized algorithm
for systems with three agents or more.
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4.5 Efficiency of The Algorithm

The reduction of maximum processor load on any agent when using
Algorithm 1 comes from the fact that each agent computes its minimal
local diagnoses, which requires fewer operations than the computa-
tion of the minimal cardinality global diagnoses using the centralized
algorithm, and that the evaluations of Algorithm 2 are distributed to
the different agents. The reason why the number of operations needed
by Algorithm 2 does not increase above those needed for the central-
ized algorithm is that, on average, the conflicts in one agent have more
components in common between themselves, compared to how many
they have in common with the conflicts in the other agents. When this
is the case, it is more likely that a local diagnosis with low cardinality
is part of one of the MCMD and it is therefore more likely that some of
the first iterations in Algorithm 1 results in the MCMD.

An important conclusion from the evaluation is that the partition-
ing of the system into modules, based on the diagnostic test results,
reduces the computational load from exponentially to linearly increas-
ing in the number of modules, independent of the fault isolation algo-
rithm used within each module. The partitioning can be used for all
systems where the set of agents can be partitioned into modules with
respect to the test results. This is for example the case for a studied au-
tomotive vehicle from Scania. In many cases, the distributed system
in the Scania vehicle can be partitioned into several modules since the
diagnostic tests in one agent mostly supervise components only su-
pervised by that agent. For example, the engine management system
(EMS) supervises mostly engine components. However, since tests ex-
ist that supervise components also supervised by other tests in other
agents, it is not possible to partition the system into modules before
the diagnostic test results are known.

5 REDUCING THE SIZE OF THE MODULES

In Section 3.3, the set of agents is partitioned into modules such that
each minimal conflict in one module has an empty intersection with
all other minimal conflicts in the other modules. The same partition-
ing would be achieved if the set of agents is partitioned with respect
of set of minimal diagnoses. However, it is possible to improve the
partitioning of the set of agents such that the size of the modules are
further reduced. By reducing the size of the modules the complexity
when computing the minimal cardinality module diagnoses can be re-
duced. Consider for example a system with two agents that have the
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following sets of minimal local diagnoses.

DA1 = {{A}, {C,D, E}} DA2 = {{B}, {C,D, E}}.

When partitioning the set of agents A = {A1, A2} into modules with
respect to the minimal diagnoses then both agents will be included in
one single module. To compute the set of minimal cardinality module
diagnoses given this partitioning, the local diagnosis {A} is transmit-
ted to the second agent where the set of minimal cardinality module

diagnoses D
{A1,A2}
mc = {{A,B}} is computed. However, this partition-

ing can be improved by noticing that the local diagnosis {C,D, E} has a
cardinality larger than the cardinality of a minimal cardinality global
diagnosis and it can therefore not be part of a minimal cardinality
module diagnosis. By ignoring this diagnosis, the set of agents can
be partitioned into the two modules {A1} and {A2}. The set of minimal
cardinality module diagnoses are now directly available from the local
diagnoses

D{A1}
mc = {{A}} D{A2}

mc = {{B}}.

As should be, the minimal cardinality module diagnoses are indepen-
dent of each other. To conclude, the complexity when computing the
sets of minimal cardinality module diagnoses can be reduced by im-
proving the partitioning of the set of agents.

In this section, an algorithm that computes such an improved mod-
ule partitioning will be designed. In Algorithm 1, the improved algo-
rithm can be used instead of function CalculateModules(·).

5.1 Algorithm for the Module Partitioning

The main idea in Algorithm 3 is to find an upper limit U of the cardi-
nality of the MCMDsand use this to reduce the size of the modules. All
minimal local diagnoses with a cardinality higher than this limit can
not be part of a MCMD. Such as the diagnosis {C,D, E} in the example
above.

An upper limit for a set of agents Ā is

UpperLimit(Ā) :=
∑

A∈Ā

minD∈DA |D|

and this is the sum of the minimal cardinality local diagnoses. In the
example above, this upper limit is 2 = |{A}| + |{B}| for the set of all
agents. An upper limit that sometimes is even lower can be found by
making a pre-merge of all minimal cardinality local diagnoses in the
set of agents,

D̄ := MinimalMergeSets({Dmc
A1

, Dmc
A2

, . . .}).



PAPER I. MINIMAL CARDINALITY GLOBAL DIAGNOSES 51

Algorithm 3 CalculateModules version 2.

Input: Set of agents Ā ⊆ A. Require, for each agent, the set of minimal
local diagnoses DA stored in the agent.

Output: A collection of sets of agents A where each set of agents Ā ∈
A, Ā ⊆ Ā is a module.

1: U := UpperLimit(Ā)

2: for each Ai ∈ Ā do
3: DAi := {D ∈ DAi : |D| 6 U}

4: CAi := ∪D∈D
Ai D [All components in the diagnoses]

5: end for
6: X := {Ā : (Ai ∈ Ā) ∧ (Aj ∈ Ā\Ā) ∧ (CAi ∩ CAj = ∅)} [Partition.]
7: if |X| > 1 then [More than 1 module.]
8: A := ∅
9: for each Ā ∈ X do

10: A := A ∪ CalculateModules (Ā) [Recursive.]
11: end for
12: else
13: A := X

14: end if

The upper limit is then chosen as the size of a minimal cardinality
diagnosis in the set D̄. To reduce the complexity it is possible to only
consider the minimal cardinality diagnoses after each merge, which
would give

D̄ := (. . .MMS({MMS({Dmc
A1

, Dmc
A2

})mc, Dmc
A3

})mc . . .)

where MMS is the function MinimalMergeSets. The upper limit is
once again chosen as the size of a minimal cardinality diagnosis in the
set D̄. This limit requires less computations than the complete pre-
merge but might have a higher value.

For each module, Algorithm 3 is called recursively so that each
module is, if it is possible, partitioned into even smaller modules, see
row 10.

EXAMPLE 8: Consider a system with five agents including the minimal
local diagnoses

DA1 = {{A}} DA2 = {{B,C}, {D}}

DA3 = {{B}, {C,D, E, F}} DA4 = {{C}, {D}}

DA5 = {{F}}

Using Algorithm 3 with the second type of upper limit give the pre-
merge D̄ = {{A,D,B, F}} and the upper limit is therefore U = 4. A
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A1 A2 A3 A4 A5

A B C D E F
(a) Including all minimal local diagnoses.

A2 A3 A4 A5

B C D F
(b) Some local diagnoses
have been removed.

FIGURE 6: The bipartite graph represent a system with five agents and
six components. An agent is connected to a component if the compo-
nent is included in the agents minimal local diagnoses.

bipartite graph, illustrating the agents and the components included
in the minimal local diagnoses, is shown in Figure 6(a). Evaluation of
Algorithm 3 give the partitioning A = {{A1}, {A2, A3, A4, A5, }}

For the second module, Ā = {A2, A3, A4, A5, }, the upper limit is
U = 3 and the local diagnosis {C,D, E, F} can therefore be removed,
since it can not be included in an MCMD. The result is illustrated
with the bipartite graph shown in Figure 6(b). The evaluation of Al-
gorithm 3 with Ā = {A2, A3, A4, A5, } as input gives the partitioning
A = {{A2, A3, A4}, {A5, }}. The final result is that the set of agents is
partitioned into the three modules {A1}, {A2, A3, A4}, and {A5}. ⋄

5.2 Evaluation of the Improved Module Partitioning

Algorithm 3 can in some cases partition the set of agents into smaller
modules compared to the function CalculateModules(·) used in
Algorithm 1. However, evaluations have shown that the mean gain
in using the improved algorithm is often lower than the mean cost
in evaluating the algorithm. This evaluation has been performed for
a test suite that is based on a randomized model, which resembles
the distributed systems used in Scania automotive vehicles. In (Biteus
et al., 2005), the improved algorithm is used to partition set of agents
and even though a small gain is shown, further evaluations has shown
that the gain is mostly insignificant or zero.

However, as exemplified in the beginning of this section, systems
exist for which the improved partitioning does improve the efficiency
when using Algorithm 1. If the minimal cardinality module diagnoses
should be computed for such a system then the improved algorithm
could be used to reduce the complexity when evaluating Algorithm 1.
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6 CONCLUSIONS

An algorithm has been designed that uses the sets of minimal local di-
agnoses in the agents to calculate the module diagnoses with minimal
cardinality. The sets of module diagnoses with minimal cardinality are
independent of each other and these therefore exactly represent the set
of global diagnoses with minimal cardinality. The partitioning of the
agents into modules is based on the diagnostic test results and has to
be performed after the results are available. The main advantage of
the module diagnoses, compared to the global diagnoses, is that the
maximum load on any agent is reduced from exponentially to linearly
increasing, considering the number of modules in the system. For a di-
agnostic system inspired by an automotive application that consists of
eight agents, the module partitioning gave a reduction of over 99.9 %
in maximum processor load on any agent. After the module partition-
ing, the algorithm computes the set of minimal cardinality module di-
agnoses in each module by distributing the computationally intensive
tasks to the different agents in the module. The distribution further
reduces the maximal processor load on any agent from linearly in-
creasing to become constant for systems larger than a certain number
of agents. For the system inspired by the automotive application, this
constant value is for example reached for systems with four or more
agents. The algorithm is designed such that overhead due to the dis-
tribution of computations is low and, for example, a reduction of 40 %
is achieved within a module consisting of four agents.
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ABSTRACT

In fault detection and isolation, diagnostic test results are com-
monly used to compute a set of diagnoses, where each diagno-
sis points at a set of components that might behave abnormally.
In distributed systems consisting of multiple control units, it
is an advantage for both repair and for fault tolerant control
to have access to the global diagnoses in each unit since these
diagnoses represent all test results in all units. However, the
global diagnoses include components from the complete sys-
tem, and the global diagnoses therefore often include many
components that are not affecting the unit and are thereby su-
perfluous. Motivated by this observation, a new novel type
of diagnosis is designed, the condensed diagnosis. Each unit
has a unique set of condensed diagnoses that only includes the
affecting components while still being globally correct. For a
studied heavy duty vehicle, the mean number of condensed
diagnoses and the maximum processor load on any unit are
reduced with up to 90 and 85 % respectively, compared to the
global diagnoses.

1 An earlier and shorter version of this paper has been presented in (Biteus et al.,
2006a).
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1 INTRODUCTION

Fault diagnosis is becoming more common in many industrial ap-
plications, and one of the most widespread approaches for diagno-
sis is the consistency based diagnosis approach developed within the
AI field (Kleer and Kurien, 2003; Dressler and Struss, 1996), which
has strong relationships with the methods for fault diagnosis used
in the engineering disciplines (Cordier et al., 2004; Trave-Massuyes
et al., 2006). In this approach, a minimal diagnosis is a minimal set
of components whose abnormal behavior is a possible explanation to
why the system is faulty. Such minimal diagnoses are commonly used
within the AI field for both repair and fault tolerant control. In auto-
motive applications, a diagnosis could for example state that an ambi-
ent temperature sensor is behaving abnormally, or that the inlet mani-
fold temperature sensor and the inlet cooler are behaving abnormally.

This paper considers fault diagnosis for distributed systems that
consist of a set of agents, where an agent is a more or less indepen-
dent software entity (Hayes, 1999; Weiss, 1999). In such distributed
systems, the global diagnoses are diagnoses for the complete distri-
buted system and can be computed from all diagnostic test results in
all agents. Further, the local diagnoses are diagnoses for a single agent
and can be computed from the diagnostic test results in that agent.
The minimal local diagnoses can for example be used when the agent
should be repaired, by guiding the repair technician to the faulty com-
ponents. However, a drawback with the minimal local diagnoses is
that they do not use all diagnostic test results that exist in the complete
system. It might for example be the case that one agent has detected,
using some diagnostic test, that a component, connected to and used
by another agent, is behaving abnormally. The information about this
abnormal component would not be available to the second agent if it
only had access to its own set of minimal local diagnoses. This is in
contrast to the minimal global diagnoses where the information about
this abnormal component would be included. It is therefore an advan-
tage if the minimal global diagnoses are available in every agent.

A drawback when using the minimal global diagnoses in an agent
is that they include many components that could not affect the behav-
ior of the agent since they are not used in the system controlled by the
agent. These unused components make the number of global diag-
noses to be unnecessary high and each global diagnosis unnecessary
large. When performing for example repair of the agent, all compo-
nents not used by the agent are can be ignored by the repair techni-
cian since could not have caused the abnormal behavior of the agent.
In for example a studied automotive application from Scania, the en-
gine control agent does not use the catalytic converter component and
it is therefore not interested in the behavior of the catalytic converter.
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Therefore, the catalytic converter component could be removed from
the global diagnoses if they are used in the engine control agent. Be-
sides increasing the number and the size of the global diagnoses, the
inclusion of the unused components in the minimal global diagnoses
leads to an unnecessary high use of memory and processing power,
and thereby leads to unnecessary costs.

Condensed diagnoses

Motivated by the observations above, this paper contributes with a
novel type of diagnosis, denoted the condensed diagnosis, which is
used to represent the set of minimal global diagnoses in each agent.
Each agent has a unique set of minimal condensed diagnoses that
only includes the global diagnoses including components used by the
agent. Further, in these included global diagnoses, all components not
used by the agent are removed.

To secure that the condensed diagnoses represent the global diag-
noses, a scalar variable is added to each condensed diagnosis whose
value equals the number of removed unused components. In for ex-
ample the automotive application, the condensed diagnoses in the en-
gine control agent does only include components used by the engine,
such as an inlet manifold sensor, injection actuators, fuel pipes, etc.
Other components are represented by the scalar variable, such as the
catalytic converter and the climatic control components.

Due to the removal of the unused components, both the memory
needed to store and the processing power needed to compute the sets
of minimal condensed diagnoses are reduced compared to when the
set of minimal global diagnoses is used. In addition, both the size
and the number of minimal condensed diagnoses in each agent are
also reduced compared to the minimal global diagnoses. However,
in contrast to the minimal local diagnoses that are also smaller than
the minimal global diagnoses, the minimal condensed diagnoses still
represent the global diagnoses. To compute the condensed diagnoses,
this paper contributes with an algorithm that efficiently computes a
unique set of minimal condensed diagnoses in each agent. The bene-
fits of the condensed diagnoses are in this paper illustrated for the dis-
tributed system in an automotive vehicle, notably a heavy duty truck
from Scania.

Focusing the diagnoses

Above, the set of minimal diagnoses is discussed. However, some-
times, the set of minimal diagnoses are focused on to some smaller
set of diagnoses, such as the set of diagnoses with minimal cardinal-
ity (Tuhrim et al., 1991), i.e. minimal number of included components.
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The reason for this focusing is that it is in some cases computation-
ally intractable to compute the complete set of minimal diagnoses or
it is only the diagnoses with minimal cardinality that are used in re-
pair or fault tolerant control. If for example one diagnosis includes
one abnormal component, and another includes two abnormal com-
ponents, then repair is mostly started by first checking the component
in the small diagnosis since it is often more likely that one component
is abnormal compared to two components.

Since minimal cardinality diagnoses and thereby minimal cardi-
nality global diagnoses are wanted in some applications, the designed
algorithm is in this paper extended such that it can be used to effi-
ciently compute a unique set of minimal cardinality condensed diag-
noses in each agent. Also this extended algorithm will be applied to
the distributed system in the automotive vehicle.

Distributed systems

As indicated by the application, our work is inspired by diagnostic
systems used in automotive vehicles (Navet et al., 2005; Leen and Hef-
fernan, 2002; Gertler, 1998; Hristu-Varsakelis and Levine, 2005; Struss
and Price, 2003). These systems typically consist of precomputed di-
agnostic tests that are evaluated in the different agents, which in the
automotive industry correspond to electronic control units (ECUs).

The automotive distributed systems typically consist of ECUs with
both limited processing power and limited RAM memory that moti-
vates the use of the condensed diagnoses. Another important char-
acteristic of these distributed systems are that agents can be discon-
nected, replaced, or added to the system without notifications. The
changes occur for example due to repair and the addition or removal
of auxiliary equipments to the vehicle. To gain a scalable (Tanenbaum
and Steen, 2002) distributed system that can handle such changes, the
use of a dedicated diagnostic agent that computes the sets of minimal
condensed diagnoses and then distributes these to the other agents
is not desirable. Therefore, the algorithm is designed such that it, for
each agent, computes the set of minimal condensed diagnoses in a dis-
tributed cooperation between the agents. Using the algorithm, each
agent updates its set of minimal local diagnoses such that it becomes
a unique set of minimal condensed diagnoses.

1.1 Related Work

In contrast to the distributed algorithm designed in this paper, most
research on fault isolation, such as (Reiter, 1987), aim at the central-
ized diagnosis problem. These centralized methods can also be used
for distributed systems by letting a single diagnostic agent collect all
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diagnostic test results from all agents and then compute the minimal
global diagnoses. However, as noted above, it is not always suitable
to use such a dedicated single diagnostic agent. Therefore algorithms
exist that perform distributed fault diagnosis by computing the set
of minimal global diagnoses in a distributed cooperation between the
agents, see for example (Provan, 2002). In (Provan, 2002), the set of
minimal global diagnoses is computed for a distributed system using
a tree representation of the structure between the agents. The method
assumes that each agent states a local diagnosis based on only the
internal sensors and component descriptions, i.e. signals from other
agents are not used. This is a difference against the method presented
in this paper where such an assumption is not made.

Updating the local fault diagnosis

Algorithms also exist, such as (Roos et al., 2003), where the agents
update the local conflicts such that the set of local diagnoses is globally
correct. The local conflicts are updated by updating the knowledge of
the behavior of the signals transmitted between the agents, such that
the set of minimal local diagnoses in each agent are consistent with
the behavior of the set of signals. This method has similarities with
the method in this paper that updates the sets of local diagnoses such
that they are globally correct.

A difference between the method in this paper and the one in (Roos
et al., 2003) is that in the later, the diagnoses are computed based on
the model of the system and the observations, while this paper com-
putes the diagnoses based on the diagnostic test results. To compute
the diagnoses directly based on the model and the observations as is
done in (Roos et al., 2003) is a more general framework. However, in
automotive applications, it is commonly the case that tests have been
designed and are already implemented in the diagnostic system. This
thesis has therefore focused on systems where a set of diagnostic tests
is available and fault isolation is performed after some tests have been
evaluated. The algorithms designed in this thesis can therefore uti-
lize these tests when performing fault diagnosis instead of performing
fault diagnosis directly on the observations.

Due to the more general framework used in (Roos et al., 2003), the
algorithm requires an unknown number of iterations before finish-
ing, while the algorithm designed in this paper terminates after one
iteration. Another difference is that in (Roos et al., 2003), each result-
ing diagnosis will only include components and not signals since the
signals are replaced with the components on which the signals de-
pend. If a signal depends on two or more components then the re-
placement makes the number of diagnoses to be increased compared
to the method designed in this paper that preserves the signals. Fur-
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ther, by preserving the signals in the diagnoses, it is directly known
if a signal is behaving abnormally instead of having to know that if a
certain component is abnormal then the signal is abnormal. It is often
the case that the component might not be used by the agent and it is
therefore not necessary to know its status, and it is therefore an advan-
tage to keep the signals when the diagnoses are used in for example
fault tolerant control.

Besides consistency based diagnosis, Fault diagnosis based on dis-
crete event systems has also been extensively studied, see e.g. (Lunze
and Schröder, 2001; Sampath et al., 1995; Su and Wonham, 2005; De-
bouk et al., 2000). These methods are based on an automata descrip-
tion that models the discrete transitions between different states. Fault
diagnosis of an automata aims to detect and isolate abnormal compo-
nents by detecting abnormal transitions. This differs from this thesis
where a set of diagnostic tests are evaluated that results in a set of con-
flicts. The diagnostic tests typically supervise the continuous values of
signals that are not modeled as discrete transitions.

Focusing the diagnoses

In this paper, the set of diagnoses with minimal cardinality is com-
puted. An alternative to compute the set of minimal cardinality diag-
noses is to compute the set of most probable diagnoses, which would
give better results. In for example (Kleer, 1991), the set of most prob-
able diagnoses is computed using a centralized method. However, it
is computationally more difficult to compute this set and it is in many
applications difficult, or practically impossible, to get good a-priori
probabilities for the failure of the components. The focusing to the
most probable diagnoses can therefore be difficult to use.

2 DIAGNOSIS IN THE AUTOMOTIVE INDUSTRY

In Figure 1, one configuration of the embedded system used in heavy
duty vehicles from Scania is shown. This system includes three sepa-
rate controller area network (CAN) buses that connect the ECUs to each
other. Each of the ECUs is physically connected to some sensors and
actuators, and both sensor values and control signals can be shared
with the other ECUs over the network. There can be up to about 30
ECUs in the system, depending on the type of truck, and roughly be-
tween 4 and 110 components are supervised by each ECU. A small, but
not insignificant, number of components are used by several ECUs,
which motivates the employment of the condensed diagnoses since
these only include the components used by the specific ECU.
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FIGURE 1: The distributed system in current Scania vehicles.

The CPUs in the ECUs have typically a clocking speed of 8 to 64 MHz,
and a RAM memory capacity of about 4 to 150 kB. Due to the limited
resources, there are in the Scania application not much computational
power nor memory capacity available, which motivates the use of the
condensed diagnoses since these require low memory capacity and
low computational power, compared to when the minimal global di-
agnoses are used.

The application, for which the algorithm designed in this paper
will be applied, consists of the engine management system (EMS), the
selective catalytic reduction system (SCR), and the coordinator system
(COO), which all can be seen in Figure 1. The EMS controls and super-
vises the engine, the SCR is an emission control system, while the COO

has some coordinating functions.

3 CONSISTENCY BASED DIAGNOSIS

A system consists of a set of components C that should be supervised
for abnormal behavior. A component is something that can be diag-
nosed, such as sensors, actuators, cables, and pipes, and it can be in
different behavioral modes. Here, only the abnormal and the not ab-
normal mode is considered, where the abnormal mode does not have
a model. Further, the set notation used in for example GDE (Kleer and
Williams, 1987) is used to represent diagnoses, etc.

A diagnosis D is a set of components, such that the abnormal be-
havior of the components in D, the normal behavior of the remaining
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components, the system description, and the observations are consis-
tent. All supersets of a diagnosis D are also diagnoses since only the
abnormal mode, without a model, and the normal mode are consid-
ered. Further, a diagnosis D is a minimal diagnosis if there is no proper
subset D ′ ⊂ D where D ′ is a diagnosis (Kleer et al., 1992).

A conflict is a set of components π ⊆ C, such that the normal behav-
ior of the components, the system description, and the observations
are inconsistent. As with diagnoses, a conflict π is a minimal conflict
if there is no proper subset π ′ ⊂ π where π ′ is a conflict. If a diag-
nostic test responds, i.e. if it detects that any component it supervises
is behaving abnormally, then a conflict consisting of the supervised
components is generated.

From the definitions follow that a set D ⊆ C is a diagnosis if and
only if it has a nonempty intersection with every conflict. A conse-
quence of this is that the set of minimal diagnoses is the set of min-
imal hitting sets for the set of minimal conflicts (Reiter, 1987; Kleer
et al., 1992), where a hitting set for the set of sets Π is a set D ⊆

⋃

π∈Π π

such that D ∩ π 6= ∅ for all π ∈ Π. A minimal hitting set is defined in
the same way as minimal diagnoses and minimal conflicts.

EXAMPLE 1: Consider a diagnostic test that supervises two compo-
nents, denoted component A and B. If the diagnostic test has respon-
ded then a conflict {A,B} would be generated. Similarly, if components
B and C were supervised by a test that has responded, then a conflict
{B,C} would be generated. The set of minimal hitting sets for the set of
sets {{A,B}, {B,C}} is the set {{B}, {A,C}} and this is the set of minimal
diagnoses. The diagnoses states that either is component B behaving
abnormally or both components A and C are behaving abnormally. ⋄

4 DISTRIBUTED DIAGNOSIS

This section will first give a framework for distributed systems con-
sisting of agents, components, and signals. The framework will then
be used when a condensed diagnosis is defined.

4.1 Relation Between Local and Global Diagnoses

A distributed system consists of a set of agents A = {A1, . . . , An}

where each agent includes a diagnostic system. In such distributed
systems, a local diagnosis is a diagnosis that is determined by the set
of conflicts in one agent, while a global diagnosis is determined by all
conflicts in all agents. The conflicts are typically generated from res-
ponded diagnostic tests. Here, the set of minimal local diagnoses in
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agent Ai is denoted by DAi and the set of minimal global diagnoses is
denoted by D.

The set of global diagnoses can be computed from the sets of min-
imal conflicts in all agents. However, a merge of all sets of minimal
local diagnoses also results in the set of minimal global diagnoses.
If for example the two sets of minimal local diagnoses {{A}, {B}} and
{{C}} have been computed, then a cross product of these sets gives the
set {{A,C}, {B,C}}, which is the set of minimal global diagnoses. Even
though the cross product is used in the example to merge the minimal
local diagnoses such that the minimal global diagnoses are computed,
this can not be done in the general case. If for example the sets of min-
imal local diagnoses {{A}, {B}} and {{A}} are merged with a cross prod-
uct, then the result is the set {{A}, {A,B}} where {A,B} is not a minimal
global diagnosis. Therefore, to gain the set of minimal global diag-
noses, the non-minimal global diagnoses have to be removed when
the minimal local diagnoses are merged.

This idea of computing the minimal global diagnoses from the sets
of minimal local diagnoses will be used in the algorithm that computes
the set of minimal condensed diagnoses in each agent.

4.2 Signals and Components in Distributed Systems

A condensed diagnosis in one agent should only include the compo-
nents that the agent uses. To be able to decide which components that
an agent use, the components are here partitioned into private com-
ponents P ⊆ C and common components G ⊆ C. A private component
is only used by one agent, while a common component is used by two
or more agents. The set of private components is therefore further
partitioned into different sets belonging to different agents, where the
set PAi ⊆ P is used by agent Ai. For the automotive application, the
private components in the EMS are for example sensors measuring in-
let manifold temperature and pressure, diesel injection actuators, and
fuel pipes. The common components are for example the battery volt-
age sensor and the network cables. Other partitionings of the com-
ponents could be considered, for example to partition the common
components into subsets of components used by different subsets of
agents. However, both the definition of condensed diagnosis and the
algorithm for the computation of the minimal condensed diagnoses
would with this partitioning become more cumbersome. Therefore, to
keep the presentation clear, the simpler partitioning will be used.

An agent in a distributed system could, in addition to the compo-
nents, also use signals available over the network. A signal is typically
a value from a sensor, to an actuator, or some computed value. Here S

is the set of signals, INAi ⊆ S is the subset of signals that are used by
agent Ai and OUTAi ⊆ S is the subset of signals that are outputs from
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agent Ai. In the automotive application, one signal is for example the
value from the sensor measuring the inlet manifold temperature, and
another signal is the amount of catalytic reduction fluid that has been
injected into the catalytic converter.

4.3 Signals Depending on Components

The normal behavior of a signal s depends on the normal behavior of
all the components in a set Dep(s) ⊆ C. If any of the components in
the set Dep(s) behaves abnormally then s is assumed to also behave
abnormally. As mentioned above, in the automotive application, one
signal is the value from the inlet manifold temperature sensor and an-
other signal is the amount of injected catalytic reduction fluid. The
temperature signal only depends on one the manifold temperature
sensor component, while the fluid amount signal depends on several
components, such as the injection actuator and a temperature sensor
in the fluid tank.

To make the algorithm for the computation of the minimal con-
densed diagnoses more readably, some special properties of the de-
pendencies will be assumed.

ASSUMPTION 1: a) The dependency for a signal s that is an output from
agent Ai is limited such that Dep(s) ⊆ PAi . b) The dependencies for two
different signals are disjoint.

These assumptions make the algorithm more readable, but as shown
in (Biteus et al., 2006a), in Section 9.2, and in Section 9.2, it is possible
to compute the minimal condensed diagnoses even if Assumption 1 is
not fulfilled. Besides making the algorithms more readable, it is also
the case that Assumption 1 is often fulfilled in industrial applications
by construction. This is the case for the automotive application stud-
ied later in this paper. For example is b) often fulfilled since if this is
not the case then the signals can not be used for supervision indepen-
dently of each other.

Since the diagnostic system in an agent could supervise both com-
ponents and signals, a diagnosis D ⊆ C, as defined in Section 3, has
to be extended to the set of components and signals. However, a di-
agnosis including signals can always be propagated to the set of com-
ponents by replacing the signals with their dependencies. Due to this
propagation, the word diagnosis will here be used both for a true di-
agnosis and a diagnosis including both components and signals.

4.4 Condensed Diagnoses Representing Global Diagnoses

In this section, a minimal condensed diagnosis will be exactly defined
with respect to the set of minimal global diagnoses. This definition
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will be used in the next section, where an algorithm is designed that
efficiently computes a unique set of minimal condensed diagnoses in
each agent.

A condensed diagnosis should include the components and inputs
that an agent Ai use, which here are the common components G, the
private components for the specific agent PAi , and the signals that not
are outputs from the specific agent S\OUTAi . Assume for example
that {A,E,G} is a global diagnosis, A is a private component in agent
A1, E is a private component in some other agent, and G is a common
component. A condensed diagnosis representing this global diagnosis
in agent A1 should include components A and G, while component E

could be removed, resulting in the set {A,G}. However, to gain a cor-
rect cardinality of the condensed diagnosis, the information that one
additional component did exist in the global diagnosis should be pre-
served. Here, the condensed diagnosis will therefore be represented
by a tuple 〈D,k〉, where the set D includes the used components and
signals, and the scalar variable k is the number of removed compo-
nents. The variable k is important since it preserves the cardinality of
the global diagnoses. For example, the condensed diagnosis 〈{A,G}, 1〉
represents the global diagnosis {A,E,G}.

Assume now that an agent has the condensed diagnoses 〈{A}, 2〉
and 〈{B}, 3〉, where both A and B are used by the agent. If a technician
should repair the abnormally behaving agent, then it is interesting to
know that component A and B should be checked since at least one
of them are behaving abnormally and are affecting the agents behav-
ior. It is not necessary to know exactly which other components in the
other agents that are behaving abnormally. However, it is important
to know that the condensed diagnosis including component A has a
lower cardinality, in this case 3 = |{A}| + 2. While the condensed diag-
nosis including component B has a cardinality of 4 = |{B}| + 3. Based
on the cardinality, the repair should start by checking component A

since the cardinality of the corresponding global diagnosis are lower
than the global diagnosis including component B.

A condensed diagnosis is formally defined as follows.

DEFINITION 1 (Condensed diagnosis): Let D be a set of minimal global
diagnoses, where, for each diagnosis D̄ ∈ D, D̄ ⊆ C. The tuple 〈D,k〉, where
D ⊆ PAi ∪ G ∪ (S \ OUTAi) and k ∈ Z, is a condensed diagnosis in agent
Ai if and only if D̄ ∈ D exists such that

a) |D| + k = |D̄|

b) D ∩ P = D̄ ∩ PAi

c) D ∩ G = D̄ ∩ G

d) D ∩ S = {s ∈ S \ OUTAi : Dep(s) ∩ D̄ 6= ∅}.
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FIGURE 2: An example of a system consisting of two agents, four com-
ponents A, E, F, and G, and one signal s. The agents use the compo-
nents connected with lines.

Interpretation of the different requirements for a condensed diag-
nosis: a) means that the cardinality of D plus k should equal the car-
dinality of the global diagnosis; b) means that D should only include
private components used by agent Ai; c) means that all common com-
ponents should be included; d) means that signals, that might be ab-
normal due to the dependency on some abnormal component, should
be included in D.

The following example will illustrate how a global diagnosis can be
represented by a unique condensed diagnosis in two different agents.

EXAMPLE 2: Consider the system shown in Figure 2. A signal s exists
whose dependency is Dep(s) = {E}, represented by the dotted line.
The sets of private components are PA1 = {A} and PA2 = {E, F}. The
set of common components is G = {G}. The components connected by
lines are used by the corresponding agent. Let {A,E, F,G} be a minimal
global diagnosis. A condensed diagnosis in agent A1 is 〈{A,G, s}, 1〉,
where component A is included since it is a private component in A1,
G since it is a common component, and s since it depends on the ab-
normal component E. Component F is represented by k = 1.

Agent A2 is not interested in the same components as agent A1,
therefore, in this agent, the condensed diagnosis 〈{E, F,G}, 1〉 repre-
sents the global diagnosis. Here, component A has been removed and
is represented by k = 1. ⋄

In this simple example, the condensed diagnoses were not a very
compact representation of the global diagnosis since a large part of the
components is directly or indirectly supervised by both agents. How-
ever, for most distributed systems the number of the components that
is supervised by several agents is not so high and the condensed diag-
noses then become a compact representation of the global diagnoses.
This is for example the case for the automotive application studied in
the end of this paper.
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Why should a condensed diagnosis include the signals instead of
propagating these signals to the components on which they depends?
The reason for this is that a signal might depend on many components
that are not directly used by the agent that use the signal. This is for ex-
ample the case for the automotive application, where the fluid amount
signal depends on several components used only by the emission con-
trol system, such as the fluid injector and the fluid temperature sensor.
Since these components are not directly used by the other agents, it is
sufficient that the agent using a signal is aware of the abnormal be-
havior of the signal, and exactly which components that might have
caused this abnormal behavior of the signal could be ignored.

According to the definition, the condensed diagnoses should in-
clude all signals S except those that are outputs from the current agent,
OUTAi . An alternative here would be to limit this set to the smaller
set of signals that are inputs to the current agent, INAi . However, this
would make the presentation of the algorithm in the next section more
complex. Therefore, for clarity, a condensed diagnosis is defined with
respect to the larger set of signals S \ OUTAi .

Similar to minimal diagnoses, the minimal condensed diagnoses
can be used to represent all condensed diagnoses.

DEFINITION 2 (Minimal condensed diagnosis): A condensed diagnosis
t = 〈D,k〉 is a minimal condensed diagnosis if and only if a condensed
diagnosis t ′ = 〈D ′, k ′〉 does not exist such that D ′ ⊂ D and |D ′| + k ′ <

|D| + k.

The set of minimal condensed diagnoses in one agent represents
the set of minimal global diagnoses. In the following sections, an algo-
rithm that computes all sets of minimal condensed diagnoses in each
agent is designed and applied to an automotive application.

5 COMPUTING THE SETS OF MINIMAL

CONDENSED DIAGNOSES

The set of minimal global diagnoses can be computed from all conflicts
in all agents. However, the set of minimal global diagnoses can also
be computed by merging the sets of local diagnoses in the different
agents, see Section 4.1. This idea of computing the global diagnoses
by merging the sets of local diagnoses, will be used in this section to
construct an algorithm that merges the local diagnoses that include
components or signals used by the other agents, such that the result is
a set of minimal condensed diagnoses in each agent.

The outline of the algorithm is that each agent first computes its
set of minimal local diagnoses, and then transmits, to all other agents,
the minimal local diagnoses that include components used by other
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agents. After this, each agent receives the sets of diagnoses transmit-
ted from the other agents and then merges the received sets with its
own set of minimal local diagnoses that results in the set of minimal
condensed diagnoses.

Assume for example that agent A1 has the minimal local diagnosis
{A,G} where A is a private component and G is a common compo-
nent. Assume further that A2 has the minimal local diagnosis {E,G}

where E is a private component. To compute the minimal condensed
diagnoses, the algorithm designed in this section transmits the tuple
〈{G}, 1〉 from agent A1 to agent A2. This tuple, which has the same
structure as a condensed diagnosis, includes the part of the local di-
agnosis in agent A1 that is used by the other agent. This transmit-
ted tuple is merged with the minimal local diagnosis {E,G} in A2 that
give the minimal condensed diagnosis 〈{E,G}, 1〉. As should be, this
coincides with the minimal condensed diagnosis computed from the
minimal global diagnosis {A,E,G}. Similarly, to compute the minimal
condensed diagnosis in agent A1, agent A2 transmits the tuple 〈{G}, 1〉,
which is merged with the minimal local diagnosis in A1 resulting in
the minimal condensed diagnosis 〈{A,G}, 1〉. Also the minimal con-
densed diagnosis in A1 coincides with the minimal global diagnosis.

The transmitting is more fully described in Section 5.1, the receiv-
ing and merging are described in Section 5.2, and finally the main al-
gorithm is described in Section 5.3. In the algorithms, D is a diagnosis,
Γ ⊆ S, Ω ⊆ OUTAi , P ⊆ P, and finally G ⊆ G.

5.1 Transmit the Interesting Local Diagnoses to All Agents

Using the definition of condensed diagnosis, it can be seen that a min-
imal local diagnosis in one agent is of interest for the other agents if it
includes components or signals used by some agent, or a component
that some signal depends on. The local diagnoses including such com-
ponents or signals should be transmitted to the other agents. How-
ever, before the diagnoses are transmitted, the private components can
be removed since these are not used by any other agent. Consider for
example an agent A1 that has computed the local diagnosis {A,B,G},
where components A and B are private components in A1, G is a com-
mon component, and s is a signal depending on B. Components A

and B can be removed from the diagnosis when it is transmitted to the
other agents since these are private, resulting in the set {G}. However,
if a signal depends on any of the removed private components, then
this signal is abnormal. Since some other agent might use this signal,
it should be added to the set. In the example, this is the case for the
signal s that depends on the component B included in the local diag-
noses. Replacing the component with the depending signal results in
the set {G, s}.
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Algorithm 1 – Transmit(DAi). Transmit the interesting minimal lo-
cal diagnoses.

Input: A set of minimal local diagnoses DAi .
Output: Set of tuples TXAi representing the interesting diagnoses in

DAi .
1: DTX := {D ∈ DAi : D ∩ (S ∪ G ∪ (∪s∈S Dep(s))) 6= ∅}
2: TXAi := ∅
3: for each D = P ∪ G ∪ Γ ∈ DTX do
4: Ω := {s ∈ S : Dep(s) ∩ P 6= ∅}
5: k := |P| − |Ω|

6: TXAi := TXAi ∪ {〈G ∪ Γ ∪ Ω,k〉}
7: end for
8: TXAi := RemoveNonMinimal(TXAi)

9: if DAi \ DTX 6= ∅ then
10: k := minD∈D

Ai\DTX |D|

11: TXAi := TXAi ∪ {〈∅, k〉}
12: end if

A problem when transmitting the set {G, s} is that it is not known
which cardinality that the resulting condensed diagnosis should have.
The reason for this is that the set {G, s} might represent different local
diagnoses, such as {A,B,G} or {A,C,D,G}. Therefore, to gain a cor-
rect cardinality for the resulting condensed diagnosis, the variable k,
whose value is the number of removed private components minus the
number of added signals, should be included when the set is trans-
mitted to the other agents. If D is the set to be transmitted, then the
set plus the variable k is give a tuple 〈D,k〉, which is similar to a con-
densed diagnosis. In the example, this results in the set 〈{G, s}, 1〉.

The minimal local diagnoses that are not transmitted to the other
agents can be represented by a tuple including the empty diagnosis
and the variable k whose value is the minimal cardinality of any of
the not transmitted minimal local diagnoses, i.e. a tuple 〈∅, k〉. The
agents receiving this tuple will then be aware of that one or more non-
transmitted minimal local diagnoses with cardinality k or higher exist.
In the example, if also a minimal local diagnosis {A,C} exists in agent
A1, then this local diagnosis would be represented by the tuple 〈∅, 2〉.

Algorithm 1 performs the steps described above. Row 1 decides
which minimal local diagnoses that include components or signals
used by other agents, resulting in the set DTX. Row 2–7 construct a
tuple for each local diagnosis D = P ∪ G ∪ Γ in the set DTX, where the
set P is the private components, G is the common components, and
Γ is the signals included in the local diagnosis. Each tuple in the set
TXAi includes a set consisting of G and Γ , which are taken directly
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FIGURE 3: An example of a system consisting of three agents, seven
components, and two signals. The components connected with lines
are used by the corresponding agents.

from the local diagnosis, and the set Ω that consists of the signals that
depend on any of the removed private components in P. Each tuple
also includes the variable k, which equals the number of removed pri-
vate components in P minus the number of added signals in Ω. In
row 8, the function RemoveNonMinimal(·) removes all non-minimal
tuples, where a minimal tuple is defined in the same way as a minimal
condensed diagnosis, see Definition 2. Finally, Row 9–12 adds a tuple
representing the not transmitted minimal local diagnoses.

EXAMPLE 3: Consider the system shown in Figure 3, where the sets of
private components are PA1 = {A,B,C}, PA2 = {D}, and PA3 = {E, F},
while the set of common components is G = {G}. Two signals exist
with dependencies Dep(s1) = {A} and Dep(s2) = {E, F}. Assume that
the following set of minimal local diagnoses is computed in agent A1

DA1 = {{B, s2}, {A,B}, {G,B}, {C}}.

Using Algorithm 1, the set of local diagnoses that are of interest for the
other agents is first computed,

DTX = {{B, s2}, {A,B}, {G,B}}.

The private components are removed and the set of tuples to transmit-
ted is thereby

TXA1 = {〈{s2}, 1〉, 〈{s1}, 1〉, 〈{G}, 1〉, 〈∅, 1〉}

where the tuple 〈∅, 1〉 represents the non-transmitted diagnosis {C}.
The set TXA1 will represent the set of local diagnoses in A1 when
the agents A2 and A3 are computing their unique set of minimal con-
densed diagnoses. ⋄
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Algorithm 2 – ReceiveCondense({TXA1 , . . . , TXAn }). Compute the
minimal condensed diagnoses in agent Ai.

Input: For each agent Aj except Ai, a received set TXAj resulting from
the evaluation of Transmit(·). The set of minimal local diagnoses
DAi .

Output: The set of minimal condensed diagnoses DAi
c .

1: for each Aj except Ai do
2: RXAj := ∅
3: for each 〈G ∪ Γ ∪ Ω,k〉 ∈ TXAj do
4: Ω̄ := Γ ∩ OUTAi and Γ̄ := Γ \ Ω̄

5: for each P̄ ∈ CrossProduct(∪s∈Ω̄{Dep(s)}) do
6: RXAj := RXAj ∪ {〈P̄ ∪ G ∪ Γ̄ ∪ Ω,k〉}
7: end for
8: end for
9: end for

10: RXAi := {〈D, 0〉 : D ∈ DAi }

11: DAi
c := CrossProductTuple({RXA1 , . . . , RXAn })

12: DAi
c := RemoveNonMinimal(DAi

c )

5.2 Receive and Merge the Transmitted sets of Tuples

The second step when calculating the sets of minimal condensed diag-
noses is for each agent to receive the sets of tuples transmitted from the
other agents, transform them into an appropriate form, and then com-
pute the minimal condensed diagnoses. If a received tuple includes
a signal s that is an output from the receiving agent then the receiver
is interesting in knowing which private components that could have
caused the abnormal behavior of the signal. The signal is therefore
replaced with the components that it depends on. If for example the
tuple 〈{s}, 0〉 is received and s is an output from the receiving agent
with dependency Dep(s) = {E, F}, then this tuple is replaced with the
tuples 〈{E}, 0〉 and 〈{F}, 0〉, since either is component E abnormal or
component F. After all such signals have been replaced by their de-
pendencies, the minimal local diagnoses in the receiving agent and
the sets of received tuples are merged and this results in the set of
minimal condensed diagnoses.

Algorithm 2 performs the steps described above. Row 1–9 trans-
form each set of transmitted tuples, such as TXAj transmitted by agent
Aj, into sets of received tuples, such as RXAj . For each tuple 〈G ∪ Γ ∪
Ω,k〉 in the set TXAj , row 4 computes a set Ω̄ that consists of the sig-
nals in Γ that are outputs from the receiving agent Ai, and the set Γ̄

that are the signals in Γ except those in Ω̄. The signals in Ω̄ are then
replaced by a set consisting of one component from the dependency
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of each signal, resulting in a set of components P̄. The received tu-
ple 〈P̄ ∪ G ∪ Γ̄ ∪ Ω,k〉 is thereafter constructed and stored in the set
of tuples RXAj . The computation of each set P̄ is done in row 5 us-
ing the function CrossProduct(M) that computes the cross prod-
uct for the collection of sets M. If for example a signal s1 has a de-
pendency Dep(s1) = {A,B} and another signal s2 has a dependency
Dep(s2) = {C}, then the set of signals Ω̄ = {s1, s2} is replaced with a
set in the set

CrossProduct({Dep(s1),Dep(s2)}) = {{A,C}, {B,C}}}.

Notice that one received tuple in the set TXAj could result in several
received tuples in the set RXAj . This is for example the case for the tu-
ple 〈{s1, s2}, k〉, where the signals have the dependencies stated above.
This tuple would give the two tuples 〈{A,C}, k〉 and 〈{B,C}, k〉 due to
the dependencies of the signals.

Row 10 transforms the minimal local diagnoses in agent Ai to the
same format as the received tuples. In row 11–12 in the algorithm,
the sets RXA1 , . . . , RXAn are merged and the non-minimal condensed
diagnoses are removed. The function CrossProductTuple(M) for
a set M of sets of tuples performs a normal cross product with respect
to the sets included in the tuples and a summation of the variables k.
For example,

CrossProductTuple
({

{〈D1, k1〉}, {〈D21, k21〉, 〈D22, k22〉}
})

=
{

〈D1 ∪ D21, k1 + k21〉, 〈D1 ∪ D22, k1 + k22〉
}

.

The function RemoveNonMinimal(·) removes all non-minimal con-
densed diagnoses.

In an efficient implementation, row 11–12 should probably be re-
placed with an operation similar to a minimal hitting set operation.
Such an operation would directly compute the set of minimal con-
densed diagnoses, instead of first computing the often larger set of
condensed diagnoses that results from the cross-product, and then re-
move the non-minimal condensed diagnoses.

5.3 Main Algorithm for the Computation of the Sets of Mini-
mal Condensed Diagnoses

Based on the algorithms designed above, Algorithm 3 can be used to
compute the set of minimal condensed diagnoses in each agent. For
each agent, the algorithm computes the set of minimal local diagnoses
DAi in row 1 using a minimal hitting set algorithm, see Section 3. The
algorithm then evaluates row 2–5 that includes calls to Algorithm 1,
where each call has a set of minimal local diagnoses as input and give
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Algorithm 3 – Main. Computation of the set of minimal condensed
diagnoses in each agent.

Input: The set of conflicts ΠAi in each agent Ai.
Output: The set of minimal condensed diagnoses DAi

c in each agent
Ai.

1: for each agent Ai do DAi := MinimalHittingSets(ΠAi) in Ai

2: for each Agent Ai do
3: compute TXAi := Transmit(DAi) in agent Ai

4: broadcast TXAi on the network
5: end for
6: for each Agent Ai do
7: receive TXAj in Ai from all other agents Aj except Ai

8: compute DAi
c := ReceiveCondense({TXA1 , . . . , TXAn }\TXAi)

in Ai

9: end for

a set of transmitted diagnoses TXAi as output. Finally are row 6–9
evaluated that includes calls to Algorithm 2, where each call has the
set of transmitted sets TXA1 , . . . , TXAn except TXAi as input. After
that Algorithm 3 has been evaluated, each agent has a unique set of
minimal condensed diagnoses DAi

c .

EXAMPLE 4: This example uses the same system as is used in Exam-
ple 3. Algorithm 3 first computes the minimal local diagnoses in each
agent and then calls Algorithm 1 that, for each agent, computes the set
of tuples that should be transmitted to the other agents. Assume that
agent A1 has received the following sets from agent A2 and A3,

TXA2 = {〈{s1}, 0〉, 〈∅, 1〉} TXA3 = {〈{s2}, 0〉}.

Algorithm 3 calls Algorithm 2 in agent A1, where the sets of received
tuples are transformed into the sets

RXA2 = {〈{A}, 0〉, 〈∅, 1〉} RXA3 = {〈{s2}, 0〉}.

Assume again that A1 has the following set of minimal local diagnoses

DA1 = {{B, s2}, {A,B}, {G,B}, {C}}.

The set of minimal local diagnoses is transformed by Algorithm 2 to

RXA1 = {〈{B, s2}, 0〉, 〈{A,B}, 0〉, 〈{G,B}, 0〉, 〈{C}, 0〉}.

The sets RXA1 , RXA2 , and RXA3 are then merged, resulting in the set

DA1
c = {〈{A,B, s2}, 0〉, 〈{s2, B}, 1〉, 〈{s2, C}, 1〉}, 〈{A, s2, C}, 0〉}

that is the set of minimal condensed diagnoses in A1. ⋄
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What is the interpretation of the set of minimal condensed diag-
noses in Example 4? The first condensed diagnosis for example states
that the local components A and B, and the signal s2 could explain
the abnormal behavior of the system. It is not exactly known which
component that has caused the abnormal behavior of the signal, and
agent A1 is not interested in knowing this. It is sufficient to know that
the signal s2 that A1 use might be abnormal. The second diagnosis
states that the abnormal behavior of the component B, the signal s2,
and some other component used in some other agent could also ex-
plain the abnormal behavior of the system. Both of these diagnoses
have the same cardinality, it is therefore not possible to conclude that
a repair technician should check one of them before the other. If the
variable k had not been included in the condensed diagnoses, then the
cardinality of the second diagnosis would be wrongly be two, which
is one lower than the first diagnosis.

5.4 Minimal Cardinality Condensed Diagnoses

In some cases, the search for diagnoses is focused onto some smaller
set of diagnoses, such as the set of minimal cardinality diagnoses. The
cardinality of a diagnosis is the number of components included in the
diagnosis. The reason why the diagnoses with minimal cardinality are
of interest is that they point at the more likely diagnoses, considering
the number of components included in the diagnoses. If for example
the two diagnoses {B} and {A,C} have been computed, and the a-priori
probability that a component is abnormal is small and approximately
of the same magnitude for all components, then it is more probable
that component B is abnormal than that component A and C are both
abnormal. The most probable diagnosis {B} is in this case also the
minimal cardinality diagnosis.

Considering condensed diagnoses, then the set of minimal cardi-
nality condensed diagnoses can directly be computed from the set of
minimal condensed diagnoses. However, this approach is not efficient
since it often requires the computation of many condensed diagnoses
that are not minimal cardinality condensed diagnoses. Therefore, al-
gorithms designed above will in this section be extended such that
they directly compute the set of minimal cardinality condensed diag-
noses in each agent.

To extend the algorithms such that the minimal cardinality con-
densed diagnoses are computed, insert a new row

12: DAi
c := {〈D,k〉 ∈ DAi

c : |D| + k = min
〈D̄,k̄〉∈D

Ai
c

|D̄| + k̄}

before row 12 in Algorithm 2. The new row removes the condensed
diagnoses that are not minimal cardinality. Further, let Algorithm 3 in-
clude an input A that is a set of agents, and change row 6 to
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6: for each agent Ai ∈ A do

such that row 6–9 are only evaluated for the agents in the set A. Finally,
remove row 1 in Algorithm 3.

After the changes described above have been implemented, Algo-
rithm 4 can be used to compute the set of minimal cardinality con-
densed diagnoses in each agent. The algorithm uses the function Main,
i.e. Algorithm 3. Algorithm 4 first calculates the set of minimal local
diagnoses, stored as XAi , in each agent. For each agent, the set of di-
agnoses DAi , used by Main, is defined such that at least one minimal
local diagnosis with minimal cardinality will be transmitted from each
agent when Main is called. After the call to Main({A1}), agent A1 has
a set of condensed diagnoses. It is possibly to change agent A1 to any
other agent, for example an agent with free processing power.

Using the condensed diagnoses in agent A1, an upper limit m on
the cardinality of the condensed diagnoses with minimal cardinality
can be computed. Using this limit, the set DAi is redefined such that
only the minimal local diagnoses with cardinality lower than this limit
is included in the set. The local diagnoses with cardinality higher than
m can not be part of a minimal cardinality condensed diagnosis and
can therefore be ignored. With this new set DAi , all condensed diag-
noses with minimal cardinality will be calculated when Main(A) is
called with the set of all agents as input.

Even though Algorithm 4 is written as two separated parts, row 1–
3 and 4–6, the result of the first part should in an efficient implementa-
tion probably be used when evaluating part two. The parts that can be
reused are primely the sets of tuples that have been transmitted when
Main is called in row 3.

Algorithm 4 – MainMinimalCardinality Computation of the sets
of minimal cardinality condensed diagnoses.

Input: The set of conflicts ΠAi in each agent Ai.
Output: A set of minimal cardinality condensed diagnoses DAi

s,mc in
each agent Ai.

1: for each agent Ai do XAi := MinimalHittingSets(ΠAi) in Ai

2: for each agent Ai do DAi = {D ∈ XAi : |D| = minD̄∈XAi |D̄|} in Ai

3: Main({A1}) [Agent A1 has a set of condensed diagnoses, DA1]
4: m = min

〈D,k〉∈D
A1
c

|D| + k , computed in A1

5: for each agent Ai do DAi = {D ∈ XAi : |D| = m} in Ai

6: for each agent Ai do DAi
s,mc := Main(A)



76 6 AUTOMOTIVE VEHICLE APPLICATION

6 AUTOMOTIVE VEHICLE APPLICATION

The design of Algorithm 3 is motivated by efficiency compared to
computing the complete set of minimal global diagnoses in a cen-
tral agent, and in the reduction of the number and sizes of the min-
imal condensed diagnoses compared to the minimal global diagnoses.
To verify these motivations, the algorithm is in this section applied
to an automotive vehicle and compared to a centralized implementa-
tion that computes the set of minimal global diagnoses. Algorithm 4,
which computes the sets of minimal cardinality condensed diagnoses,
is also applied to the automotive vehicle, and the results are given later
in Section 7.

6.1 Test Cases Used in the Application

Algorithm 3 is here applied to a part of the diagnostic system used
in the Scania heavy duty vehicle described in Section 2. The part that
is used includes the engine management system (EMS), the selective
catalytic reduction system (SCR), and the part of the coordinator sys-
tem (COO) affecting the EMS and the SCR. The EMS agent AEMS controls
and supervises the engine, the SCR agent ASCR controls and supervises
the system used to reduce nitrous oxides, while the COO agent ACOO

makes a temperature sensor value available on the network for use by
the other agents. There are 85 components, with components num-
bered 1 to 4 being common, components 5 to 50 being private in AEMS,
components 51 to 84 being private in ASCR, and component 85 being
private in ACOO. There are three signals of which two are outputs from
AEMS and one is an output from the ACOO. Figure 4 shows a schematic
overview of the system, using the same notation as used in the previ-
ous examples. Both the AEMS and the ASCR use and supervise the sig-
nals from ACOO, while ASCR uses and supervises the two signals from
the AEMS.

The diagnostic systems in the AEMS and the ASCR consist of 57 and 55
diagnostic tests respectively. The isolation structures can be seen in
Figure 5 and 6 where a cross × in row i and column j means that the
diagnostic test i supervises component j for abnormal behavior. The
private component in ACOO is not directly supervised, however, the
signal s1 from ACOO depends on its private component and is there-
fore indirectly supervised by the other agents. Finally, the signals s2

and s3 from AEMS depend on the private component 5 and 6 respec-
tively.
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FIGURE 4: The distributed system used in the application.

6.2 Computing the Minimal Global Diagnoses

Algorithm 3 is compared to a centralized algorithm based on the met-
hod for computing minimal diagnoses from minimal conflicts given in
(Kleer and Williams, 1987). In the centralized algorithm, all conflicts
from all agents are transmitted to ACOO where the set of minimal global
diagnoses is computed. The main idea in the method given in (Kleer
and Williams, 1987), is that the set of diagnoses is initialized to the
empty diagnosis that then is updated such that it is consistent with ev-
ery conflict. This is performed by checking if a diagnosis has an empty
intersection with a conflict, and if this is not the case, then the diagno-
sis is extended to several new diagnoses where each new diagnosis
includes the old diagnosis and one component from the conflict. The
non-minimal extended diagnoses are then removed. The diagnoses
are extended until all conflicts have been considered and the result is
the set of minimal diagnoses.

6.3 Operations and Transmissions

To compare the designed algorithm and the centralized algorithm, the
numbers of non-trivial transmissions and operations needed to com-
pute the diagnoses are counted.

For each diagnosis or conflict that is transmitted on the network,
the number of transmissions is assumed to be equal to the cardinality
of the diagnosis or conflict. The operations that are considered non-
trivial are described below.

For the centralized algorithm, and the computation of the mini-
mal local diagnoses in Algorithm 3, one operation is needed to check
if each diagnosis has an empty intersection with a conflict, and one
operation is needed to extend each diagnosis. For Algorithm 1, one
operation is needed to check if a local diagnosis should be transmit-



78 6 AUTOMOTIVE VEHICLE APPLICATION

0

10

20

30

40

50

D
ia

gn
os

tic
 te

st

Private components InputsCommon c.

FIGURE 5: The isolation structure for the diagnostic system in the AEMS.

ted, |OUTAi | operations to transform it to a tuple, one operation to
check if one transmitted tuple is minimal considering one other trans-
mitted tuple, and |DAi \ DTX| operations to get the tuple representing
the non-transmitted local diagnoses. In Algorithm 2, two operations
are needed in row 4. Row 5 and 11 requires one operation for each
constructed set. Row 10 requires one operation for each local diag-
nosis. Finally, one operation is needed for each condensed diagnosis
that is checked for non-minimality considering one other condensed
diagnosis.

6.4 Evaluation For One Test Case

To evaluate the algorithms, components numbered 6 in AEMS and 75
in ASCR are affected such that they are behaving abnormally. It is here
assumed that every diagnostic test that supervises an abnormal com-
ponent has responded. With the given abnormal components, one test
has responded in AEMS and two tests have responded in ASCR.

Algorithm 3 is now used to compute the set of minimal condensed
diagnoses in each agent. In AEMS, the set of minimal condensed diag-
noses is

{〈{6}, 1〉},

in ASCR the set of minimal condensed diagnoses is

{〈{s3, 71}, 0〉, 〈{s3, 73}, 0〉, 〈{s3, 74}, 0〉, 〈{s3, 75}, 0〉, 〈{s3, 76}, 0〉},
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FIGURE 6: The isolation structure for the diagnostic system in the ASCR.

and in ACOO the set of minimal condensed diagnoses is

{〈{s3}, 1〉}.

It can be seen that only private components are included in the min-
imal condensed diagnoses, and that the signal s3 that depends on
the abnormal component numbered 6 is included in the ASCR and the
ACOO. Using the centralized algorithm, the set of minimal global diag-
noses has been computed resulting in the set

{{6, 71}, {6, 73}, {6, 74}, {6, 75}, {6, 76}}.

Considering the signals dependencies, it can be seen that the mini-
mal global diagnoses coincides with the result from Algorithm 3 given
above.

The gain in the reduction of the number of diagnoses when using
Algorithm 3 are seen in AEMS and in ACOO where there are only two
minimal condensed diagnoses, while there are five minimal global di-
agnoses. This is no major reduction, however, as will be seen later
in this section, the reduction in number of diagnoses is in other cases
much larger. If for example the AEMS should perform fault tolerant
control based on the diagnostic tests results, it is an advantage to use
the condensed diagnosis since the condensed diagnosis 〈{6}, 1〉 includes
all information in the global diagnoses that are of interest for this
agent. Since only component numbered 6 is used by the AEMS, it is
not necessary to know that the components 71, 73, 74, 75, and 76 are
also included in the set of minimal global diagnoses.
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FIGURE 7: The figures show the mean number of operations, transmis-
sions, diagnoses in each agent, and mean size of the diagnoses.

Further, the maximum number of needed operations in any agent
is 144 for the centralized algorithm but only 65 for Algorithm 3, a re-
duction of 55 %. The number of needed transmissions is 8 for Algo-
rithm 3 but 12 for the centralized algorithm.

6.5 Evaluation for a Suite of Tests

Above, the Algorithm 3 and the centralized algorithm were compared
for one specific test case. To further compare the algorithms, a test
suite is created by randomly make some components in the automo-
tive system behave abnormally. The mean of the maximum number
of needed operations in any agent can be seen in Figure 7(a). For one
and two abnormal components, all combinations of components are
used, while for the other sizes, five thousand different abnormal com-
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ponents for each size of the set of abnormal components are used.

Figure 7(a) shows that for the test cases with more than one abnor-
mal component, the mean of the maximum number of needed opera-
tions with Algorithm 3 is lower than the centralized algorithm, and it
can also be seen that the growth rate is significantly lower. With for
example two abnormal components, there is a reduction of the pro-
cessor load with 50 % increasing to 85 % reduction for five abnormal
components. Automotive applications can typically consist of 2000 or
more components and if only a small part of these fail, two or more
abnormal components could exist in the system at the same time. Fur-
ther, a common case is that components are not immediately repaired,
even though a fault is detected and isolated. A consequence of this is
that the number of abnormal components increases over time.

The numbers of needed transmissions for the two algorithms are
shown in Figure 7(b), where it can be seen that there is no significant
difference between the algorithms.

One motivation for the introduction of the condensed diagnoses
is to remove the non-used components from the global diagnoses.
Two values that therefore are of interest are the mean size and mean
number of diagnoses. If the minimal condensed diagnoses truly are a
condensed representation of the minimal global diagnoses, then both
these values should be reduced for the minimal condensed diagnoses.
Notice that these numbers are a property of the minimal condensed
diagnoses and the minimal global diagnoses, and are therefore inde-
pendent of the algorithms that are used to compute the diagnoses.

Figure 7(c) shows the mean size of a diagnosis, where the size of
a condensed diagnosis 〈D,k〉 is assumed to be |D| + 1, which should
not be confused with its cardinality that is |D|+k. It can be seen in the
figure, that the mean size of the diagnoses is reduced for the minimal
condensed diagnoses when there are three or more abnormal compo-
nents in the system. Further, the mean size of the global diagnoses has
a higher growth rate than the condensed diagnoses.

In Figure 7(d), the mean number of minimal diagnoses per agent
is shown. It can be seen that the number of minimal condensed di-
agnoses is significantly reduced compared to the number of minimal
global diagnoses. It can for example be seen that there is a reduction
of abut 70 % when two abnormal components exist in the system and
increasing to over 90 % for five abnormal components. When there is
one abnormal component there are, for this application, in mean 25
minimal global diagnoses but only 9 minimal condensed diagnoses.
One could argue that since the system includes three agents that in
mean have 9 diagnoses, the technician has to consider 27 diagnoses
if all agents should be repaired. However, as can be seen in the fig-
ure, this argument only holds for one or two abnormal components.
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For three abnormal components, there are a total of about 27×3=81
minimal condensed diagnoses, while there are 146 minimal global di-
agnoses. Considering repair, each of the diagnoses could direct the
repair technician to the abnormally behaving components, and the re-
pair task becomes more difficult when the number of diagnoses in-
creases. The reduction in number of diagnoses therefore motivates
the use of the minimal condensed diagnoses.

The memory usage needed to store the set of diagnoses is approx-
imately the mean number of diagnoses times the mean size of the di-
agnoses. Primarily due to the reduction in number of diagnoses, the
memory usage to store the sets of minimal condensed diagnoses is
significantly reduced compared to the memory usage when the set of
minimal global diagnoses is stored. For example is the memory usage
reduced with 70 % for the automotive application when two compo-
nents are behaving abnormally.

6.6 Conclusions from the Automotive Application

The important conclusions from this application are that the designed
algorithm is more efficient and requires a reduced number of trans-
missions compared to the computation of the set of minimal global
diagnoses using a centralized algorithm. Further, both the mean size
and the mean number of minimal condensed diagnoses are reduced
compared to the minimal global diagnoses.

7 AUTOMOTIVE APPLICATION OF MINIMAL

CARDINALITY CONDENSED DIAGNOSES

In some cases, the search for diagnoses is focused onto the set of min-
imal cardinality diagnoses, see Section 1, and in Section 5.4 an algo-
rithm was designed that computes the sets of minimal cardinality con-
densed diagnoses in each agent. In this section, the algorithm is ap-
plied to the automotive application used in the previous section.

7.1 Implementation of the Minimal Cardinality Algorithm

Here, the algorithm for the computation of the sets of minimal cardi-
nality condensed diagnoses is implemented exactly as stated in Algo-
rithm 4. This means that all results from the first part, i.e. row 2–3
in the algorithm, are discarded before evaluating the second part, i.e.
row 4–6. The inefficiency caused by this give at most a doubling of the
number of needed operations and transmissions. An implementation
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that reuses the information would use similar ideas to those designed
in Paper I, see Algorithm 2 in Section 3.5.

7.2 Computing the Minimal Cardinality Global diagnoses

Algorithm 4 is compared to a centralized algorithm similar to that
used in Section 6.2, but which instead computes the set of minimal
cardinality global diagnoses. Since only the set of minimal cardinal-
ity global diagnoses is wanted, the centralized algorithm is modified
such that, after each extension of the diagnoses with respect to some
conflict, the diagnoses with cardinality higher than the cardinality of
the minimal cardinality global diagnoses are removed.

7.3 Evaluation for a Test Suite

The algorithms is compared in the same way as is done in Section 6
and the results are shown in Figure 8. When Algorithm 3 is compared
to the centralized algorithm, it is found that the number of needed op-
erations is lower for Algorithm 3 when two abnormal components or
more exist in the system. Here, Algorithm 4 is in mean more efficient
than the centralized algorithm when there are four abnormal compo-
nents or more, and the gain increases when the number of abnormal
components increases. For four components the gain is only 18 %, but
the gain increases fast and reaches 70 % for five abnormal components.
Further, the growth rate can be seen to be exponential for the central-
ized algorithm while only linear for Algorithm 4. Therefore, the gain
in using Algorithm 4 increases exponentially with the number of ab-
normal components in the automotive application when four or more
components are abnormal.

The number of needed transmissions can be seen in Figure 8(b).
The number of operations increases somewhat faster for Algorithm 4
than for the centralized algorithm.

Figure 8(c) and 8(d) show the mean size and the mean number of
the minimal cardinality condensed and global diagnoses. The results
are similar to that in Section 6. There is for example a mean reduction
of 35 % when one component is abnormal in the automotive applica-
tion, increasing to a reduction of 73 % for five abnormal components.

Especially, the sets of minimal cardinality condensed diagnoses are
a compact representation of the minimal cardinality global diagnoses
for the same reasons as stated in Section 6.

7.4 Conclusions from the Automotive Application

In this application, the gain in processor load when using Algorithm 4
grows exponentially for system with four our more abnormal compo-
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FIGURE 8: The mean number of operations, transmissions, minimal
diagnoses in each agent, and mean size of the diagnoses are shown.

nents. Independent of the algorithms, both the number and the size of
the minimal cardinality condensed diagnoses are lower compared to
the minimal cardinality global diagnoses.

Compared to the minimal condensed diagnoses and Algorithm 3
in Section 6, it can be seen that the mean number of minimal cardinal-
ity condensed diagnoses are lower than the number of minimal con-
densed diagnoses. This can for example be seen in Figure 7(d), where
the number of minimal condensed diagnoses reaches about 25, and
in Figure 8(d), where the number only reaches 5 minimal cardinality
condensed diagnoses. Further, both the number of needed operations,
transmissions, and the size of the minimal cardinality condensed di-
agnoses are reduced compared to the minimal condensed diagnoses.
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8 EVALUATION FOR DETERMINISTIC SYSTEMS

In Paper I Section 4, each test case is exactly defined by a set of param-
eters that describes the characteristics of the diagnostic system. Since
each test case is exactly defined by a set of parameters, it is possi-
ble to evaluate how the complexity of the algorithm in Paper I scales
with the value of the parameters. By using these test cases also for
Algorithm 3, the objective is to evaluate how the complexity, and the
number and size of the minimal condensed diagnoses scales when the
different parameters are changed.

To recapitulate, each test case consists of n agents with nt diag-
nostic tests that have responded in each agent, thereby creating nt

conflicts in each agent. Each test monitors nc/t components with an
overlap of noverlap components between the tests. The agents are par-
titioned into sets of na/m agents such that there is a connection of ncon

components between two sequential agents within each set and none
between the sets. By these parameters, each test case is exactly de-
fined. In the studied automotive vehicle, ncon is commonly low com-
pared to the number of supervised components, while noverlap might
vary from 0 to nc/t − 1.

8.1 The Evaluated Algorithms

The designed algorithms will be compared to a centralized algorithm
similar to that in Paper I, Section 4. This centralized algorithm used
here differs in that it here computes the complete set of minimal global
diagnoses, in contrast to the set of minimal cardinality global diag-
noses that is computed in Paper I. To reduce the complexity when
using the designed algorithms and the centralized algorithm, both al-
gorithms will partition the set of agents into modules. For the compu-
tation of the modules, the algorithm in Paper I Section 3.3 is used.

8.2 Evaluation for a Test Suite

Consider the test suite where nt = 3, nc/t = 3, noverlap = 1, na/m =

4, ncon = 1, and n is varied between one and twelve. The set of min-
imal condensed diagnoses and the set of minimal global diagnoses
have been calculated using the designed algorithms and the central-
ized algorithm respectively, and the number of needed operations and
transmissions have been counted. The results are shown in Figure 9.

Figure 9(a) and 9(b) show, in linear and logarithmic scale, the max-
imum number of operations in one agent and, for the designed algo-
rithms, the sum of operations over all agents. Due to the number of
agents per module, na/m = 4, the set of agents is partitioned into
modules such that agent one to four is included in the first module,
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five to eight in the second, etc. It can be seen that the maximum load
increases exponentially when the size of the systems are increased
from one to four agents since the first module includes up to na/m = 4

agents. The maximum number of needed operations equals that of the
maximum number of operations in one of the modules, and thereby
reaches a constant non-increasing value when there is is four or more
agents in the system. The maximum load for the centralized algo-
rithm increases linearly with the number of modules. The reduction
in maximum processor load is for example reduced with 80 % for sys-
tems with two agents, increasing fast to 99.5 % reduction for the sys-
tem with four agents.

For the test suite, the number of transmissions increases linearly
with the number of modules for both algorithms , see Figure 9(c).

In Figure 9(d), the mean size of each diagnosis can be seen. The
mean size increases for the first module but are thereafter almost con-
stant. The reason for the constant value is that the diagnoses in one
module are independent of the diagnoses in the other modules. The
mean value of the size of the diagnoses are constant within each com-
plete module, and the mean value over all modules are therefore also
constant.

Figure 9(e) and 9(f) show, in linear and logarithmic scale, the mean
number of minimal diagnoses per agent. For all systems with more
than one agent, both the size and the number of minimal diagnoses
are reduced for the set of minimal condensed diagnoses compared to
the set of minimal global diagnoses. The reduction in mean number of
diagnoses is for example 70 % for the system with two agents, increas-
ing to 95 % reduction for the system with four agents.

9 REMOVING THE SIGNAL ASSUMPTION

When designing the algorithms in Section 5, it is assumed that As-
sumption 1 is fulfilled. The assumption stated that, the dependency
for a signal, which is an output from an agent, is limited to the set of
private components in the agent, and that all dependencies are dis-
joint. The assumption is taken to make the algorithms more readable,
and since the assumption by construction is fulfilled in many indus-
trial applications. However, systems exist for which the assumption is
not fulfilled, and therefore, this section will show how the algorithms
can be adapted such that the assumption can be removed. Section 9.1
will show how the assumption of disjoint signal dependencies can be
removed and Section 9.2 will show how the dependencies can be ex-
tended to the set of common components.

In an application, it should first be checked if Assumption 1 is ful-
filled by construction. If this is not the case, then it should be consid-
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FIGURE 9: The mean number of operations, transmissions, minimal
diagnoses in each agent, and mean size of the minimal diagnoses.
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ered that maybe the system should be redesigned such that Assump-
tion 1 is fulfilled by construction. The reason for this is that, without
Assumption 1, it is not possible to assume independency of signals,
making it difficult to use one of them to supervise the other, and simi-
lar for the common components.

9.1 Non Disjoint Signal Dependencies

This section will extend Algorithm 3 such that the assumption that the
dependencies are disjoint can be removed. However, first a discussion
about the effect that non-disjoint dependencies have on the algorithm.

Discussion

Consider for example two signals s1 and s2 that depend on the com-
ponent A and assume that this component has been found to behave
abnormally. In this case, both signals should by definition be included
in the corresponding condensed diagnosis. Similarly, even though an
agent has only detected that one of the signals are behaving abnor-
mally, both of the signals should be included in the corresponding
condensed diagnosis. If for example signal s1 has been found to be-
have abnormally, this means that component A is included in a mini-
mal global diagnosis, which means that not only s1 but also s2 should
be included in the corresponding condensed diagnosis. This type of
dependencies has to be managed in an algorithm that aims at com-
puting the set of minimal condensed diagnoses, such as the extended
algorithm that will be designed below.

However, to keep the algorithm more readable, it will here instead
be assumed that if a signal is included in a minimal local diagnosis
then each signal, which depends on any of the components that the
first signal depends on, is also included in the minimal local diagno-
sis. If for example signal s1 is included in a minimal local diagnosis,
then all local diagnoses including s1 should also include the signal s2

since they both depend on component A. Considering responded di-
agnostic tests, this assumption means that, if a signal is included in a
generated conflict, then for each signal, which depends on any of the
components that the first signal depends on, an additional conflict is
generated that equals the original conflict but where the first signal has
been replaced with one of the other signals. If for example a diagnos-
tic test that supervises signal s1 has responded, then the two conflicts
{s1} and {s2} should be generated. From this follows then that the local
diagnosis {s1, s2} is computed that fulfills the assumption that signals
depending on the same components should all be included in the local
diagnosis if any of the signals is included.
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Further, considering industrial applications, the information about
such non-disjoint dependencies should naturally be included in the
description of the signals characteristics.

Extending Algorithm 1–3 to Non-Disjoint Dependencies

The following modifications of the algorithms in Section 5 will extend
Algorithm 1–3 such that signals with non-disjoint dependencies can
be included in the system.

In Algorithm 2, remove row 12, and replace CrossProduct in
row 6 with MinimalHittingSets. The input to the minimal hitting
set operation is a set of dependencies. If for example a signal s1 has
a dependency Dep(s2) = {A,B} and another signal s2 has a depen-
dency Dep(s2) = {A,C}, then the set of signals {s1, s2} is replaced with
MinimalHittingSets({Dep(s1),Dep(s2)}) = {{A}, {B,C}}.

A case that could now arise is that if several signals in a condensed
diagnoses depend on the same component, then the cardinality of the
condensed diagnosis will be to high. Consider for example the sig-
nals s1 and s2 that both depend on the component A. The cardinality
of the condensed diagnosis 〈{s1, s2}, 0〉 is two while the cardinality of
the corresponding global diagnosis {A} is only one. To correct this, a
compensation should be performed such that the condensed diagno-
sis becomes 〈{s1, s2},−1〉 that has a correct cardinality.

The compensations are performed by adding the following rows
to Algorithm 2.

12: for each 〈D, k〉 ∈ DAi
c where D = ∪jDj and Dj = P̄j ∪ Gj ∪ Γ̄ j ∪ Ωj do

13: k := k − Compensate(∪jΓ̄
j \ ∪jΩ

j)

14: end for
15: DAi

c := minimal condensed diagnoses(DAi
c )

When computing the compensation, the set of signals partitioned into
the sets Γ̄ j and Ωj is used, where these sets are computed in row 4 in
the algorithm. The compensation function is

Compensate(Γ) = |Γ | − min
H∈MinimalHittingSets(∪s∈Γ {Dep(s)})

|H|

for a set of signals Γ . The compensation is the number of signals mi-
nus the minimal number of components that could have caused the
signals in Γ to be abnormal. Notice the similarity with row 4–5 in Al-
gorithm 1 where the compensation is performed for the signals that
are outputs from the transmitting agent. In the algorithm, the input
to Compensate(·) is the signals that are outputs from agent Aj ex-
cept those that have already been compensated for in Algorithm 1
that are signals in the set Ωj. The compensation might seem cum-
bersome, however, the compensation is in many applications zero for
most combinations of signals since the dependencies of the signals are
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FIGURE 10: An example of a system consisting of two agents, one com-
ponent, and two signals.

often disjoint. If the signals are disjoint then the set of signals Γ have
the same cardinality as the set H in Compensate(Γ), since there is one
component in H for each signal in Γ . However, for those signals that
are not disjoint, the compensation can be computed off-line and saved
for use in the agents when Algorithm 2 is evaluated. Consider for
example the signals s1 and s2 described above, the compensation is
always −1 when both of these signals are included in a diagnosis.

The following example will illustrate two different cases that can
arise when using the algorithm.

EXAMPLE 5: Consider an agent A1 with private component A and
two output signals s1 and s2 that both depend on the component A,
see Figure 10. Assume that agent A2 has detected that the two signals
are behaving abnormally and has computed the minimal local diag-
nosis {s1, s2}. Further, assume that agent A1 only has the empty min-
imal local diagnosis. Using Algorithm 3, the minimal condensed di-
agnosis 〈{s1, s2}, 0〉 in A1 is calculated before the compensation is per-
formed. The input to Compensate(·) is the set Γ̄1 ∪ Γ̄2 \ Ω2 = {s1, s2}

since Γ̄2 = {s1, s2} and Γ̄1 = Ω2 = ∅. The compensation is therefore
Compensate({s1, s2}) = |{s1, s2}|− |{A}| = 1. The result of the compen-
sation is the minimal condensed diagnosis 〈{s1, s2},−1〉 that represent
the minimal global diagnosis {A}. The compensations are here per-
formed in the receiving agent.

Assume now instead that A1 has detected that its private compo-
nent A is behaving abnormally and has computed the local diagno-
sis {A}. Further, assume that agent A2 only has the empty minimal
local diagnosis. Agent A1 replaces the private component with the
signals and transmits the set {〈{s1, s2},−1〉}. In A2, the minimal con-
densed diagnosis {〈{s1, s2},−1〉} is computed. In this case, the input
to Compensate(·) is Γ̄1 ∪ Γ̄2 \ Ω1 = ∅, where Γ̄1 = Γ̄2 = ∅ and
Ω1 = {s1, s2}, and the compensation is therefore 0. The compensation
had in this case already been done in the transmitting agent, while in
the first case, the compensation had to be performed in the receiver. ⋄
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9.2 Signals Depending on Common Components

This section will give an extension of Algorithm 3 such that dependen-
cies can include common components, i.e. Dep(s) ⊆ PAi ∪ G for a sig-
nal s from agent Ai. This is in contrast to Assumption 1 that required
that Dep(s) ⊆ PAi . If wanted, the extended versions of Algorithm 1–3,
described in Section 9.1, can be used.

The problem that arise when a dependency includes common com-
ponents is that both the common component and the signals depend-
ing on the common component must be included in the correspond-
ing condensed diagnosis. Assume for example that a signal s only
depends on the common component G, i.e. Dep(s) = {G}. If G is in-
cluded in a minimal local diagnosis {G}, then both G and s should by
the definition of a condensed diagnosis be included in the condensed
diagnosis 〈{G, s},−1〉. However, since Algorithm 3 does not deal with
the case of signal dependency on common components, the designed
algorithm will give the minimal condensed diagnosis 〈{G}, 0〉, which
is incorrect. The reason why both G and s should be included is that
otherwise, if for example only G is included in a diagnosis in an agent,
then the agent might incorrectly presume that component s, which is
also used by the agent, is normal. The knowledge that if G is abnor-
mal then s is also abnormal should be available to the agent, which is
fulfilled if the condensed diagnoses are used.

To be able to deal with the dependency on common components, it
is here suggested that a post-update of the sets of minimal condensed
diagnoses is performed. Meaning that after the Algorithm 3 has been
evaluated, each minimal condensed diagnosis is updated such that it
becomes a true minimal condensed diagnosis. Given the set of mini-
mal condensed diagnoses DAi

c in agent Ai, add the following rows to
Algorithm 3.

10: D̄Ai
c := ∅

11: for each 〈P ∪ G ∪ Γ, k〉 ∈ DAi
c do

12: Γ̌ := {s : Dep(s) ∩ G 6= ∅}
13: for each Ǧ ∈ MinimalHittingSets({dep(i) ∩ G : s ∈ Γ̌ }) do
14: ǩ := |Γ | − |Γ ∪ Γ̌ | + |G| − |G ∪ Ǧ|}

15: D̄Ai
c := D̄Ai

c ∪ {〈P ∪ G ∪ Ǧ ∪ Γ ∪ Γ̌ , k + ǩ〉}
16: end for
17: end for
18: DAi

c := D̄Ai
c

For each condensed diagnosis 〈P ∪ G ∪ Γ, k〉 in DAi
c , this update adds

signals Γ̌ whose dependency includes any component in G. For each
minimal combination Ǧ of common components depending on the
signals in Γ̌ , an updated condensed diagnosis 〈P∪G∪ Ǧ∪ Γ ∪ Γ̌ , k+ ǩ〉
is created, where ǩ compensates for the new set of signals Γ̌ and the
new set of common components Ǧ that has been added to the diagno-
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FIGURE 11: An example of a two agent system where the signal de-
pends on a common component.

sis. The compensation is done performed such that the cardinality is
consistent with the corresponding global diagnosis.

The following example will illustrate the extended algorithm.

EXAMPLE 6: Consider the system shown in Figure 11. A signal s exists
whose dependency is Dep(s) = {G,E}, represented by the dotted line.
The sets of private components are PA1 = {A} and PA2 = {E, F}. The
set of common components is G = {G}.

Assume that the local diagnosis in agent A2 is {G} and agent A1

has only the empty diagnosis. The diagnosis in A2 is transmitted to
agent A1 as {〈{G}, 0〉}, where it is received and merged to the minimal
condensed diagnosis {〈{G}, 0〉}. However, the minimal global diagno-
sis is {G} and this shows that the minimal condensed diagnosis should
be 〈{G, s},−1〉. Using the update given above, the minimal condensed
diagnosis is updated to the minimal condensed diagnosis {〈{s,G},−1〉}
that is consistent with the minimal global diagnosis.

Assume instead that agent A2 has the diagnosis {E} and agent A1

the diagnosis {G}. The tuple 〈{s}, 0〉 is transmitted to agent A1 where
the condensed diagnosis 〈{G, s}, 0〉 is computed. The update does not
change the condensed diagnosis since Γ̌ = Γ and Ǧ = G. The global
diagnosis is in this case {G,E} that shows that the condensed diagnosis
is correct. ⋄

This section has given extensions of the algorithms designed in
Section 5 such that both parts of Assumption 1 could be removed. The
removal of the assumption removes limitations on the signals depen-
dencies but increases the complexity of the algorithms. Due to the
increased complexity, if a system does not fulfilled Assumption 1 then
it should first be considered if the system can be changed such that the
assumption is fulfilled. If it is not possible or desirable to change the
system, the extended algorithms designed in this section can be used
when computing the sets of minimal condensed diagnoses.
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10 CONCLUSIONS

A distributed algorithm has been designed that computes a set of min-
imal or minimal cardinality condensed diagnoses in each agent, where
only components affecting the behavior of the agent are included. The
sets of minimal or minimal cardinality condensed diagnoses are com-
puted directly from the sets of minimal local diagnoses and the algo-
rithm therefore do not require the computation of the set of minimal or
minimal cardinality global diagnoses respectively. Due to the removal
of unaffecting components, the number of minimal condensed diag-
noses in each agent is reduced compared to the set of minimal global
diagnoses. For the automotive application including three agents, 85
components, and over 100 diagnostic tests, the number of diagnoses is
for example reduced with up to 90 %. Due to this reduction, the min-
imal condensed diagnoses are suitable to be used when for example
repair of an agent should be performed since fewer diagnoses have
to be checked. Using the designed algorithm, both the computational
load and the memory usage are reduced compared to a centralized
algorithm that computes the set of minimal global diagnoses. The au-
tomotive application showed a reduction of up to 85 % in both max-
imum processor load and memory usage when the sets of minimal
condensed diagnoses were computed.
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ABSTRACT

In automotive vehicles using only single component tests, the
fault status of a component is ready if a test only supervising
the component has been evaluated. However, if plausibility
tests that supervise multiple components are used, then a com-
ponent can be ready before all tests supervising the component
have been evaluated. Based on test results, this paper con-
tributes with conditions on when a component is ready, and
a strategy that decides which test whose evaluation will give
the most ready components. The number of tests that have to
be evaluated to gain readiness can thereby be minimized. The
conditions on readiness are given for both centralized and dis-
tributed systems and are applied to the distributed diagnostic
system in an automotive vehicle.

1 An earlier and shorter version of this paper has been presented in (Biteus et al.,
2006b).
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1 INTRODUCTION

Fault diagnosis is important in many applications and has become
even more so with the increase of on-board computing power in tech-
nical processes, see for example (Isermann, 2005). This work is moti-
vated by the diagnostic systems, i.e. the system responsible for fault
diagnosis and supervision, used in automotive vehicles (Gertler, 1998;
Hristu-Varsakelis and Levine, 2005) and in particular that used in a
Scania heavy duty vehicle. These systems typically store a diagnos-
tic trouble code (DTC) when a component is found to be faulty (SAE,
2003; ISO, 1999). In the first generations of diagnostic systems, each di-
agnostic test checked exactly one component for abnormal behavior.
Therefore, the DTCs could be used to exactly state the fault status of
a component, which is faulty if a test supervising the component has
responded and normal otherwise.

Due to higher demands on fault diagnosis, such as reduced emis-
sion levels (EU, 2005), more components must today be supervised for
abnormal behavior compared to the first generations of diagnostic sys-
tems. Since the number of sensors in the system is limited, the indus-
try has been forced to introduce diagnostic tests that check the correct
behavior of several components at the same time, often denoted plau-
sibility tests. The plausibility tests are for example based on analytical
redundancy relations (ARR) (Gertler, 1998; Isermann, 2001; Nyberg,
1999b). The plausibility tests come into conflict with the framework
based on single component tests that has previously been used in au-
tomotive vehicles. With the addition of plausibility tests, a component
can now be only suspected to behave abnormally and its fault status
is therefore suspected.

In addition to the fault status, if fault diagnosis is performed using
precomputed diagnostic tests then there is an advantage if the repair
technician or the control system can get an indication on when the
evaluation of additional diagnostic tests can not change the fault sta-
tus of a component, and the fault status is in this case said to be ready.
The evaluation of all tests give readiness for all components, however,
due to for example limited processing power, it is in automotive ap-
plications not always possible to evaluate all tests. Therefore, the cost
in evaluating a test has to be weighted against improvement in fault
diagnosis. If for example the evaluation of additional diagnostic tests
will facilitate the repair by improving the fault statuses, it is an advan-
tage to evaluate these tests before the repair is started. In automotive
applications, readiness codes are used to state if all tests supervising
a component or a subsystem have been evaluated or not (ISO, 1999).
The difference between readiness in (ISO, 1999) and this paper is that
a component might here be ready even though not all diagnostic tests
have been evaluated.
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This paper contributes with an algorithm, denoted the FSR (fault
status and readiness) algorithm, which computes the fault status and
readiness for all components. The FSR algorithm is here applied to the
diagnostic system used in a heavy duty vehicle from Scania.

The notation of fault status and readiness are defined with respect
to a centralized system. However, many applications, and especially
those used in the automotive industry, include multiple electronic con-
trol units (ECUs), generally denoted agents, which includes diagnostic
systems (Leen and Heffernan, 2002; Navet et al., 2005; Hristu-Varsa-
kelis and Levine, 2005; Biteus, 2005). In these distributed systems, di-
agnostic tests might exist in one agent that supervise components that
belong to another agent. Therefore, an additional contribution of this
paper is that the notations of fault status and readiness are extended
to distributed systems. This extension render it possible use the fault
status computed locally, to state the fault status applicable for the com-
plete distributed system. The application on the heavy duty vehicle is
extended to the distributed case.

One of the objectives for a diagnostic system is to achieve readi-
ness for the fault status of a component. Therefore, conditions are
stated and an algorithm is designed that computes which diagnostic
tests that should be evaluated to achieve readiness for a specific com-
ponent. Further, given a set of such diagnostic tests, a strategy is de-
signed that schedule the evaluation of the tests such that readiness is
achieved using as few evaluations of tests as possible.

In the AI field (Reiter, 1987; Dressler and Struss, 1996), the domi-
nant methodology for fault diagnosis has been so called consistency
based diagnosis, on which this paper is based. The methodology of
consistency based diagnosis has strong relationships with the meth-
ods for fault diagnosis used in engineering disciplines (Cordier et al.,
2004), such as control theory and statistical decision making (Gertler,
1998; Gertler et al., 1995; Basseville and Nikiforov, 1993). Within this
methodology, a diagnosis points at a set of components whose ab-
normal behavior could explain why a system does not function as
intended and are primarily used for repair and fault tolerant con-
trol (Shin and Belcastro, 2006). The fault status differs from diagnoses
in that the fault statuses give the components that certainly behave ab-
normally, which that might behave abnormally, and those that are not
behaving abnormally, while each diagnosis points at a set of compo-
nents that might behave abnormally. Further, it is in some applications
intractable to compute the diagnoses since the complexity increases
exponentially with the number of tests, this is in contrast to the fault
status that has only a linearly increasing complexity and is therefore
in practice always tractable.
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2 BACKGROUND TO FAULT DIAGNOSIS

In this section the framework in consistency based diagnosis will be
introduced. This framework will be used in the rest of this paper.

A system consists of a set of components C that should be super-
vised by the diagnostic system. A component is something that can
be diagnosed, such as sensors, actuators, cables, and pipes. Here, only
the abnormal and the not abnormal mode is considered, where the ab-
normal mode does not have a model. Further, the set notation used in
for example GDE is employed (Kleer and Williams, 1987).

A diagnosis D ⊆ C is a set of components, such that the abnor-
mal behavior of the components in D, the normal behavior of the re-
maining components, the system description, and the observations are
consistent. All supersets of a diagnosis D are also diagnoses since only
the abnormal mode, without a model, and the not abnormal mode are
considered. Further, a diagnosis D is a minimal diagnosis if there is
no proper subset D ′ ⊂ D where D ′ is a diagnosis (Kleer et al., 1992).

A conflict is a set of components π ⊆ C, such that the normal be-
havior of the components, the system description, and the observa-
tions are inconsistent. As with diagnoses, a conflict π is a minimal
conflict if there is no proper subset π ′ ⊂ π where π ′ is a conflict. If
a single-component diagnostic test responds, i.e. if it detects that the
component c that it supervises is behaving abnormally, then a conflict
π = {c} is generated. Further, if a plausibility test responds then a con-
flict π ⊆ C is generated. From the definitions follow that a set D ⊆ C

is a diagnosis if and only if it has a nonempty intersection with every
conflict. A consequence of this is that the set of minimal diagnoses is
the set of minimal hitting sets for the set of minimal conflicts (Kleer
et al., 1992).

3 FAULT STATUS AND READINESS

This section will focus on systems with one agent, while Section 4 will
extend the results to distributed systems consisting of multiple agents.

3.1 Component Fault Status: Faulty, Suspected, and Normal

It was in Section 1 stated that the fault status of each component is
wanted, where the fault status is either faulty, suspected, or normal.
Here, the fault status will be defined with respect to the minimal con-
flicts since this will clearly show how the fault status relates to how
DTCs are set in automotive industry. However, equivalent results would
follow if the fault status were defined with respect to the set of mini-
mal diagnoses, which is shown in Proposition 1.
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DEFINITION 1: Let Π be the set of minimal conflicts. The fault status of
component c is faulty if and only if

∃π ∈ Π : π = {c}.(1)

The fault status of component c is suspected if and only if

∃π ∈ Π : c ∈ π ∧ |π| > 1.(2)

The fault status of component c is normal if and only if

∀π ∈ Π : c /∈ π.(3)

The possible values of the fault status for a component are exhaus-
tive, i.e. a component is either faulty, normal, or suspected. It follows
from the definition that when only single-component diagnostic tests
are used, then it is only possible for the fault status of a component to
be faulty or normal. This coincides with how DTCs were set in automo-
tive vehicles before plausibility tests were introduced. The definition
of normal fault status is reasonable from an engineering perspective,
since if there is no indication that a component is behaving abnormally
then there is no reason to repair the component and its fault status can
therefore be denoted normal.

EXAMPLE 1: Consider a system consisting of the components A, B, C,
D, and E. Let diagnostic tests exist such that the possible conflicts are
{A}, {B,C}, {C}, and {B,D}. If the present conflicts are {A} and {B,C}

then it follows from Definition 1 that the fault status of component A

is faulty, and the fault status of B and C are suspected. Further, the
fault status of the rest of components, i.e. D and E, are normal. ⋄

Since the diagnoses commonly are used within the AI field, the
relation between diagnoses and fault status is here given.

PROPOSITION 1: Let D be the set of minimal diagnoses. The fault status of
component c is faulty if and only if

∀D ∈ D : c ∈ D.(4)

The fault status of component c is suspected if and only if

(∃D ∈ D : c ∈ D) ∧ (∃D ∈ D : c /∈ D).(5)

The fault status of component c is normal if and only if

∀D ∈ D : c /∈ D.(6)

Proof. The proposition is proved using the fact that the set D is the
set of minimal hitting sets w.r.t. the set of minimal conflicts Π. Faulty:



100 3 FAULT STATUS AND READINESS

Component c ∈ D for all minimal diagnoses D ∈ D if and only if a
conflict π = {c} exists. By Definition 1, it then follows that (4) holds
if and only if c is faulty. Suspected: A diagnosis D ∈ D exists where
c ∈ D if and only if a conflict π exists where c ∈ π. Further, D ∈ D

exists where c 6∈ D if and only if a conflict π = {c} does not exist. By
Definition 1, it then follows that (5) holds if and only if c is suspected.
Normal: By Definition 1, it follows directly that (6) holds if and only if
c is normal.

Proposition 1 shows that if a component is not included in the min-
imal diagnoses, then its fault status is normal. Similar to Definition 1,
this is reasonable since there is no indication in the minimal diagnoses
that the component is behaving abnormally.

EXAMPLE 2: Continuation of Example 1. The set of minimal diagnoses
for the present conflicts {A} and {B,C} is the set

D = {{A,B}, {A,C}}.

It follows from Proposition 1 that the fault status of component A is
faulty, the fault status of B and C are suspected, and the fault status
of D and E are normal. As should be, this coincides with the fault
statuses computed directly using Definition 1. ⋄

3.2 The Readiness of the Fault Status

In this section, the readiness of the fault status will be defined and
conditions useful to compute the readiness from the conflicts will be
given.

DEFINITION 2: The fault status of component c is ready if and only if the
fault status of c, considering the present minimal conflicts Π, is unchanged
for all possible future sets of minimal conflicts Π̄.

The set Π is the set of conflicts resulting from the evaluated and
responded diagnostic tests. The non evaluated diagnostic tests and
the evaluated but non responded tests could in the future give the
set of conflicts Πf. Therefore, the set of future minimal conflicts Π̄

mentioned in Definition 2 is some set of minimal conflicts from the set
Π ∪ Πf.

For a component whose fault status is faulty, the following simple
relation between the readiness and the fault status holds.

PROPOSITION 2: Let the fault status of component c be faulty, then the
fault status of c is ready.

Proof. A conflict π = {c} exists if and only if the fault status of c is
faulty, Definition 1, and since π is always a minimal conflict, the fault
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status is always faulty, and from Definition 2 it then follows that the
fault status of c is ready.

The proposition shows that the definition of readiness follows the
intuitive meaning of faulty. If a component has been found to certainly
behave abnormally, then it can in the future not be found to not behave
abnormally.

The following two propositions state the relation between readi-
ness and conflicts when the fault status is suspected or normal.

PROPOSITION 3: Let Π be the set of present minimal conflicts and let Πf be
the set of all possible future conflicts. Let the fault status of component c be
suspected, then the fault status of c is ready if and only if

(∄πf ∈ Πf : πf = {c}) ∧(7a)
(

∃π ∈ Π : c ∈ π ∧ (∄πf ∈ Πf : c 6∈ πf ∧ πf ⊂ π)
)

.(7b)

Proof. Component c is suspected if and only if (2) holds. For all future
conflicts, the first and second part of (2) hold if and only if (7b) and
(7a) hold respectively. The minimal diagnoses are exactly defined by
the minimal conflicts, and by Definition 2, it therefore follows that c is
ready if and only if (7) holds.

The meaning of (7b) is as follows: If a possible future conflict is
a subset of the present conflict, which made the fault status of c sus-
pected, then the present conflict is in the future non-minimal and is
therefore removed. Further, if one such future conflict exists for each
conflict that made c suspected, then the fault status of c would no
longer be suspected. This type of subset condition will be found in
several of the propositions stated in this paper.

It is straightforward to construct an algorithm that test an equa-
tion such as (7) by testing all conflicts. However, such a direct imple-
mentation will not be very efficient due to the testing of all conflicts,
therefore, the FSR algorithm designed in Section 5 will be based on a
graph-representation of the conflicts that will make it possible to com-
pute the fault statuses and readiness without testing all conflicts.

EXAMPLE 3: Consider Example 1 where the present conflicts are {A}

and {B,C}, and the possible future conflicts are {C} and {B,D}. The
fault status of components B and C are suspected. Using Proposition 3,
it can be found that component B is not ready since for the possible
future conflict πf = {C} and for the present conflict π = {B,C}, the fault
status of B becomes normal and the condition in (7b) is therefore not
fulfilled. The fault status of C is also not ready since for the possible
future conflict π = {C}, the fault status of C becomes faulty and the
condition in (7a) is therefore not fulfilled. ⋄
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PROPOSITION 4: Let Π be the set of present minimal conflicts, and let Πf be
the set of all possible future conflicts. Let the fault status of component c be
normal, then the fault status of c is ready if and only if

∄πf ∈ Πf : c ∈ πf ∧ (∀π ∈ Π : π 6⊂ πf).(8)

Proof. The fault status of c is normal for all possible future diagnoses
if and only if c /∈ πf for each conflict πf ∈ Πf that is non-minimal
considering Π, Definition 1. The fault status is therefore normal for all
possible future diagnoses if and only if (8) holds. From Definition 2
follows now that c is ready if and only if (8) holds.

EXAMPLE 4: Consider once again Example 1. The fault status of D

and E are normal. From Proposition 4 follows that the fault status of
D is not ready since a possible future conflict πf = {B,D} exist that
does not fulfill condition (8). The fault status of E on the other hand is
ready since any possible future conflict πf does not exist where E ∈ πf,
and thereby fulfilling (8). ⋄

In summary: The conditions in Proposition 2, 3, and 4 can be used
to decide if the fault status of a component is ready. The conditions in
these propositions relates the readiness to the conflicts and are there-
fore suitable to use when constructing an algorithm that computes the
readiness.

4 DISTRIBUTED SYSTEMS

The fault status and the readiness are here extended to distributed sys-
tems such that it is possible to use the fault status and readiness com-
puted locally in each agent to state the fault status and readiness for
the complete system. First, distributed systems will be exemplified
and a framework for distributed systems will be designed. The fault
status and its readiness will then be extended to distributed systems.

4.1 An Example of a Distributed System

Figure 1 shows a configuration of the distributed system used in cur-
rent Scania heavy-duty vehicles. It includes three separate CAN (con-
troller area network) buses, which are connected to the coordinator
ECU. Each ECU is further connected to sensors and actuators, and both
sensor values and control signals can be shared with the other ECUs
over the network. There are between 20 and 30 ECUs in the system,
depending on the configuration of the truck, and between 4 and 110
components are supervised by the diagnostic system in each ECU. The
diagnostic tests in some of the ECUs supervise components physically
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FIGURE 1: A part of the distributed system in Scania vehicles.

connected to other ECUs trough the sharing of for example sensor val-
ues. A consequence of this is that the fault status of a component can
locally be stated by several ECUs independent of the other ECUs.

4.2 Framework for Distributed Fault Diagnosis

Based on the example system given above, a framework suitable for
stating the fault status and readiness in a distributed system has been
developed.

A distributed system consists of a set of components C, which should
be supervised by the diagnostic systems implemented in a set of agents
A. A local diagnosis is determined by the conflicts in a single agent,
while a global diagnosis is determined by the conflicts in all agents.
In more detail, let ΠA be the set of minimal conflicts detected in agent
A ∈ A, and let DA be the set of local minimal diagnoses determined by
the set of minimal conflicts ΠA. The set of minimal global diagnoses
D is determined by the set of minimal conflicts in the set ∪A∈AΠA.

4.3 Faulty, Suspected, and Normal Fault Status

The fault status of a component can, in a distributed system, be di-
vided into two different levels, the global and the local fault status.

DEFINITION 3: The global fault status (GFS) of component c is faulty,
suspected, or normal if it is faulty, normal, or suspected, respectively, with
respect to the set of minimal conflicts in the set ∪A∈AΠA.

DEFINITION 4: The local fault status (LFS) of component c is faulty, nor-
mal, or suspected, for agent A if it is faulty, normal, or suspected, respectively
with respect to the set of minimal conflicts ΠA in agent A.
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The GFS can be computed from the set of all minimal conflicts in all
agents using Definition 1. However, if the LFSes have been computed
for all agents, it is possible to increase the efficiency in the computation
of the GFS by using the LFSes. Such relations are here given for the
three cases of faulty, suspected, and normal GFS.

The GFS has a simple relation to the LFS in some agent where the
LFS is faulty.

PROPOSITION 5: The GFS of component c is faulty if and only if the LFS is
faulty for some agent.

Proof. The GFS of component c is faulty if and only if (1) holds consid-
ering all conflicts in all agents, and this is the case if and only if the LFS

of c is faulty for some agent.

The proposition shows that the definition of globally faulty follows
the intuitive meaning of faulty. If the LFS of a component is faulty, then
its GFS must also be faulty. The relation between the GFS suspected and
normal, and the LFS is given by the following propositions.

PROPOSITION 6: The GFS of component c is suspected if and only if

(∄A ∈ A : (the LFS of c in A is faulty)) ∧(9a)
(

∃A ∈ A : (the LFS of c in A is suspected) ∧(9b)

(∃π ∈ ΠA : c ∈ π ∧ (∄π̃ ∈
⋃

Ã∈A\A

ΠÃ : π̃ ⊂ π))
)

.(9c)

Proof. The GFS of component c is suspected if and only if (2) holds
w.r.t. the minimal set of all conflicts in all agents. By Proposition 5,
second part of (2) holds if and only if (9a) hold and first part of (2)
holds if and only if (9b) and (9c) hold.

PROPOSITION 7: The GFS of component c is normal if and only if

∀A ∈ A : (the LFS of c in A is normal) ∨(10a)
(

(the LFS of c in A is suspected) ∧(10b)

(∀π ∈ {π ∈ ΠA : c ∈ π} : (∃π̃ ∈
⋃

Ã∈A\A

ΠÃ : π̃ ⊂ π))
)

.(10c)

Proof. The GFS of component c is normal if and only if (3) holds. Equa-
tion (3) holds if and only if for each agent, the LFS is normal (10a), or
it is suspected (10b) and the conflict including c is non-minimal w.r.t.
the minimal set of conflicts in all agents if and only if (10c) holds. The
GFS of c is therefore normal if and only if (10) holds.
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EXAMPLE 5: A system consists of two agents A1 and A2 that have
computed the sets of minimal conflicts ΠA1 = {{A,B}} and ΠA2 =

{{A}, {C,D}} respectively. The LFSes of components A and B are sus-
pected in agent A1, while in A2 the LFS of component A is faulty and
the LFSes of C and D is suspected.

Using Proposition 5 the GFS of A can be found to be faulty since
an LFS exist where A is faulty. Further, the GFS of B is normal since
the LFS of B is normal in A2, i.e. (10a), and in A1 it is both suspected,
i.e. (10b), and a conflict {A} exist in A1 for which {A} ⊂ {A,B}, i.e. (10c).
Finally, the GFSes of C and D are suspected since they are suspected in
A2 and the conflict {A,B} 6⊂ {C,D}. To conclude, the GFS of A is faulty,
C and D are suspected, and B is normal.

To verify the result, the set of minimal global diagnoses D = {{A,C},

{A,D}} has been computed. It can be seen that the GFSes computed
from the minimal global diagnoses coincides with the GFSes computed
from the LFSes. ⋄

In summary: The conditions in Proposition 5, 6, and 7 can be used
to compute the GFS of a components based on the LFS computes in
each agent.

4.4 Ready Fault Status for Faulty, Suspected, and Normal GFS

As with fault status, the readiness can also be partitioned into two
types.

DEFINITION 5: The fault status of component c is globally ready if it is
ready with respect to set of minimal conflicts in the sets of present and possible
future minimal conflicts in all agents.

DEFINITION 6: The fault status of component c is locally ready for agent
A if it is ready with respect to the set of present and possible future minimal
conflicts in agent A.

Since components might be supervised by several agents, a com-
ponent might be locally ready even though it is not globally ready, and
vice versa. The global readiness of a component can be computed us-
ing the propositions given in this section. Similar to the computation
of the local readiness, propositions are given for the cases where the
GFS is faulty, suspected, and normal.

The strong relationship between a fault status that is faulty and its
readiness shown in Proposition 2 also holds for global readiness.

PROPOSITION 8: Let the GFS of component c be faulty, then it is globally
ready.

Proof. Follows from Proposition 2 and Proposition 5.
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The relationship between global readiness and the normal and sus-
pected GFS is based on similar conditions as in Proposition 6 and 7.

PROPOSITION 9: In agent A, let ΠA be the present conflicts and let Πf
A be

the possible future conflicts. For an agent A where the LFS of c is suspected,
let

(11) Π̄A = {π ∈ ΠA : c ∈ π ∧ (∀π̃ ∈
⋃

Ã∈A\A

ΠÃ : π̃ 6⊂ π)}.

Let the GFS of component c be suspected, then it is globally ready if and only if

(

∄A ∈ A : (∃πf
A ∈ Πf

A : πf
A = {c})

)

∧(12a)
(

∃π ∈
⋃

A∈A

Π̄A : (∀π̃ ∈
⋃

A∈A

Πf
A : π̃ 6⊂ π)

)

.(12b)

Proof. The GFS is ready if and only if the GFS could not become faulty
or normal for any future set of global diagnoses, Definition 5. The GFS

can not become faulty if and only if (12a) holds. The GFS could not
become normal if and only if (12b) holds.

In an implementation, the proposition above could be simplified
by limiting the set of agents that the existential quantifiers range over.
In equation (12a), the not exist quantifier ranging over the set of all
agents A can be limited to the set of agents where the LFS is not ready.
In equation (12b), the exist quantifier ranging over the set of conflicts
in all agents A, can be limited to the set of agents where, the LFS in A
is suspected and ready, or where the LFS is normal and not ready.

PROPOSITION 10: Let Πf
A be the possible future conflicts in agent A. Let

the GFS of component c be normal, then it is globally ready if and only if

∀A ∈ A : (∀πf
A ∈ Πf

A : c ∈ πf
A ∧ (∃π ∈

⋃

Ã∈A

ΠÃ : π ⊂ πf
A))(13)

Proof. Follows from Proposition 7.

Similar to Proposition 9, the set that the universal quantifier range
over can be limited. In equation (13), the exist quantifier over the set
of all agents A can be limited to the set of agents where, the LFS is
suspected, or normal and not ready.

In summary: The conditions in Proposition 8, 9, and 10 can be used
to decide if a components GFS is ready based on the LFS in the different
agents.
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5 COMPUTING THE FAULT STATUS AND ITS

READINESS

The propositions in Section 3 can be used to design an algorithm that
computes the fault status and the readiness for all components. A
direct design of the algorithm loops, for each component, over all di-
agnostic tests and checks if any of the conditions in the propositions
are fulfilled. Even though such a direct design will give the desired
results, the algorithm require quite some processing power since the
algorithm must loop over all tests for all components. This section will
therefore design an efficient algorithm that computes the fault statuses
and readiness without having to loop over all components and tests.
The algorithm is denoted the FSR algorithm (fault status and readi-
ness).

The fault status for all components and the readiness for the faulty
components can efficiently be computed using a straightforward im-
plementation of the propositions in Section 3. However, as can be seen
from Proposition 3 and 4, an efficient implementation of the compu-
tation of the readiness for the suspected and the normal components
require knowledge of which conflicts that are subsets of other con-
flicts. This ordering of the set of conflicts is a partially ordered set that
here will be represented by a directed acyclic graph (DAG) (Harary,
1969). In the DAG, the relationship between the different conflicts will
directly be available and this will improve the efficiency when com-
puting the readiness for the suspected and normal components.

The FSR algorithm consists of the construction of the DAG, the up-
date of the constructed DAG with the results from the diagnostic test,
and the computation of the fault status and the readiness. The DAG is
constructed off-line as described in the following section.

5.1 The Construction of the Directed Acyclic Graph

A DAG consists of vertices connected by directed edges. Here, each
vertex will correspond to a conflict, while an edge will represent that
a conflict is a subset of another conflict. The pair (vf, vt) is used to
denote that an edge is connected from vertex vf to vertex vt.

The DAG is constructed such that a vertex v is created for each
unique conflict π that could result from any diagnostic test. The con-
flict corresponding to vertex v is denoted π(v). Each vertex is further
associated with a number n(v) that is the number of tests with con-
flict π, and a mark mark(v) that is 0 if no test with conflict π(v) has
responded and 1 otherwise. Two vertices are connected by a directed
edge (vf, vt) if π(vf) ⊂ π(vt) and a vertex v does not exist such that
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π(vf) ⊂ π(v) ⊂ π(vt)).

EXAMPLE 6: Consider a system with eight components and nine di-
agnostic tests. The diagnostic tests supervise the components and
the corresponding conflicts are {A}, {B}, {A,B}, {B,C}, {A,B,C}, {D,E},
{E, F}, {D,E, F}, and {G}. Based on this information, the DAG in Fig-
ure 2(a) is created where each vertex has been labeled with its corre-
sponding conflict. None of the vertices are marked since no test have
been evaluated, and since each test has a unique conflict the number
n(v) is one for all vertices. ⋄

{A} {B} {E,F}{D,E}

{B,C}{A,B}

{A,B,C} {G}

{D,E,F}

(a) The orignial DAG.

{A} {B} {E,F}{D,E}

{A,B} {D,E,F}

{G}

(b) The DAG updated with test results.

FIGURE 2: A DAG is constructed and updated.

5.2 Updating the DAG Based on the Results from Tests

After that a diagnostic test has been evaluated, the DAG should be
updated with respect to the test results. If a test has responded, then
a test whose conflict is a superset of the conflict for the responded test
should be removed from the DAG, since it is now non-minimal. On the
other hand, if a test did not respond then the corresponding vertex can
be removed, unless the number n(v) is greater than one. The update
of the DAG is performed by Algorithm 1.

EXAMPLE 7: Continuation of Example 6. Assume that the diagnos-
tic tests corresponding to the conflicts {A,B}, {D,E, F}, and {G} have
responded and the diagnostic test corresponding to the conflict {B,C}

has not responded. The DAG is updated using Algorithm 1. Due to
the mark of the vertex for the conflict {A,B}, the vertex correspond-
ing to conflict {A,B,C} is removed. The resulting DAG is shown in
Figure 2(b) where the vertices with a mark are circled. ⋄

5.3 Computing the Fault Statuses and Their Readiness

After the DAG has been constructed and updated with the diagnos-
tic test results, the fault statuses and the readiness can be computed
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Algorithm 1 Update DAG G with respect to the diagnostic test results.

Input: DAG G = (V, E). Responded and not-responded diagnostic
tests.

Output: An updated DAG G = (V, E).
1: if the diagnostic test corresponding to vertex v has responded

then
2: V := V \ {vrm : vrm reachable from v} [Vertices to remove.]
3: E := E \ {(vf, vrm) : vrm reachable from v} [Edges to remove.]
4: mark(v) := 1 [Set the mark.]
5: else
6: if n(v) > 1 then
7: n(v) := n(v) − 1 [Reduce the number.]
8: else
9: E := E ∪ {(vf, vt) : (vf, v) ∈ E ∧ (v, vt) ∈ E} [Add edges.]

10: E := E \ {(vf, v) ∈ E} ∪ {(v, vt) ∈ E} [Remove edges.]
11: V := V \ {v} [Remove v.]
12: end if
13: end if

from the graph using Algorithm 2. In the algorithm, XC denotes the
complement set of X with respect to the set of components C.

The algorithm first computes the sets of components whose fault
status are faulty, suspected, and normal, which in the algorithm are
the sets F, S, and N, respectively. For example, the components with
fault status faulty are given by the vertices that have a mark and whose
conflicts have a cardinality of one.

EXAMPLE 8: Continuation of Example 6. Consider first the compo-
nents with fault status faulty. For the vertex v corresponding to the
conflict {G}, the mark(v) = 1, and |π(v)| = 1, resulting in F := {G}. The
set of suspected components is computed to S := {A,B,D, E, F}, and
the set of normal components is therefore N := {C}. ⋄

The second part of the algorithm is the computation of the readi-
ness for all components. The faulty and ready components are given
directly by the set of faulty components, Proposition 6.

To compute if a suspected component is ready, it should be checked
if the component could become faulty or normal in the future, using
Proposition 3. First, if an unmarked vertex exists whose conflict has
a cardinality of one and includes the component, then the fault sta-
tus could become faulty. Second, if the component is included in all
conflicts, corresponding to vertices that can reach one of the vertices
resulting in the suspected component, then the component could not
become normal. In both cases, it is sufficient to check the root vertices,
since these includes the fewest number of components in its corre-
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Algorithm 2 Compute the fault status and readiness for all compo-
nents.
Input: A DAG G representing the diagnostic tests.
Output: A set T including a tuple for each component in C. Each tuple

includes the fault status and readiness for a component.
1: F := {c ∈ π : v ∈ V ∧ mark(v) = 1 ∧ π(v) = π ∧ |π| = 1} [Faulty.]
2: S := {c ∈ π : v ∈ V ∧mark(v) = 1∧π(v) = π∧ |π| > 1} [Suspected.]
3: N := (F ∪ S)C [Normal.]
4: RS := ∅, x := S [Ready and suspected RS, possibly ready x.]
5: for each v ∈ V where mark(v) = 1 and |π(v)| > 1 do
6: if v is a root then
7: RS := RS ∪ π(v), x := x \ π(v) [Ready.]
8: else
9: for all vs ∈ V where vs is a root to v, |π(vs)| = 1, and π(vs) ∩

x 6= ∅ do x := x \ π(vs) [Not ready.]
10: for all c ∈ x ∩ π(v) do, if ∀vs ∈ V where vs is a root to v and

c ∈ π(vs) then RS := RS ∪ {c}, x := x \ {c} [Ready.]
11: end if
12: end for
13: RN := N\{c ∈ π : v ∈ V ∧ mark(v) = 0 ∧ v is a leaf ∧ π(v) = π}

[Ready and normal RN.]
14: R := F ∪ RS ∪ RN [The set of ready components.]
15: T := {〈s, r〉c : c ∈ C, s = faulty if c ∈ F, s = suspected if c ∈ S, s =

normal if c ∈ N, r = ready if c ∈ R, r = not-ready if c ∈ RC} [Tu-
ples.]

sponding conflicts.

EXAMPLE 9: Continuation of Example 6. Initiate the set of ready sus-
pected components to RS := ∅, and the possibly ready components
to x := S. Consider first the marked vertex v corresponding to the
conflict {A,B}, see Figure 2(b). The root vertices {A} and {B} show
that neither A nor B is ready since they might in the future become
faulty. They are therefore removed from the set of possibly ready
components x := {D,E, F}. Consider now the marked vertex v cor-
responding to the conflict {D,E, F}. The component E is ready since it
is included in all root vertices. The component is added to the ready
components RS := {E} and removed from the possible ready compo-
nents x := {D, F}. The result is that E is ready while D and F are not.

⋄

To check if a component with normal fault status is ready, it follows
from Proposition 4 that it is only necessary to check the unmarked
vertices that are leafs. The final step in the algorithm is to compute the
tuples that also is the output from the algorithm.
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FIGURE 3: The SCR in the application (Bosch, 2006).

5.4 The Correctness of the FSR Algorithm

The correctness of the FSR algorithm is shown using Theorem 11.

THEOREM 11: Let Π be the set of present minimal conflicts and Πf the set
of possible future conflicts. For each component, let the tuple be 〈s, r〉c where
the fault status for component c is s ∈ {faulty, suspected, normal} and the
readiness is r ∈ {ready, not ready}. Let the result from Algorithm 2 be T , then
for each component c, a tuple 〈sT , rT 〉c ∈ T exists where 〈sT , rT 〉c = 〈s, r〉c.

Proof. The correctness of F, S, and N follow from Definition 1. The
correctness of the sets RS and RN are shown using Proposition 3 and 4
respectively. It follows from Proposition 2 and the correctness of RS

and RN that R is the set of components whose fault statuses are ready.
Output T is constructed correct parts and is therefore correct.

5.5 Extending the Algorithm to Distributed Systems

The FSR algorithm computes the fault statuses and readiness for one
agent. The algorithm can be extended using the propositions in Sec-
tion 4 such that it computes the GFS and the global readiness in a dis-
tributed system. To compute the GFS and the global readiness, the part
of each DAG that includes vertices pointing at vertices in another DAG

would have to be transmitted to the other agents.

6 AUTOMOTIVE VEHICLE APPLICATION

The FSR algorithm has been evaluated on a part of the diagnostic sys-
tem used in the heavy duty truck from Scania that is described in Sec-
tion 4.1. The part consists of the selective catalytic reduction (SCR)
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FIGURE 4: The isolation structure for the SCR (left) and the EMS (right).

system, which will be studied in detail, and the engine management
system (EMS), which will be included to create a distributed system.
The SCR lowers nitrous oxides from diesel engines and is used in new
trucks from all European heavy duty vehicle manufacturers, see Fig-
ure 3 for a schematic overview. The main parts of the system are the
SCR catalytic converter, the delivery module and the dosing module
that deliver the reduction agent, and the ECU that controls and su-
pervises the SCR. The EMS controls and supervises the engine. The
control of the engine is closely related to the control of the SCR, and
several components are therefore supervised both by the EMS and the
SCR.

The diagnostic system in both the SCR and the EMS each consists of
about 70 diagnostic tests that supervise about 50 and 60 components
respectively. The isolation structures can be seen in Figure 4, where
a cross × in row i and column j means that the diagnostic test i su-
pervises the component j for abnormal behavior. The six first compo-
nents in the isolation structures are supervised by both the diagnostic
system in the EMS and in the SCR. If all diagnostic tests were single-
component tests, then the isolation structures would, with a suitable
ordering of the tests, be diagonal matrices. However, it can be seen
that in this case, several plausibility tests exist and this makes the com-
putation of the statuses more difficult.

The FSR algorithm first creates DAGs off-line based on the isolation
structures, see Figure 5 for the SCR, and Figure 7 for the EMS. After
the DAGs have been created, Algorithm 1 and 2 is used to compute the
fault status and the readiness for all components.
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FIGURE 5: The original DAG for the SCR. The conflicts are displayed at
the corresponding vertices.
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FIGURE 7: The original DAG for the EMS system. The conflicts are dis-
played at the corresponding vertices. Each vertex points at the vertices
whose conflicts are supersets of its own conflict.
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TABLE 1: Fault status and readiness for the SCR and the EMS.
SCR 1 6 7 10 15 20 25 27 30 35 . . . 52 53–109

Faulty ×

Suspected × × × × × ×

Normal ××× × ××× × ×××× × ××× × ××× × × × ×××× × × × × × ×

Ready × × × ×

EMS 1 6 7–52 53 55 60 65 70 75 80 . . . 109

Faulty ×

Suspected ××× × × × × ×× ××

Normal × × × × ××× × ×× × × ×× × ×× × ×××× × ×× × ×× ×

Ready × × ×

6.1 Computation of Fault Status and Readiness

To test the FSR algorithm, the three components numbered 1, 5, and 27

are affected such that they are behaving abnormally. Component 1 and
5 are supervised by both agents while 27 is only supervised by the
SCR. The diagnostic tests corresponding to the conflicts {27}, {1, 30},
and {5, 19, 21, 28} have been evaluated and responded, and the tests
corresponding to conflicts {1}, {19}, and {28} have been evaluated but
not responded. Notice that the test supervising component 1 has made
a missed detection, while the other two tests have made a correct de-
tection. In the EMS, all tests that supervise any of the abnormal compo-
nents have been evaluated and responded. No other tests have been
evaluated. The DAGs are updated using Algorithm 1 resulting in the
DAG shown in Figure 6 for the SCR, where the vertices corresponding
to the responded diagnostic tests are circled. Notice that several ver-
tices have been removed from the DAG. The corresponding DAG for
the EMS is shown in Figure 8.

The fault status and the readiness are computed for all components
using Algorithm 2 and the result can be seen in Table 1. Especially, in
the SCR, component 27 is faulty and ready, components 1, 19 and 21

are suspected and not ready, and components 5 and 28 are suspected
and ready.

The minimal diagnoses in the SCR have been computed for refer-
ence, resulting in {1, 5, 27}, {1, 19, 27}, {1, 21, 27}, {1, 27, 28}, {5, 27, 30},
{19, 27, 30}, {21, 27, 30}, and {27, 28, 30}. Using Proposition 1, it can be
seen that the minimal diagnoses coincide with the fault statuses.

6.2 Comparison Against a Direct Algorithm

The design of the FSR algorithm is motivated by efficiency compared
to a direct implementation of the propositions in Section 3. To ver-
ify this motivation, the FSR algorithm will here be compared to such
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FIGURE 8: The updated DAG for the EMS. Vertices that are marked are
circled.
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a direct implementation. In the direct implementation, the universal
quantifiers in the propositions are implemented as for-loops and is
given as Algorithm 3.

Algorithm 3 A direct implementation for the computation of fault sta-
tus and readiness.
Input: A set of responded minimal conflicts Π.
Output: The sets F, S, N, and R that are the faulty, suspected, normal,

and ready components, respectively.
1: F := {c : π = {c} ∧ π ∈ Π} [Faulty.]
2: S := {c ∈ π : |π| > 1 ∧ π ∈ Π} [Suspected.]
3: N := (F ∪ S)C [Normal.]
4: S̄1 := {c : πf ∈ Πf ∧ πf = {c}} [In S and not ready.]
5: S̄2 := {c ∈ π̄ ∈ Π̄ ⊆ Πf : c 6∈ π̄ ∧ (∀π ∈ {π ∈ Π : c ∈ π} : π̄ ⊂ π)}

[In S and not ready.]
6: N̄ := {c ∈ πf ∈ Πf : (∀π ∈ Π : π 6⊂ πf)} [In N and not ready.]
7: R := F ∪ (S\S̄1\S̄2) ∪ (N\N̄) [Ready.]

The set of minimal conflicts is assumed to be known in the direct
implementation, i.e. the non-minimal conflicts have been removed.
The two methods will be compared by counting the number of non-
trivial operations needed to compute the result. In Algorithm 1, each
removal or addition of one edge or one vertex counts as one opera-
tion. In Algorithm 2 and in the direct implementation, each cardinal-
ity check of a conflict, union, intersection, and set removal counts as
one operation.

To compute the fault statuses and the readiness for the SCR when
affected by abnormal components 1, 5, and 27, the number of needed
operations is 574 for the direct algorithm but only 118 for the FSR al-
gorithm, a reduction in processor load with 80 %. To further compare
the algorithms, the number of components in the abnormal mode has
been varied and the mean number of needed operations has been com-
puted, see Figure 9 for the SCR and Figure 10 for the EMS. For one, two,
and three abnormal components, the results are exact, while for the
higher number of abnormal components, the mean of one thousand
different sets of abnormal components are used for each size. It can be
seen in the figure that the mean number of operations needed with the
FSR algorithm is lower than when the direct implementation is used,
except for the unreasonable sizes where more than 50 components are
abnormal. In fact, for all single, double, and triple abnormal compo-
nents, the FSR algorithm is more efficient than the direct algorithm. In
mean, the reduction in processor load is 80 % to 90 % for one to five
abnormal components. For the EMS, the reduction in processor load is
around 90 % for one to five abnormal components.
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FIGURE 9: The mean number of operations needed to compute the
fault statuses and their readiness in the SCR.

The complexity of the FSR algorithm is so low that it is always
possible to compute the results with a reasonable number of oper-
ations. This is in contrast to the computation of the minimal diag-
noses, where this is not always possible. If for example components
numbered 1 and 60 are behaving abnormally, then about 60 000 oper-
ations is needed to compute the resulting 300 minimal diagnoses in
the EMS. If also component 70 is behaving abnormally, then the prob-
lem is intractable on-line since over 20 000 000 non-trivial operations
are needed resulting in over 7 000 minimal diagnoses after over two
hours of computations on a desktop PC. However, the FSR algorithm
requires about 100 operations in both cases and is therefore tractable.

6.3 Global Fault Status and Readiness

Since the local fault status (LFS) and the local readiness has been com-
puted for each component for both agents, these can be used to state
the global fault status (GFS) and the global readiness. Component
numbered 1 is for example locally suspected in the SCR while being
locally faulty and ready in the EMS.

Using Proposition 5 and 8, it can be computed that the GFS of com-
ponent 1 is faulty and ready, since the LFS is faulty in the EMS. The
control system in the SCR can now use the knowledge that compo-
nent 1 certainly is behaving abnormally. Proposition 6 shows that the
GFS of component 5 is suspected since an agent exists where the LFS

is suspected, and no conflict exists that is a subset of the conflict that
made the LFS suspected, i.e. the conflict {5, 19, 21, 28}, and does not
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FIGURE 10: The mean number of operations needed to compute the
fault statuses and their readiness for different number of abnormal
components in the EMS.

include 5 or have a cardinality of one. Further, Proposition 9 shows
that 5 is ready since only the vertex corresponding to conflict {5, 28}

points at the marked vertex including component 5. Notice that the
information that has to be transfered from the EMS to the SCR is that
any vertex in the EMS does not exist that points at the vertex with the
conflict {5, 19, 21, 28}. The control system in the EMS could for example
use the knowledge that component 5 is globally ready to choose an
appropriate fault tolerant control strategy.

7 DIAGNOSTIC TESTS THAT RESULTS IN

READY STATUS

One of the objectives for a diagnostic system is to achieve readiness for
the fault status of a component, and the problem of which diagnostic
tests to evaluate to achieve readiness will here be studied.

7.1 Meaningful Diagnostic Tests

If the fault status of a component is not ready, then, by definition, di-
agnostic tests exist that could change the fault status, these diagnostic
tests are denoted the meaningful diagnostic tests.

DEFINITION 7 (Meaningful diagnostic tests): Let Π be the set of conflicts
corresponding to a set of diagnostic tests and partition this set into Πadd and
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Πremove. The set of diagnostic tests is meaningful for component c if the
addition of Πadd to the set of present conflicts and the removal of Πremoval from
the set of future conflicts would result in a change in the fault status or the
readiness of component c.

Similar to diagnoses and conflicts, a set of meaningful diagnostic
tests is minimal if there is no proper subset that is a set of meaningful
diagnostic tests.

From the definition follows that the status of a component is ready
if and only if no set of meaningful diagnostic tests exists. Different
sets of diagnostic tests are meaningful when the status of a compo-
nent is faulty, normal, or suspected, as shown by the following three
propositions.

PROPOSITION 12: Let the status of component c be faulty, then no sets of
meaningful diagnostic tests exist for component c.

Proof. Follows directly from Proposition 2.

PROPOSITION 13: Let the status of component c be suspected. The mini-
mal sets of meaningful diagnostic tests for component c are the sets of diag-
nostic tests that correspond to the minimal sets of conflicts in the set

{

Π̄ ⊆ Πf :
(

∀π ∈ {π ∈ Π : c ∈ π} :
(

∃π̄ ∈ Π̄ : (c /∈ π̄ ∧ π̄ ⊂ π)
))}

(14a)

and to the sets of conflicts

{

{πf} : πf ∈ Πf ∧ c ∈ πf ∧ (∄πf
2 ∈ Πf : πf

2 ⊂ πf ∧ c 6∈ πf
2)

}

.(14b)

Proof. Proposition 3 gives both some diagnostic tests that are mean-
ingful in themselves, and sets of conflicts that only are meaningful if
all diagnostic tests in the set are evaluated. Equation (7b) corresponds
to (14a). Equation (14b) corresponds to the case where component c

becomes ready and in some cases also faulty (7a).

A set of conflicts in (14a) changes the suspected status to normal,
while a conflict in a set in (14b) changes the suspected status to faulty
or the fault status to ready. The next proposition states which sets that
are meaningful when the fault status of a component is normal.

PROPOSITION 14: Let the status of component c be normal, then the min-
imal sets of meaningful diagnostic tests are the sets of diagnostic tests that
correspond to the sets of conflicts

{

{πf} : πf ∈ Πf ∧ c ∈ πf ∧ (∄π ∈ Π : π ⊂ πf
)}

(15a)

and to the minimal sets of conflicts in the set

{

Π̄ ⊆ Πf : (∀πf ∈ Πf\Π̄ : c 6∈ πf)
}

.(15b)
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Algorithm 4 Compute meaningful diagnostic tests.

Input: The DAG G. Suspected S, normal N, and ready R.
Output: Sets of sets of meaningful diagnostic tests including the min-

imal sets of meaningful diagnostic tests. Ms2n meaningful for
changing suspected components to normal. Ms2rf : suspected to
ready or faulty. Mn2sf : normal to suspected or faulty. Mn2r: nor-
mal to ready.

1: for each c ∈ S ∩ RC do
2: X := ∅.
3: for each v ∈ V where c ∈ π(v) ∧ mark(v) = 1 do
4: x := {v̄ ∈ V : (v̄ can reach v) ∧ c 6∈ π(v̄)}.
5: if x = ∅ then break for-loop else X := X ∪ x.
6: end for
7: Ms2n(c) := cross-product(X).
8: Ms2rf(c) := {v̄ ∈ V : (v̄ is a source) ∧ c ∈ π(v̄) ∧ mark(v̄) = 0}.
9: end for

10: for each c ∈ N ∩ RC do
11: X := ∅.
12: for each v ∈ V where c ∈ π(v) ∧ mark(π) = 1 do
13: x := {v̄ ∈ V : (v reachable from v̄) ∧ c 6∈ π(v̄)}.
14: if x = ∅ then break for-loop else X := X ∪ x.
15: end for
16: Mn2r(c) := cross-product(X).
17: Mn2sf(c) := {{v} : v ∈ V ∧ c ∈ π(v) ∧ mark(v̄) = 0}.
18: end for

Proof. Proposition 4 gives (15a). Equation (15b) is the case where c

becomes ready.

In summary: Depending on the fault status of a component, the
conditions in Proposition 12 to 14 can be used to calculate the sets of
meaningful diagnostic tests. However, a direct implementation of the
propositions might not be efficient, and the DAG representation that
is used in Section 5 when computing the fault status and its readiness
will also be used to compute the sets of meaningful diagnostic tests.

7.2 Computing the Meaningful Diagnostic Tests

Using the same DAG as used by Algorithm 2 in this paper, Algo-
rithm 4 computes the sets of meaningful diagnostic tests for different
components. The sets that are computed are Ms2n(c) and Ms2rt(c) for
components that are suspected and not-ready, and the sets Mn2r(c)

and Mn2sf(c) that are computed for components that are computed
for components that are normal and not-ready. The set Ms2n(c) is
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TABLE 2: Fault status and readiness for the SCR after the meaningful
tests have been evaluated.

SCR 1 6 7 10 15 20 25 27 30 35 . . . 52 53–109

Faulty ×

Suspected × × × ×

Normal ××× × ××× × ×××× × ×××× × ×××× × × × ×××× × × × × × ×

Ready × × × × × × ×

meaningful for changing the suspected and not-ready component c to
normal and Ms2rf(c) for changing to ready or faulty. The set Mn2sf(c)

is meaningful for changing normal and not-ready to suspected or faulty
and Mn2r(c) for changing to ready.

7.3 Automotive Application

This section is a continuation of Section 6.1 where components num-
bered 1, 5, and 27 were abnormal.

In Section 6.1 it is found that components 1, 19, 21, and 30 were
suspected but not ready. To change the fault status or the readiness
of these components, the sets of meaningful diagnostic tests are com-
puted using Algorithm 4. Minimal meaningful diagnostic tests for the
suspected components are the tests with conflicts {30} and {5, 28}. As-
sume that these two diagnostic tests are evaluated and the test with
conflict {5, 28} has responded while the test with conflict {30} has not
responded. An update of the DAG in Figure 6 on page 113 with this
new information results in the DAG shown in Figure 11. The fault sta-
tus and the readiness is then computed for every component using Al-
gorithm 2 and the result is shown in Table 2. Components 5, 21, and 30

are now ready and this shows that it was meaningful to evaluate the
specific diagnostic tests.

A similar analysis for the EMS shows that eleven diagnostic tests
with different conflicts are meaningful for the suspected components.
The update of the DAG shown in Figure 8 on page 113 results in the
DAG shown in Figure 12.

8 SCHEDULING MEANINGFUL TESTS

Given that some diagnostic tests are meaningful with respect to some
specific set of components, the question of in which order that these
meaningful diagnostic tests should be scheduled for evaluation arises.
One approach is to first schedule the diagnostic test whose evaluation
makes the most components to become ready, and then the other tests
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FIGURE 11: The updated DAG G for the SCR with conflicts displayed
at the corresponding vertex. Diagnostic tests that have been evaluated
after they were considered meaningful for the suspected components
are marked with a diamond.

in descending order. When computing the schedule, it should be con-
sidered that a diagnostic test could both respond and not respond,
since some components could become ready in both cases. This sec-
tion will design a strategy that computes a best schedule based on the
idea introduced above. By evaluating the meaningful tests according
to the best schedule, the number of tests that has to be evaluated can
be reduced to a minimum, and thereby for example reducing the us-
age of computational resources.

In the general case, sets of meaningful diagnostic tests exist where
two or more tests must be evaluated for them to be meaningful. Here
only sets of single meaningful tests will be considered. However, the
designed strategy can be extended to manage larger sets.

8.1 Strategy for Scheduling the Meaningful Tests

The section aims at defining a value of the gain for each set of mean-
ingful diagnostic tests. The value represents the number of compo-
nents that will become ready when the meaningful diagnostic test is
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FIGURE 12: The updated DAG G for the EMS with conflicts displayed at
the corresponding vertex. Vertices that have a mark are circled. Mean-
ingful diagnostic tests are marked with a diamond.
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evaluated. The sets of meaningful diagnostic tests will then be sched-
uled such that the test with highest gain is evaluated first, and the rest
follows in descending order of gain.

First, let the gain when evaluating a meaningful test m be

σR(m) := |R(m did respond)| − |R(before m was evaluated)|

σ¬R(m) := |R(m did not respond)| − |R(before m was evaluated)|

for the cases where m respond and where it does not respond respec-
tively. The set R is the set of components whose status is ready. The
gains in readiness σR(m) and σ¬R(m) can be computed using Algo-
rithm 2. Above, the total number of components that become ready
is considered. An alternative to this would be to only consider how
many components in some specific set of components that becomes
ready, for example how many of the suspected components become
ready when a test is evaluated.

Let TR and T¬R be the set of tests that have been evaluated and res-
ponded and evaluated and not responded, where the corresponding
conflicts are minimal. Assume that the probability P(m|TR∧T¬R) that a
diagnostic test responds given a set of responded tests and not respon-
ded tests is known. A reasonable value of the gain for the meaningful
diagnostic test m is then

ξ(m) = P(m|TR ∧ T¬R)σR(m) + (1 − P(m|TR ∧ T¬R))σ¬R(m).

The gain is the expected value of the gain when evaluating test m.
The meaningful test with highest ξ(m) should be evaluated first since
this would most probably give the highest gain in number of ready
components.

Probability for a test to respond

What is the value of P(m|TR ∧ T¬R)? Generally, a good approximation
of this number is difficult to find due to difficulties in deciding a-priori
probabilities for the abnormal behavior of a component, diagnostic
test detection, diagnostic test false alarm, etc. If these probabilities are
available, then the probability P(m|TR∧T¬R) can directly be computed
using for example a Bayesian network (Jensen and Nielsen, 2001). Un-
fortunately, the Bayesian computations require that at least the set of
minimal cardinality diagnoses have been computed, see Appendix A.
The FSR algorithm is motivated by the fact that it requires low pro-
cessing power and the requirement can therefore not be fulfilled, since
the computation of the minimal cardinality diagnoses might require a
substantial amount of processing power, see for example Section 6.2.

Due to the difficulties described above, a heuristic value of the
probability P(m|TR ∧ T¬R) will here be derived. The heuristic value
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will be given for two different cases. The first case is when the diag-
nostic test m supervises some component that is also supervised by
some of the tests in TR. The second is when this is not the case. It will
be assumed that the tests that supervise a component that some other
test have found to be suspected is more likely to respond than the tests
that does not supervise such a component.

For a test m in the first case, the variable

λsupervise(m) :=
|π(m) ∩

⋃

t∈TR
π(t)|

|
⋃

t∈TR
π(t)|

will be used. The value is reasonable since it increases with the num-
ber of components supervised by both the test m and the responded
tests in TR. The set

⋃

t∈TR
π(t) includes all components supervised by

any responded test. If a test supervises more components in the set
⋃

t∈TR
π(t) than some other test, then it is more probably that the first

test responds. The denominator is a normalization and can be left out.
For a test m in the second case, the variable

λ¬supervise(m) :=
|π(m)|

|C|

will be used instead. The value is reasonable since it increases if the
number of supervised components increases.

The gain in evaluating a test

The value of the gain can now be stated given the two heuristic values.
For a test that supervise some component also supervised by a test in
TR, the value of the gain is

ξsupervise(m) := λsupervise(m)σR(m) + (1 − λsupervise(m))σ¬R(m).

For a test that does not supervise such a component, the gain is

ξ¬supervise(m) := λ¬supervise(m)σR(m) + (1 − λ¬supervise(m))σ¬R(m).

Test Evaluation Strategy

The following strategy is proposed: Compute the sets of minimal mean-
ingful tests. Eventually limit the search to the set of tests that are
meaningful for some chosen subset of not-ready components, for ex-
ample the suspected components. Compute ξsupervise(m) for each mean-
ingful test m that supervise a component supervised by a test in TR.
The meaningful diagnostic test with highest ξsupervise(m) is scheduled
first for evaluation and the rest of the meaningful tests then follows
in descending order. For the rest of the meaningful diagnostic tests,
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FIGURE 13: The updated DAG for the SCR when the diagnostic test
with conflict {30} have reacted.

compute ξsupervise(m) and the schedule these tests in descending or-
der and schedule these tests after the other tests. After the first test
in the schedule has been evaluated, a new search can be performed
for a new schedule of the meaningful diagnostic test. By evaluating
the meaningful tests in the best order, the number of tests that has to
be evaluated can be reduced to a minimum, and thereby for example
reducing the usage of computational resources.

8.2 Automotive Application

For the application in Section 6, the diagnostic tests with conflicts {30}

and {5, 28} were computed to be meaningful for the suspected compo-
nents in the SCR, see Section 7. How should these two tests be sched-
uled to fastest give the most number of ready components?

For the diagnostic test with conflict {30}, the gain is σR({30}) =

8 − 3 = 5 if the test respond and σ¬R({30}) = 2 otherwise. The large
number of ready components for the responded case arise since sev-
eral components with normal fault status becomes ready, see Figure 13
where several vertices have been removed in the DAG since the test has
responded. For the diagnostic test with conflict {5, 28}, the gains are
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σR({5, 28}) = 1 and σ¬R({5, 28}) = 2. The weight for the two tests are
λsupervise({30}) = 1

6
and λsupervise({5, 28}) = 2

6
respectively. The values

of the gain are therefore

ξsupervise({30}) =
1

6
5 +

5

6
2 = 2.5

ξsupervise({5, 28}) =
2

6
1 +

4

6
2 ≈ 1.7.

To conclude, when deciding in which order to evaluate the two mean-
ingful diagnostic tests corresponding to the conflicts {30} and {5, 28},
it is best to first schedule the test with conflict {30} and then the test
with conflict {5, 28}, since this strategy would in mean lead to a 2.5
ready components while the opposite strategy would in mean only
lead to 1.7 ready components.

Above, the total number of normal components that have become
ready after the evaluation of a test has been considered. If only the
number of suspected components that become ready is considered,
then the corresponding values are σR({30}) = 4 − 2 = 2, σ¬R({30}) = 2,
σR({5, 28}) = 2, and σ¬R({5, 28}) = 2. The values are reduced com-
pared to the case studied above. The values of the gain are in this case

ξsupervise({30}) =
1

6
1 +

5

6
1 = 1.0

ξsupervise({5, 28}) =
2

6
1 +

4

6
2 ≈ 1.7.

In contrast to the case above, it is best to first scheduled the test with
conflict {5, 28} and then the other test.

TABLE 3: Weights for the meaningful diagnostic tests in the EMS.

Conflict for the corresponding test σR σ¬R λhigh ξsupervise

{55} 8 9 1/14 8.9
{63} 3 5 1/14 4.9

The other meaningful tests 11 1 2/14 2.4
{3} 2 2 1/14 2.0

{6, 66, 69, 70, 72, 76, 83, 85, 102} 9 0 2/14 1.3
{2, 66, 96, 97} 4 0 1/14 0.3

For the EMS system, eleven different tests are meaningful for the
suspected components, see Figure 12 where the meaningful tests are
marked with diamonds. The gains and weights for these tests are
shown in Table 3. As can be seen in the table, the diagnostic test cor-
responding to conflict {55} should first be scheduled since this will in
mean give 8.9 ready components. The next best strategy is to eval-
uate the test corresponding to conflict {63} that in mean would lead
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to 4.9 ready components. As with the SCR, the weights can be com-
puted considering only the suspected components that become ready.
The corresponding values are shown in Table 4. In contrast to the SCR,
the same test, as when all ready components were considered, has the
highest value of the gain. In this case, 7.6 components will in mean
become ready.

TABLE 4: Weights for the meaningful diagnostic tests in the EMS when
only the suspected components that become ready are considered.

Conflict for the corresponding test σR σ¬R λ ξsupervise

{55} 3 8 1/14 7.6
{63} 1 5 1/14 4.7
{3} 1 2 1/14 1.9

The other meaningful tests 1 0 2/14 0.14
{2, 66, 96, 97} 1 0 1/14 0.07

8.3 Other Strategies

The strategy designed above shows how the meaningful tests shall be
scheduled if the objective is to gain the highest number of ready com-
ponents. However, other objectives might be considered. If for ex-
ample the diagnostic system is interested in a component c for which
a diagnostic test with a conflict π = {c} exists, then this test should
probably be evaluated first, since this leads to fault status faulty and
to readiness if the test responds.

Further, if the status for component c is suspected, then the order-
ing depends on if it is most important to find that the status is faulty or
if it is most important to return the status to normal. If faulty is prior-
itized, then evaluate those diagnostic tests that fastest leads to faulty,
i.e. tests corresponding to the conflicts in the set (14b). If the normal
status is prioritized, then evaluate tests that correspond to the conflicts
in (14a).

9 CONCLUSIONS

Motivated by applications used in automotive vehicles, the fault sta-
tus of a component is defined as faulty, suspected, or normal. Also
defined is the readiness of the fault status that states if the evaluation
of additional diagnostic tests could change the fault status or not. An
important aspect of the readiness defined in this paper is that a com-
ponent could be ready even though all tests that supervise the com-
ponent have not been evaluated. The relations between fault status,
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readiness and diagnostic tests have been given for both centralized
and distributed systems. Using the relations for distributed systems,
the fault statuses computed locally can be used to directly compute
the global fault status.

The designed FSR algorithm (fault status and readiness) computes
the fault status and the readiness for all components. The algorithm
gives for example a reduction in processor load with over 80 % for a
selective catalytic reduction system (SCR) used in a heavy duty vehicle
including over 50 components and 70 diagnostic tests, compared to a
direct computation. The fault status and the readiness can also be com-
puted for the automotive application when it is intractable to compute
the set of minimal diagnoses, the reason for this is that the complexity
only grows linearly in the number of tests for the FSR algorithm while
it grows exponentially for the computation of the diagnosis.

After the fault status and the readiness have been computed for
all components, it is interesting to know which diagnostic tests that
could be evaluated to improve the fault status and the readiness. Con-
ditions have been stated that could be used to exactly compute which
diagnostic tests that are meaningful for different components. As an
example, if the SCR is affected by two abnormal components then two
tests are meaningful. Given a set of meaningful tests, a strategy was
designed that computes which meaningful test that will give the most
number of ready components. For the SCR affected by the two abnor-
mal components, the best test will in mean give 1.7 new ready com-
ponents, while the other test will in mean only give 1.0 ready compo-
nents. By evaluating the meaningful tests in the best order, the number
of tests that has to be evaluated is reduced to a minimum, and thereby
for example reduces the usage of computational resources.
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APPENDIX

A THE PROBABILITY FOR A TEST TO RESPOND

In Section 8.1 the conditional probability P(m|TR∧T¬R) for test m to re-
spond given a set of respond tests TR and a set of non-responded tests
T¬R was used. It was stated that the probability could be computed
but that at least the set of minimal cardinality diagnoses is needed.
This appendix will show why this is the case. The computations be-
low will consider the ideal case with ideal tests and equal, indepen-
dent, and low a-priori probability for a component to be abnormal.

The wanted probability can be written as

P(m|TR ∧ T¬R) =
∑

X⊆C

P(m|X)P(X|TR ∧ T¬R)(16)

where the sum is over all combinations of system fault modes, and X

is short hand for the system mode

∧

c∈X

AB(c)
∧

c∈C\X

¬AB(c).

Each term in the sum can be expanded to

P(m|X)P(X|TR ∧ T¬R) = P(m|X)
P(TR ∧ T¬R|X)P(X)

P(TR ∧ T¬R)

using Bayes rule.
Now, three observations. First: assuming ideal tests, i.e. no missed

detection and no false alarms, then the probability

P(TR ∧ T¬R|X) =

{

1 if X ∈ Dall

0 otherwise
(17)

where Dall is the complete set of diagnoses. This means that if a test
supervises a component that is abnormal then the test has responded,
and otherwise it has not responded. Due to this probability, the sum
in (16) only have to be performed over the set of diagnoses.

Second: assuming equal, independent, and low a-priori probabili-
ties for abnormal components P(AB(c)), the probability

P(X 6∈ Dmc) ≪ P(X ∈ Dmc)

since P(X) = P(AB(c))|X| and where Dmc is the set of minimal cardi-
nality diagnoses. Therefore, the sum in (16) can be approximated with



132 A THE PROBABILITY FOR A TEST TO RESPOND

a sum over only the set of diagnoses with minimal cardinality. This
approximation is accurate as long as the number of non minimal car-
dinality diagnoses times the probability for an abnormal component
is insignificant.

Third: Using (17), the probability P(TR ∧ T¬R) can be expanded to

P(TR ∧ T¬R) =
∑

X⊆C

P(TR ∧ T¬R|X)P(X) ≈
∑

X∈Dmc

P(X)

= |Dmc| · P(AB(c))|Xmc|

where Xmc is any minimal cardinality diagnosis.
Using the three observations above, the probability (16) can be sim-

plified to

P(m|TR ∧ T¬R) ≈
∑

X∈Dmc

P(m|X)
1 · |P(AB(c))|X|

|Dmc| · P(AB(c))|X|

=
∑

X∈Dmc

P(m|X)
1

|Dmc|
.

To further simplify (16) it can be used that the probability P(m|X)

that the test m responds given the abnormal components

P(m|X) =

{

1 if X ∈ Dall

0 otherwise

if the test m is assumed to be ideal. The probability (16) can therefore
be simplified to

P(m|TR ∧ T¬R) =
|{X ∈ Dmc|π(m) ∩ X 6= 0}|

|Dmc|
.(18)

In can be seen in (18) that to compute the probability P(m|TR∧T¬R),
the set of minimal cardinality diagnoses is needed. If ideal tests and
equal, independent, and small probabilities for abnormal components
are not assumed, then the computations become much more difficult
and will require that the complete set of diagnoses has been computed.
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ABSTRACT

Safety is of major concern in many autonomous functions in
automotive systems and aerospace. In these application areas
it is standard to use fault trees, and a natural question in many
modern systems that include sub-systems like diagnosis, fault-
tolerant control, and autonomous functions, is how to include
the performance of these algorithms in a fault tree analysis for
safety. Many possibilities exist but here a systematic way is pro-
posed. It is shown both how safety can be analyzed and how
the interplay between algorithm design in terms of missed de-
tection rate and false alarm rate is included in the fault tree
analysis. Examples illustrate analysis of diagnosis system re-
quirement specification and algorithm tuning.

1 This paper has been published as (Åslund et al., 2006).
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134 1 INTRODUCTION

1 INTRODUCTION

Safety is of major concern in many applications, and the interest in
safety analysis is increasing (Villemeur, 1992), both in general and for
autonomous systems. A key mechanism in an autonomous system is
situation classification followed by a decision, which means that deci-
sions that previously were taken by a pilot or a driver, are now taken
autonomously. It will thus be necessary to assure safety levels of au-
tonomous vehicles, for example to obtain certification of airworthiness
for unmanned aerial vehicles. Such safety analysis is the topic of this
paper.

In the safety analysis, both diagnosis (Gertler, 1998; Patton et al.,
2000) and fault-tolerant control (Blanke et al., 2003) must be consid-
ered and this has created a new set of problem formulations to study.
One fundamental question is of course if a system becomes safer when
a diagnosis function and fault-tolerant control are introduced, and if
so, by how much? Another question is how to formulate specification
requirements on diagnosis algorithms so that overall system safety is
as good as possible. This also naturally leads to the question of how
to select internal design parameters in the diagnosis algorithms. One
simple example is that a selection of a threshold balances the rates
of missed detection and false alarm. Where to put this balance very
much depends on the situation and how it propagates to overall sys-
tem safety.

To get a handle on these questions it is necessary to have a quanti-
tative method and in this respect fault tree analysis is a natural start-
ing point. It is the basic tool in safety analysis, and may even be a
requirement from government, e.g. when declaring air worthiness for
aircrafts. Having made this choice, the question is now how to include
properties of diagnosis algorithms in fault tree analysis. It should be
noted that the main concern here is the interplay between safety and
algorithms, and that this should not be confused with the more stud-
ied problem on safety of software. It is here assumed that the software
is a correct coding of the specified algorithm following the procedures
for implementation of safety critical systems.

The purpose of this paper is to put forward the problems described
above and to present a solution. In Section 2 fault tree analysis is re-
capitulated, and in Section 3 diagnosis performance and central con-
cepts like false alarm and missed detection are recalled. It is clear that
a fault tree in general, for a certain system, can be formulated in differ-
ent ways. Nevertheless, in spite of the possible ambiguity in original
fault tree formulation, one can look for systematic ways of introduc-
ing diagnosis properties in a given fault tree. This is proposed in Sec-
tion 4 based on algorithm performance in terms of probabilities for
false alarm and missed detection. Further, the use of false alarm rate
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FIGURE 1: A fault tree for the system in Example 1.

and missed detection rate is the link to parameter setting of the algo-
rithms, and thus the foundation for both requirements specification
on one hand and for algorithm tuning on the other hand. In Section 5
the proposed methods are applied to these generic examples chosen
to illustrate the fundamental questions posed in the beginning of this
introduction. Finally, the conclusions are drawn in Section 6.

2 FAULT TREE ANALYSIS

Fault tree analysis is a systematic way to investigate credible causes for
an undesired event in a system (Stamatelatos and Vesley, 2002; Vesley
et al., 1981). The logical relationships between the undesired event
and basic events that lead to the undesired event are presented in a
fault tree.

In general there might exist dependencies between the basic events
and also the same basic event might appear more than once in the fault
tree, as will be seen in the examples later on. It is straightforward to
treat these dependencies in the calculations and there exists a multi-
tude of fault tree software for this purpose. Thus, if the probabilities
for the basic events are known, the expression for the probability of
the top event can be computed (Villemeur, 1992).

EXAMPLE 1: Figure 1 shows a fault tree that gives the relationship
between the top event system failure and the basic events e1, e2, and
e3 which are assumed to be independent. The gate symbols denote
the relationships between the input events below the gates and the
output event above. This fault tree will be used in the following sec-
tions where it is assumed that the basic events are sensor failures, i.e.
event ei denotes that sensor i is broken, and the probability for this is
denoted by pi. The analytical expression for the probability of the top
event can easily be computed as

P(system failure) = p1(p2 + p3 − p2p3). ⋄



136 3 DIAGNOSIS PERFORMANCE

3 DIAGNOSIS PERFORMANCE

A key component in a fault-tolerant control system is a diagnosis sys-
tem and a common way to perform diagnosis is to use a set of tests.
Each of these tests consists of a test quantity Ti, and a threshold Ji.

The test quantity Ti, also called residual, is designed such that Ti

is small if the system to be diagnosed is OK and large otherwise. The
test quantity Ti is compared to a threshold Ji and if Ti > Ji then the
test is said to alarm. The decision is that the process to be diagnosed
is not okay, i.e. that component i is ¬OK. In statistical theory (Berger,
1985) the hypothesis “component i is OK” is called the null hypothesis
of a test and is denoted H0

i . In (Nyberg, 2002) this statistical theory is
included in a diagnosis framework.

To alarm when the supervised system is OK, i.e. H0
i is true, is called

a false alarm (FAi). Further, to not alarm when the supervised system is
faulty, i.e. H0

i is false, is called a missed detection (MDi). The probability
of these two events define important performance measures of a test
as follows. The false alarm probability is

(1) PFAi
= P(Ti > Ji|H

0
i true)

and the missed detection probability is

(2) PMDi
= P(Ti 6 Ji|H

0
i false).

An ideal test gives no false alarms and no missed detections.
When designing tests, the last step is to compute a threshold. Drop-

ping the index i for now, the FA and MD probabilities are, as can be
seen in (1) and (2), functions of the threshold J. A typical example of
FA and MD probabilities as functions of the size of the threshold can be
seen in Figure 2. To obtain a small FA probability the threshold must be
large, but with a large threshold the MD probability gets large. Hence
the choice of threshold adjusts the compromise between a small FA

probability and a small MD probability.

4 INCLUDING DIAGNOSIS PERFORMANCE

AND AUTONOMOUS DECISIONS

IN A FAULT TREE

By including the effects of diagnosis algorithms and fault-tolerant con-
trol in fault trees, the consequences of false alarms and missed detec-
tions are explicitly modeled. It will later be shown that for example
the compromise between FA and MD can be handled by using the tree
including diagnosis and fault-tolerant control. It is described how one
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FIGURE 2: Probabilities of FA and MD as functions of threshold size.
for a test.

test can be included in a fault tree and a generalization to several tests
will be straightforward. Before a systematic method to include diag-
nosis and fault-tolerant control in an existing fault tree will be pre-
sented, an illustrative example is given.

EXAMPLE 2: Consider Example 1 and its fault tree shown in Figure 1.
In order to decrease the system failure probability, a backup system, a
diagnosis test, and fault-tolerant control are added to the original sys-
tem. With these new parts, the system can now autonomously adapt
to possibly faulty situations by switching to the backup system in case
of an alarm. Expressed in logic this means that, the system is OK if
the original system is OK or the backup system is switched on and is
OK. To be mapped to the fault tree, an equivalent statement is used:
the system is not OK if the original system is not OK and the backup
system is switched off or if it is switched on and not OK, which is the
main structure of Figure 3. The backup system consists of a sensor
called sensor 4. The backup system is not OK if sensor 4 is not OK, and
this event is denoted e4. The test supervises if sensor 2 is OK, i.e. ¬e2.

The expanded fault tree where diagnosis and backup system are
included is shown in Figure 3. The tree in Figure 1 can be found in
the left branch of the expanded tree. Original system failure is con-
nected to an and-gate together with no alarm, because original system
failure leads only to a system failure in absence of an alarm, i.e. the
alarm deactivated tree. The right part of the tree describes the logic
when alarming, i.e. the alarm-activated tree. This branch consists of
a backup failure tree and the alarm tree A. The important diagnosis
events FA and MD are leafs in this tree. ⋄
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FIGURE 3: A fault tree where diagnosis performance is included.

4.1 A Systematic Approach

Now a general and systematic inclusion of diagnosis will be described.
The fault tree describing the original system without a diagnosis sys-
tem will be denoted by T0. The procedure consists of four steps, which
are described in Section 4.1 to 4.1. The four steps are briefly described
as 1) construct an alarm tree, 2) construct an alarm-activated tree, 3) in-
sert the alarm tree in the original tree, and 4) insert the alarm-activated
tree in the tree obtained in step 3. In general, there can be several
alarm-deactivated trees and alarm-activated trees for one test. The fol-
lowing procedure only describes the case with one alarm deactivated
tree and one alarm-activated tree. In the case of several such trees,
some of the steps have to be performed several times.

The alarm tree

The first step of the inclusion of a test is as said before to construct
an alarm tree that describes the event alarm. To include the diagnosis
performance measures (1) and (2), the alarm event has to be expressed
using FA and MD. An alarm can either be a false alarm if H0 is true
or a correct alarm if H0 is false. By the definition of MD it follows that
a correct alarm is equivalent to the event not missed detection. Hence,
alarm for a specific test can always be expressed as

(3) alarm = (FA ∧ H0) ∨ (¬MD ∧ ¬H0).
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FIGURE 4: A general fault tree describing the alarm event. Everything
except for the tree B is fixed.
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FIGURE 5: Trees constructed in the different steps.

A general way to express this alarm event as a fault tree is shown in
Figure 4. By using this general form of an alarm tree, the remaining
task is to model the tree denoted by B describing when the null hy-
pothesis H0 is true. This is done by using the description of the test.

To illustrate the first step for Example 2, the null hypothesis H0 of
the test is that sensor 2 is OK, i.e. ¬e2. Therefore, if B is substituted in
Figure 4 by ¬e2, the alarm tree to the right in Figure 3 is obtained.

The alarm-activated tree

The second step is to construct the alarm-activated tree T2. The pur-
pose is to model events that are added to the fault tree in case of an
alarm. In Example 2 and Figure 3 this was the right part of the left tree.
The general structure is shown in Figure 5(a). The tree T2 consists of
the alarm tree A obtained in the first step and a sub-tree denoted C.
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The sub-tree C is to be constructed such that it describes events that
only affect the failure probability when an alarm has occurred.

In Example 2 and Figure 3, sub-tree C corresponds to the sub-tree
describing backup failure. Since the backup system is turned on only
during an alarm, it can of course only affect the failure probability
during an alarm.

The alarm deactivated tree

The third step is to construct the alarm deactivated tree T3. The pur-
pose is to describe which events that does not contribute to the top
event in case of an alarm. In Example 2 and Figure 3 this was the left
part of the left tree, i.e. the deactivation of the suspected faulty compo-
nents. The general structure is shown in Figure 5(b). The tree T3 con-
sists of a sub-tree D of T0, which was the original tree, the alarm tree A

constructed in step 1, and T0\D, where T0\D denotes the sub-tree in T0

induced by the vertices not in D. This means that T3 is uniquely de-
termined if D is known. The tree D is defined as the sub-tree of the
original fault tree T0 that affects the failure probability only and just
only when no alarm has occurred, i.e. it should not give any effect
when the alarm is active.

In Example 2, the original fault tree is shown in Figure 1. Since
the entire original system is turned off in the occurrence of an alarm, it
follows that the entire original tree is equal to D. This means that T0\D

in this example is empty and the resulting tree T3 is the left branch of
the tree in Figure 3. Even though e2 is included in D, it can affect
system failure through the alarm tree when alarming. However, since
this dependence is explicitly handled in A, it should not be considered
when identifying D.

Final complete tree

The fourth and final step will give the desired fault tree including
the original fault tree and the diagnosis system. This means that the
tree T2 is attached to the tree T3, which results in the final fault tree.
Depending on how the diagnosis system is included, tree T2 is either
included with an OR gate or with an AND gate.

For Example 2, the backup system during an alarm has the same
function as the original system during no alarm. From the system
description, it follows that the tree T2 are inserted with an OR gate
directly below the first AND gate, resulting in the final tree shown in
Figure 3.

EXAMPLE 3: Consider again Example 1, but in a new scenario. Let
sensor 1 be supervised. If the test alarms, a prediction of the mea-
sured value of sensor 1 is automatically used instead. The prediction
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is based on an observer that uses measurements of sensor 2. The re-
sulting fault tree is shown in Figure 6 where the four trees A, B, C, and
D are encircled. How to obtain this result will next be explained by
following the proposed procedure step by step.

Since the test checks if sensor 1 is OK, the null hypothesis H0 of the
test is ¬e1, which defines sub-tree B. The alarm tree A is straightfor-
wardly constructed and step 1 is completed. When an alarm occurs,
a predicted value of the measurement is used. Therefore, the sub-tree
C is in this example describing the event bad prediction. A bad predic-
tion is a consequence of e2 or a faulty observer algorithm denoted by
observer faulty in Figure 6. The resulting alarm-activated tree T2 is the
active bad prediction-tree.

To perform step 3, notice that sensor 1 is turned off during an
alarm. Hence it is only e1 in the original tree that does not affect the
system failure during an alarm, i.e. D = e1. The alarm deactivated
event is denoted by active bad value in Figure 6. In step 4, recall that
sensor 1 is predicted in case of an alarm, i.e. a precaution is taken to
reduce the risk of active bad value of sensor 1, which is the event e for
this example. By introducing the event bad value combining the ob-
tained trees as the system description specify, the fault tree in Figure 6
is obtained. ⋄

4.2 Simplifications of the Fault Tree by Using Approximations

It is sometimes possible to use approximations to obtain a simpler
fault tree. One objective is to introduce diagnosis performance closer
to the supervised event, which is desirable if the fault tree is large and
difficult to survey.

To illustrate this idea, the fault tree in Figure 3 is used. The top
event in this tree is system failure (SF). Consider for example a sce-
nario where alarms are rare, i.e.

(4) P(¬alarm) ≈ 1.

Now it will be shown how this approximation can be used to simplify
the fault tree. Since alarm and ¬alarm are mutually exclusive events
whose probabilities sum to one, it holds that

(5) P(SF) = P(SF|¬alarm)P(¬alarm) + P(SF|alarm)P(alarm).

Consider the first term in the right-hand side. Here approximation (4)
can be used and the conditional probability P(SF|¬alarm) can be cal-
culated using the fault tree for original system in Figure 1, with the
original probabilities P(ei), i = 1, 2, 3 replaced by conditional proba-
bilities P(ei|¬alarm). The probabilities for the events e1 and e3 are not
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FIGURE 6: Tree including diagnosis performance.

affected by the conditioning since they are independent of the super-
vised event e2, and using approximation (4) and that P(¬alarm|e2) =

PMD the following approximation of the conditional probability for
event e2 is obtained

(6) P(e2|¬alarm) =
P(¬alarm|e2)P(e2)

P(¬alarm)
≈ PMDP(e2).

The approximations of the first term in (5) are represented by the left
branch of the fault tree in Figure 7. The second term in (5) corresponds
to the right branch in the fault tree and is the same as before.

One objective with the approximation was to introduce the diag-
nosis performance closer to the supervised event. In Figure 7 the event
MD is next to the supervised event e2. Thus, compared to the tree in
Figure 3, a more local representation has been obtained. This effect
becomes more pronounced in larger examples.
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FIGURE 7: A simplification of the fault tree in Figure 3.

5 GENERIC ILLUSTRATIVE EXAMPLES

Previous sections have described how to specify and incorporate per-
formance of diagnosis algorithms in fault trees for overall system safety.
The main points of the paper is that systematic inclusion of diagnosis
in fault trees can be used in both design and requirement specification
of diagnosis algorithms. Here, generic examples are presented that
shows how this can be done.

5.1 Performance Requirements on the Diagnosis Algorithm

Suppose that external requirements state numerical demands on the
probability for the top event, e.g. the probability for a system failure,
so that the demand is

P(top event) 6 β

where β is the performance specification. If it has been concluded that
this requirement can not be fulfilled without a diagnosis system, then
a question is what performance requirements on the diagnosis system
are necessary to ensure that the overall requirement is fulfilled.

As described in Section 3, the performance of a diagnosis test can
be condensed into the probability for false alarm, PFA, and missed
detection, PMD. In the analysis in this section, no specific algorithm
is considered, and therefore the performance of an algorithm is here
specified in a diagram with PMD and PFA on the axes. As an exam-
ple, Figure 8 shows the performance of the diagnosis algorithm from
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FIGURE 8: The curve indicates performance of a diagnosis algorithm
in a PFA/PMD diagram.

Section 3. The curve is parameterized by the threshold and is directly
obtained from Figure 2.

Introducing the diagnosis system in the fault tree, the probability
of the top event becomes a function of the performance measures PMD

and PFA in addition to all the probabilities for the basic events in the
original fault tree, p1, . . . , pN. Since the probabilities pi are fixed, the
probability for the top event becomes a function of only PMD and PFA,
i.e.

(7) P(top event) = f(PFA, PMD).

The expression for f can for example be computed based on the fault
tree, see Section 2. The overall performance requirement can now be
stated as

(8) f(PMD, PFA) 6 β.

The requirement specification on the diagnosis algorithm will then be
the set of (PFA, PMD) that satisfies (8).

EXAMPLE 4: Consider again Example 2, where sensor 2 is supervised.
In this example, the probabilities for the basic events are assumed to
be p1 = 0.1, p2 = 0.005, p3 = 0.01, p4 = 0.005, where pi = P(ei).
Assume that the overall requirement is that the probability for the
top event must be lower than β = 0.00145. Based on only this, it is
not clear if this performance is at all possible, and in case it is possi-
ble, which trade-off between false-alarms and detection performance
is needed?
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FIGURE 9: Feasible diagnosis performance (shaded) and performance
of the detection algorithm (curve).

Performing the analysis outlined above results in the requirement
specification on the diagnosis algorithm which is indicated by the sha-
ded area in Figure 9. In this case, inequality (8) becomes

(9) (1−p2)(p4−p1p3)PFA+p2(p1−p4)PMD+p1(1−p2)p3+p2p4 6 β.

which is linear in PMD and PFA. The solid line shows the performance
of the diagnosis algorithm from Section 3, and since the intersection
is non-empty (approximately for 0.005 6 PFA 6 0.03), there exist a
feasible tuning, i.e. threshold selection, of the algorithm that fulfills
overall system requirements. It is clear from the figure that to meet
the safety performance specification, using the diagnosis system from
Example 2, we need a low probability for false-alarm at the expense
of a relatively high probability for missed detection. This trade-off
was not immediate from the problem formulation and could only be
obtained by analyzing the effect of the diagnosis system on the overall
safety. ⋄

The function f in (8) is a low order polynomial in the probabili-
ties PFA and PMD and even linear in the case of only one diagnosis
algorithm. The linearity property also holds for the case of several in-
dependent diagnosis algorithms. For cases with more than one diag-
nosis algorithm that are connected in the fault tree, cross-terms appear
in f and the maximum order of the polynomial equals the number of
diagnosis tests.

In practice, there are often several top events where each event is
represented using a fault tree. Often, these events lead to opposing
requirements, e.g. systems safety vs. availability, and there is a need to
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make a compromise. Extension to the case with more than one top
event is straightforward. Apply the procedure above for each tree
to obtain a set of feasible performance specifications. Then validate
that the intersection of all these sets is non-zero, i.e. that there exist
false alarm/missed detection probabilities that satisfies all top event
requirements.

5.2 Optimal Threshold Selection

In the section above it was shown how the fault tree could be used for
determining required performance of a diagnosis algorithm such that
overall safety specifications are met. This section will show that, if a
specific diagnosis algorithm is selected, the fault tree can also be used
for optimal algorithm tuning, for example threshold selection.

As noted in (7), the probability P(top event) can be written as a
function of PMD and PFA. Given a diagnosis algorithm, the probabili-
ties PMD and PFA are in their turn functions of the threshold J, as de-
scribed in Section 3. The probability for the top event can therefore be
written as

P(top event) = f(PMD(J), PFA(J)) = F(J).

In Figure 10 the function F is shown for the fault tree in Figure 3 with
the diagnosis performance measures from Figure 2. In this example it
is natural to choose J so that P(top event) is as small as possible, i.e. to
solve the optimization problem

min
J∈I

F(J)

where I is the set of admissible values for J. In the figure, it is clear
that the optimal choice of J is around J = 0.5 which, according to Fig-
ure 2, corresponds to a low false-alarm probability and a high missed
detection probability. The case with several fault trees with different
top events leads to a multi-objective optimization problem with more
than one objective function.

One may note that an analysis like the one above is not only pos-
sible for parameters of the diagnosis system. Consider for example
the observer in Example 3 that is part of the fault tolerant control sys-
tem. In the same way as the threshold of the diagnosis algorithm influ-
ences the overall safety, so does the observer gain. If the influence of
the observer gain, or pole placement, is modeled in the fault tree, it is
straightforward to include also these parameters in the optimization.
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FIGURE 10: Probability for the top event as function of the threshold.

6 CONCLUSIONS

Autonomous systems is often a complex combination of systems and
in many cases diagnosis and fault tolerant control are integrated to
increase availability and safety. To be able to analyze if a system is safe
or not, the common approach is to use fault tree analysis. Introducing
diagnosis systems and fault-tolerant control in the fault tree makes it
possible to include the effects of these systems in the safety analysis.

A systematic way to include diagnosis and fault-tolerant control
in fault tree analysis was presented. A fault tree for a given system
can be formulated in many ways, but nevertheless Section 4 gives a
systematic method that expands the given tree to include also the di-
agnosis system and the fault-tolerant control algorithms. In Section 5.1
it was shown how requirements on overall system performance can be
systematically transferred, via a fault tree analysis, into performance
requirements on the diagnosis system. Further, in Section 5.2 it was
shown how an optimization criterion in a similar straightforward way
is obtained, making optimization of parameter tuning simple.

In conclusion, a major advantage of the proposed methodology is
that it is structured so that it enables tools for interaction regarding
the interplay between algorithms and safety, thus resulting in better
systems and savings in valuable engineering time.
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J. Biteus, M. Jensen, and M. Nyberg. Distributed diagnosis for em-
bedded systems in automotive vehicles. In IFAC World Congress,
Praha, Czech Republic, 2005.

J. Biteus, E. Frisk, and M. Nyberg. Condensed representation of
global diagnoses with minimal cardinality in local diagnoses. In 17th
International Workshop on Principles of Diagnosis DX’06, Spain, 2006a.

J. Biteus, M. Nyberg, E. Frisk, and J. Åslund. Determining a compo-
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J. Kurien, X. Koutsoukos, and F. Zhao. Distributed diagnosis of net-
worked, embedded systems. In Thirteenth International Workshop on
Principles of Diagnosis, Semmering, Austria, May 2002.

G. Leen and D. Heffernan. Expanding automotive electronic systems.
Computer, 35(1):88–93, Jan 2002.
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