
Single-Zone Cylinder PressureModeling and Estimationfor Heat Release Analysisof SI EnginesMarkus Klein

Linköping 2007



Linköping Studies in Science and Technology. DissertationsNo. 1124Single-Zone Cylinder Pressure Modeling and Estimationfor Heat Release Analysis of SI EnginesCopyright c© 2007 Markus Kleinmarkus.s.klein@gmail.comhttp://www.fs.isy.liu.se/Department of Electrical Engineering,Linköping University,SE�581 83 Linköping,Sweden.ISBN 978-91-85831-12-8 ISSN 0345-7524Printed by Liu-Tryck, Linköping, Sweden 2007



To So�a, Ebba, Samuel and Nora





Abstract
Cylinder pressure modeling and heat release analysis are today impor-tant and standard tools for engineers and researchers, when developingand tuning new engines. Being able to accurately model and extract in-formation from the cylinder pressure is important for the interpretationand validity of the result.The �rst part of the thesis treats single-zone cylinder pressure mod-eling, where the speci�c heat ratio model constitutes a key part. Thismodel component is therefore investigated more thoroughly. For thepurpose of reference, the speci�c heat ratio is calculated for burnedand unburned gases, assuming that the unburned mixture is frozen andthat the burned mixture is at chemical equilibrium. Use of the referencemodel in heat release analysis is too time consuming and therefore a setof simpler models, both existing and newly developed, are compared tothe reference model.A two-zone mean temperature model and the Vibe function are usedto parameterize the mass fraction burned. The mass fraction burned isused to interpolate the speci�c heats for the unburned and burned mix-ture, and to form the speci�c heat ratio, which renders a cylinder pres-sure modeling error in the same order as the measurement noise, and�fteen times smaller than the model originally suggested in Gatowskiet al. (1984). The computational time is increased with 40 % comparedto the original setting, but reduced by a factor 70 compared to precom-puted tables from the full equilibrium program. The speci�c heats forthe unburned mixture are captured within 0.2 % by linear functions,i



iiand the speci�c heats for the burned mixture are captured within 1 %by higher-order polynomials for the major operating range of a sparkignited (SI) engine.In the second part, four methods for compression ratio estimationbased on cylinder pressure traces are developed and evaluated for bothsimulated and experimental cycles. Three methods rely upon a modelof polytropic compression for the cylinder pressure. It is shown thatthey give a good estimate of the compression ratio at low compres-sion ratios, although the estimates are biased. A method based on avariable projection algorithm with a logarithmic norm of the cylinderpressure yields the smallest con�dence intervals and shortest compu-tational time for these three methods. This method is recommendedwhen computational time is an important issue. The polytropic pres-sure model lacks information about heat transfer and therefore the es-timation bias increases with the compression ratio. The fourth methodincludes heat transfer, crevice e�ects, and a commonly used heat re-lease model for �ring cycles. This method estimates the compressionratio more accurately in terms of bias and variance. The method ismore computationally demanding and thus recommended when esti-mation accuracy is the most important property. In order to estimatethe compression ratio as accurately as possible, motored cycles with ashigh initial pressure as possible should be used.The objective in part 3 is to develop an estimation tool for heatrelease analysis that is accurate, systematic and e�cient. Two meth-ods that incorporate prior knowledge of the parameter nominal valueand uncertainty in a systematic manner are presented and evaluated.Method 1 is based on using a singular value decomposition of the es-timated hessian, to reduce the number of estimated parameters one-by-one. Then the suggested number of parameters to use is found asthe one minimizing the Akaike �nal prediction error. Method 2 uses aregularization technique to include the prior knowledge in the criterionfunction.Method 2 gives more accurate estimates than method 1. For method2, prior knowledge with individually set parameter uncertainties yieldsmore accurate and robust estimates. Once a choice of parameter uncer-tainty has been done, no user interaction is needed. Method 2 is thenformulated for three di�erent versions, which di�er in how they deter-mine how strong the regularization should be. The quickest version isbased on ad-hoc tuning and should be used when computational timeis important. Another version is more accurate and �exible to changingoperating conditions, but is more computationally demanding.



Svenskt referat
Den svenska titeln på avhandlingen är �En-zons-modellering och esti-mering för analys av frigjord värme i bensinmotorer1�.Förbränningsmotorer har varit den primära maskinen för att gene-rera arbete i fordon i mer än hundra år, och kommer att vara högintres-sant även i fortsättningen främst p.g.a. bränslets höga energidensitet.Emissionskrav från främst lagstiftare, prestandakrav såsom e�ekt ochbränsleförbrukning från potentiella kunder, samt den konkurrens somges av nya teknologier såsom bränsleceller fortsätter att driva teknik-utvecklingen av förbränningsmotorer framåt.Teknikutvecklingen möjliggörs av att ingenjörer och forskare harmött dessa krav genom t.ex. grundforskning på förbränningsprocessen,nya eller förbättrade komponenter i motorsystemet och nya teknologiersåsom variabla ventiltider och variabelt kompressionsförhållande. Detvå sistnämnda är exempel på teknologier som direkt påverkar tryckut-vecklingen i cylindern, där det är viktigt att få noggrann kunskap omhur förbränningsprocessen fortlöper och hur bränslets kemiska energifrigörs som värme och sedan omvandlas till mekaniskt arbete. Dettakallas analys av frigjord värme och kopplar direkt till motorns emissio-ner, e�ekt och bränsleförbrukning.En analys av frigjord värme möjliggörs av att man: 1) kan mätacylindertrycket under förbränningsprocessen; 2) har matematiska mo-deller för hur cylindertrycket utvecklas som funktion av kolvrörelsenoch förbränningsprocessen; samt 3) har metodik för att beräkna den1Egentligen tändstiftsmotorer iii



ivfrigjorda värmen genom att anpassa den valda modellen till cylinder-trycksmätningen.Sensorerna för att mäta trycket i cylindern har den senaste tidenblivit både noggrannare och robustare mot den extrema miljö och desnabba tryck- och temperaturförändringar som sensorn utsätts för un-der varje cykel. Idag används cylindertryckssensorer enbart i labb- ochtestmiljö, mest beroende på att sensorn är relativt dyr, men det på-går en teknikutveckling av sensorerna som siktar på att de i framtidafordon även skall sitta i produktionsmotorer.Matematiska modeller av cylindertrycksutvecklingen och metoderför att beräkna den frigjorda värmen behandlas i denna avhandling.Avhandlingens innehåll och kunskapsbidragAvhandlingen består av tre delar och det sammanhållande temat är cy-lindertryck. Den första delen behandlar en-zons-modellering av cylin-dertrycksutvecklingen, där blandningen av luft och bränsle i cylindernbehandlas som homogen. Detta antagande möjliggör en kort beräk-ningstid för den matematiska modellen. Ett bidrag i avhandlingen äridenti�ering av den viktigaste modellkomponenten i en allmänt veder-tagen en-zons-modell samt en modellförbättring för denna komponent.I den andra delen studeras kompressionsförhållandet, vilket är för-hållandet mellan största och minsta cylindervolym under kolvens rörel-se. Denna storhet är direkt kopplad motorns verkningsgrad och bräns-leförbrukning. Avsnittet beskriver och utvärderar metoder för att be-stämma kompressionsförhållandet i en motor utgående från cylinder-trycksmätningar. Dessa metoder appliceras och utvärderas på en avSaab Automobile utvecklad prototypmotor med variabelt kompressions-förhållande.När man beräknar parametrar i matematiska modeller där paramet-rarna har fysikalisk tolkning, såsom temperatur, har användaren oftaförkunskap och erfarenhet om vilka värden dessa bör anta. Den tred-je delen utvecklar ett verktyg för hur användaren kan väga in sådanförkunskap när parametrarnas värden beräknas utgående från cylin-dertrycksmätningar och den valda matematiska modellen. Särskilt enav metoderna ger en bra kompromiss mellan användarens förkunskapoch mätdata. Detta verktyg kan användas för analys av frigjord värmeoch motorkalibrering, som ett diagnosverktyg och som ett analysverk-tyg för framtida motordesigner.
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1Introduction
Internal combustion engines have been the primary machine for gen-erating work in mobile applications for more than a century, they arealso continuing to be of high interest due to the high energy densityof the fuels and their possibility to give good total fuel consumption.Continuous improvements and re�nements are made to meet the in-creasing performance demands from customers and legislators, whereboth emissions and total system economy are important.Emission regulations from the legislators provide a hard limit onthe design�they must be met. Today the state-of-the-art technologyfor achieving low emissions from combustion engines, is the gasoline en-gine equipped with a three-way catalyst (TWC). Regulations for dieselengines are also continuously being made stricter to reach those of thegasoline engine with a TWC.Development and competition between manufacturers strives to meetthe needs of customers and deliver products with better performanceboth with respect to power and fuel consumption. Emerging technolo-gies like the gas turbine and now the fuel cell pose possibilities and givea healthy competition, which also drives the technology developmentof combustion engines forward.Engineers have met the challenges posed by stricter emission regula-tions through for example fundamental research on combustion, addingnew components to more complex systems, as well as optimization oftotal system performance. Engine systems are becoming increasinglycomplex as new technologies are developed, but systematic methods are1



2 CHAPTER 1. INTRODUCTIONalso required to handle and integrate these technologies. Some exam-ples of promising techniques for spark ignited (SI) engines are variablevalve actuation and variable compression ratio. Both of these exemplifytechnologies that control the development of the in-cylinder process di-rectly and where it is of importance to get accurate knowledge aboutthe combustion process. The combustion process and other in-cylinderprocesses are directly re�ected in the measured cylinder pressure, andused as a standard tool for tuning and optimizing engine performance.This is of course also important for conventional engines.In-cylinder pressure modeling and estimationThe in-cylinder pressure is important since it contains informationabout the work production in the combustion chamber and thus givesimportant insight into the control and tuning of the engine. Beingable to accurately model and extract information from the cylinderpressure is important for the interpretation and validity of the result.Researchers and engineers strive to extract as much information as pos-sible from the combustion chamber through the in-cylinder pressure andmodels of di�erent complexity exist for interpretation of the cylinderpressures. Here the focus is on single-zone models that treats the in-cylinder contents as a single zone and single �uid. These models candescribe the cylinder pressure well and have a low computational com-plexity, which is also an important parameter when analyzing enginedata.Due to the short time scales of the process a sequence of measure-ments on an engine gives huge amounts of data. These large sets ofdata have to be analyzed e�ciently, systematically, and with good ac-curacy. in-cylinder pressure analysis, the most e�cient models are thesingle zone models, and the accuracy of these is the topic of the thesis.The foundation for the analysis of the model is the �rst law of ther-modynamics where the relation between work, volume, pressure andtemperature is described through the ratio of speci�c heats. Analysesthat have been performed show that the speci�c heat ratio is of high im-portance for the model and therefore this model component is studiedin great detail. Therefore, the �rst part of the thesis is on single-zoneheat release modeling, where the speci�c heat ratio model constitutesa key part.In-cylinder pressure models in general have a number of parame-ters, that have to be determined. For an accurate in-cylinder pressureanalysis it is necessary, but not su�cient as will be shown later in thethesis, that the di�erence between the measured and modeled data issmall. To minimize this di�erence, in a given measure, requires thatthe parameters are estimated, and this is the estimation problem.Whenever the parameters in a physical model have a physical mean-



1.1. OUTLINE 3ing, the user usually has an expectation or prior knowledge of eitherwhat values the parameters should have, or at least the range in whichthey should be in. The user might even know which parameters thatare most certain. These are examples of information that come fromour prior knowledge. In the third part of the thesis it is shown howsuch information can be incorporated in the estimation problem.Compression ratio estimationThe theme in the thesis is cylinder pressure and the second part treatscompression ratio estimation based on measured cylinder pressure data.This particular problem is directly motivated by the variable compres-sion engine, where the compression ratio can be changed continuouslyto eliminate an important design trade-o� made in conventional en-gines. High compression ratios give good engine e�ciency but at highloads a high compression ratio can result in engine destruction throughengine knock. In such an engine the compression ratio is changed con-tinuously to get the best performance from the engine. When the engineis driven at low loads a high compression ratio is selected for good ef-�ciency and at high loads a low compression ratio is used to reduceengine knock. Compression ratio estimation is studied for several rea-sons where the most important is for diagnostic purposes. A too highcompression ratio can lead to engine destruction while a too low com-pression ratio gives a too high fuel consumption.Four di�erent methods for compression ratio estimation are pro-posed and evaluated. The research was motivated by the variable com-pression engine, but the methods are generally applicable and can alsobe used on conventional engines to get a better value of the compressionratio from experimental data.1.1 OutlineAn outline of the thesis in terms of short summaries of each chapter isgiven below and indicates the scope of each chapter. The notation usedis summarized in appendix D, where the parameters are given in ap-pendix D.1, and the abbreviations are summarized in appendix D.2. Inthe thesis various evaluation criteria are used, and they are summarizedin appendix D.3.Chapter 2: An overview of single-zone heat-release modelsThis chapter serves as an introduction to single-zone heat release mod-eling. First the basis and assumptions made for single-zone heat releasemodeling are given. Based on these, four well-known heat release mod-



4 CHAPTER 1. INTRODUCTIONels are presented. These are compared with respect to their computedheat release trace given a cylinder pressure trace.Chapter 3: Heat-release model componentsThe model components used in the most descriptive single-zone heatrelease model in chapter 2, the Gatowski et al. (1984) model, are de-scribed. The model components of the other three heat release mod-els form a subset of these. For each model component, a method toinitialize the model component parameters is given. The sensitivity incylinder pressure for each of these parameters is then investigated. Thechapter ends with a summary of the equations, parameters, inputs andoutputs of the Gatowski et al. model.Chapter 4: A speci�c heat ratio model for single-zone heatrelease modelsAn accurate speci�c heat ratio model is important for an accurate heatrelease analysis. This since the speci�c heat ratio couples the systemsenergy to other thermodynamic quantities. This chapter therefore in-vestigates models of the speci�c heat ratio for the single-zone heatrelease model developed by Gatowski et al. (1984). The objective isto �nd a model accurate enough to only introduce a cylinder pressuremodeling error in the order of the cylinder pressure measurement noise,while keeping the computational complexity at a minimum. Based onassumptions of frozen mixture for the unburned mixture and chemicalequilibrium for the burned mixture, the speci�c heat ratio is calculatedusing a full equilibrium program for an unburned and a burned air-fuelmixture, and compared to already existing and newly proposed modelsof γ. It is assumed that a general single-zone heat release model canbe used as a reference model.The evaluation is performed in terms of modeling error in γ and incylinder pressure. The impact each γ-model has on the heat release,in terms of estimated heat release parameters in the Vibe function isillustrated. The in�uence of fuel composition, air-fuel ratio and residualgas content is also investigated.Large parts of the material in this chapter and in appendix A havepreviously been published in Klein and Eriksson (2004c) and Klein andEriksson (2004a). Appendix A contains further details and argumenta-tion that support the development of the speci�c heat ratio models, andgives a background and a thorough explanation of some of the detailsin the models.



1.1. OUTLINE 5Chapter 5: Compression ratio estimation � with focus on mo-tored cyclesThe purpose of this chapter is to estimate the compression ratio givena cylinder pressure trace, in order to diagnose the compression ratioif it e.g. gets stuck at a too high or too low ratio. Four methodsfor compression ratio estimation based on cylinder pressure traces aredeveloped and evaluated for both simulated and experimental cycles.A sensitivity analysis of how the methods perform when subjected toparameter deviations in crank angle phasing, cylinder pressure bias andheat transfer is also made.In appendix B further details and argumentation on compressionratio estimation for motored cycles are given, and it serves as a com-plement to this chapter. Chapter 5 together with appendix B is anedited version of Klein et al. (2006), which itself is based on Klein et al.(2004) and Klein and Eriksson (2005b).Chapter 6�8: Using prior knowledge for single-zone heat re-lease analysisTwo methods that take parameter prior knowledge into account, whenperforming parameter estimation on the Gatowski et al. model, arepresented. The application in mind is a tool for cylinder pressure es-timation that is accurate, systematic and e�cient. The methods aredescribed in detail, and it is shown how to incorporate the prior knowl-edge in a systematic manner. Guidelines of how to determine the priorknowledge for a speci�c application are then given. The performanceof the two methods is evaluated for both simulated and experimen-tally measured cylinder pressure traces. These evaluations are madein chapter 7: Results and evaluation for motored cycles and in chap-ter 8: Results and evaluation for �red cycles. Appendix C containsfurther details and argumentation that support the development andevaluation of the two parameter estimation methods.Experimental and simulated engine dataDuring the project di�erent engines have been available in the VehicularSystems engine laboratory. Therefore the simulated and experimentaldata used in the chapters are from di�erent engines.Chapters 2�4 use a naturally aspirated 2.3L engine from SAAB,and its geometry is given in appendix A.2. In chapter 5 the SAABVariable Compression (SVC) engine is used, with the geometry givenin appendix B.3. The results for chapters 6�8 are based on data froma turbocharged 2.0L SAAB engine, see appendix C.4.



6 CHAPTER 1. INTRODUCTION1.2 ContributionsThe following list summarizes the main contributions of this thesis:
• The interrelation between models in the single-zone heat releasemodel family is shown. A method for �nding nominal values forall parameters therein is suggested.
• It is shown that the speci�c heat ratio model is the most impor-tant component in cylinder pressure modeling.
• The importance of using the cylinder pressure error as a measureof how well a speci�c heat ratio model performs is pinpointed.
• A new speci�c heat ratio model to be used primarily in single-zone heat release models. This model can easily be incorporatedwith the Gatowski et al.-model, and reduces the modeling errorto be of the same order as the cylinder pressure measurementnoise.
• Four methods for estimating the compression ratio index, givena cylinder pressure trace are proposed. One method is recom-mended for its accuracy, while another is preferable when com-putational e�ciency is important.
• Two methods of using prior knowledge applied to the in-cylinderpressure estimation problem are presented and evaluated. For thesecond method, it is shown that prior knowledge with individu-ally set parameter uncertainties yields more accurate and robustestimates.1.3 PublicationsIn the research work leading to this thesis, the author has published alicentiate thesis and the following papers:Journal papers:
• M. Klein, L. Eriksson, and Y. Nilsson (2003). Compression es-timation from simulated and measured cylinder pressure. SAE2002 Transactions Journal of Engines, 2002-01-0843, 111(3), 2003.
• M. Klein and L. Eriksson (2005a). A speci�c heat ratio model forsingle-zone heat release models. SAE 2004 Transactions Journalof Engines, 2004-01-1464, 2005.
• M. Klein, L. Eriksson and J. Åslund (2006). Compression ratioestimation based on cylinder pressure data. Control EngineeringPractice, 14(3):197�211.



1.3. PUBLICATIONS 7Conference papers:
• M. Klein, L. Eriksson and Y. Nilsson (2002). Compression es-timation from simulated and measured cylinder pressure. Elec-tronic engine controls, SP-1703, SAE Technical Paper 2002-01-0843. SAE World Congress, Detroit, USA, 2002.
• M. Klein and L. Eriksson (2002). Models, methods and per-formance when estimating the compression ratio based on thecylinder pressure. Fourth conference on Computer Science andSystems Engineering in Linköping (CCSSE), 2002.
• M. Klein and L. Eriksson (2004c). A speci�c heat ratio modelfor single-zone heat release models. Modeling of SI engines, SP-1830, SAE Technical Paper 2004-01-1464. SAE World Congress,Detroit, USA, 2004.
• M. Klein, L. Eriksson and J. Åslund (2004). Compression ratioestimation based on cylinder pressure data. In proceedings ofIFAC symposium on Advances in Automotive Control, Salerno,Italy, 2004.
• M. Klein (2004). A speci�c heat ratio model and compressionratio estimation. Licentiate thesis, Vehicular Systems, LinköpingUniversity, 2004. LiU-TEK-LIC-2004:33, Thesis No. 1104.
• M. Klein and L. Eriksson (2004b). A comparison of speci�c heatratio models for cylinder pressure modeling. Fifth conference onComputer Science and Systems Engineering in Linköping (CC-SSE), 2004.
• M. Klein and L. Eriksson (2005b). Utilizing cylinder pressuredata for compression ratio estimation. IFAC World Congress,Prague, Czech Republic, 2005.The following conference papers have also been produced by the authorduring the project, but they are not explicitly included in the thesis:
• M. Klein and L. Nielsen (2000). Evaluating some Gain Schedul-ing Strategies in Diagnosis of a Tank System. In proceedings ofIFAC symposium on Fault Detection, Supervision and Safety forTechnical Processes, Budapest, Hungary, 2000.
• M. Klein and L. Eriksson (2006). Methods for cylinder pres-sure based compression ratio estimation. Electronic Engine Con-trol, SP-2003, SAE Technical paper 2006-01-0185. SAE WorldCongress, Detroit, USA, 2006.
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2An overview of single-zoneheat-release models
When analyzing the internal combustion engine the in-cylinder pressurehas always been an important experimental diagnostic, due to its directrelation to the combustion and work producing processes (Chun andHeywood, 1987; Cheung and Heywood, 1993). The in-cylinder pressurere�ects the combustion process, the piston work produced on the gas,heat transfer to the chamber walls, as well as mass �ows in and out ofcrevice regions between the piston, rings and cylinder liner.Thus, when an accurate knowledge of how the combustion processpropagates through the combustion chamber is desired, each of theseprocesses must be related to the cylinder pressure, so the combustionprocess can be distinguished. The reduction of the e�ects of volumechange, heat transfer, and mass loss on the cylinder pressure is calledheat-release analysis and is done within the framework of the �rst lawof thermodynamics. In particular during the closed part of the en-gine cycle when the intake and exhaust valves are closed. The mostcommon approach is to regard the cylinder contents as a single zone,whose thermodynamic state and properties are modeled as being uni-form throughout the cylinder and represented by average values. Nospatial variations are considered, and the model is therefore referred toas zero-dimensional. Models for heat transfer and crevice e�ects caneasily be included in this framework. Another approach is to do a moredetailed thermodynamic analysis by using a multi-zone model, wherethe cylinder is divided into a number of zones, di�ering in compositionand properties. Each zone being uniform in composition and temper-11



12 CHAPTER 2. OVERVIEW OF HEAT-RELEASE MODELSature, and the pressure is the same for all zones, see for e.g. (Nilssonand Eriksson, 2001).The goal of this chapter is to show the structure of di�erent single-zone heat-release model families and how they are derived. The dis-cussion of details in the model components are postponed to chapter 3,since they might distract the readers attention from the general struc-ture of the model family. Chapter 3 gives a more thorough descriptionof the model components.Single-zone models for analyzing the heat-release rate and simulat-ing the cylinder pressure are closely connected; they share the samebasic balance equation and can be interpreted as each others inverse.They are both described by a �rst order ordinary di�erential equationthat has to be solved. In heat release models a pressure trace is givenas input and the heat release is the output, while in pressure modelsa heat release trace is the input and pressure is the output. For agiven heat-release model an equivalent pressure model is obtained byreordering the terms in the ordinary di�erential equation. Since theyare so closely connected it is bene�cial to discuss them together.2.1 Model basis and assumptionsThe basis for the majority of the heat-release models is the �rst lawof thermodynamics; the energy conservation equation. For an opensystem it can be stated as
dU = �Q− �W +

∑

i

hi dmi, (2.1)where dU is the change in internal energy of the mass in the system, �Qis the heat transported to the system, �W is the work produced by thesystem and∑i hi dmi is the enthalpy �ux across the system boundary.Possible mass �ows dmi are: 1) �ows in and out of the valves; 2) directinjection of fuel into the cylinder; 3) �ows in and out of crevice regions;4) piston ring blow-by. The mass �ow dmi is positive for a mass �owinto the system and hi is the mass speci�c enthalpy of �ow i. Notethat hi is evaluated at conditions given by the zone the mass elementleaves.As mentioned earlier, single-zone models is our focus at the moment,so we will now look into those in more detail. Some commonly madeassumptions for the single-zone models are:
• the cylinder contents and the state is uniform throughout theentire chamber.
• the combustion is modeled as a release of heat.
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Figure 2.1: Schematic of the combustion process in the cylinder, thatde�nes the sign convention used in the pressure and heat-release mod-els.
• the heat released from the combustion occurs uniformly in thechamber.
• the gas mixture is an ideal gas.Consider the combustion chamber to be an open system (single zone),with the cylinder head, cylinder wall and piston crown as boundary.Figure 2.1 shows a schematic of the combustion chamber, where thesign conventions used in pressure and heat-release models are de�ned.The change in heat �Q consists of the released chemical energy fromthe fuel �Qch, which is a heat adding process, and the heat transfer tothe chamber walls �Qht, which is a heat removing process. The heattransport is therefore represented by �Q = �Qch − �Qht. Note thatthe heat transfer cools the gases at most times, but in some instancesit heats the air-fuel mixture. The only work considered is the workdone by the �uid on the piston Wp and it is considered positive, there-fore �W = �Wp. The �rst law of thermodynamics (2.1) can then berewritten as �Qch = dUs + �Wp −

∑

i

hi dmi + �Qht. (2.2)The piston work �Wp is assumed to be reversible and can be writtenas �Wp = pdV . For an ideal gas, the change in sensible energy dUs isa function of mean charge temperature T only, thus:
Us = mtotu(T ), (2.3)



14 CHAPTER 2. OVERVIEW OF HEAT-RELEASE MODELSwhich in its di�erentiated form becomes:
dUs = mtotcv(T )dT + u(T )dmtot, (2.4)where mtot is the charge mass, and cv =

(
∂u
∂T

)

V
is the mass speci�cheat at constant volume. The mean temperature is found from theideal gas law as T = pV

mtotR , and its di�erentiated form is
dT =

1

mtotR
(V dp+ pdV −RTdmtot), (2.5)assuming R to be constant. For reading convenience, the dependenceof T in cp, cv and γ is often left out in the following equations. Equa-tion (2.2) can now be rewritten as�Qch =

cv
R
V dp+

cv +R

R
pdV + (u − cv T )dmtot −

∑

i

hi dmi + �Qht,(2.6)using equations (2.4) and (2.5). The speci�c heat ratio is de�ned as
γ =

cp

cv
and with the assumption of an ideal gas the mass speci�c gasconstant R can be written as R = cp−cv, yielding that the mass speci�cheat at constant volume is given by

cv =
R

γ − 1
. (2.7)The mass speci�c heat is the amount of energy that must be addedor removed from the mixture to change its temperature by 1 K at agiven temperature and pressure. It relates internal energy with thethermodynamic state variables p and T , and is therefore an importantpart of the heat release modeling. Inserting (2.7) into (2.6) results in�Qch =

1

γ − 1
V dp+

γ

γ − 1
p dV +(u− RT

γ − 1
)dmtot−

∑

i

hi dmi+�Qht.(2.8)From this equation, four di�erent single-zone models with various levelsof complexity will be derived. To begin with the isentropic relation isderived, then the polytropic model is formulated and this model formsthe basis for calculating the mass fraction burned with the Rassweiler-Withrow method (Rassweiler and Withrow, 1938). Secondly, a modelfor computing the apparent heat release �rst proposed in Krieger andBorman (1967) will be derived. Thirdly, the pressure ratio developedby Matekunas (1983) is shortly summarized. Finally, a model includingheat transfer and crevice e�ects (Gatowski et al., 1984) will be given.



2.2. RASSWEILER-WITHROW MODEL 15The isentropic process and isentropic relationIn many situations real processes are compared to ideal processes and ascomparison the isentropic process is normally used. From the isentropicprocess an isentropic relation can be found by integrating the �rst lawof thermodynamics (2.8). The assumptions are:
• Nomass transfer: Crevice e�ects and leakages to the crankcase (of-ten called blow-by) are non-existent, i.e. dmtot = dmi = 0.
• Neither heat transfer nor heat release:- Heat transfer is not explicitly accounted for, i.e. �Qht = 0,and thus �Q = �Qch − �Qht = �Qch.- Using the fact that there is no release of chemical energyduring the compression phase prior to the combustion orduring the expansion phase after the combustion, therefore�Q = 0 for these regions.
• The speci�c heat ratio γ is constant.The �rst two assumptions yield that (2.8) can be expressed as:

dp = −γ p
V
dV. (2.9)From (2.9) and the last assumption above the isentropic relation isfound by integrating as

pV γ = C = constant (2.10)by noting that γ is considered to be constant.2.2 Rassweiler-Withrow modelThe Rassweiler-Withrow method was originally presented in 1938 andmany still use the method for determining the mass fraction burned,due to its simplicity and it being computationally e�cient. The massfraction burned xb(θ) = mb(θ)
mtot

is the burned mass mb(θ) normalized bythe total charge massmtot, and it can be seen as a normalized version ofthe accumulated heat-release trace Qch(θ) such that it assumes valuesin the interval [0, 1]. The relation between the mass fraction burnedand the amount of heat released can be justi�ed by noting that theenergy released from a system is proportional to the mass of fuel thatis burned. The input to the method is a pressure trace p(θj) where thecrank angle θ at each sample j is known (or equivalently; the volumeis known at each sample) and the output is the mass fraction burnedtrace xb,RW (θj).



16 CHAPTER 2. OVERVIEW OF HEAT-RELEASE MODELSA cornerstone for the method is the fact that pressure and volumedata during compression and expansion can be approximated by thepolytropic relation
pV n = constant. (2.11)This expression comes from the isentropic relation (2.10) but γ is ex-changed for a constant exponent n ∈ [1.25, 1.35]. This has been shownto give a good �t to experimental data for both compression and ex-pansion processes in an engine (Lancaster et al., 1975). The exponent

n is termed the polytropic index. It di�ers from γ since some of thee�ects of heat transfer are included implicitly in n. It is comparableto the average value of γu for the unburned mixture during the com-pression phase, prior to combustion. But due to heat transfer to thecylinder walls, index n is greater than γb for the burned mixture duringexpansion (Heywood, 1988, p.385).When considering combustion where �Q = �Qch 6= 0, equation (2.8)can be rewritten as
dp =

n− 1

V
�Q− n p

V
dV = dpc + dpv, (2.12)where dpc is the pressure change due to combustion, and dpv is thepressure change due to volume change, compare dp in (2.9). In theRassweiler-Withrow method (Rassweiler and Withrow, 1938), the ac-tual pressure change ∆p = pj+1−pj during the interval ∆θ = θj+1−θj ,is assumed to be made up of a pressure rise due to combustion ∆pc,and a pressure rise due to volume change ∆pv,

∆p = ∆pc + ∆pv, (2.13)which is justi�ed by (2.12). The pressure change due to volume changeduring the interval∆θ is approximated by the polytropic relation (2.11),which gives
∆pv(j) = pj+1,v − pj = pj

((
Vj

Vj+1

)n

− 1

)

. (2.14)Applying ∆θ = θj+1 − θj , (2.13) and (2.14) yields the pressure changedue to combustion as
∆pc(j) = pj+1 − pj

(
Vj

Vj+1

)n

. (2.15)By assuming that the pressure rise due to combustion in the interval
∆θ is proportional to the mass of mixture that burns, the mass fractionburned at the end of the j'th interval thus becomes

xb,RW (j) =
mb(j)

mb(total)
=

∑j
k=0 ∆pc(k)

∑M
k=0 ∆pc(k)

, (2.16)
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Figure 2.2: Top: Fired pressure trace (solid) and motored pressuretrace (dash-dotted). Bottom: Calculated mass fraction burned pro�leusing the Rassweiler-Withrow method.where M is the total number of crank angle intervals and ∆pc(k) isfound from (2.15). The result from a mass fraction burned analysis isshown in �gure 2.2, where the mass fraction burned pro�le is plottedtogether with the corresponding pressure trace. In the upper plot twocylinder pressure traces, one from a �red cycle (solid) and one from amotored cycle (dash-dotted) are displayed. When the pressure rise fromthe combustion becomes visible, i.e. it rises above the motored pressure,the mass fraction burned pro�le starts to increase above zero. Themass fraction burned pro�le increases monotonously as the combustionpropagates through the combustion chamber. Equations (2.15)-(2.16)form the classical Rassweiler-Withrow mass fraction burned method.If instead a heat-release trace is sought, the pressure change dueto combustion in (2.12), dpc = n−1
V �Q, can be rewritten and approxi-mated by

∆QRW (j) =
Vj+1/2

n− 1
∆pc(j), (2.17)where the volume V during interval j is approximated with Vj+1/2 (thevolume at the center of the interval), and ∆pc(j) is found from (2.15).The heat-release trace is then found by summation. This method willbe called the Rassweiler-Withrow heat release method. The calcu-lated heat release approximates the released chemical energy from thefuel minus energy-consuming processes such as the heat transfer to thecylinder walls and crevice e�ects. If heat transfer and crevice e�ects
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Figure 2.3: Calculated heat-release trace (upper) and mass fractionburned trace (lower), using the apparent heat release (solid) andRassweiler-Withrow (dash-dotted) methods.where non-existent, the heat release would correspond directly to theamount of energy added from the chemical reactions. The heat-releasetrace for the same data as in �gure 2.2 is displayed in the upper plotof �gure 2.3 as the dash-dotted line.2.3 Apparent heat release modelThe work by Krieger and Borman (1967) was derived from the �rstlaw of thermodynamics and called the computation of apparent heatrelease. It is also called the computation of net heat release. Themethod takes neither heat transfer nor crevice e�ects into account,thus �Qht is lumped into �Q = �Qch − �Qht and dmtot = dmi = 0in (2.8). Hence, the apparent heat release �Q can be expressed as:�QAHR =
1

γ(T )− 1
V dp+

γ(T )

γ(T ) − 1
p dV, (2.18)which is the same expression as the Rassweiler-Withrow method wasbased upon (2.12), but assuming that γ(T ) = n. The mass fractionburned xb,AHR is computed by integrating (2.18) and then normalizingwith the maximum value of the accumulated heat release QAHR, i.e.

xb,AHR(θ) =
QAHR(θ)

max QAHR
=

∫ �QAHR

dθ dθ

max QAHR
. (2.19)



2.3. APPARENT HEAT RELEASE MODEL 19Method θ10 θ50 θ85 ∆θbRassweiler-Withrow -6.4 9.8 26.9 33.3Apparent heat release -4.5 11.0 25.2 29.8Table 2.1: Crank angle positions for 10 %, 50 % and 85 % mfb as wellas the rapid burn angle ∆θb = θ85 − θ10, all given in degrees ATDC forthe mass fraction burned trace in �gure 2.3.The Rassweiler-Withrow method in (2.16) is a di�erence equation, andthis causes an quantization e�ect compared to the ordinary di�erentialequation given in (2.18). The net heat-release trace and mass fractionburned pro�le from the Krieger and Borman model are similar to thosefrom the Rassweiler-Withrow method, the former being physically themore accurate one. One example is given in �gure 2.3, where the upperplot shows the net heat-release traces and the lower plot shows the massfraction burned traces, from the cylinder pressure in �gure 2.2. For thisparticular case, the Rassweiler-Withrow method yields a slower burnrate compared to the apparent heat release method for the same data.This is re�ected in the crank angle for 50 % mfb θ50, which is 11.0[deg ATDC] for the apparent heat release method and 9.8 [deg ATDC]for the Rassweiler-Withrow method. Table 2.1 summarizes the crank-angle positions for 10 %, 50 % and 85 % mfb as well as the rapid burnangle duration ∆θb, and shows that the Rassweiler-Withrow methodyields a shorter burn duration for this particular case. The rapid burnangle duration is de�ned as ∆θb = θ85 − θ10.The shorter burn duration is also re�ected in the heat release trace,and the di�erence is due to the assumptions on n and Vj+1/2 in theRassweiler-Withrow method. The mass fraction burned pro�le is cal-culated assuming that the mass of burned mixture is proportional tothe amount of released chemical energy.Pressure simulationAn ordinary di�erential equation for the pressure can be simulated bysolving (2.18) for the pressure di�erential dp:
dp =

(γ(T ) − 1)�Q− γ(T ) p dV

V
. (2.20)When performing a heat-release analysis the pressure is used as inputand the heat release is given as output, and when the pressure traceis being simulated the heat-release trace is given as input. Therefore acylinder pressure simulation based on (2.20), can be seen as the inverseof the heat release analysis (2.18). The only additional informationthat is needed for the computation is the initial value of the pressure.



20 CHAPTER 2. OVERVIEW OF HEAT-RELEASE MODELS2.4 Matekunas pressure ratioThe pressure ratio concept was developed by Matekunas (1983) and itis a computationally e�cient method to determine an approximation ofthe mass fraction burned trace. The pressure ratio is de�ned as the ratioof the cylinder pressure from a �red cycle p(θ) and the correspondingmotored cylinder pressure p0(θ):
PR(θ) =

p(θ)

p0(θ)
− 1. (2.21)The pressure ratio (2.21) is then normalized by its maximum

PRN(θ) =
PR(θ)

max PR(θ)
, (2.22)which produces traces that are similar to the mass fraction burned pro-�les. The di�erence between them has been investigated in Eriksson(1999), and for the operating points used, the di�erence in position for

PRN(θ) = 0.5 was in the order of 1-2 degrees. This suggests PRN (θ)can be used as the mass fraction burned trace xb,MPR. The cylin-der pressure in the upper plot of �gure 2.4 yields the pressure ratioPR (2.21) given in the middle plot, and an approximation of the massfraction burned in the lower plot.2.5 Gatowski et al. modelA more complex model is to incorporate models of heat transfer, crevicee�ects and thermodynamic properties of the cylinder charge into theenergy conservation equation (2.8). This was done in Gatowski et al.(1984), where a heat-release model was developed and applied to threedi�erent engine types, among those a spark-ignited engine.Crevice e�ect modelCrevices are small, narrow volumes connected to the combustion cham-ber. During compression some of the charge �ows into the crevices, andremain there until the expansion phase, when most of the charge re-turns to the combustion chamber and some charge stays in the crevices.Also, a small part of the charge in the cylinder blows by the top pistonring, before it either returns to the cylinder or ends up in the crank-case, a phenomena termed blow-by. Since the �ame can not propagateinto the crevices, the charge residing in the crevices is not combusted.The temperature in the crevices are assumed to be close to the cylin-der wall temperature, due to that the crevices are narrow (Heywood,
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Figure 2.4: Top: Fired pressure trace (solid) and motored pressuretrace (dash-dotted), same as in the upper plot of �gure 2.2. Middle:Matekunas pressure ratio PR(θ) (2.21). Bottom: Computed mass frac-tion burned pro�le using (2.22).1988, p.387). This has the result that during the closed phase a sub-stantial amount of charge could be trapped in the crevices. Accordingto Gatowski et al. (1984), the crevice volumes constitute as much as1-2 percent of the clearance volume in size. It is also shown that due tothe temperature di�erence in the cylinder and in the crevices, as muchas 10 (mass) percent of the charge could then be trapped in crevices atpeak pressure.The model in Gatowski et al. (1984) assumes that all crevices canbe modeled as a single aggregate constant volume Vcr, and that thecharge in the crevice assumes the wall temperature Tw and has thesame pressure as the combustion chamber. The ideal gas law thusgives the following expression for the mass in the crevice
mcr =

p Vcr

R Tw
=⇒ dmcr =

Vcr

RTw
dp, (2.23)where it is assumed that Tw and R are constant.Here, we will only consider spark-ignition engines with a premixedair-fuel charge during the closed part of the engine cycle. Blow-by isalso neglected, hence the only mass �ow occurring is the one in and outof the crevice region. Mass balance thus yields

dmtot = dmi = −dmcr. (2.24)With the de�nition of enthalpy h = RT + u and using (2.23)�(2.24),



22 CHAPTER 2. OVERVIEW OF HEAT-RELEASE MODELSthen equation (2.8) can then be rewritten to:�Qch = 1
γ−1V dp+ γ

γ−1p dV + ( RT
γ−1 + h′ − u) Vcr

RTw
dp+ �Qht

= 1
γ−1V dp+ γ

γ−1p dV + ( T
γ−1 + T ′ + u′−u

R )Vcr

Tw
dp+ �Qht.(2.25)To get a cylinder pressure model, equation (2.25) can be solved for thepressure di�erential yielding the following expression:

dp =
�Qch − γ

γ−1 p dV − �Qht

1
γ−1 V + Vcr

Tw

(
T

γ−1 + T ′ + u′−u
R

) . (2.26)The enthalpy h′ is evaluated at cylinder conditions when the crevicemass �ow is out of the cylinder (dmcr > 0), and at crevice conditionsotherwise.Heat transfer modelThe heat transfer model relies upon Newton's law of cooling
Q̇ht = hcA∆T = hcA (T − Tw), (2.27)and Woschni (1967) found a correlation between the convection heattransfer coe�cient hc and some geometric and thermodynamic proper-ties1,

hc =
0.013B−0.2p0.8

(
C1up +

C2(p−p0)Tref Vs

pref Vref

)0.8

T 0.55
. (2.28)Woschni's heat transfer correlation model will be further discussed insection 3.6. Note that when simulating heat transfer in the crank angledomain, �Qht

dθ
=

�Qht
dt

dt

dθ
= Q̇ht 60

2πN
(2.29)should be used, where the engine speed N [rpm] is assumed constantin the last equality.Model of thermodynamic propertiesThe ratio of speci�c heats γ(T ) is modeled as a linear function of tem-perature

γlin(T ) = γ300 + b (T − 300). (2.30)In Gatowski et al. (1984) it is stated that this component is impor-tant, since it captures how the internal energy varies with temper-ature. This is an approximation of the thermodynamic properties1The value of the �rst coe�cient di�ers from the one in (Woschni, 1967), sinceit is recalculated to �t the SI-unit system.



2.5. GATOWSKI ET AL. MODEL 23but it is further stated that this approximation is consistent with theother approximations made in the model. Using γ(T ) =
cp(T )
cv(T ) and

R(T ) = cp(T )−cv(T ), together with the linear model of γ(T ) in (2.30),gives the following expression for cv(T ):
cv(T ) =

R

γ(T ) − 1
=

R

γ300 + b(T − 300)− 1
. (2.31)The only thing remaining in (2.25) to obtain a full description of themodel, is an expression for u′ − u. Remembering that cv = ( ∂u

∂T )V ,
u′−u can be found by integrating cv. This describes the sensible energychange for a mass that leaves the crevice and enters the cylinder. Theintegration is performed as:
u′ − u =

∫ T ′

T
cv dT

= R
b {ln(γ300 + b (T ′ − 300) − 1) − ln(γ300 + b (T − 300)− 1)}

= R
b ln

(
γ′

lin−1
γlin−1

)

, (2.32)where equation (2.31) is used.Gross heat-release simulationInserting equations (2.23) to (2.32) into (2.8), yields the following ex-pression for the released chemical energy:�Qch =

1

γ − 1
V dp+

γ

γ − 1
p dV +�Qht +(cv T+RT ′+

R

b
ln

(
γ′ − 1

γ − 1

)

)
Vcr

RTw
dp,(2.33)which is reformulated as�Qch =

1

γ − 1
V dp+

γ

γ − 1
p dV

︸ ︷︷ ︸

dQnet

+�Qht+

(
1

γ − 1
T + T ′ +

1

b
ln

(
γ′ − 1

γ − 1

)

)
Vcr

Tw
dp

︸ ︷︷ ︸

dQcrevice

.
(2.34)This ordinary di�erential equation can easily be solved numerically forthe heat-release trace, if a cylinder pressure trace is provided, togetherwith an initial value for the heat release. Given the cylinder pressure in�gure 2.2, the heat-release trace given in �gure 2.5 is calculated. Thesolid line is the gross heat released, i.e. the chemical energy released
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Figure 2.5: Heat-release trace from the Gatowski model given the cylin-der pressure in �gure 2.2.during the engine cycle. The dash-dotted line shows the heat releasedif not considering the crevice e�ect, and the dashed line shows thenet heat release, i.e. when neither heat transfer nor crevice e�ects areconsidered. For this particular case, the heat transfer is about 70 J andthe crevice e�ect is about 30 J, i.e. approximately 14 and 6 percent ofthe total released energy respectively.Cylinder pressure simulationReordering (2.34), gives an expression for the pressure di�erential as
dp =

�Qch − γ
γ−1 p dV − �Qht

1
γ−1 V + Vcr

Tw

(
T

γ−1 + 1
b ln
(

γ′−1
γ−1

)

+ T ′
) . (2.35)This ordinary di�erential equation can easily be solved numerically forthe cylinder pressure, if a heat-release trace �Qch is provided, togetherwith an initial value for the cylinder pressure.2.6 Comparison of heat release tracesThe single-zone heat release models presented in the previous sec-tions all yield di�erent heat release traces for a given cylinder pressuretrace. This is shown in �gure 2.6, where the heat release traces for theRassweiler-Withrow, apparent heat release and Gatowski models are
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Figure 2.6: Upper: Heat-release traces from the three methods,Gatowski (solid), apparent heat release (dashed) and Rassweiler-Withrow (dash-dotted), given the cylinder pressure in �gure 2.2.Lower: Mass fraction burned traces corresponding to the upper plotwith the addition of the Matekunas pressure ratio (dotted).displayed in the upper plot. As expected, the accumulated heat releaseis higher for the Gatowski model since it accounts for heat transfer andcrevice e�ects. The mass fraction burned traces do not di�er as much,as displayed in the lower plot of �gure 2.6. For this operating point,the apparent heat release model produces a mass fraction burned tracemore like the one found by the Gatowski model, as shown by comparingthe burn angles given in table 2.2. Note that the heat release tracesfrom the Rassweiler-Withrow, apparent heat release and Matekunasmodels are set constant when they have reached their maximum valuesin �gure 2.6. If not, their behavior would be similar to the net heatrelease trace Qnet given in �gure 2.5.Method θ10 θ50 θ85 ∆θbRassweiler-Withrow -6.4 9.8 26.9 33.3Apparent heat release -4.5 11.0 25.2 29.8Matekunas -6.9 9.2 24.0 30.9Gatowski et.al. -5.1 10.4 24.4 29.5Table 2.2: Crank angle positions for 10 %, 50 % and 85 % mfb as wellas the rapid burn angle ∆θb = θ85 − θ10, all given in degrees ATDC forthe mass fraction burned traces in the lower plot of �gure 2.6.



26 CHAPTER 2. OVERVIEW OF HEAT-RELEASE MODELS2.7 SummaryA number of single-zone heat release models have been derived start-ing from the �rst law of thermodynamics. The four models describedare then compared and their speci�c model assumptions are pointedout. The most elaborate one is the Gatowski et al. model, which in-cludes heat transfer described by Woschni's heat transfer correlationand crevice e�ects. This model also assumes that the speci�c heatratio for the cylinder charge can be described by a linear function intemperature. The other three models, the Rassweiler-Withrow model,the Matekunas pressure ratio and the apparent heat release model,are all more computationally e�cient than the Gatowski et al. model,merely since they lack the modeling of heat transfer and crevice e�ect,as well as having a constant speci�c heat ratio for the �rst two cases.This computational e�ciency of course comes to a cost of less descrip-tive models. The model components in the Gatowski et al. model willnow be more thoroughly described in chapter 3.



3Heat-release modelcomponents
Single-zone zero-dimensional heat-release models were introduced inthe previous chapter, where their structure and interrelations werediscussed. Now the attention is turned to the details of the variouscomponents given in chapter 2, and especially those for the Gatowskiet al.-model are treated more fully here. Some of the model compo-nents have already been introduced in section 2.5, but all componentswill be more thoroughly explained and compared to other model com-ponents in sections 3.1�3.7. It is also described how to �nd initial valuesfor all parameters. These values are used as initial values when usingthe single-zone models for parameter estimation. In chapters 5�8 theywill also be used as nominal values for �xed parameters, i.e. parametersthat are not estimated. The equations that form the complete Gatowskiet al. single-zone heat release model are emphasized by boxes, and themodel is summarized in section 3.8. In section 3.9 the cylinder pressuresensitivity to the initial values of the parameters is brie�y investigated.3.1 Pressure sensor modelThe in-cylinder pressure is measured using a water-cooled quartz pres-sure transducer, a piezoelectric sensor that becomes electrically chargedwhen there is a change in the forces acting upon it. Piezoelectric trans-ducers react to pressure changes by producing a charge proportionalto the pressure change. This charge is then integrated by the chargeampli�er, that returns a voltage as output proportional to the pressure.27



28 CHAPTER 3. HEAT-RELEASE MODEL COMPONENTSThe charge ampli�er has a slow drift due to charge leakage. It is how-ever assumed that this drift is slow, and a static model of the pressuresensor can then be used:
pm(θ) = Kp p(θ) + ∆p , (3.1)where pm is the measured cylinder pressure and p is the true cylinderpressure. The gain Kp is considered to be constant for the measure-ment setup, but the o�set ∆p changes during the cycle due to leakagein the charge ampli�er and thermal shock of the sensor. Due to theassumption of a slow drift in the charge ampli�er, the pressure o�set

∆p is considered to be constant for one cycle.3.1.1 Parameter initialization � pressure o�set ∆pThe determination of the pressure o�set is referred to as pegging thepressure signal, or as cylinder pressure referencing. The pressure o�setcan be estimated with various methods (Randolph, 1990; Brunt andPond, 1997). It is generally recommended that pegging is performedonce for every pressure cycle. One method is to �nd ∆p in the leastsquares sense using a polytropic model for the cylinder pressure p.Another method is to reference the measured cylinder pressure pm(θ)to the intake manifold pressure pman before inlet valve closing (IVC),for several samples of pman. This method is often referred to as intakemanifold pressure referencing (IMPR) (Brunt and Pond, 1997). Dueto standing waves (tuning) in the intake runners at certain operatingpoints, see �gure 3.1, the referencing might prove to be insu�cient. Thereferencing should be done at crank angles where the change in cylin-der pressure is approximately �at for all operating points, i.e. wherethe intake manifold pressure pman and the cylinder pressure p are thesame or have a constant di�erence (Brunt and Pond, 1997). Figure 3.2shows the cylinder pressure change for θ ∈ [−200,−160] [deg ATDC]for a number of operating points. Using the same approach as in Bruntand Pond (1997), the referencing should be done between -167 to -162CAD.If IMPR proves to be insu�cient, ∆p must be estimated fromthe measured cylinder pressure data during the compression phase toachieve a correct referencing. If so, referencing to pman will howeverstill serve as an initial value.3.1.2 Parameter initialization � pressure gain KpThe gainKp can be determined in at least three di�erent ways, summa-rized in Johansson (1995): The �rst is to determine the gain for eachcomponent in the measurement chain and multiply them to get Kp;
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Figure 3.1: Speed dependent e�ects in the intake runners like ram andtuning e�ects, are clearly visible between -200 [deg ATDC] and IVC.The second is to calibrate the total chain by applying a well de�nedpressure step and measure the result; The third way being to determinethe total gain in conjunction with a thermodynamic model. Here the�rst method is used, and the gain Kp is determined by using tabulatedvalues from the manufacturer.3.1.3 Crank angle phasingThe pressure trace is sampled at certain events, such as every crankangle degree. Since the mounting can not be performed with in�niteprecision, an uncertainty in the exact crank angle position for the sam-pling pulses is inherent. Therefore when calculating the heat-releasetrace (2.34), or when simulating the cylinder pressure (2.35) to com-pare it with a measurement, the phasing of the pressure trace relativeto the volume trace will most de�nitively a�ect the outcome. Accord-ing to Amann (1985); Morishita and Kushiyama (1997); Sta± (2000),this phasing need to be accurate within 0.1 CAD, in order to accuratelycalculate the work (imep) from a speci�c cylinder. According to Bruntand Emtage (1997) the phasing need to be within 0.2 CAD to �nd animep accurate within 1 %, since typically a 1 CAD phase shift inducea 4 % imep error with gasoline engines and the relationship betweenimep error and crank angle error is linear (Brunt and Emtage, 1996).In Andersson (2005), models for crank angle o�set ∆θ in a multi-cylinder engine are developed. The crank angle o�set depends on thecylinder number and the phase of the cycle, i.e. ∆θ di�ers during com-
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3000rpm 1barFigure 3.2: Pressure o�set as function of CAD when referencing tointake manifold pressure. The pressure change is approximately �atfor all operating points between -167 and -162 CAD.pression, combustion and expansion. This is due to crank-shaft torsionand �exibility. Here we will study the cylinder closest to the crank an-gle encoder, so the torsion will be small. These e�ects are therefore notmodeled here. Instead the crank shaft is considered to be rigid, and itis assumed that the sampled value at crank angle θi can be modeled ashaving a constant o�set ∆θ from the true crank angle θi,true, the crankangle phasing is modeled as

θi + ∆θ = θi,true . (3.2)3.1.4 Parameter initialization � crank angle o�set ∆θThe determination of ∆θ is often referred to as TDC determination.An initial value of ∆θ is provided from a number of motored cycles,by referencing the peak pressure position for the measured cylinderpressure with the corresponding position for a simulated pressure trace,given the same operating conditions. The simulated pressure trace iscomputed using the Gatowski et al. model.Other methods of �nding the crank angle o�set ∆θThe easiest way to �nd ∆θ is of course to consider only motored cy-cles, i.e. when there is no combustion. Then the cylinder pressurewould have its maximum at TDC if it were not for heat transfer andcrevice e�ects. Instead, the peak for the compression pressure occurs



3.2. CYLINDER VOLUME AND AREA MODELS 31before TDC. This di�erence is referred to as �thermodynamic loss an-gle� (Hohenberg, 1979). Attempts to avoid the problem connected withunknown heat transfer have been taken in Sta± (1996); Morishita andKushiyama (1997); Nilsson and Eriksson (2004), by using the polytropicrelation to determine the position of TDC.3.2 Cylinder volume and area modelsThe cylinder volume V (θ, xoff ) consists of a clearance volume Vc(xoff )and an instantaneous displacement volume Vid(θ, xoff ), as
V (θ, xoff ) = Vc(xoff ) + Vid(θ, xoff ) . (3.3)The instantaneous displaced volume Vid depends on the crank angle θ,cylinder bore B, crank radius ar, connecting rod length l, pin-o� xoffand is given by

Vid(θ, xoff ) =
πB2

4
(
√

(l + ar)2 − x2
off − ar cos θ −

√

l2 − (ar sin θ − xoff )2) ,(3.4)for xoff ∈ [−(l− ar), (l− ar)]. The pin-o� is de�ned as positive in thedirection of the crank angle revolution. Note that for an engine withpin-o�, the crank positions for BDC and TDC are a�ected. They aregiven by:
θTDC = arcsin

xoff

l + ar
, (3.5a)

θBDC = arcsin
( xoff

l − ar

)

+ π, (3.5b)and are not symmetric, as in the case without pin-o�. The impact ofpin-o� on the cylinder volume is investigated in (Klein, 2004, pp. 149).It is found, for the SVC engine with xoff ∈ [−2.2, 4.7] mm, that therelative error in instantaneous cylinder volume can be as large as 3.4 %,when the pin-o� is not considered. By interpreting the di�erence incrank angle position of TDC due to pin-o� as a constant crank angleo�set ∆θ, as in (3.2), the relative error in V (θ, xoff ) is reduced toless than 0.6 % in the worst case. Not accounting for pin-o� thereforecontributes to the problem of TDC determination. Thus if the engine'spin-o� is unknown, the discrepancy in computing the cylinder volume
V (θ, 0) (3.3) can almost fully be captured by the crank angle o�setmodel (3.2). However if the pin-o� xoff is known, there is no reasonfor not including it in V (θ, xoff ) (3.3), since it increases the accuracyof V (θ, xoff ) at almost no additional computational cost.



32 CHAPTER 3. HEAT-RELEASE MODEL COMPONENTSWhen simulating either the heat release (2.34) or the cylinder pres-sure (2.35), it is necessary to know the di�erential of the volume func-tion dV (θ,xoff )
dθ and it is given by

dV (θ, xoff )

dθ
=
πB2ar

4

(

sin θ +
(ar sin θ − xoff ) cos θ
√
l2 − (ar sin θ − xoff )2

)

. (3.6)When computing the heat transfer rate (3.28), the instantaneous com-bustion chamber surface area A(θ, xoff ) through which the heat trans-fer occurs is computed as
A(θ, xoff ) = Ach +Apc +Alat(θ, xoff ), (3.7)where Ach is the cylinder head surface area and Apc is the piston crownsurface area. Here it is assumed that these areas can be approxi-mated by �at surfaces, Apc = Ach = πB2

4 . The lateral surface area
Alat(θ, xoff ) is approximated by the lateral surface of a cylinder. Theinstantaneous combustion chamber surface area can then be expressedas
A(θ, xoff ) =

πB2

2
+ πB

(√

(l + ar)2 − x2
off − ar cos θ −

√

l2 − (ar sin θ − xoff )2
) .(3.8)The compression ratio rc is de�ned as the ratio between the maxi-mum (Vd + Vc) and minimum (Vc) cylinder volume:

rc =
Vd + Vc

Vc
= 1 +

Vd

Vc
. (3.9)3.2.1 Parameter initialization � clearance volume VcThe clearance volume Vc strongly in�uences the maximum cycle tem-perature and pressure through the compression ratio, and for heat re-lease and pressure simulations it is therefore of great importance. Dueto geometric uncertainties in manufacturing, a spread of the actualclearance volume from engine to engine and cylinder to cylinder is in-herent (Amann, 1985). The compression ratio given from the manufac-turer serves well as an initialization. It can also be initialized by usinga polytropic relation, an initialization that works better the lower thereal compression ratio is (Klein et al., 2003). This since the polytropicrelation does not take heat transfer and crevice e�ects into accountexplicitly.3.3 Temperature modelsTwo models for the in-cylinder temperature will be described, the �rstis the mean charge single-zone temperature model and it is the one



3.3. TEMPERATURE MODELS 33used in the Gatowski et al.-model. The second is a two-zone meantemperature model, used to compute the single-zone thermodynamicproperties as mean values of the properties in a two-zone model, anapproach that will be introduced in the next chapter in section 4.6.3.3.1 Single-zone temperature modelThe mean charge temperature T for the single-zone model is foundfrom the state equation pV = mtotRT , assuming the total mass ofchargemtot and the mass speci�c gas constant R to be constant. Theseassumptions are reasonable since the molecular weights of the reactantsand the products are essentially the same (Gatowski et al., 1984). If allthermodynamic states (pref ,Tref ,Vref ) are known/evaluated at a givenreference condition ref , such as IVC, the mean charge temperature Tis computed as
T (θ) =

TIV C

pIV CVIV C
p(θ)V (θ) . (3.10)The cylinder volume at IVC is computed using the cylinder volumegiven in (3.3) for θIV C and is therefore considered to be known. Thetwo other states at IVC (pIV C ,TIV C) are considered unknown and haveto be estimated.3.3.2 Parameter initialization � cylinder pressure atIVC pIV CThe parameter pIV C is initialized by the measured cylinder pressure

pm in conjunction with the pressure sensor o�set ∆p and gain Kp, thecrank angle position for IVC, and the crank angle o�set ∆θ by usingequations (3.1) and (3.2). It needs to be pointed out that the positionof IVC does not mean when the intake valve touches its seat, rather theposition where intake mass �ow has stopped. Therefore in most cases
pIV C > pman. The parameter pIV C is also used as an initial value forthe ordinary di�erential equation in e.g. (2.35).3.3.3 Parameter initialization � mean charge tem-perature at IVC TIV CThe mean charge temperature at IVC di�ers from the gas temperaturein the intake manifold Tman. The charge is heated due to both mixingwith residual gases that are approximately at 1400 K (Heywood, 1988,p.178), and in-cylinder heat transfer from piston, valves and cylinderwalls. On the other hand, fuel evaporation can cool the charge by asmuch as 25 K according to Stone (1999). Altogether these e�ects make
TIV C become larger than Tman. In Öberg and Eriksson (2006) three



34 CHAPTER 3. HEAT-RELEASE MODEL COMPONENTSmodels for computing the residual gas mass fraction xr = mr

mtot
(Foxet al., 1993; Ponti et al., 2004; Mladek and Onder, 2000) are compared.The �rst model is based on a �ow restriction model, and the othermodels are based on energy balance at a reference point e.g. IVC andrequire a cylinder pressure measurement. The last two methods alsocompute the residual gas temperature Tr and TIV C . It is found that themodel in Ponti et al. (2004) but with the exclusion of external EGR, isthe best choice and it is therefore used here. It is described as follows;Compute TIV C using the ideal gas law, the mass of the air-fuel charge

maf , and an estimate of xr according to:
mtot =

maf

1 − xr
, (3.11)where mtot is the total charge mass, and

maf = ma(1 +
1

λ(A
F )s

), (3.12)where λ and (A
F )s are the normalized and stoichiometric air-fuel ratiosrespectively, and ma is calculated from the measured air mass �ow.The speci�c gas constant and temperature at IVC are stated by

RIV C = Rb,r(pIV C , Tr) · xr +Ru,af (Taf ) · (1 − xr), (3.13)
TIV C =

pIV C VIV C

RIV C mtot
. (3.14)Thermodynamic properties such as the speci�c gas constants R andspeci�c heats cv are evaluated using a chemical equilibrium programdeveloped by Eriksson (2004), more thoroughly described in section 4.2.The new residual gas mass fraction is computed using energy bal-ance at IVC as

xr =
cvu,af (Taf ) · (TIV C − Taf)

cvb,r(pman, Tr) · (Tr − TIV C) + cvu,af (Taf ) · (TIV C − Taf)
,(3.15)where the temperature for the air-fuel charge Taf is given by

Taf = Tman

(
pman

pIV C

) 1−γaf
γaf

, (3.16)assuming that the fresh charge experiences a polytropic process frommanifold conditions to in-cylinder conditions. The residual gas tem-perature Tr is given by a correlation model developed in Mladek andOnder (2000) as
Tr = −(C1,Tr

(mtotN))C2,Tr + C3,Tr
. (3.17)



3.4. CREVICE MODEL 35The parameters in (3.17) have to be tuned using simulations for eachengine type, as done in Öberg and Eriksson (2006). In order to have aconverging �x-point iteration scheme, xr is updated according to
xr,used =

xr,new + xr,old

2
, (3.18)where xr,new is given by (3.15) and xr,old is the estimate from theprevious iteration.The algorithm for computing xr and TIV C can then be summarizedas:Algorithm 3.1 � Residual gas mass fraction (Ponti et al., 2004)Let xr be the initial estimate of the residual gas mass fraction, and set

xr,old = xr.1.Compute the total mass mtot (3.11).2.Compute the temperature at IVC, TIV C (3.14).3.Compute the residual gas mass fraction, xr,new using (3.15).4.Update the estimate xr,used according to (3.18).5.Check if xr,used has converged, i.e. if |xr,used−xr,old

xr,used
| < 1 × 10−4, ifnot return to step 1 and set xr,old = xr,used.6.Return xr = xr,used and TIV C .3.4 Crevice modelIn an engine, gases �ow in and out of the crevices connected to thecombustion chamber as the cylinder pressure rises and falls. Crevicesinclude those volumes between piston, rings and liner, any head gas-ket gap, spark plug threads and space around the pressure transducer.During compression some of the charge �ows into the crevices, andremains there until the expansion phase, when most of the charge re-turns to the combustion chamber. The �ame can not propagate intothe crevices, and therefore some of the charge is not combusted. Asmall part of the cylinder charge blows by the piston rings and ends upin crank-case. Here this part is assumed to be zero and therefore notmodeled.



36 CHAPTER 3. HEAT-RELEASE MODEL COMPONENTSWhen modeling the crevice e�ect, the temperature in the crevicesare assumed to be close to the cylinder wall temperature, so during theclosed phase a substantial amount of charge could be trapped in thecrevices. Consider the ratio of total charge mass to the mass in thecrevices:
mcr

mtot
=
Vcr

V

T

Tcr
. (3.19)According to Gatowski et al. (1984), the crevice volume Vcr can con-stitute as much as 1-2 percent of the clearance volume Vc in size. Thetemperature di�erence in the cylinder T and in the crevices Tcr ap-proaches a factor 4-5 at the end of combustion. As a consequence asmuch as 10 (mass) percent of the charge could then be trapped increvices at peak pressure.The model developed and applied in Gatowski et al. (1984) assumesthat all crevices can be modeled as a single aggregate constant volume

Vcr, and that the charge in the crevice assumes the average wall tem-perature Tw and is at the same pressure as in the combustion chamber.The ideal gas law thus gives
pVcr = mcrRTw =⇒ dmcr =

Vcr

RTw
dp, (3.20)where it is assumed that Tw and R are constant. Gatowski et al. (1984)points out that this model is not meant to account for each crevice, butrather to account for the overall crevice e�ect.3.4.1 Parameter initialization � crevice volume VcrThe single aggregate crevice volume Vcr is unknown and is thereforeset to 1.5 percent of the clearance volume Vc, which is a reasonablevalue according to Gatowski et al. (1984). For an engine with varyingclearance volume, such as the SVC engine, this would yield a crevicevolume dependent of the compression ratio. To avoid this, Vcr is set to1.5% Vc at rc = 11, i.e. the clearance volume in the mid range of thecompression ratio is used.3.4.2 Parameter initialization � cylinder mean walltemperature TwThe cylinder wall temperature Tw is not only used in the crevice model,but also in the heat transfer model described in section 3.6. It variesduring the engine cycle due to heat transfer in the cylinder block, butthe surface temperature �uctuations are locally relatively small (i.e. 5-10 K) suggesting that a constant surface temperature can be used (Ana-tone and Cipollone, 1996). Therefore an area-weighted mean value of



3.5. COMBUSTION MODEL 37the temperatures of the exposed cylinder walls, the head and the pis-ton crown for the closed part of the engine cycle is used. Here Twis initialized to a constant value of 440 K (Brunt and Emtage, 1997;Eriksson, 1998), set only by it being a reasonable value. There ex-ists other methods of estimating the cylinder wall temperature, see e.g.Arsie et al. (1999).3.5 Combustion modelThe combustion of fuel and air is a very complex process, and wouldrequire extensive modeling to be fully captured. The approach here isto use a parameterization of the burn rate of the combusted charge.The prevailing combustion model is the Vibe function (Vibe, 1970),which in some literature is spelled Wiebe function.3.5.1 Vibe functionThe Vibe function is often used as a parameterization of the massfraction burned xb, and it has the following form
xb(θ) = 1 − e

−a
(

θ−θig
∆θcd

)m+1

, (3.21)and the burn rate is given by its di�erentiated form
dxb(θ)

dθ
=
a (m+ 1)

∆θcd

(
θ − θig

∆θcd

)m

e
−a
(

θ−θig
∆θcd

)m+1

, (3.22)where θig is the start of the combustion, a and m are adjustable param-eters, and ∆θcd is the total combustion duration. The Vibe functionis over-parameterized in a, m, and ∆θcd, since for example the sets[a = 1, ∆θcd = 1, m = 1] and [a = 4, ∆θcd = 2, m = 1] give identicalfunction values. To parameterize the mass fraction burned (mfb) tracewith physical parameters, two burn rate angles are often used, namelythe �ame-development angle ∆θd which corresponds to the crank anglefrom 0 % mfb (ignition) to 10 % mfb, and the rapid burn angle ∆θb(10-85 % mfb) (Heywood, 1988), illustrated in �gure 3.3. The burnangle parameters have a direct relation to the parameters in the Vibefunction, but due to the over-parameterization in a and ∆θcd, one ofthem must be speci�ed before-hand to get a unique solution. If ∆θcdis speci�ed, the Vibe parameters become:
m =

ln(ln(1 − 0.1) − ln(1 − 0.85))

ln ∆θd − ln(∆θd + ∆θb)
− 1 , (3.23a)
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Figure 3.3: Mass fraction burned pro�le with the �ame developmentangle ∆θd and rapid burn angle ∆θb marked.
a = −(

∆θcd

∆θd
)m+1 ln(1 − 0.1) , (3.23b)The di�erentiated Vibe function (3.22) is used to produce a mass frac-tion burned trace, i.e. a normalized heat-release trace. The absolutevalue of the heat-release rate dQch

dθ is given by
dQch

dθ
= Qin

dxb

dθ
, (3.24)where Qin represents the total energy released from combustion.Summing up, the combustion process is described by (3.24) andparameterized by Qin, θig, ∆θd, and ∆θb.3.5.2 Parameter initialization � energy released QinThe total energy released Qin is in�uenced by a lot of parameters, suchas residual gas fraction, combustion e�ciency, mass of fuel, fuel heatingvalue, but also the mass fraction burned rate due to the dependence ofthermodynamic properties for the mixture of temperature and pressure.It is here modeled as

Qin = mfqHV ηf , (3.25)where mf is the fuel mass, qHV the speci�c lower heating value ofthe fuel and ηf is the combustion e�ciency. There at least two ways



3.6. ENGINE HEAT TRANSFER 39of computing Qin; If the fuel mass mf is measured, Qin can be foundfrom (3.25) by assuming a combustion e�ciency. Ifmf is not measured,another approach must be taken. One such approach is to rewrite mfin (3.25) as
mf =

maf

1 + λ(A
F )s

=
(1 − xr)mtot

1 + λ(A
F )s

, (3.26)where the total charge mass mtot is found using the ideal gas law ata reference point during the high-pressure phase, e.g. IVC, yielding
mtot = pIV C VIV C

RIV C TIV C
. The fuel is assumed to be iso-octane, that has

Ru = 290 J
kgK (at 300 K), lower heating value qHV = 44.0MJ

kg , andstoichiometric air-fuel equivalence ratio (A
F

)

s
= 14.6 (Heywood, 1988,p.915). The speci�c gas constant RIV C is given by (3.13) and theresidual gas fraction xr by (3.15). So Qin is initialized as

Qin = mf ηf qHV =
(1 − xr)

1 + λ(A
F )s

pIV C VIV C

RIV C TIV C
ηf qHV , (3.27)where the combustion e�ciency ηf is assumed to be one.To solve the ordinary di�erential equation in (2.34) an initial valuefor the accumulated heat released at IVC QIV C must be speci�ed. Itis set to zero.3.5.3 Parameter initialization � angle-related pa-rameters {θig, ∆θd, ∆θb}The angle-related parameters {θig, ∆θd, ∆θb} are initialized by themass fraction burned trace found from the Rassweiler-Withrow methodmentioned in section 2.2. Nominal values are in the intervals (Eriksson,1999):

θig ∆θd ∆θb[-30 , 0] [deg ATDC] [15, 40] [deg] [10, 50] [deg]To get an unique solution for (3.23), the total combustion duration
∆θcd is set to 100π

180 rad.3.6 Engine heat transferTypically 20-35 % of the fuel energy is passed on by heat transfer to theengine coolant, the upper limit is reached for low load conditions (Stone,1999, p.429). Of the total heat transfer, about half comes from in-cylinder heat transfer and the rest from heat transfer in the exhaustport.



40 CHAPTER 3. HEAT-RELEASE MODEL COMPONENTSIn-cylinder heat transferThe in-cylinder heat transfer occurs by both convection and radiation,where convection constitutes the major part (Schmidt et al., 1993). InSI engines, up to approximately 20 %, but usually much less of the in-cylinder heat transfer is due to radiation, but this is in some instancesincluded in the correlation for convective heat transfer (Woschni, 1967).For CI engines however, the heat transfer originating from radiation canconstitute a more signi�cant part (up to 40 % (Heywood, 1988, p.696))and has to be accounted for explicitly (Annand, 1963). Since we aredealing with SI engines, only convective heat transfer is modeled, butkeeping in mind that the radiative heat transfer is accounted for by thecorrelations.The magnitude of the rate of energy transfer by convection Q̇ht,which occurs in a direction perpendicular to the �uid surface interface,is obtained by Newton's law of cooling
Q̇ht = hcA∆T = hcA (T − Tw) , (3.28)where A is the surface area of the body which is in contact with the�uid, ∆T is the appropriate temperature di�erence, and hc is the con-vection heat transfer coe�cient. The coe�cient hc varies both in timeand space, and since it is a composite of both microscopic and macro-scopic phenomena, many factors must be taken into consideration fora full description. A full description of hc is needed if for examplethermal stress on the cylinder head is to be investigated (Bergstedt,2002). On the other hand, a position-averaged heat transfer coe�cientwill be su�cient for predicting the heat �ow to the coolant, and thiswill be the approach taken here. There exists a number of models for

hc, for e.g. (Annand, 1963; Woschni, 1967; Hohenberg, 1979). Laterworks (Shayler et al., 1993; Hayes et al., 1993; Pivec et al., 1998; Wim-mer et al., 2000) experimentally veri�ed the Woschni correlation to bethe better one for the closed part of the engine cycle.Woschni's heat-transfer correlationThe form proposed by Woschni (1967) is:
hc = C(pw)0.8B−0.2T−0.55. (3.29)Woschni found that the exponent for T should be -0.53, but this isnot consistent with the prerequisites in the derivation, see (Klein, 2004,pp. 37). Woschni states that the characteristic speed w depends on twoterms. One is due to piston motion and is modeled as the mean pistonspeed up = 2aN

60 [m/s], where a [m] is the crank radius and N [rpm] isthe engine speed. The other term is due to swirl originating from the



3.6. ENGINE HEAT TRANSFER 41combustion event, which is modeled as a function of the pressure risedue to combustion, i.e. p−p0 where p0 is the motored pressure. Woschniused the measured motored pressure, but later on Watson and Janota(1982) proposed to use the polytropic process model (2.11) instead:
p0 = pref

(Vref

V

)n (3.30)where n is the polytropic exponent, and (pref , Vref ) are evaluated atany reference condition, such as IVC. The characteristic speed wcanthen be expressed as:
w = C1 up + C2 (T − T0) = C1 up + C2

V TIV C

pIV C VIV C
(p− p0), (3.31)where the �rst term originates from convection caused by piston motionand the second term from the combustion itself, where T0 is the motoredmean gas temperature. This results in the following expression for theheat transfer coe�cient hc

1:
hc =

0.013B−0.2 p0.8
(

C1 up + C2 (p−p0) TIV C V
pIV C VIV C

)0.8

T 0.55
, (3.32)where

p cylinder pressure for �red cycle [Pa]
p0 cylinder pressure for motored cycle [Pa]
T mean gas temperature [K]
up mean piston speed [m/s]
V instantaneous cylinder volume [m3]
C1 constant [-]
C2 constant [m/(sK)](pIV C ,VIV C ,TIV C) at reference condition IVCSimulation in crank angle domainNote that Q̇ht = �Qht

dt , thus when simulating heat transfer in the crankangle domain, �Qht
dθ

=
�Qht
dt

dt

dθ
= Q̇ht 60

2πN
(3.33)should be used where N [rpm] is the engine speed.1The numerical value of the �rst coe�cient di�ers from the one in (Woschni,1967), since it is calculated to �t the SI-unit system.



42 CHAPTER 3. HEAT-RELEASE MODEL COMPONENTS3.6.1 Parameter initialization � {C1, C2}Woschni found experimentally that during the closed part of the enginecycle, the parameters C1 = 2.28 and C2 = 3.24 · 10−3 gave a good �t,and they therefore serve well as initial values. Woschni also pointed outthat the parameters (C1, C2) are engine dependent, and are thereforelikely to change for di�erent engine geometries.3.7 Thermodynamic propertiesThe accuracy with which the energy balance can be calculated for acombustion chamber depends in part on how accurately changes inthe internal energy of the cylinder charge are represented. The mostimportant thermodynamic property used in calculating the heat releaserates for engines is the ratio of speci�c heats, γ =
cp

cv
(Gatowski et al.,1984; Chun and Heywood, 1987; Guezennec and Hamama, 1999).In the Gatowski et al.-model, the speci�c heats ratio γ(T ) is mod-eled as a linear function of temperature,

γlin(T ) = γ300 + b (T − 300) . (3.34)Gatowski et al. (1984) states that this component is important, since itcaptures how the internal energy varies with temperature. This is anapproximation of the thermodynamic properties but it is further statedthat this approximation is consistent with the other approximationsmade in the model. It will be shown in chapter 4 that the linear modelof γ in temperature T introduces a modeling error in cylinder pressurewhich is 15 times the cylinder pressure measurement noise in mean. Amodel of γ that introduces an error in the same order as the noise isalso given in chapter 4.3.7.1 Parameter initialization � γ300 and bThe initial values for the two parameters in the linear model of γ (3.34)are computed by using a chemical equilibrium program (Eriksson, 2004).First the speci�c heat ratio is computed for a speci�c fuel by assumingthat the mixture is burned and at equilibrium at all instances. Thenthe two parameters γ300 and b are �tted in the least squares sense tothe resulting γ. Nominal values are in the intervals; γ300 ∈ [1.35, 1.41]and b ∈ [−8 · 10−5, −12 · 10−5] K−1.



3.8. SUMMARY OF SINGLE-ZONE HEAT-RELEASE MODELS 433.8 Summary of single-zone heat-releasemodelsThe model component equations, that are emphasized by boxes in chap-ter 2 and 3, for the Gatowski et al.-model are summarized here, togetherwith the inputs, outputs and unknown parameters for the model.Model inputs and outputsInput Description Unit
λ air-fuel ratio [-]
N engine speed [rpm]
pexh exhaust manifold pressure [Pa]
pman intake manifold pressure [Pa]
Tman intake manifold temperature [K]
θIV C crank angle degree for IVC [deg ATDC]
θEV O crank angle degree for EVO [deg ATDC]Output Description Unit
p cylinder pressure [Pa]
pm measured cylinder pressure [Pa]
Qch chemical energy released as heat [J]In heat release models a pressure trace is given as input and the heatrelease is the output, while in pressure models a heat release trace isthe input and pressure is the output.Model component equationsHeat release di�erential (2.25);�Qch = 1

γ−1V dp+ γ
γ−1p dV + ( T

γ−1 + T ′ + u′−u
R )Vcr

Tw
dp+ �Qht(3.35)or cylinder pressure di�erential (2.26);

dp =
�Qch − γ

γ−1 p dV − �Qht

1
γ−1 V + Vcr

Tw

(
T

γ−1 + T ′ + u′−u
R

) (3.36)Pressure sensor model (3.1);
pm = Kp p+ ∆p (3.37)Crank angle phasing (3.2);
θi + ∆θ = θi,true (3.38)



44 CHAPTER 3. HEAT-RELEASE MODEL COMPONENTSCylinder volume V (θ, xoff ) (3.3), (3.4) and (3.6);
V (θ, xoff ) = Vc(xoff ) + Vid(θ, xoff ) (3.39a)

Vid(θ, xoff ) = πB2

4 (
√

(l + ar)2 − x2
off − ar cos θ −

√
l2 − (xoff + ar sin θ)2)(3.39b)

dV (θ, xoff )

dθ
=
πB2ar

4

(

sin θ +
(xoff + ar sin θ) cos θ
√

l2 − (xoff + ar sin θ)2

) (3.39c)Temperature model (3.10);
T =

TIV C

pIV CVIV C
pV (3.40)Crevice model (3.20);

dmcr =
Vcr

RTw
dp (3.41)Vibe combustion model (3.24), (3.22) and (3.23);

dQch

dθ
= Qin

dxb

dθ
(3.42a)

dxb(θ)

dθ
=
a (m+ 1)

∆θcd

(
θ − θig

∆θcd

)m

e
−a
(

θ−θig
∆θcd

)m+1 (3.42b)
m =

ln(ln(1 − 0.1) − ln(1 − 0.85))

ln ∆θd − ln(∆θd + ∆θb)
− 1 (3.42c)

a = −(
∆θcd

∆θd
)m+1 ln(1 − 0.1) (3.42d)Woschni's heat transfer correlation (3.33), (3.28), (3.32) and (3.8);�Qht

dθ
=

�Qht
dt

dt

dθ
= Q̇ht 60

2πN
(3.43a)

Q̇ht = hcA∆T = hcA (T − Tw) (3.43b)
hc =

0.013B−0.2 p0.8
(

C1 up +
C2 (p−p0) Tref V

pref Vref

)0.8

T 0.55
(3.43c)

A(θ, xoff ) = πB2

2 + πB
(√

(l + ar)2 − x2
off − ar cos θ −

√

l2 − (xoff + ar sin θ)2
)(3.43d)To simulate the Gatowski et al.-model, equations (3.36)�(3.43) areused together with the linear speci�c heat ratio model (3.34);

γlin(T ) = γ300 + b (T − 300) (3.44)and the corresponding crevice energy term (2.32);
u′ − u =

R

b
ln
(γ′ − 1

γ − 1

) (3.45)



3.9. SENSITIVITY PARAMETER INITIALIZATION 45Par. Description Value Equation
γ300 constant speci�c heat ratio [-] 1.3678 (3.34)
b slope for speci�c heat ratio[K−1] −8.13 · 10−5 (3.34)
C1 heat-transfer parameter [-] 2.28 (3.32)
C2 heat-transfer parameter [m/(sK)] 3.24 · 10−3 (3.32)
∆θ crank angle phasing [deg ATDC] 0.4 (3.2)
∆p bias in pressure measurements [kPa] 30 (3.1)
Kp pressure measurement gain[-] 1 (3.1)
pIV C cylinder pressure at IVC [kPa] 100 (3.10), (2.26)
TIV C mean charge temperature at IVC [K] 340 (3.10)
Tw mean wall temperature [K] 440 (3.20),(3.28)
Vc clearance volume [cm3] 62.9 (3.3)
Vcr single aggregate crevice volume [% Vc] 1.5 (3.20)
θig ignition angle [deg ATDC] -20 (3.22)
∆θd �ame-development angle [deg ATDC] 15 (3.22)
∆θb rapid-burn angle [deg ATDC] 30 (3.22)
Qin released energy from combustion [J] 1500 (3.24)Table 3.1: Nominal values for the parameters in the Gatowski et al.single-zone heat release model. For �red cycles, Tw = 440 K and

TIV C = 340 K, and for motored cycles, Tw = 400 K and TIV C = 310 K.Unknown parametersThe parameters used in the Gatowski et al. single-zone model and anexample of nominal values is summarized in table 3.1.3.9 Sensitivity in pressure to parameter ini-tializationThe cylinder pressure is simulated for the nominal values in the table 3.2using (3.36)�(3.45), and yields the cylinder pressure given in �gure 3.4.The nominal values are the same as in table 3.1. To get an idea of howsensitive the cylinder pressure is to errors in the initialized parameters,a sensitivity analysis is performed by perturbing the parameters oneat a time with the realistic perturbations given in table 3.2. In mostcases the perturbation is set to 10 percent of their nominal value, butwhen the nominal value is small in comparison to the uncertainty inthe parameter this approach would not give a fair comparison. Theperturbation for these parameters are therefore set to reasonable values.The perturbed simulated cylinder pressure is then compared to thenominal one, in terms of root mean square error (RMSE) and maximumabsolute residual value (Max Res), where RMSE is the more importantmeasure when considering least squares optimization. The residualis here de�ned as the di�erence between the nominal and perturbed



46 CHAPTER 3. HEAT-RELEASE MODEL COMPONENTSPar. Nominal & perturbation value RMSE Max Res S[kPa] [kPa] [-]
γ300 1.3678 0.137 [-] 522.6 1407.3 5.25
∆θd 15 5 [deg] 270.5 1029.2 0.58
θig -20 5 [deg ATDC] 237.9 860.3 0.73
Vc 62.9 6.29 [cm3] 210.3 603.7 1.76
Kp 1 0.1 [-] 184.9 465.0 1.55
Tw 440 44 [K] 110.1 285.4 0.88
Qin 1500 150 [J] 101.7 263.7 0.81
∆θb 30 5 [deg] 101.6 397.4 0.45
pIV C 100 10 [kPa] 95.7 217.9 0.77
TIV C 340 44 [K] 63.7 176.7 0.36
Vcr 1.5 1.5 [% Vc] 36.3 122.3 0.03
b -8.13 ·10−5 -8.13 ·10−6 [K−1] 25.0 77.0 0.19

∆θ 0.4 0.2 [deg] 10.3 31.4 0.02
∆p 30 10 [kPa] 10.0 10.0 0.02
C2 3.24 ·10−3 3.24 ·10−4 [m/(sK)] 3.8 8.2 0.03
C1 2.28 0.228 [-] 1.6 2.9 0.01Table 3.2: Nominal and perturbation values, where the perturbationsare performed by adding or subtracting the perturbation from the nomi-nal value. The root mean square error (RMSE), maximal residual (MaxRes) and sensitivity function S (3.46) are computed for the worst casefor each parameter. The parameters are sorted in descending order oftheir RMSE.cylinder pressures. The parameter sensitivity is also examined, and itis computed here as

S =

RMSE(p)
p̄

|∆x|
|x|

, (3.46)where x is the nominal parameter value, ∆x is the parameter perturba-tion and p̄ is the mean cylinder pressure. The results are summarizedin table 3.2. When comparing the RMSE for every parameter, theconstant γ300 in the linear speci�c heat ratio model, the burn relatedangles ∆θd and θig, and the clearance volume Vc show highest sensitiv-ity in the mean and are therefore more in need of a proper initializationthan the others. On the other hand, disturbances in the values of thetwo Woschni parameters C1 and C2 do not a�ect the resulting cylinderpressure signi�cantly. Note that the model of the cylinder pressure isnonlinear, so the results found from this analysis is only valid locally,but it still gives an idea of which parameters are the most sensitiveones.
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4A specific heat ratio modelfor single-zone heatrelease modelsThe accuracy with which the energy balance can be calculated for acombustion chamber depends in part on how accurately changes in theinternal energy of the cylinder charge are represented. The most impor-tant thermodynamic property used when calculating the heat releaserates in engines is the ratio of speci�c heats, γ(T, p, λ) =
cp

cv
(Gatowskiet al., 1984; Chun and Heywood, 1987; Guezennec and Hamama, 1999).Based on the �rst law of thermodynamics, Gatowski et al. (1984)developed a single-zone heat release model that has been widely used,where the speci�c heat ratio is represented by a linear function in meancharge temperature T :

γlin(T ) = γ300 + b(T − 300). (4.1)This allows a critical examination of the burning process by analysisof the heat release. In order to compute the heat release correctly,the parameters in the single-zone model need to be well tuned. Theseparameters, such as heat transfer coe�cients, γ300 and b in the linear
γ-model (4.1) and so on, can be tuned using well known methods.For instance, Eriksson (1998) uses standard prediction error methods(Ljung, 1999) to tune the parameters. This is done by minimizing theprediction error of the measured cylinder pressure, i.e. by minimizingthe di�erence between the modeled and measured cylinder pressure.Applying standard parameter identi�cation methods usually ends upin non-physical values of γ300, as it becomes larger than 1.40, which isthe value of γ300 for pure air. It has also been shown in table 3.2 that49



50 CHAPTER 4. A SPECIFIC HEAT RATIO MODEL. . .
γ300 is the most sensitive single-zone parameter. But more importantly,the linear approximation of γ (4.1) itself introduces a model error in thecylinder pressure which has a root mean square error of approximately30 kPa, for low load engine operating points, and approximately 90kPa in the mean for operating points covering the entire operatingrange. These errors are more than four times the error introduced bythe measurement noise in the former case, and more than ten timesin the latter case. These errors will a�ect the computed heat releaseand a better model of γ(T, p, λ) is therefore sought. A correct modelof γ(T, p, λ) is also desirable in order to avoid badly tuned (biased)single-zone model parameters.The objective is to investigate models of the speci�c heat ratio forthe single-zone heat release model, and �nd a model accurate enoughto only introduce a modeling error less than or in the order of thecylinder pressure measurement noise, while keeping the computationalcomplexity at a minimum. Such a model would help us to compute amore accurate heat release trace.This work relies upon the single-zone framework and the generalsingle-zone heat release model given by (3.36)�(3.43) is used as a refer-ence model. This is of course an approximation, but reasonable sincesingle-zone models describe the cylinder pressure well. This has beenveri�ed experimentally e.g. in Gatowski et al. (1984).4.1 OutlineIn the following section three existing γ-models are described. Thenbased on chemical equilibrium, a reference model for the speci�c heatratio is described. Thereafter, the reference model is calculated for anunburned and a burned air-fuel mixture respectively, and compared tothese existing models in the two following sections. With the knowledgeof how to describe γ for the unburned and burned mixture respectively,the focus is turned to �nding a γ-model during the combustion process,i.e. for a partially burned mixture. This is done in section 4.6, wherea number of approximative models are proposed. These models areevaluated in terms of the normalized root mean square error related tothe reference γ-model found from chemical equilibrium, as well as thein�uence the models have on the cylinder pressure, and also in termsof computational time.4.2 Chemical equilibriumAccording to Heywood (1988, p.86), it is a good approximation for per-formance estimates to consider the unburned gases as frozen and the



4.2. CHEMICAL EQUILIBRIUM 51burned gases as in chemical equilibrium. Assuming that the unburnedair-fuel mixture is frozen and that the burned mixture is at equilib-rium at every instant, the speci�c heat ratio and other thermodynamicproperties of various species can be calculated using the Matlab pack-age CHEPP (Eriksson, 2004). The reference fuel used is iso-octane,
C8H18, which reacts with air according to:

1

λ (8 + 18/4)
C8H18 + (O2 + 3.773N2) −→

y1O + y2O2 + y3H + y4H2 + y5OH

+y6H2O + y7CO + y8CO2 + y9NO + y10N2, (4.2)where the products given on the right hand side are chosen by theuser and λ is the air-fuel ratio (AFR). The coe�cients yi are found byCHEPP and they reveal the mole fraction x̃i = yi∑

i yi
of specie i thatthe mixture consists of at a given temperature, pressure and air-fuelratio. From x̃i, the mass fraction xi is computed using the molar mass

Mi as xi = x̃i/Mi.The mixture is assumed to obey the Gibbs-Dalton law, which statesthat under the ideal-gas approximation, the properties of a gas in amixture are not in�uenced by the presence of other gases, and each gascomponent in the mixture behaves as if it exists alone in the volume atthe mixture temperature (Çengel and Boles, 2002, Ch 12). Therefore,the thermodynamic properties can be added together as e.g. in:
u(T, p, λ) =

∑

i

xi(T, p, λ)ui(T ), (4.3)where ui is the internal energy from specie i and u is the total internalenergy. The enthalpy h(T, p, λ) is computed in the same manner. Allthermodynamic properties depend on the air-fuel ratio λ, but for nota-tional convenience this dependence is hereafter left out when there is norisk of confusion. The de�nition of the speci�c heat cv is cv =
(

∂u
∂T

)

V
,and by using (4.3) it is expressed as

cv(T, p) =
∑

i

xi(T, p)cv,i(T ) + ui(T )
∂xi

∂T
(T, p), (4.4)where the individual species are ideal gases. The speci�c heat cp =

(
∂h
∂T

)

p
is calculated in the same manner, as

cp(T, p) =
∑

i

xi(T, p)cp,i(T ) + hi(T )
∂xi

∂T
(T, p). (4.5)The speci�c heat ratio γ is de�ned as

γ(T, p) =
cp(T, p)

cv(T, p)
. (4.6)



52 CHAPTER 4. A SPECIFIC HEAT RATIO MODEL. . .4.3 Existing models of γThe computational time involved in repeated use of a full equilibriumprogram, such as CHEPP (Eriksson, 2004) or the NASA program (Gor-don and McBride, 1971; Svehla and McBride, 1973), can be substantial,and therefore simpler models of the thermodynamic properties havebeen developed. Three such models will now be described.4.3.1 Linear model in TThe speci�c heat ratio during the closed part of the cycle, i.e. whenboth intake and exhaust valves are closed, is most frequently modeledas either a constant, or as a linear function of temperature. The lattermodel is used in (Gatowski et al., 1984), where it is stated that themodel approximation is in parity with the other approximations madefor this family of single-zone heat-release models. The linear functionin T can be written as:
γlin(T ) = γ300 + b (T − 300). (4.7)Depending on which temperature region and what air-fuel ratio λ themodel will be used for, the slope b and constant γ300 in (4.7) have tobe adjusted. Concerning the temperature region, this shortcoming canbe avoided by increasing the complexity of the model and use a second(or higher) order polynomial for γlin(T ). This has been done in forexample Brunt et al. (1998). Such an extension reduces the need forhaving di�erent values of γ300 and b for di�erent temperature regions.Later on, γlin(T ) is calculated in a least squares sense for both burnedand unburned mixtures.4.3.2 Segmented linear model in TAccording to Chun and Heywood (1987), the commonly made assump-tion that γ(T ) is constant or a linear function of mean temperatureis not su�ciently accurate. Instead, they propose a segmentation ofthe closed part of the engine cycle into three segments; compression,combustion and post-combustion (expansion). Both the compressionand post-combustion are modeled by linear functions of T , while thecombustion event is modeled by a constant γ. They further state thatwith these assumptions, the one-zone analysis framework will provideaccurate enough predictions. The model of γ can be written as:

γseg(T, xb) =







γcomp
300 + bcomp (T − 300) xb < 0.01
γcomb
300 0.01 ≤ xb ≤ 0.99
γexp
300 + bexp (T − 300) xb > 0.99

(4.8)



4.3. EXISTING MODELS OF γ 53where the mass fraction burned xb is used to classify the three phases.The γ-model proposed by Chun and Heywood (1987) has discontinuitieswhen switching between the phases compression, combustion and post-combustion.4.3.3 Polynomial model in p and TThe third model is a polynomial model of the internal energy u devel-oped in Krieger and Borman (1967) for combustion products of CnH2n.For lean and stoichiometric mixtures (λ ≥ 1), a single set of equationswas stated, whereas di�erent sets where found for each λ < 1. Themodel of u for λ ≥ 1 is given by:
uKB(T, p, λ) = A(T ) − B(T )

λ
+ ucorr(T, p, λ), (4.9)given in [kJ/(kg of original air)], where

A(T ) = a1T + a2T
2 + . . .+ a5T

5 (4.10a)
B(T ) = b0 + b1T + . . .+ b4T

4. (4.10b)The gas constant was found to be:
R(T, p, λ) = 0.287 +

0.020

λ
+Rcorr(T, p, λ), (4.11)given in [kJ/(kg of original air) K]. Krieger and Borman suggested thattwo correction terms ucorr and Rcorr should account for dissociation,modeled as non-zero for T > 1450 K and given by:

ucorr(T, p, λ) = cu exp (D(λ) + E(T, λ) + F (T, p, λ)) (4.12a)
D(λ) = d0 + d1λ

−1 + d3λ
−3 (4.12b)

E(T, λ) =
e0 + e1λ

−1 + e3λ
−3

T
(4.12c)

F (T, p, λ) = (f0 + f1λ
−1 + f3λ

−3 +
f4 + f5λ

−1

T
) ln(f6p) (4.12d)

Rcorr(T, p, λ) = cr exp

(

r0 lnλ+
r1 + r2/T + r3 ln(f6p)

λ

)

, (4.13)where T is given in Kelvin (K) and p in bar. The values of the coef-�cients are given in table 4.1. For a fuel of composition CnH2n, thestoichiometric fuel-air ratio is 0.0676. Therefore, equations (4.9)-(4.11)should be divided by (1+0.0676λ−1), to get the internal energy per unitmass of products. In general, Krieger and Borman (1967) found that
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a1 a2 a3 a40.692 39.17 · 10−6 52.9 · 10−9 −228.62 · 10−13

a5 b0 b1 b2
277.58 · 10−17 3049.33 −5.7 · 10−2 −9.5 · 10−5

b3 b4 cu cr
21.53 · 10−9 −200.26 · 10−14 2.32584 4.186 · 10−3

d0 d1 d3 e010.41066 7.85125 -3.71257 −15.001 · 103

e1 e3 f0 f1
−15.838 · 103 9.613 · 103 -0.10329 -0.38656

f3 f4 f5 f60.154226 -14.763 118.27 14.503
r0 r1 r2 r3-0.2977 11.98 -25442 -0.4354Table 4.1: Coe�cient values for Krieger-Borman polynomial givenin (4.10)-(4.13).the error in u was less than 2.5 percent in the pressure and tempera-ture range of interest, where the extreme end states were approximately

{2300 K, 0.07 MPa} and {3300 K, 35 MPa}, and less than 1 per-cent over most of the range. A model of γ is now given by its de�nitionas
γKB =

cp
cv

= 1 +
R

cv
, (4.14)where R is given by (4.11) and cv =

(
∂u
∂T

)

V
is found by di�erentiat-ing (4.9) with respect to T .4.4 Unburned mixtureNow the attention is turned to the unburned mixture. First of all,the speci�c heat ratio for an unburned frozen mixture of iso-octane iscomputed using CHEPP in the temperature region T ∈ [300, 1000] K,which is valid for the entire closed part of a motored cycle. The speci�cheat ratio for λ = 1 is shown in �gure 4.1 as a function of temperature,together with its linear approximation (4.7) in a least squares sense.The linear approximation γu

lin is fairly good for λ = 1. Actually, thespeci�c heats cp and cv from which γ is formed, are fairly well describedby linear functions of temperature. Table 4.2 summarizes the root meansquare error (RMSE), normalized RMSE (NRMSE) and the coe�cientsof the respective linear function for γ, mass-speci�c heats cv and cp fortemperature region T ∈ [300, 1000] K and λ = 1. The RMSE of γu
lin
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Figure 4.1: Speci�c heat ratio for unburned stoichiometric mixtureusing CHEPP and the corresponding linear function of temperature.
Property Constant Slope NRMSE RMSE
γu

lin [-] 1.3488 −13.0 · 10−5 0.19 % 0.0024
clinp,u [J/(kg K)] 1051.9 0.387 0.15 % 1.78
clinv,u [J/(kg K)] 777.0 0.387 0.20 % 1.78Table 4.2: Coe�cients, normalized RMSE and RMSE in linear ap-proximations of γ, mass-speci�c cv and cp, for temperature region

T ∈ [300, 1000] K and λ = 1.
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Figure 4.2: Speci�c heat ratio for unburned stoichiometric mixtureusing CHEPP for various air fuel ratios λ as functions of temperature.
λ = ∞ corresponds to pure air.is de�ned as:

RMSE =

√
√
√
√

1

M

M∑

j=1

(γ(Tj) − γu
lin(Tj))2, (4.15)where M are the number of samples. The NRMSE is then found bynormalizing the modeling error in each sample j according to:

NRMSE =

√
√
√
√

1

M

M∑

j=1

(γ(Tj) − γu
lin(Tj)

γ(Tj)

)2

. (4.16)Besides temperature, the speci�c heat ratio also varies with AFR,as shown in �gure 4.2 where λ is varied between 0.8 (rich) and 1.2(lean). For comparison, γ(T ) is also shown for λ = ∞, i.e. pure airwhich corresponds to fuel cut-o�.The coe�cients in γu
lin (4.7) vary with λ as shown in the two upperplots of �gure 4.3. Both the constant γ300 and the slope b becomesmaller as the air-fuel ratio becomes richer. From the bottom plot



4.4. UNBURNED MIXTURE 57
0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

1.34

1.35

1.36
γ 30

0 [−
]

Iso−octane; Linear model of γ for unburned mixture

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
−1.34
−1.32
−1.3

−1.28
−1.26

x 10
−4

S
lo

pe
 b

1 [1
/K

]

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
1.5

2

2.5
x 10

−3

Air−fuel ratio − λ [−]

N
R

M
S

E
 [−

]

Figure 4.3: Upper: The constant value γ300 in (4.7) as a function of λfor unburned mixture at equilibrium. Middle: The value of the slopecoe�cient b in (4.7) as a function of AFR. Bottom: Normalized rootmean square error (NRMSE) for γu
lin(T ).of �gure 4.3, which shows the NRMSE for di�erent AFR:s, it can beconcluded that the linear approximation γu

lin(T ) is better the leanerthe mixture is, at least for λ ∈ [0.8, 1.2].4.4.1 Modeling λ-dependence with �xed slope, bSince it is always desirable to have as simple models as possible, animportant question is: �Would it in�ict a major discrepancy to �x theslope coe�cient b and let only γ300 vary with the air-fuel ratio? This isinvestigated by setting the slope b to the value for λ = 1, and �nding thecoe�cient γ300 in a least squares sense. The slope is �xed at λ = 1, sincefor spark ignited engines this is the region where the engine should beoperating most of the time, due to legislations. The results are shown in�gure 4.4, where the coe�cient γ300 becomes approximately the sameas when letting the slope vary. The relative di�erence is less than 0.1% for λ ∈ [0.8, 1.2]. For the NRMSE an increase for λ 6= 1 compared towhen b is free is expected, but the increase is not very signi�cant at all.
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Figure 4.4: Upper: The constant value γ300 in (4.7) as a function of λfor unburned mixture at equilibrium with �xed and free slope b respec-tively. Bottom: NRMSE for γu
lin(T ) for �xed and free slope coe�cient.For λ ∈ [0.8, 1.12] the relative di�erence in RMSE is less than 5 % andfor λ ∈ [0.94, 1.06] it is less than 1 %. This suggests that at least for

λ ∈ [0.94, 1.06], the linear approximation with �xed slope set at λ = 1,can be used as a model of γ(T ) with good accuracy for the unburnedmixture. The parameter γ300 is then taking care of the λ-dependencewith good accuracy.4.5 Burned mixtureThe speci�c heat ratio γ for a burned mixture of iso-octane is computedusing CHEPP in temperature region T ∈ [500, 3500] K and pressureregion p ∈ [0.25, 100] bar, which covers most of the closed part of a �ringcycle. The mixture is assumed to be at equilibrium at every instant.The speci�c heat ratio depends strongly on mixture temperature T ,but γ also on the air-fuel ratio λ and pressure p as shown in �gure 4.5and �gure 4.6 respectively. For the same deviation from λ = 1, richmixtures tend to deviate more from the stoichiometric mixture, thanlean mixtures do. The pressure dependence in γ is only visible for
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Figure 4.5: Speci�c heat ratio for burned mixture at various air-fuelratios λ at 7.5 bar using CHEPP.
Region T ∈ γ300 b

A [500, 3500] 1.3695 −9.6 · 10−5

B [500, 3000] 1.3726 −9.9 · 10−5

C [500, 2700] 1.3678 −9.4 · 10−5

D [500, 2500] 1.3623 −8.8 · 10−5

E [1200, 3000] 1.4045 −11.4 · 10−5Table 4.3: Coe�cients in the linear approximation γb
lin(T ) foundin (4.7) for λ = 1 and p = 7.5 bar.
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Figure 4.6: Speci�c heat ratio for burned stoichiometric mixture usingCHEPP at various pressures.
T > 1500 K, and a higher pressure tends to retard the dissociation andyields a higher γ.To model the speci�c heat ratio with a linear function γb

lin(T ) oftemperature, and thereby neglecting the dependence of pressure, willof course introduce a modeling error. This modeling error depends onwhich temperature (and pressure) region the linear function is �tted to,since di�erent regions will yield di�erent coe�cient values in (4.7). In�gure 4.7 γ is computed at λ = 1 and p = 7.5bar for T ∈ [500, 3500]K,and as well as the corresponding linear function γb
lin (4.7) and thepolynomial γKB (4.14) developed in Krieger and Borman (1967). Intable 4.3, the coe�cients in γb

lin are computed for �ve temperatureregions. Table 4.4 displays the maximum relative error (MRE) andNRMSE for γb
lin and γKB. The maximum relative error for γb

lin isde�ned as
MRE = max |γ(Tj , p) − γb

lin(Tj)

γ(Tj, p)
|. (4.17)The linear approximation γb

lin(T ) does not capture the behavior of
γ(T ) for λ = 1 very well, as shown in �gure 4.7. The coe�cients forthe linear model γb

lin(T ) vary with the speci�c temperature region, as
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Figure 4.7: Speci�c heat ratio for burned stoichiometric mixture usingCHEPP, the corresponding linear function γb
lin and Krieger-Bormanpolynomial γKB.

Region T ∈ γb
lin γKBMRE NRMSE MRE NRMSE

A [500, 3500] 2.0 % 0.97 % 2.0 % 0.56 %
B [500, 3000] 1.6 % 0.95 % 0.7 % 0.20 %
C [500, 2700] 1.9 % 0.90 % 0.3 % 0.17 %
D [500, 2500] 2.4 % 0.74 % 0.3 % 0.17 %
E [1200, 3000] 1.6 % 0.74 % 0.7 % 0.21 %Table 4.4: Maximum relative error (MRE) and normalized root meansquare error (NRMSE) for di�erent temperature regions at λ = 1 and

p = 7.5 bar.



62 CHAPTER 4. A SPECIFIC HEAT RATIO MODEL. . .Region γKB@λ = 0.975 γKB@λ = 1 γKB@λ = 1.025MRE NRMSE MRE NRMSE MRE NRMSE
A 1.9 % 0.86 % 2.0 % 0.56 % 2.1 % 0.59 %
B 1.8 % 0.73 % 0.7 % 0.20 % 0.7 % 0.28 %Table 4.5: Maximum relative error (MRE) and normalized rootmean square error (NRMSE) for di�erent temperature regions for

γKB(T, p, λ) at p = 7.5 bar and λ = {0.975, 1, 1.025}.displayed for temperature regions A to E in table 4.3. A second or-der polynomial shows the same behavior as the linear case, but whenthe order of the polynomial is increased to three, the model capturesthe modes of γ(T ) quite well. By increasing the complexity of themodel even more, an even better �t is found. This has been done inthe Krieger-Borman polynomial, and for this example it captures thebehavior of γ(T ) well for temperatures below 2800 K as seen in �g-ure 4.7 and in the right-most (NRMSE) column in table 4.4, wherethe NRMSE value is much higher for temperature region A than forthe other regions. As expected, the Krieger-Borman polynomial is bet-ter than the linear approximation in every chosen temperature region,since the NRMSE is smaller. Comparing the MRE:s for temperatureregion A, where the respective MRE are approximately the same, onecould then conclude that the models describe γ equally well. Howeverin �gure 4.7 it was clearly visible that γKB is the better one, which isalso the conclusion when comparing the respective NRMSE.In table 4.5, the NRMSE and MRE for the Krieger-Borman poly-nomial γKB(T, p, λ) for λ close to stoichiometric is displayed. For
λ ≥ 1 (lean), γKB �ts the equilibrium γ better than for λ < 1, atendency which is most evident when comparing the NRMSE for tem-perature region B. For temperature region A the di�erence for di�erent
λ is less striking, since the γKB does not �t γ as well for T > 3000 K.Therefore the Krieger-Borman polynomial is preferably only to be usedon the lean side. On the rich side and close to stoichiometric (within 2.5%), the Krieger-Borman polynomial does not introduce an error largerthan the linear approximation given in table 4.4, and γKB should there-fore be used in this operating range.Summary for special case: Linear modelsIf a linear model of γ is preferred for computational reasons, the per-formance of the linear model could be enhanced by proper selection oftemperature region. However, the MRE does not decrease for every re-duction in interval, as seen when comparing MRE:s for regions D and
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B in table 4.4. Thus, the temperature region should be chosen withcare by using the NRMSE as evaluation criteria:

• When using the single-zone temperature T to describe the spe-ci�c heat ratio of the burned mixture, temperature region B ispreferable, since during the closed part T ≤ 3000 K.
• When using the burned-zone temperature Tb in a two-zone model,temperature region E is recommended, since for most cases Tb ∈

[1200, 3000]. The temperature limits are found by evaluatinga number of experimental cylinder pressure traces using (A.1)and (A.7). By choosing region E instead of region B, the NRMSEis reduced by 25%.4.6 Partially burned mixtureThe speci�c heat ratio γ as a function of mixture temperature T andair-fuel ratio λ for unburned and burned mixture of air and iso-octanehas been investigated in the two previous sections. During the closedpart of a motored engine cycle, the previous investigations would beenough since the models of the unburned mixture will be valid for theentire region. When considering �ring cycles on the other hand, anassumption of either a purely unburned or a purely burned mixtureapproach is not valid for the entire combustion chamber during theclosed part of the engine cycle.To describe the speci�c heat ratio in the single-zone model for apartially burned mixture, the mass fraction burned trace xb is used tointerpolate the (mass-)speci�c heats of the unburned and burned zonesto �nd the single-zone speci�c heats. The speci�c heat ratio is thenfound as the ratio between the interpolated speci�c heats.4.6.1 Reference modelThe single-zone speci�c heats are found from energy balance betweenthe single-zone and the two-zone model, from which the single-zonespeci�c heat ratio γCE can be stated:
cp(T, p, xb) = xb cp,b(Tb, p) + (1 − xb) cp,u(Tu) (4.18a)
cv(T, p, xb) = xb cv,b(Tb, p) + (1 − xb) cv,u(Tu) (4.18b)

γCE(T, p, xb) =
cp(T, p, xb)

cv(T, p, xb)
, (4.18c)where the mass fraction burned xb is used as an interpolation variable.The single-zone (T ), burned zone (Tb) and unburned zone (Tu) tem-peratures are given by the two temperatures models (A.1) and (A.7)



64 CHAPTER 4. A SPECIFIC HEAT RATIO MODEL. . .described in appendix A.1. The �rst is the ordinary single-zone tem-perature model and the second is a two-zone mean temperature modelpresented in Andersson (2002). The mass speci�c heats in (4.18) arecomputed using CHEPP (Eriksson, 2004) and γCE then forms the ref-erence model.To compute γCE is computationally heavy. Even when the speci�cheats are computed before-hand at a number of operating points, thecomputational burden is still heavy due to the numerous table look-ups and interpolations required. Therefore, a computationally moree�cient model which retains accuracy is sought for. A number of γ-models will therefore be described in the following subsection, wherethey are divided into three subgroups based upon their modeling as-sumptions. These γ-models are then compared to the reference model
γCE (4.18), in terms of four evaluation criteria, speci�ed in section 4.6.3.How to �nd xb?To compute the speci�c heat ratio γCE (4.18), a mass fraction burnedtrace xb is needed. For simulated pressure data, the mass fractionburned is considered to be known, which is the case in this work. How-ever, if one were to use experimental data to e.g. do heat release anal-ysis, xb can not be considered to be known. There are then two waysof determining the mass fraction burned; The �rst is to use a simpleand computationally e�cient method to get xb from a given cylinderpressure trace. Such methods were described in chapter 2 and includethe pressure ratio management by Matekunas (1983) described in sec-tion 2.4. If one does not settle for this, the second approach is toinitialize xb using a simple method from the �rst approach, and theniteratively re�ne the mass fraction burned trace xb using the computedheat release.4.6.2 Grouping of γ-modelsThirteen γ-models have been investigated and they are divided intothree subgroups based upon their modeling assumptions; The �rstgroup contains models for burned mixture only. The second containsmodels based on interpolation of the speci�c heat ratios directly, andthe third group, to which reference model (4.18) belongs, contains themodels based on interpolation of the speci�c heats, from which the ratiois determined.Group B: Burned mixtureThe �rst subgroup represents the in-cylinder mixture as a single zoneof burned mixture with single-zone temperature T , computed by (A.1).



4.6. PARTIALLY BURNED MIXTURE 65The �rst model, denoted B1, is the linear approximation in (4.7):
B1 : γB1

(T ) = γb
lin(T ) = γ300 + b (T − 300), (4.19)where the coe�cients can be determined in at least two ways; Oneway is to use the coe�cients that are optimized for temperature region

T ∈ [500, 3000] (region B in table 4.3) for a burned mixture. Thisapproach is used in (Gatowski et al., 1984), although the coe�cientsdi�er somewhat compared to the ones given in table 4.3. Anotherway is to optimize the coe�cients from the reference model (4.18).This approach will be the one used here, since it yields the smallestmodeling errors in both γ and cylinder pressure p. The approach hasoptimal conditions for the simulations, and will therefore give the bestresults possible for this model structure.The second model, denoted B2, is the Krieger-Borman polynomialdescribed in (4.9)
B2 : uB2

= A(T ) − B(T )

λ
−→ γB2

(T ) = γKB(T ), (4.20)without the correction term for dissociation. The Krieger-Borman poly-nomial is used in model B3 as well,
B3 : uB3

= A(T ) − B(T )

λ
+ ucorr(T, p, λ)

−→ γB3
(T, p) = γKB(T, p), (4.21)with the correction term ucorr(T, p, λ) for dissociation included. Thefourth and simplest model uses a constant γ:

B4 : γB4
= constant. (4.22)As for model B1, the constant γB4

is determined from the referencemodel (4.18).Group C: Interpolation of speci�c heat ratiosThe second subgroup uses a two-zone model, i.e. a burned and an un-burned zone, and calculates the speci�c heat ratio γb(Tb) and γu(Tu)for each zone respectively, where the temperatures are given by thetwo-zone mean temperature model (A.7). The mass fraction burnedtrace xb is then used to �nd the single-zone γ by interpolating γb and
γu. Note that the relations for determining the thermodynamic proper-ties, shown in (4.18), are not ful�lled for subgroup C during combustion.It is however ful�lled prior to combustion and after the combustion, i.e.when xb = 0 or xb = 1 and no interpolation is performed.



66 CHAPTER 4. A SPECIFIC HEAT RATIO MODEL. . .The �rst model, denoted C1, interpolates linear approximations of
γ for the unburned and burned mixture. The coe�cients in the linearfunctions are optimized for temperature region T ∈ [300, 1000] for theunburned mixture, and temperature region T ∈ [1200, 3000] for theburned mixture. The resulting γC1

can therefore be written as:
C1 : γC1

(T, xb) = xb γ
b
lin(Tb) + (1 − xb) γ

u
lin(Tu), (4.23)where the coe�cients for the linear functions are given in table 4.3 andtable 4.2 respectively.The second model was proposed in Stone (1999, p.423), here de-noted C2, and is based on interpolation of the internal energy u com-puted from the Krieger-Borman polynomial:

C2 : uC2
= A(T ) − xb

B(T )

λ
−→ γC2

(T, xb). (4.24)This model includes neither dissociation nor the internal energy of theunburned mixture.An improvement of model C1 is expected when substituting the lin-ear model for the burned mixture with the Krieger-Borman polynomial.This new model is denoted C3 and described by:
C3 : γC3

(T, p, xb) = xb γKB(Tb, p) + (1 − xb) γ
u
lin(Tu). (4.25)The fourth model interpolates γu(Tu) and γb(Tb, p) given by CHEPP:

C4 : γC4
(T, p, xb) = xb γb(Tb, p) + (1 − xb) γu(Tu), (4.26)and this model is denoted C4. This model will re�ect the modeling errorintroduced by interpolating the speci�c heat ratios directly instead ofusing the de�nition through the speci�c heats (4.18).The segmented linear model (4.8) developed in Chun and Heywood(1987) is also investigated and here denoted by model C5:

C5 : γC5
(T, xb) = γseg(T, xb) =







γcomp
300 + bcomp (T − 300) xb < 0.01
γcomb
300 0.01 ≤ xb ≤ 0.99
γexp
300 + bexp (T − 300) xb > 0.99. (4.27)Model C5 uses the single-zone temperature for each phase, and classi�esinto group C due to that the switching used for xb in (4.27) can beseen as a nearest neighbor interpolation. As for model B1 and B4, thecoe�cients in (4.27) are determined from the reference model (4.18).Group D: Interpolation of speci�c heatsThe last subgroup uses a two-zone model, i.e. a burned and an un-burned zone, just as the second subgroup, and the speci�c heats are



4.6. PARTIALLY BURNED MIXTURE 67interpolated to get the single-zone speci�c heats. The �rst model, de-noted D1, uses the Krieger-Borman polynomial for the burned zone to�nd cp,b(Tb, p) and cv,b(Tb, p), and the linear approximations of cp,u(Tu)and cv,u(Tu) given in table 4.2 for the unburned zone:
D1 : γD1

(T, p, xb) =
xb c

KB
p,b (Tb, p) + (1 − xb) c

lin
p,u(Tu)

xb cKB
v,b (Tb, p) + (1 − xb) clinv,u(Tu)

. (4.28)An extension of model D1 is to use the unburned speci�c heats cp,u(Tu)and cv,u(Tu) computed from CHEPP:
D2 : γD2

(T, p, xb) =
xb c

KB
p,b (Tb, p) + (1 − xb) cp,u(Tu)

xb cKB
v,b (Tb, p) + (1 − xb) cv,u(Tu)

. (4.29)This model is denoted D2 and re�ects the model error introduced byusing the linear approximation of the unburned mixture speci�c heats,when comparing to D1. When comparing it to D4, it also shows theerror induced by using the Krieger-Borman approximation.Model D1 is also extended for the burned mixture, where the speci�cheats for the burned mixture cp,b(Tb, p) and cv,b(Tb, p) are computedusing CHEPP. This model is denoted D3:
D3 : γD3

(T, p, xb) =
xb cp,b(Tb, p) + (1 − xb) c

lin
p,u(Tu)

xb cv,b(Tb, p) + (1 − xb) clinv,u(Tu)
, (4.30)and re�ects the model error introduced by using the Krieger-Bormanapproximation of the speci�c heats, when comparing to D1.The reference model γCE (4.18) belongs to this group and is denoted

D4:
D4 : γD4

(T, p, xb) = γCE(T, p, xb). (4.31)Modeling of crevice energy termNote that the usage of a γ-model di�erent from the linear model usedin Gatowski et al. [1984], will also a�ect the amount of energy left oradded to the system when a mass element enters or leaves the crevicevolume. This energy term u′ − u is quanti�ed by (2.32) for B1. It hasto be restated for every γ-model at hand except model B1, and this isdone in appendix A.4.4.6.3 Evaluation criteriaThe di�erent γ-models given by (4.19)-(4.30) are evaluated in terms offour criteria. The criteria are:1. Normalized root mean square error (NRMSE) in γ (4.16), whichgives a measure of the mean error in γ.



68 CHAPTER 4. A SPECIFIC HEAT RATIO MODEL. . .2. Maximum relative error (MRE) for γ (4.17), which yields a mea-sure of the maximum error in γ.3. Root mean square error (RMSE) for the corresponding cylinderpressures, see (4.15) for the RMSE de�nition. This criterion givesa measure of the impact that a certain model error has on thecylinder pressure and will help to �nd a γ-model accurate enoughfor the single-zone model.4. The computational time. It is measured as the time for one simu-lation of the cylinder pressure model during the closed part, givena burn rate trace and a speci�c γ-model.The cylinder pressure model used for the simulations is the model de-veloped in Gatowski et al. (1984), summarized in section 3.8. Theparameters are given in appendix A.3 and the engine geometry is givenin appendix A.2.4.6.4 Evaluation covering one operating pointAt �rst, only one operating point is considered. This operating pointis given by the parameter values in table A.1, and corresponds to thecylinder pressure given in �gure 4.8, i.e. a low engine load condition.The cylinder pressure given in �gure 4.8 is used as an example thatillustrates the e�ect that each model has on speci�c heat ratio γ andcylinder pressure. To investigate if the engine operating condition in-�uences the choice of model, nine operating points covering most partsof the operating range of an engine are used to do the same evaluations.These operating points are given in table A.2 and their corresponding
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Figure 4.8: Simulated cylinder pressure using Gatowski et al.-modelwith nominal values in table A.1, and the linear γ-model B1 replacedby reference model D4.



4.6. PARTIALLY BURNED MIXTURE 69cylinder pressures are displayed in �gure A.6, where operating point 2corresponds to the cylinder pressure that is used in the �rst evaluationand shown in �gure 4.8.
γ-domainThe γ-models in the three subgroups are compared to the referencemodel γCE (4.18). A summary of the results are given here while acomplete picture is given in appendix A.8, see e.g. �gures A.7 and A.8,where γ is plotted as a function of crank angle. The speci�c heat ratiofor each model is also given in �gure A.9 and �gure A.10 as a functionof single-zone temperature T . Table 4.6 summarizes the MRE(γ) andNRMSE(γ) for all models. Figure 4.9 compares the reference model D4with the computed values of γ for a few of these models, namely B1,
B3, C5, C4 and D1.Of these models, model D1 (4.28) gives the best description of γ andcaptures the reference model well. This is con�rmed by the MRE(γ)and NRMSE(γ) columns in table 4.6, where only model group D yieldserrors lower than 1 % for both columns. The lower plot of �gure 4.9shows that model C4 deviates only during the combustion, which in thiscase occurs for θ ∈ [−15, 45] deg ATDC. This deviation is enough toyield a NRMSE(γ) which is almost 0.6 %, approximately six times thatof D1.Of the models previously proposed in literature, the linear model
B1 (4.19) has the best performance, although it does not capture thereference model very well, as seen in the upper plot of �gure 4.9. Model
B3 (4.21) is only able to capture the reference model after the com-bustion, since model B3 is optimized for a burned mixture. Model
C5 (4.27) has good behavior before and after the combustion. But dur-ing the combustion, the constant γcomb

300 does not capture γCE very well.Models B4 and C2 has even worse behavior, as shown in �gure A.7.To conclude, model group D yields errors in γ which are less than1 % for this operating point. Of these models, model D3 has the bestperformance compared to the reference model D4.Pressure domainThe impact each γ-model has on the corresponding cylinder pressure isshown in �gure 4.10 for models B1, B3, C5, C4 and D1, and for all modelsin �gures A.11 and A.12. The plots show the di�erence between thesimulated cylinder pressure for reference model D4 and the γ-models,i.e. the error in the cylinder pressure that is induced by the modelingerror in γ. Note that the scaling in the �gures are di�erent. The RMSEintroduced in the cylinder pressure is given in table 4.6 for all models.The RMSE of the measurement noise is approximately 6 kPa and
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Figure 4.9: Upper: Speci�c heat ratios for models B1, B3 and C5 ascompared to the reference model D4. Lower: Speci�c heat ratios formodels C4 and D1 as compared to the reference model D4.Model MRE: NRMSE: RMSE: Time
γ [%] γ [%] p [kPa] [s]

B1 (4.19) 4.7 1.3 52.3 3.8
B2 (4.20) 5.9 2.7 85.8 4.1
B3 (4.21) 5.2 1.8 76.0 4.2
B4 (4.22) 7.7 4.5 62.8 3.8
C1 (4.23) 2.3 0.69 39.8 4.7
C2 (4.24) 7.3 4.1 140.7 4.9
C3 (4.25) 2.4 0.65 25.4 5.1
C4 (4.26) 2.3 0.58 22.8 211.1
C5 (4.27) 8.4 1.5 82.9 4.0
D1 (4.28) 0.27 0.10 2.8 5.2
D2 (4.29) 0.26 0.09 2.6 12.3
D3 (4.30) 0.04 0.01 0.3 381.9
D4 (4.18) 0.0 0.0 0.0 384.2Table 4.6: Evaluation of γ-models, on the single cycle shown in �g-ure 4.8.
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Figure 4.10: Upper: Reference cylinder pressure, the same as givenin �gure 4.8. Middle: Cylinder pressure error introduced by models
B1, B3 and C5. For convenience, the sign for C5 is changed. Lower:Cylinder pressure error introduced by models C4 and D1. Note thatthe scaling in the plots are di�erent.



72 CHAPTER 4. A SPECIFIC HEAT RATIO MODEL. . .it is only model group D that introduces a modeling error in the sameorder as the noise in terms of RMSE. Thus, the other γ-models willintroduce a modeling error which is signi�cantly larger than the mea-surement noise as seen in table 4.6, and thereby a�ect the accuracy ofthe parameter estimates. Within group D, models D3 and D4 have thesmallest RMSE(p), and therefore yield the highest accuracy. Model D1does not introduce a signi�cantly larger RMSE(p) than D2, and there-fore the most time e�cient one should be used of these two. Altogetherthis suggests that any model in group D could be used.The previously proposed γ-models B1, B2, B3, B4 and C5, describedin section 4.3, all introduce modeling errors which are at least seventimes the measurement noise for this operating point. Clearly, a largeerror, so none of these models are recommended. Of these models, B1induces the smallest RMSE(p) and should, if any, be the one used ofthe previously proposed models.Computational timeThe right-most column of table 4.6 shows the computational time. Thetime value given is the mean time for simulating the closed part of oneengine cycle using Matlab 6.1 on a SunBlade 100, which has a 64-bit500 MHz processor. The proposed model D1 is approximately 70 timesfaster than the reference model D4, where the reference model useslook-up tables with precomputed values of the speci�c heats cp and cv.Introducing the model improvement in model D1 of the speci�c heatratio to the Gatowski et al. single-zone heat release model is simple, andit does not increase the computational burden immensely compared tothe original setting, i.e. B1. The increase in computational e�ort isless than 40 % compared to the linear γ-model when simulating theGatowski et al. single-zone heat release model.4.6.5 Evaluation covering all operating pointsThe same analysis as above has been made for the simulated cylinderpressure from nine di�erent operating points, where pIV C ∈ [0.25, 2] barand TIV C ∈ [325, 372] K. The parameters for each cycle is given in ta-ble A.2 as well as the corresponding cylinder pressures in �gure A.6.The operating range in p and T that these cycles cover is given in �g-ure 4.11, where the upper plot shows the range covered for the unburnedmixture, and the lower shows the range covered for single-zone (solid)and burned (dashed) mixture. According to (Heywood, 1988, p.109),the temperature region of interest for an SI engine is 400 to 900 K forthe unburned mixture; for the burned mixture, the extreme end statesare approximately {1200 K, 0.2 MPa} and {2800 K, 3.5 MPa}. Of
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Figure 4.11: Operating range in p and T . Upper: Unburned zone.Lower: Single zone (solid) and burned zone (dashed).course, not all points in the range are covered but the cycles at handcover the extremes of the range of interest.The results are summarized in terms of MRE for γ in table A.11,NRMSE for γ in table A.12 and RMSE for p in table A.13, where themean values over the operating points for each model as well as thevalues for each cycle are given. The mean values for each model arealso given here as a summary in table 4.7.Ordering of modelsWhen comparing the NRMSE for γ in table 4.7, the ordering of the
γ-models, where the best one comes �rst, is:
D4 ≺ D3 ≺ D2 ≺ D1 ≺ C4 ≺ C3 ≺ C1 ≺ B1 ≺ C5 ≺ B3 ≺ B2 ≺ C2 ≺ B4.(4.32)Here B2 ≺ C2 means that model B2 is better than C2. Comparing RMSEfor the cylinder pressure p, the ordering of the γ-models becomes:
D4 ≺ D3 ≺ D2 ≺ D1 ≺ C4 ≺ C3 ≺ C1 ≺ B1 ≺ B4 ≺ B3 ≺ B2 ≺ C5 ≺ C2.(4.33)



74 CHAPTER 4. A SPECIFIC HEAT RATIO MODEL. . .Model MRE: NRMSE: RMSE:
γ [%] γ [%] p [kPa]

B1 3.4 1.2 84.9
B2 5.2 2.4 153.6
B3 4.5 1.7 137.3
B4 7.1 4.2 110.0
C1 1.9 0.77 56.6
C2 6.6 3.9 269.2
C3 1.9 0.53 42.4
C4 1.8 0.46 36.7
C5 8.3 1.6 191.9
D1 0.26 0.097 5.8
D2 0.25 0.092 5.1
D3 0.044 0.016 0.7Table 4.7: Evaluation of γ-models, in terms of the mean values for alloperating points in table A.2.This ordering is not the same as in (4.32), but the only di�erence lies inmodels C5 and B4 that change their positions between the two orderings.Model C5 has poor performance in terms of RMSE(p), compared toNRMSE(γ). For model B4, it is the other way around.Model group DIn terms of NRMSE(γ) (4.32) and RMSE(p) (4.33) model group Dbehaves as expected, and obeys the rule: the higher the complexity is,the higher the accuracy becomes. According to the RMSE(p) column intable 4.7, the models in D all introduce an RMSE(p) which is less thanthat found for the measurement noise. Comparing models D1 (4.28)and D2 (4.29), it is obvious that not much is gained in accuracy byusing the unburned speci�c heats from CHEPP instead of the linearfunctions. The computational cost for D2 was more than two timesthe one for D1, as shown in table 4.6. This suggests that the unburnedspeci�c heats are su�ciently well described by the linear approximation.Model D3 (4.30) utilizes the burned speci�c heat from CHEPP, andthis is an improvement compared to model D1 which uses the Krieger-Borman polynomial for cp,b and cv,b. This improvement reduces theRMSE(p) with a factor 7, but the cost in computational time is high,approximately a factor 70 according to table 4.6. The comparison alsoshows that if we want to reduce the impact on the cylinder pressure,the e�ort should be to increase the accuracy of the Krieger-Bormanpolynomial for the burned mixture. In �gures A.4 and A.5, the speci�c



4.6. PARTIALLY BURNED MIXTURE 75heats for CHEPP and the Krieger-Borman polynomial are given, andthis veri�es that the polynomial has poorer performance for highertemperatures. A new polynomial for the burned mixture, valid fora smaller but more relevant region for SI engines could increase theaccuracy for high temperatures. A perfect model of the burned mixtureyields the results given by D3, which then poses the lower limit for theaccuracy. The RMSE(p) in table 4.7 for D1 is however considered tobe small. Therefore �nding a better a model for the burned mixture isnot pursued here, and model D1 is recommended as a good compromisebetween computational accuracy and e�ciency.Model group CIn model group C, model C5 has good performance when consideringthe NRMSE in γ (4.32), but not as good in RMSE(p) (4.33). Thisillustrates the importance of transforming the modeling error in the
γ-domain to the cylinder pressure domain. One objective was to geta model that gives a good description of the cylinder pressure. Thismotivates why RMSE(p) is the more important model performancemeasure of the two. Model C2 (Stone, 1999, p.423) has really badperformance and would be the last choice here. The rest of the modelsin group C obey the same rule as group D, i.e. C4 ≺ C3 ≺ C1.When the best model in group C, i.e. C4, is compared to all modelsin group D, and especially the reference model D4, it is concluded thatthe speci�c heats should be interpolated, and not the speci�c heat ra-tios. This conclusion can be drawn since the only di�erence between
C4 and D4 is how the interpolation is performed. Model C4 interpolatesthe speci�c heat ratios found from CHEPP directly, and model D4 in-terpolates the speci�c heats from CHEPP and then form the speci�cheat ratio. Therefore, group D has better performance than group C.Since D1 has higher accuracy and approximately the same computa-tional time as all models in group C, there is no point in using any ofthe models in group C.Model group BAs expected, the models in group B has the worst performance of themall, if excluding models C2 and C5. It is interesting to note that the linearmodel γb

lin (B1) performs best in the group, although it introduces amodeling error in p which is at least ten times the measurement noisein the mean. It has better performance than γKB (B3) in the pressuredomain, although this is not the case in the γ-domain. This againpoints out the necessity of evaluating the impact of the γ-model on tothe cylinder pressure. Therefore, if the assumption is that the cylindercontents should be treated as a burned mixture during the entire closed



76 CHAPTER 4. A SPECIFIC HEAT RATIO MODEL. . .part of the engine cycle, B1 is the model to use.SummaryTo conclude, the models are ordered by their performance and withcomputational e�ciency in ascending order:
D4 ≺ D1 ≺ B1 ≺ B4 (4.34)Most of the models are excluded from this list, either due to their lowaccuracy, high computational time, or because another model with ap-proximately the same computational time has higher accuracy. Of themodels given in (4.34), D1 is recommended as a compromise betweencomputational time and accuracy. Compared to the original settingin Gatowski et al. (1984), the computational burden increases with 40% and the modeling error is more than ten times smaller in the mean.This also stresses that the γ-model is an important part of the heatrelease model, since it has a large impact on the cylinder pressure. Thefocus is now turned to how the γ-models will a�ect the heat releaseparameters.4.6.6 In�uence of γ-models on heat release param-etersThe next question is: �What impact does each of the proposed γ-models have on the heat release parameters? This is investigated byusing the cylinder pressure for operating point 2, given in �gure 4.8,and estimating the three heat release parameters ∆θd, ∆θb and Qin inthe Vibe function, introduced in section 3.5. The cylinder pressure issimulated using reference model D4 in conjunction with the Gatowskiet al. cylinder pressure model, and this forms the cylinder pressuremeasurement signal to which measurement noise is added.The heat release trace is then estimated given the measurementfrom reference model D4. The heat release trace is parameterized bythe Vibe function, which has the heat release parameters ∆θd, ∆θband Qin where it is assumed that θig is known a priori. The estima-tion is performed by minimizing the prediction error, i.e. by minimizingthe di�erence between the measured cylinder pressure and the modeledcylinder pressure. The Levenberg-Marquardt method described in ap-pendix C.1 is used as optimization algorithm. The heat release param-eters are then estimated for each of the γ-models using the Gatowskiet al.-model, where the γ-model is replaced in an obvious manner in theequations. In the estimations, only the three heat release parametersare estimated. The other parameters are set to their true values givenin table A.1. The results are summarized in table 4.8, which displays



4.6. PARTIALLY BURNED MIXTURE 77Model ∆θd [%] ∆θb [%] Qin [%] RMSE(p) TimeRME RCI RME RCI RME RCI [kPa] [min]
B1 5.1 1.7 0.29 3.1 -9.2 1.4 9.8 3.5
B2 3.1 1.7 0.63 2.9 -7.3 1.3 9.1 3.8
B3 3.4 1.7 -0.2 2.9 -7.2 1.3 9.1 3.9
B4 6.8 1.7 -0.11 3.2 -6.2 1.4 10.1 3.5
C1 0.074 1.4 1.1 2.4 -2.9 1.1 6.5 4.4
C2 9.6 2.1 -1 3.9 -14 1.7 16.0 4.6
C3 0.19 1.4 0.75 2.4 -2.5 1.2 6.5 4.8
C4 0.14 1.5 0.64 2.4 -2 1.2 6.7 200
C5 -8 1.5 -2.5 2.3 27 0.92 6.6 3.7
D1 0.21 1.5 -0.062 2.4 -0.67 1.3 6.7 4.9
D2 0.2 1.5 -0.08 2.4 -0.61 1.3 6.7 11
D3 0.22 1.5 -0.13 2.4 -0.48 1.3 6.7 360
D4 0.21 1.5 -0.13 2.4 -0.42 1.3 6.7 360Table 4.8: Relative mean estimation error (RME) and mean relative 95% con�dence interval (RCI) given in percent, for heat release parame-ters using various γ-models at operating point 2. The nominal valuesfor the heat release parameters are: ∆θd = 20 deg, ∆θb = 40 deg and

Qin = 760 J. The computational time and cylinder pressure RMSE arealso given.the relative mean estimation error RME (D.4) and the mean relative 95% con�dence interval RCI (D.5) in ∆θd, ∆θb and Qin respectively foreach γ-model. The computational time and RMSE(p) are also given.DiscussionThe RMSE of the applied measurement noise is approximately 6.7 kPa,which is also the RMSE found when using most γ-models. For every γ-model used, the rapid burn angle θb is most accurately estimated of thethree parameters, and nearly all of them are accurate within 1%. Onthe other hand, only model group D is accurate within 1 % for all threeparameters, and this suggests that any of the D-models can be used,preferably model D1 due to its lower computational time. Model C5has the highest deviation in the estimates of them all.4.6.7 In�uence of air-fuel ratio λAn investigation is performed here to see how the proposed model
D1 behaves for di�erent air-fuel ratios λ. The NRMSE(γ, λ|D1) andRMSE(p, λ|D1) are computed for model D1 (4.28) compared to refer-ence model D4 for the air-fuel ratio region λ ∈ [0.975, 1.025], at op-erating point 2. It is assumed that the λ-controller of the SI engine
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Figure 4.12: Upper: NRMSE(γ, λ|D1) for λ ∈ [0.975, 1.025] at OP 2.Lower: RMSE(p, λ|D1) for λ ∈ [0.975, 1.025] at OP 2.has good performance, and therefore keeps the variations in λ small.The results are displayed in �gure 4.12, where the upper plot shows theNRMSE(γ, λ|D1), and the lower plot shows the RMSE(p, λ|D1). Leanand stoichiometric mixtures have the lowest errors in the γ domain,which is expected since the Krieger-Borman polynomial for the burnedmixture is estimated for lean mixtures. The error in pressure domain isapproximately symmetric around λ = 0.995, and the magnitude is stillless than the measurement noise. This assures that for a few percentdeviation in λ from stoichiometric conditions, the introduced error isstill small and acceptable.Fuel compositionA small, and by no means exhaustive sensitivity analysis is made forfuels such as methane and two commercial fuels in appendix A.6. Thisin order to see if the results are valid for other fuels than iso-octane.The hydrocarbon ratio for the fuel CaHb is given by y = b/a. It is foundthat if y ∈ [1.69, 2.25], the RMSE(p) introduced at OP 2 when using
D1 is increased with less than 20 % compared to iso-octane, which isacceptable.



4.6. PARTIALLY BURNED MIXTURE 794.6.8 In�uence of residual gasThe in�uence of the residual gas on the speci�c heat ratio has so farbeen neglected. Introducing the residual gas mass fraction xr, thesingle-zone speci�c heat ratio γCE in (4.18) is reformulated as:
cp(T, p, xb, xr) = xb cp,b(Tb, p) + (1 − xb) ((1 − xr)cp,u(Tu) + xr cp,b(Tu, p))(4.35a)
cv(T, p, xb, xr) = xb cv,b(Tb, p) + (1 − xb) ((1 − xr)cv,u(Tu) + xr cv,b(Tu, p))(4.35b)

γCE(T, p, xb, xr) =
cp(T, p, xb, xr)

cv(T, p, xb, xr)
. (4.35c)The model assumptions are:

• the residual gas is homogeneously distributed throughout thecombustion chamber.
• the residual gas is described by a burned mixture at the appro-priate temperature and pressure.
• a residual gas mass element in the unburned zone assumes theunburned zone temperature Tu.
• when a residual gas mass element crosses the �ame front, it entersthe burned zone and assumes the burned zone temperature Tb.The pressure is assumed to be homogeneous throughout all zones.In �gure 4.13, the speci�c heat ratio γCE is computed according to (4.35)for residual gas fractions xr = [0, 0.05, 0.1, 0.15, 0.20] given the cylin-der pressure in �gure 4.8. It shows that the larger the residual gasfraction, the larger the γ.The di�erence in γ for xr = [0.05, 0.1, 0.15, 0.20] compared to

xr = 0 is shown in �gure 4.14. The di�erence is largest during com-pression and combustion. After the combustion, the mass speci�c heatsfor the single zone will coincide with the ones for the burned zone inaccordance with the model assumptions, and there is thus no di�erencein γ.Modeling of xr-dependenceA simple model of the in�uence of xr on γ is to model the in�uence asa linear function of xr during the closed part, i.e.
γ(T, p, xb, xr) = γCE(T, p, xb) + bxr

xr = γCE(T, p, xb) + γbias(xr),(4.36)where γCE(T, p, xb) is given by (4.18). Since xr is constant during acycle, the term bxr
xr can be considered as a constant bias γbias(xr)
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Figure 4.13: Speci�c heat ratio γCE (4.35) for residual gas fraction
xr = [0, 0.05, 0.1, 0.15, 0.20].that changes from cycle to cycle. A better model is gained if the massfraction burned xb is used, as described in
γ(T, p, xb, xr) = γCE(T, p, xb) + (1 − xb)bxr

xr = γCE(T, p, xb) + (1 − xb)γbias(xr),(4.37)which relies on the fact that γ(T, p, xb, xr) coincides with γCE for every
xr when the mixture is fully burned.A more appealing and more physically correct model is to extendmodelD1 in (4.28) with the Krieger-Borman polynomial for the residualgas fraction, in the same manner as in (4.35). Thus (4.28) is rewrittenas
cp(T, p, xb, xr) = xb c

KB
p,b (Tb, p) + (1 − xb)

(

(1 − xr)c
lin
p,u(Tu) + xr c

KB
p,b (Tu, p)

)(4.38a)
cv(T, p, xb, xr) = xb c

KB
v,b (Tb, p) + (1 − xb)

(

(1 − xr)c
lin
v,u(Tu) + xr c

KB
v,b (Tu, p)

)(4.38b)
γD1xr

(T, p, xb, xr) =
cp(T, p, xb, xr)

cv(T, p, xb, xr)
(4.38c)
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Figure 4.14: Di�erence in speci�c heat ratio γCE (4.35) for residual gasfraction xr = [0.05, 0.1, 0.15, 0.20] compared to xr = 0.to form the speci�c heat ratio γD1xr
for a partially burned mixture withresidual gas mass fraction xr. In the same spirit as for (4.36) and (4.37)but with model D1 as a base, the following models are formed:

γ(T, p, xb, xr) = γD1
(T, p, xb) + bxr

xr = γD1
(T, p, xb) + γbias(xr),(4.39)

γ(T, p, xb, xr) = γD1
(T, p, xb) + (1 − xb)bxr

xr = γD1
(T, p, xb) + (1 − xb)γbias(xr).(4.40)EvaluationThe speci�c heat ratio for the six models (4.36)�(4.40) and (4.18), i.e.no xr-modeling, are all compared to the reference model (4.35) for agiven xr. At the operating point in �gure 4.14, the NRMSE in γ andthe corresponding value of γbias(xr) for models (4.36), (4.37), (4.39)and (4.40) are given for the xr:s at hand in table 4.9. The NRMSE forall six models are also included.Model (4.37) has the best performance and decreases the NRMSE



82 CHAPTER 4. A SPECIFIC HEAT RATIO MODEL. . .NRMSE(γ) [%]Model xr = 0 xr = 0.05 xr = 0.10 xr = 0.15 xr = 0.20No model 0 7.1 · 10−2 1.4 · 10−1 2.1 · 10−1 2.8 · 10−1(4.36) 0 4.8 · 10−2 9.7 · 10−2 1.5 · 10−1 1.9 · 10−1(4.37) 0 8.2 · 10−3 1.7 · 10−2 2.5 · 10−2 3.4 · 10−2(4.38) 9.8 · 10−2 9.9 · 10−2 1.0 · 10−1 1.0 · 10−1 1.1 · 10−1(4.39) 9.8 · 10−2 1.1 · 10−1 1.4 · 10−1 1.8 · 10−1 2.2 · 10−1(4.40) 9.8 · 10−2 9.5 · 10−2 9.2 · 10−2 9.1 · 10−2 9.0 · 10−2

γbiasModel xr = 0 xr = 0.05 xr = 0.10 xr = 0.15 xr = 0.20(4.36) 0 6.5 · 10−4 1.3 · 10−3 2.0 · 10−3 2.6 · 10−3(4.37) 0 1.2 · 10−3 2.5 · 10−3 3.7 · 10−3 5.0 · 10−3(4.39) −6.3 · 10−5 5.9 · 10−4 1.2 · 10−3 1.9 · 10−3 2.5 · 10−3(4.40) 9.6 · 10−5 1.3 · 10−3 2.6 · 10−3 3.8 · 10−3 5.0 · 10−3Table 4.9: Normalized root mean square error (NRMSE) and γbiasfor xr = [0, 0.05, 0.10, 0.15, 0.20] using approximative models (4.36)-(4.40). Model (4.18) corresponds to no xr-modeling.with approximately a factor 8, compared to model (4.18). Note that theNRMSE in table 4.9 are relatively small compared e.g. to the NRMSEgiven in table 4.6. When comparing models that are based on D1the NRMSE(γ) is in the same order as in the case of no xr, at leastfor models (4.38) and (4.40). The values for γbias(xr) depend almostlinearly upon xr, and it therefore seems promising to model γbias(xr)as a linear function of xr. Especially since model (4.40) gives a smallerNRMSE than model (4.38). However, the slope bxr
in γbias(xr) = bxr

xrwill change for operating conditions other than the one given here.The model used therefore needs to be robust to changing operatingconditions, a feature the Krieger-Borman polynomial has. Model (4.38)only adds an NRMSE(γ) of 1.2 % for xr = 0.20 compared to xr = 0,as shown in table 4.9. Therefore model (4.38) which uses the Krieger-Borman polynomial is recommended, although it did not have the bestperformance of the xr-models at this operating point.4.6.9 Summary for partially burned mixtureThe results can be summarized as:
• The modeling error must be compared both in terms of how theydescribe γ and the cylinder pressure.
• Comparing models C4 and D4, it is obvious that interpolating thespeci�c heat ratios directly instead of the speci�c heats causes alarge pressure error. Interpolation of speci�c heat ratios does notful�ll the energy equation.



4.7. SUMMARY AND CONCLUSIONS 83
• The γ-models B1, B2, B3, B4, C2 and C5 proposed in earlier works,introduce a pressure modeling error which is at least four timesthe measurement noise, and at least ten times the measurementnoise in the mean in our investigation. Out of these models, model

B1 is the best compromise of computational time and model ac-curacy.
• If only single-zone temperatures are allowed, model B1 is the bestone.
• The computation times are of the same order for all models except

D3, D4 and C4.
• The models in group D are required to get a cylinder pressureRMSE that is of the same order as the measurement noise.
• As a compromise between accuracy and computational time, model

D1 is recommended. Compared to the original setting in Gatowskiet al. (1984), the computational burden increases with 40 % andthe cylinder pressure modeling error is 15 times smaller in mean.
• For a residual gas mass fraction xr up to 20 %, model D1 canbe extended with speci�c heats for the residual gas (4.38). Thesespeci�c heats are modeled by the Krieger-Borman polynomial.This model extension adds a NRMSE(γ) which is less than 1.2 %to the previous modeling error for xr = 0.20.
• Only model group D produces prediction error estimates of theheat release parameters, that are accurate within 1 % for all threeparameters, and this suggests that any of the D-models can beused, preferably model D1 due to its lower computational time.4.7 Summary and conclusionsBased on assumptions of frozen mixture for the unburned mixture andchemical equilibrium for the burned mixture (Krieger and Borman,1967), the speci�c heat ratio is calculated, using a full equilibrium pro-gram (Eriksson, 2004), for an unburned and a burned air-fuel mixture,and compared to several previously proposed models of γ. It is shownthat the speci�c heat ratio and the speci�c heats for the unburned mix-ture is captured to within 0.25 % by a linear function in mean chargetemperature T for λ ∈ [0.8, 1.2]. Furthermore the burned mixture arecaptured to within 1 % by the higher-order polynomial in cylinder pres-sure p and temperature T developed in Krieger and Borman (1967) forthe major operating range of a spark ignited (SI) engine. If a linearmodel is preferred for computational reasons for the burned mixture,



84 CHAPTER 4. A SPECIFIC HEAT RATIO MODEL. . .then the temperature region should be chosen with care which can re-duce the modeling error in γ by 25 %.With the knowledge of how to describe γ for the unburned andburned mixture respectively, the focus is turned to �nding a γ-modelduring the combustion process, i.e. for a partially burned mixture. Thisis done by interpolating the speci�c heats for the unburned and burnedmixture using the mass fraction burned xb. The objective was to �nd amodel of γ, which results in a cylinder pressure error that is lower thanor in the order of the measurement noise. It is found that interpolatingthe linear speci�c heats for the unburned mixture and the higher-orderpolynomial speci�c heats for the burned mixture, and then forming thespeci�c heat ratio
γ(T, p, xb) =

cp(T, p, xb)

cv(T, p, xb)
=
xb c

KB
p,b + (1 − xb) c

lin
p,u

xb cKB
v,b + (1 − xb) clinv,u

(4.41)results in a small enough modeling error in γ. This modeling errorresults in a cylinder pressure error that is lower than 6 kPa in mean,which is in the same order as the cylinder pressure measurement noise.If the residual gas mass fraction xr is known, it should be incorporatedinto (4.41) which then extends to (4.38).It was also shown that it is important to evaluate the model errorin γ to see what impact it has on the cylinder pressure, since a smallerror in γ can yield a large cylinder pressure error. This also stressesthat the γ-model is an important part of the heat release model.Applying the proposed model improvement D1 (4.41) of the speci�cheat ratio to the Gatowski et al. (1984) single-zone heat release model issimple, and it does not increase the computational burden immensely.Compared to the original setting, the computational burden increaseswith 40 % and the modeling error introduced in the cylinder pressureis reduced by a factor 15 in mean.
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5Compression ratioestimation � with focus onmotored cyclesThe ability to vary the compression ratio opens up new possibilitiesbut if the compression ratio gets stuck at too high ratios, the risk ofengine destruction by heavy knock increases rapidly. On the otherhand if the compression ratio gets stuck at too low ratios, this resultsin low e�ciency, and therefore an unnecessary high fuel consumption.It is therefore vital to monitor and diagnose the continuously changingcompression ratio.Determination of the compression ratio is in itself an issue of highimportance (Amann, 1985; Lancaster et al., 1975) since it in�uencesthe analysis and control of the combustion process. Due to geometricaluncertainties, a spread in compression ratio among the di�erent cylin-ders is inherent (Amann, 1985), and since it is impossible to measurethe compression ratio directly it is necessary to estimate it. Here fourcompression ratio estimation methods are developed and their prop-erties with respect to 1) accuracy, 2) convergence speed, and 3) overall convergence, are investigated. The approach is to use measuredcylinder pressure traces combined with a cylinder pressure model, toestimate the compression ratio. A desirable property of the estimatoris that it should be able to cope with the unknown o�set introduced bythe charge ampli�er, changing thermodynamic conditions, and possiblyalso the unknown phasing of the pressure trace in relation to the crankangle revolution.Two models for the cylinder pressure with di�erent complexity lev-els are used; a polytropic model and a single-zone zero-dimensional87



88 CHAPTER 5. CR ESTIM � FOCUS ON MOTORED CYCLESheat release model. Three di�erent optimization algorithms that mini-mize the prediction error are utilized to estimate the parameters in thecylinder pressure models. These are:1. Linear subproblem method. The non-linear problem is formulatedas two linear least-squares problems, that are solved alternately.2. Variable projection method. It has two steps where the �rst stepdetermines only the parameters that appear linearly in the modelthrough the linear least-squares method. In the second step a linesearch is performed for the other parameters in the direction ofthe negative gradient. This method is a separable least-squaresmethod.3. Levenberg-Marquardt method. This is a well known Gauss-Newtonmethod with regularization. Numerical approximations of thegradient and the Hessian are used.Based on these models and optimization algorithms, four di�erent com-pression ratio estimation methods are formulated. The methods areapplicable to both motored and �red cycles.5.1 OutlineThe two cylinder pressure models that will be used are given in sec-tion 5.2. They have been derived in chapter 2 and are summarized herefor convenience. Based on these two models and the three optimiza-tion algorithms described above, four methods for compression ratioestimation are introduced in section 5.3. Thereafter, the performanceof the four methods is evaluated for simulated cylinder pressure tracesin terms of bias, variance and computational time in section 5.4. Thesimulation study is an important and necessary step for a fair evalua-tion, due to that the true value of the compression ratio for an engineis unknown. The simulation evaluation includes a sensitivity analysis.In section 5.5 the focus is turned to an evaluation of the methods per-formance on experimental data. Data was collected from the SAABVariable Compression (SVC) engine shown in �gure 5.1. By tilting themono-head, the compression ratio can be continuously varied between8.13 and 14.67. The geometric data for the SVC engine is given inappendix B.3. A discussion on compression ratio diagnosis is given.The conclusions and recommendations of the chapter are summarizedin section 5.6.



5.2. CYLINDER PRESSURE MODELING 89

Figure 5.1: Schematic of engine with variable compression. With cour-tesy of SAAB Automobile AB.5.2 Cylinder pressure modelingTwo models are used to describe the cylinder pressure trace and theyare referred to as the polytropic model and the standard model.5.2.1 Polytropic modelA simple and e�cient model is the polytropic model, presented earlierin section 2.2,
p(θ)V (θ)n = C, (5.1)where p(θ) is the cylinder pressure as function of crank angle θ, V (θ)is the volume, n is the polytropic exponent and C is a cycle-to-cycledependent constant. Sometimes the volume is written as the followingsum,

V (θ) = Vid(θ) + Vc, (5.2)where Vid(θ) is the instantaneous volume displaced by the piston (3.4)and Vc is the clearance volume. The compression ratio rc is related tothese volumes through
rc =

max [Vid(θ)] + Vc

Vc
, (5.3)where min [Vid(θ)] = 0. The polytropic model (5.1) describes the com-pression and expansion phases of the engine cycle well, but not the



90 CHAPTER 5. CR ESTIM � FOCUS ON MOTORED CYCLEScombustion phase (Heywood, 1988). Therefore, for cycles with com-bustion only data between inlet valve closing (IVC) and start of com-bustion (SOC) will be used, while for motored cycles all data acquiredduring the closed part of the cycle, i.e. between IVC and exhaust valveopening (EVO), is utilized.5.2.2 Standard modelGatowski et al. (1984) develops, tests and applies this model for heatrelease analysis. This model is from hereon named the standard model.It is based on the �rst law of thermodynamics and maintains simplicitywhile still including the well known e�ects of heat transfer and crevice�ows. It has become widely used (Heywood, 1988) and is describedin section 2.5. The pressure is described by the following di�erentialequation,
dp

dθ
=

dQch

dθ − γ
γ−1 p

dV
dθ − dQht

dθ

1
γ−1 V + Vcr

Tw

(
T

γ−1 + T ′ + 1
b ln
(

γ′−1
γ−1

)) , (5.4)see Gatowski et al. (1984) for the derivation and section 3.8 for detailson model components and parameters. This corresponds to model B1in chapter 4. Equation (5.4) is an ordinary di�erential equation thatcan easily be solved numerically, given an initial value for the cylinderpressure. The heat release dQch

dθ is zero for motored cycles and for cycleswith combustion it is modeled using the Vibe function xb (Vibe, 1970)in its di�erentiated form (5.5b)
xb(θ) = 1 − e

−a
(

θ−θig
∆θcd

)m+1

, (5.5a)
dxb(θ)

dθ
=
a (m+ 1)

∆θcd

(
θ − θig

∆θcd

)m

e
−a
(

θ−θig
∆θcd

)m+1

, (5.5b)where xb is the mass fraction burned, θig is the start of combustion,
∆θcd is the total combustion duration, and a and m are adjustableparameters. The heat release is modeled as

dQch

dθ
= Qin

dxb(θ)

dθ
, (5.6)where Qin is the total amount of heat released. The standard model(5.4)�(5.6) is valid between IVC and EVO.5.2.3 Cylinder pressure referencingPiezoelectric pressure transducers are used for measuring the in-cylinderpressure, which will cause a drift in the pressure trace, i.e. the absolute



5.3. ESTIMATION METHODS 91level is unknown and it is slowly varying. This issue was introduced anddiscussed in section 3.1. The modeling assumption was that the pres-sure o�set is considered to be constant during one engine cycle. Thepressure o�set is estimated using intake manifold pressure referencingas described in section 3.1, i.e. by referencing the measured cylinderpressure pm(θ) to the intake manifold pressure pman just before in-let valve closing (IVC), for several samples of pman. Due to standingwaves in the intake runners and �ow losses over the valves at certainoperating points, the referencing might prove to be insu�cient. Thisis investigated by including a parameter for cylinder pressure o�set inestimation methods 3 and 4, described in the next section.5.3 Estimation methodsFour methods are developed and investigated for compression ratio es-timation. These methods are described below and their relations aresummarized at the end of this section. All four methods are formulatedas least-squares problems in a set of unknown parameters x as
min

x
‖ε(x)‖2

2, (5.7)where a residual ε(x) is formed as the di�erence between a model andmeasurement. The di�erences between the methods lie in how theresiduals are formed, and in the iterative methods used for solving theresulting problem (5.7).The termination criterion for all methods are the same; If the rel-ative improvement in the residual ‖ε(x)‖2 is less than 1 × 10−6 in oneiteration, the method terminates. This numerical value is chosen toensure convergence for all initial values.5.3.1 Method 1 � Sublinear approachThe �rst method uses the polytropic model (5.1)
p(θ) (Vid(θ) + Vc)

n = C (5.8)to estimate the polytropic exponent n, the compression ratio rc andthe constant C. The method alternates between two problems, one todetermine the polytropic exponent n, and the other to determine theclearance volume Vc (i.e. rc = (max [Vid(θ)] + Vc) / Vc).Applying logarithms on (5.8) yields the residual
ε1a(C1, n) = ln p(θ) − (C1 − n ln(Vid(θ) + Vc)) (5.9)which is linear in the parameters C1 = lnC and n, if Vc is �xed. An-other residual, that can be derived from (5.8), is
ε1b(C2, Vc) = Vid(θ) − (C2 p(θ)

−1/n − Vc) (5.10)



92 CHAPTER 5. CR ESTIM � FOCUS ON MOTORED CYCLESwhich is linear in the parameters C2 = C1/n and Vc, if n is �xed.The basic idea is to use the two residuals, ε1a and ε1b, alternately toestimate the parameters n, Vc and C by solving two linear least-squaresproblems. Using a Taylor expansion, see appendix B.1, the followingapproximate relation between the residuals is obtained
ε1a(θ, x) ≈ n

Vid(θ) + Vc
ε1b(θ, x). (5.11)The relation (5.11) must be taken into account and the residual ε1ais therefore multiplied by the weight w(θ) = Vid(θ) + Vc, to obtaincomparable norms in the least-squares problem. To use this weightis of crucial importance and without it the algorithm diverges (Klein,2004, pp.85). Convergence of the method can however not be proved.If the residuals were equal, i.e. ε1a = ε1b, the problem would be bilinearand the convergence linear (Björck, 1996).Each iteration for estimating the three parameters x = [Vc C n] inthe algorithm consists of three steps.Algorithm 5.1 � Sublinear approachInitialize the parameters x = [Vc C n].1.Solve the weighted linear least-squares problem

min
n,C1

‖w ε1a‖2
2with Vc from the previous iteration and C1 = lnC.2.Solve the linear least-squares problem

min
Vc,C2

‖ε1b‖2
2with n from step 1 and c2 = C1/n.3.Check the termination criterion, if not ful�lled return to step 1.5.3.2 Method 2 � Variable projectionThe second method also uses the polytropic model (5.1), together with avariable projection algorithm. A nonlinear least-squares problem (5.7)is separable if the parameter vector can be partitioned x = (y z) suchthat

min
y

‖ε(y, z)‖2
2 (5.12)



5.3. ESTIMATION METHODS 93is easy to solve. If ε(y, z) is linear in y, ε(y, z) can be rewritten as
ε(y, z) = F (z)y − g(z). (5.13)For a given z, this is minimized by

y(z) = [FT (z)F (z)]−1F (z)T g(z) = F †(z)g(z), (5.14)i.e. by using linear least-squares, where F †(z) is the pseudo-inverse of
F (z). The original problem min

x
‖ε(x)‖2

2 can then be rewritten as
min

z
‖ε(y, z)‖2

2 = min
z

‖g(z)− F (z)y(z)‖2
2 (5.15)and

ε(y, z) = g(z) − F (z)y(z) = g(z) − F (z)F †(z)g(z) = (I − PF (z))g(z),(5.16)where PF (z) is the orthogonal projection onto the range of F (z), thusthe name variable projection method.Rewriting the polytropic model (5.1) as
ε2(C1, n, Vc) = ln p(θ) − (C1 − n ln(Vid(θ) + Vc)) (5.17)results in an equation that is linear in the parameters C1 = lnC and

n, and nonlinear in Vc. It is thus expressed on the form given in (5.13).The residual (5.10) is not suitable, since the parameters are coupled forthis formulation, see appendix B.2. With this method the three param-eters x = [Vc lnC n] are estimated. A computationally e�cient algo-rithm, based on Björck (1996, p.352), is summarized in appendix B.2.5.3.3 Method 3 � Levenberg-Marquardt and poly-tropic modelThe third method uses the polytropic model (5.1), as methods 1 and 2did, with a pressure sensor model (3.1) added according to
pm(θ) = Kpp(θ) + ∆p = p(θ) + ∆p (5.18)in order to make the pressure referencing better. The measured cylin-der pressure is given by pm(θ), and the additive pressure bias ∆p isconsidered to be constant during one cycle. The measurement chain isconsidered to be well calibrated, and therefore the measurement gain

Kp is set equal to 1. Furthermore, errors in the crank angle phasing ∆θbetween the volume and pressure are also included in the polytropicmodel, which then can be written as the following residual:
ε3(Vc, n, C,∆p,∆θ) = pm(θ) − ∆p− C (Vid(θ + ∆θ) + Vc)

−n. (5.19)A Levenberg�Marquardt method (Gill et al., 1981) is used to solve thisnonlinear least-squares problem, that has �ve unknown parameters: Vc,
n, C, ∆p, ∆θ.



94 CHAPTER 5. CR ESTIM � FOCUS ON MOTORED CYCLES5.3.4 Method 4 � Levenberg-Marquardt and stan-dard modelThe fourth method uses the single-zone model (5.4) from Gatowskiet al. (1984) which, in contrast to the other methods, also includesheat transfer and crevice e�ects. The model is given in section 3.8and the parameters used are summarized in appendix B.4. Due to thecomplexity of this model, the sublinear approach and variable projec-tion approach are not applicable, and therefore only the Levenberg�Marquardt method is used. The increased complexity also causes iden-ti�ability problems for some of the parameters, since there exist manydependencies between them. This is the case for the crevice volume Vcrand the clearance volume Vc, in which estimating the two parametersat the same time results in coupled and biased estimates. Thereforeone of them is set constant, in this case the crevice volume (Klein,2004, p. 94). The estimation problem is however still hard, as will beshown in chapter 6, and therefore the number of parameters to esti-mate are reduced to �ve for motored cycles, and eight for �red cycles.The remaining parameters are �xed to their initial values. The numberof parameters to estimate are determined by comparing the bias andvariance in the parameter values using simulations for di�erent settingsof parameters. For motored cycles the estimated parameters are: Tivc,
γ300, ∆p, ∆θ, and of course Vc. For �red cycles the parameters ∆θd,
∆θb, and Qin are also included.5.3.5 Summary of methodsTable 5.1 shows the relations between the methods. For �red cycles,methods 1, 2 and 3 use cylinder pressure data between IVC and SOConly, in contrast to method 4 which uses data from the entire closedpart of the engine cycle. For motored cycles, all data during the closedpart of the cycle is utilized by all methods. It is also noteworthy thatif the clearance volume Vc is considered to be known, then methods 1and 2 can be reformulated such that ∆p is estimated instead of Vc. Insuch a case all methods can be used to estimate an additive pressurebias, see Klein (2004, p. 143) for more details.Algorithm Polytropic model Standard modelSublinear Method 1Variable projection Method 2Levenberg-Marquardt Method 3 Method 4Table 5.1: Relation between methods.



5.4. SIMULATION RESULTS 95
−100 −50 0 50 100

0

10

20

30

Crank angle [deg ATDC]

P
re

ss
ur

e 
[b

ar
]

OP2: N=1500 rpm, p
man

=1.0 bar

r
c
=8

r
c
=15

Figure 5.2: Simulated cylinder pressure at OP2 with the compressionratio set to integer values from 8 to 15.5.4 Simulation resultsA fundamental problem is that the exact value of the compression ratioin an engine is unknown, which makes the evaluation of the compres-sion ratio estimation methods di�cult. To overcome this obstacle sim-ulated pressure traces, with well known compression ratios, are used.The methods are �rst evaluated on data from motored cycles in oneoperating point with respect to the estimation bias, variance and theresidual. Then they are evaluated on all cycles in the generated dataset and a sensitivity analysis is performed. Finally the methods areevaluated on �red cycles.5.4.1 Simulated engine dataCylinder pressure traces were generated by simulating the standardmodel (5.4) with representative single-zone parameters, given in ap-pendix B.4. Three operating points were selected with engine speed
N = 1500 rpm and intake manifold pressures pman ∈ {0.5, 1.0, 1.8}bar, which de�ne operating points OP1, OP2 and OP3 respectively.Pressure traces were generated for both motored and �red cycles ateach operating point for integer compression ratios between 8 and 15,which covers the compression ratio operating range of the prototypeSI engine. To each trace ten realizations of Gaussian noise with zeromean and standard deviation 0.038 bar were added, forming altogether240 motored and 240 �red cycles. This noise level was chosen since ithas the same RMSE as the residual for method 4 in the experimentalevaluation, and thus re�ects the application to experimental data. Thedata was sampled with a resolution of 1 crank-angle degree (CAD).



96 CHAPTER 5. CR ESTIM � FOCUS ON MOTORED CYCLESIn �gure 5.2, one motored cycle is shown for each integer compressionratio rc at operating point 2 (OP2).5.4.2 Results and evaluation for motored cycles atOP2The performance of the estimation methods is �rst evaluated for OP2.This operating point has an intake manifold pressure in the midrangeof the engine, and a relatively low engine speed for which the e�ectsof heat transfer and crevices are signi�cant. OP2 is therefore chosenas a representable operating point. For the simulated pressure, theparameters in the models are estimated using all methods, for eachindividual cycle.Estimation resultsFor the variable compression ratio engine, the di�erence in rc betweentwo consecutive cycles can be as large as 5 %. Since the estimationis performed on each cycle, the methods should be able to deal withinitial values that are 5 % o�, in order to cope with compression ratiotransients. For the simulated data, the initial parameter values forthe estimations are therefore set to a ±5 % perturbation of the trueparameter values. The termination criterion, described in section 5.3,is chosen in order to assure that the methods have converged, i.e. yieldthe same estimate for every initial parameter set.Figure 5.3 shows a summary of the estimates for all cycles at OP2.In the �gure the true compression ratios are the integer values 8 to 15and for convenience, the results for methods 1 to 4 are separated foreach true value. The estimate should be as close as possible to thecorresponding dotted horizontal line.Table 5.2 summarizes the results in terms of relative mean er-ror (RME) and mean 95 % relative con�dence interval (RCI) in rc,as well as the mean computational time and mean number of iterationsin completing the estimate for one cycle. The measures RME and RCIare given for the lower (rc = 8) and upper (rc = 15) limits of the com-pression ratio, and as a mean for all compression ratios. The relativemean error RME is de�ned by
RME =

1
M

∑M
j=1 r

j
c − r∗c

r∗c
, (5.20)where r j

c , j = 1, . . . ,M is the estimate of rc corresponding to cycle jand r∗c is the true compression ratio. The mean 95 % relative con�dence
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Figure 5.3: Mean value and 95 % con�dence interval of the estimatedcompression ratio for motored cycles using the four methods, comparedto the true compression ratio. The estimate should be as close aspossible to the corresponding dotted horizontal line.interval RCI is computed as
RCI =

1

M

M∑

j=1

1.96σj

r∗c
, (5.21)where σj is computed using (C.18) and (C.20) in appendix C.1. Themean computational time and mean number of iterations in table 5.2are given for the worst case of the initial parameter sets. The calcu-lations were made using Matlab 6.1 on a SunBlade 100, which has a64-bit 500 Mhz processor.Analysis of estimation resultsFigure 5.3 shows that the estimates from methods 1, 2 and 3 becomepoorer the higher the compression ratio is. It stresses that heat transferand crevice e�ects, which are not considered explicitly in the polytropic



98 CHAPTER 5. CR ESTIM � FOCUS ON MOTORED CYCLESmodel (5.1), must be taken into account when a better estimate isdesired for higher compression ratios. Method 4 has the correct modelstructure and therefore yields a better estimate with much lower biasand variance for all compression ratios.These results are further con�rmed by the relative mean errors intable 5.2, where method 4 is the most accurate but also the most time-consuming method. Method 4 is at the time being not suitable foron-line implementation, unless a batching technique is used, e.g. whereone cycle is collected and then processed until �nished. Of the otherthree methods, method 2 performs best concerning estimation accuracyand is outstanding regarding convergence speed. Method 1 has thepotential of low computational time since it solves linear least-squaresproblems only, however the rate of convergence is low which makes itunsuitable for practical use.Residual analysisThe residuals corresponding to the cylinder pressures in �gure 5.2 aredisplayed for all four methods in �gure 5.4 for rc = 8 and in �gure 5.5 for
rc = 15, together with their respective root mean square error (RMSE).There is a systematic deviation for methods 1 and 2 that becomesmore pronounced when rc increases, as seen by comparing �gures 5.4and 5.5. The same systematic deviation occurs for method 3, althoughit is smaller. The residuals for method 4 are white noise, which is ex-pected since method 4 has the correct model structure. The systematicdeviation for methods 1-3 is due to the polytropic model (5.1), whichdoes not explicitly account for heat transfer and crevice e�ects . Thesystematic deviation for method 3 would be of the same order as formethods 1 and 2, if it were not for the two extra parameters ∆θ and ∆pin (5.19). These two parameters compensate for the lack of heat trans-fer and crevice e�ect with the penalty of parameter biases. The mostpronounced change is the shifted crank angle phasing ∆θ, which resultsin a peak pressure position which is closer to top dead center (TDC).However this model �exibility does not improve the compression ratioestimate for method 3, which according to table 5.2 has a bias of -3.6 %in mean.5.4.3 Results and evaluation for motored cycles atall OPThe results for all motored operating points are given in table 5.3,where the relative mean estimation errors and 95 % con�dence intervalsare computed as a mean for all compression ratios. For all operatingpoints, the estimate from method 2 is within 1.5 % and within 0.5 %from method 4. The con�dence intervals are smallest for method 4,



5.4. SIMULATION RESULTS 99Method rc = 8 rc = 15 all rcvs. RME RCI RME RCI RME RCI std Time IterTrue [%] [%] [%] [%] [%] [%] [-] [ms] [-]1 2.6 4.1 2.3 6.9 2.4 5.4 0.093 63 26.12 -0.9 3.5 -1.0 3.8 -0.9 3.6 0.072 3 3.03 -2.8 5.9 -4.4 5.4 -3.6 5.5 0.19 86 5.04 0.35 0.87 0.12 0.49 0.21 0.65 0.0013 2.6 × 105 14.0Table 5.2: Relative mean error and mean 95 % relative con�denceinterval (RCI) in the estimated rc for rc = 8, rc = 15 and as a meanfor all compression ratios for simulated data from OP2. The standarddeviation, as well as the mean computational time and mean numberof iterations in completing the estimation for one engine cycle are alsogiven.
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Figure 5.4: Di�erence between estimated and simulated cylinder pres-sure for all methods, given the motored cycle at rc = 8 in �gure 5.2.The RMSE for the added measurement noise is 0.038 bar.
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Figure 5.5: Di�erence between estimated and simulated cylinder pres-sure for all methods, given the motored cycle at rc = 15 in �gure 5.2.The RMSE for the added measurement noise is 0.038 bar.followed by method 2. The observations made for OP2 with respect tobias and variance are con�rmed by the results for all operating points.A trend among the estimates is that a higher intake manifold pres-sure pman reduces the con�dence interval. A higher pressure improvesthe signal to noise ratio, while the e�ects of heat transfer and crevice�ows remain the same.The choice of residual is important. This is illustrated by the factthat the estimates and con�dence intervals for methods 1 and 2 di�er,for which the only di�erence is the formulation of the residual. Fur-thermore, methods 1 and 2 use a logarithmic residual of the pressure,that weighs the low pressure parts between IVC and EVO relativelyhigher than method 3 does. For method 3, the samples correspondingto the highest pressure are the most important ones. This however co-incides with the highest mean charge temperature, and thus the highestheat transfer losses. This is where the polytropic pressure model usedin methods 1-3 has its largest model error, since heat transfer is not



5.4. SIMULATION RESULTS 101OP1 OP2 OP3
N 1500 rpm 1500 rpm 1500 rpm
pman 0.5 bar 1.0 bar 1.8 barMethod RME [%] RCI [%] RME [%] RCI [%] RME [%] RCI [%]1 3.6 8.5 2.4 5.4 0.45 4.32 -0.35 5.7 -0.9 3.6 -1.4 2.73 -3.8 7.1 -3.6 5.5 -3.6 4.74 0.37 1.2 0.21 0.65 0.094 0.37Table 5.3: Relative mean error (RME) and mean 95 % relative con�-dence interval (RCI) in estimated rc, for simulated motored cylinderpressures from three operating points de�ned by engine speed N andintake manifold pressure pman. The estimate improves with increasedpressure.Parameter Nominal value Deviations

∆p [kPa] 0 -5 -2 2 5
∆θ [deg] 0 -0.25 -0.1 0.1 0.25
C1 [-] 2.28 0 1.14 3.42 4.56
Vcr [% Vc] 1.5 0 0.75 2.25 3.0Table 5.4: Nominal values for the parameters and the deviations usedin the sensitivity analysis.included explicitly. This explains why both methods 1 and 2 yield amore accurate estimate than method 3.5.4.4 Sensitivity analysis at OP2The next question asked is: � How sensitive are the methods to changesin heat transfer, crevice volume, an inaccurate TDC determination ora badly referenced cylinder pressure? A sensitivity analysis is there-fore performed and model parameter values are altered according totable 5.4. The estimates for all four methods are summarized in �g-ure 5.6, where the relative mean error in rc is given as a function ofparameter deviation for each of the four parameters.According to �gure 5.6, methods 3 and 4 are insensitive to an ad-ditive pressure bias ∆p, since their respective models include a pres-sure bias. Methods 1 and 2 which do not model a pressure bias, areapproximately equally sensitive. This is due to that an additive pres-sure bias a�ects all pressure samples equally. A parameter deviationof |∆p| ≤2 kPa assures that the estimates from methods 1 and 2 arewithin the accuracy of method 3, at least for OP2.Methods 3 and 4 are also insensitive to a crank angle o�set ∆θ, for
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Figure 5.6: Relative mean error for parameter deviations in ∆p, ∆θ,normalized C1 and Vcr for methods 1-4 at OP2. Nominal parametervalues are given in table 5.4, and correspond to the third value on thex-axis.the same reasons as for the pressure bias ∆p. Comparing methods 1and 2, method 1 is far more sensitive to ∆θ than method 2. This isexplained by the following: A crank angle o�set a�ects the pressure inthe vicinity of TDC the most, due to the higher pressure. It is thereforelogical that method 2 which uses a logarithmic residual of p, is lesssensitive than method 1. For a parameter deviation of |∆θ| ≤0.2 deg,method 2 yields more accurate estimates of rc than method 3 does.Todays calibration systems have a possibility to determine the crankangle o�set with an accuracy of 0.1 degree. This suggests that thecrank angle o�set ∆θ can be left out when using method 2.Methods 1, 2 and 3 are all a�ected, while method 4 is una�ected bychanges in heat transferC1. The heat transfer a�ects the pressure in thevicinity of TDC the most, due to the higher in-cylinder temperature.Therefore method 1 is more sensitive to heat transfer than method 2for the same reasons as for the crank angle o�set ∆θ.All methods are sensitive to deviations in crevice volume Vcr, al-though method 4 is not as sensitive as the other methods. It is howeverimportant to set Vcr constant, to avoid an even larger bias in clearance



5.5. EXPERIMENTAL RESULTS 103volume Vc. For motored cycles the clearance volume and the crevicevolume are modeled in almost the same way, due to the relatively lowin-cylinder temperatures. It is therefore natural that a larger crevicevolume causes a larger estimate of the clearance volume, and therebya smaller compression ratio. This is the case in �gure 5.6, and it hasbeen seen earlier for motored and �red cycles in Klein (2004, p. 94).To conclude, the more robust methods 3 and 4 are able to cope withthe parameter deviations imposed upon them, due to their high model�exibility. Of the other two methods, method 2 has the best perfor-mance although it is equally sensitive to a pressure bias as method 1is.5.4.5 Results and evaluation for �red cycles at OP2Figure 5.7 displays the results for simulated cycles with combustion,in terms of mean value and 95 % con�dence interval at each integercompression ratio from 8 to 15.The estimates for methods 1-3 are poor, and the relative mean errorfor all rc is in the order of 10 %. These methods all su�er from the factthat the pressure corresponding to TDC is not included, since they onlyuse the data between IVC and SOC. This also yields larger con�denceintervals compared to motored cycles, re�ecting a more uncertain es-timate. Method 4 on the other hand uses all data between IVC andEVO, and yields an estimate accurate within 0.4 % for OP2. Due tothe poor performance of methods 1-3, an experimental evaluation on�red data is not pursued. Out of the four proposed methods, method 4is required to estimate the compression ratio from a �red cycle.The conclusions from this investigation of how the methods performon simulated data is summarized in section 5.6.5.5 Experimental resultsThe attention is now turned to the issue of evaluating the methods onexperimental engine data. As mentioned before, the true value of thecompression ratio is unknown. Therefore it is important too see if thee�ects and trends from the simulation evaluation are also present whenthe methods are applied to experimental data. The performance of themethods is discussed using one speci�c operating point, and is thenfollowed by an evaluation including all operating points.5.5.1 Experimental engine dataData is collected during stationary operation at engine speeds N ∈
{1500, 3000} rpm, intake manifold pressures pman ∈ {0.5, 1.0} bar alto-
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Figure 5.7: Mean value and 95 % con�dence interval of the estimatedcompression ratio for �red cycles using the four methods, compared tothe true compression ratio.gether forming four di�erent operating points, de�ned in the upper partof table 5.6. The measurements are performed for actuated compressionratio values from the lower limit 8.13 to the upper limit 14.66, throughinteger values 9 to 14 in between. With actuated compression ratio itis meant the value commanded from the electronic control unit (ECU).These values were determined from engine production drawings andimplemented in the ECU, but can be a�ected by production tolerancesor non-ideal sensors (Amann, 1985), as well as mechanical and thermaldeformation during engine operation (Lancaster et al., 1975).For each operating point and compression ratio, 250 consecutivemotored cycles with the fuel injection shut-o� were sampled with acrank-angle resolution of 1 degree, using a Kiestler 6052 cylinder pres-sure sensor. Figure 5.8 displays one measured cycle for each rc atoperating point 2 (OP2). For a given rc the mono-head of the engine istilted, see �gure 5.1, which causes the position for TDC to be advancedfrom 0 CAD (Klein et al., 2003). The lower the compression ratio is,
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Figure 5.8: Experimentally measured cylinder pressures at OP2. Theactuated compression ratios are 8.13, integer values 9 to 14, and 14.66.the more advanced the position for TDC becomes. This explains whythe peak pressure position for rc = 8.13 in �gure 5.8 is advanced com-pared to rc = 14.66, and not the other way around which would be thecase if only heat transfer and crevice e�ects were present.5.5.2 Results and evaluation for OP2The performance of the estimation methods is �rst evaluated for op-erating point OP2, de�ned in table 5.6. This operating point has anintake manifold pressure in the midrange of the engine, and a relativelylow engine speed for which the e�ects of heat transfer and crevices aresigni�cant. OP2 is therefore chosen as a representable operating point.Estimation resultsThe estimation results are presented in the same manner as for thesimulated data. Figure 5.9 displays the mean estimate and the mean95 % con�dence interval for 250 consecutive cycles at OP2, where theestimate has been computed for each individual cycle. Table 5.5 showsmean computational time and mean number of iterations, as well as therelative mean error and mean 95 % relative con�dence interval. Twoexamples of residuals are given in �gures 5.10 and 5.11.Analysis of estimation resultsFigure 5.9 shows that method 3 underestimates and methods 1, 2 and4 overestimate the compression ratio. The spread of the estimates be-tween the methods is more pronounced than for the simulated data,
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Figure 5.9: Mean value and 95 % con�dence interval of the estimatedcompression ratio for motored cycles using the four methods, comparedto the actuated compression ratio. The estimate should be as close aspossible to the dotted horizontal line.compare �gures 5.9 and 5.3. This spread increases as the compressionratio becomes higher, a trend also found for the con�dence intervalsof the estimates. The interrelation among methods 1-3 are howeverthe same, where method 1 always yields the largest estimates, andmethod 3 the smallest. The trends and e�ects in the simulation evalu-ation are also present in the experimental investigation, which gives a�rst indication that the conclusions drawn from the simulation studyare valid.All methods have approximately the same con�dence intervals forthe experimental and simulated data, compare tables 5.5 and 5.2. Againmethod 4 yields the smallest con�dence intervals followed by method 2.The di�erence is most signi�cant for method 4, which had the correctmodel structure in the simulation case while here it is an approxima-tion of the real engine. This is also seen in the residual, �gure 5.11,as a systematic deviation around TDC. This model error thus adds to



5.5. EXPERIMENTAL RESULTS 107Method rc = 8.13 rc = 14.66 all rcvs. RME RCI RME RCI RME RCI std Time IterAct. [%] [%] [%] [%] [%] [%] [-] [ms] [-]1 6.0 2.9 5.2 6.1 6.4 5.3 0.11 89 30.22 5.1 2.6 2.7 3.7 3.6 3.8 0.083 5 3.73 -1.5 6.7 -6.1 5.8 -4.2 6.5 0.066 128 5.74 3.6 1.6 1.0 1.3 2.2 1.3 0.051 6.6 × 105 14.0Table 5.5: Relative mean error (RME) and mean 95 % relative con�-dence interval (RCI) of the estimated rc for extreme values rc = 8.13and rc = 14.66, and as a mean for all compression ratios for experi-mental data from OP2. They are computed relative to the actuatedcompression ratio. The standard deviation, mean computational timeand mean number of iterations in completing the estimation for oneengine cycle are also given.the variance of the estimate. It also changes the interrelation betweenmethods 1-3 and method 4, e.g. method 4 always gives a smaller esti-mate on experimental data than method 2, while the converse occurson the simulated data.The mean computational time and number of iterations are higherfor the experimental data, as shown in table 5.5. As for the simulations,method 2 is the most computationally e�cient method of them all.Residual analysisThe residuals corresponding to the cylinder pressures in �gure 5.8 aredisplayed for all four methods in �gure 5.10 for rc = 8.13 and in �g-ure 5.11 for rc = 14.66, together with their respective root mean squareerror (RMSE).As for the simulations, there is a systematic deviation for methods1, 2 and 3. This deviation increases with rc. The residuals for method 4have a comparatively small deviation near TDC. This small deviationillustrates that the model structure is acceptable but not perfect, sinceit is not able to fully capture the measurement data. This is mostevident for the higher compression ratio, rc = 14.66, in �gure 5.11. Therelative mean error for rc = 14.66 is however small, less than 0.8 %, andmethod 4 can therefore be considered to capture the data well. Theresiduals from the experimental data have a higher RMSE comparedto the simulations, but they are still of the same order. The di�erencesbetween the methods are due to di�erent formulations of the residualsand model simpli�cations. These properties give rise to the systematicdeviations that are visible in both simulated and experimental data.



108 CHAPTER 5. CR ESTIM � FOCUS ON MOTORED CYCLES
−100 0 100

−0.2

−0.1

0

0.1

0.2

M
1

: 
R

e
si

d
u

a
l [

b
a

r]
RMSE=0.108 bar

−100 0 100

−0.2

−0.1

0

0.1

0.2

M
2

: 
R

e
si

d
u

a
l [

b
a

r]

RMSE=0.107 bar

−100 0 100

−0.2

−0.1

0

0.1

0.2

M
3

: 
R

e
si

d
u

a
l [

b
a

r]

Crank angle [deg ATDC]

RMSE=0.045 bar

−100 0 100

−0.2

−0.1

0

0.1

0.2
M

4
: 

R
e

si
d

u
a

l [
b

a
r]

Crank angle [deg ATDC]

RMSE=0.038 bar

Figure 5.10: Di�erence between estimated and experimental cylinderpressure for all methods, given the motored cycle in �gure 5.8 at rc =
8.13.
5.5.3 Results and evaluation for all OPThe trends shown for OP2 are also present in the full data set, displayedin table 5.6. This table shows that as the intake manifold pressure
pman increases, the variance for all methods decreases. A high pman istherefore desirable. However, the in�uence of the engine speed has noclear trend as two of the methods yield higher variance and the othertwo lower variance, as the engine speed is increased. For all operatingpoints, method 4 yields the smallest con�dence intervals followed bymethod 2. Therefore the conclusions made in the simulation evaluationwith respect to models, residual formulation, methods, heat transferand crevice e�ects are the same for the experimental evaluation.
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Figure 5.11: Di�erence between estimated and experimental cylinderpressure for all methods, given the motored cycle in �gure 5.8 at rc =
14.66. OP1 OP2 OP3 OP4

N 1500 rpm 1500 rpm 3000 rpm 3000 rpm
pman 0.5 bar 1.0 bar 0.5 bar 1.0 barMethod RME RCI RME RCI RME RCI RME RCIvs. Act. [%] [%] [%] [%] [%] [%] [%] [%]1 10 6.2 6.4 5.3 8 7.5 3.6 5.92 6 4.6 3.6 3.8 1.3 5.2 -0.083 43 -2.3 8.2 -4.2 6.5 -3.9 7.3 -6.2 5.94 2.8 2.0 2.2 1.3 2.9 1.6 2.4 1.2Table 5.6: Relative mean error (RME) and mean 95 % relative con�-dence interval (RCI) in estimated rc, for four di�erent operating pointsde�ned by engine speed N and intake manifold pressure pman.



110 CHAPTER 5. CR ESTIM � FOCUS ON MOTORED CYCLESDiscussion on compression ratio diagnosisOne application that the proposed methods were developed for wascompression ratio diagnosis. The applicability of the methods will beillustrated by a short example. Consider the issue of diagnosing thecompression ratio. A possible fault mode is that the compression ra-tio gets stuck at a too high level, e.g. at rc = 12. A diagnostic testis then used to detect and alarm when rc gets stuck. This is real-ized by a hypothesis test, where the null hypothesis is formulated as
H0 : rc not stuck. This is illustrated by the following example whichuses the diagnosis framework presented in Nyberg (1999) and Nyberg(2001):Example 5.1 � Detecting rc stuck at 12Consider the task of detecting when the compression ratio gets stuck.Only two fault modes are consideredNF : r est

c ∈ [0.9r act
c , 1.1r act

c ]F : r est
c /∈ [0.9r act

c , 1.1r act
c ],

(5.22)i.e. an estimated r est
c within 10 percent of the actuated r act

c is consid-ered as no fault (NF). The hypothesis test is then formulated as
H0 : NF
H1 : F.

(5.23)The test quantity T is based on comparing the actuated r act
c and es-timated r est

c , according to
T = |r act

c − r est
c |. (5.24)Then if the controller e.g. actuates r act

c = 9 and rc is really stuck at12, the test should alarm with a certain level of con�dence. This isformalized by the power function β(r est
c ) here de�ned by

β(r est
c ) = P (reject H0|r est

c ) = P (T ≥ J |r est
c ), (5.25)where J is a threshold designed by the user. The signi�cance level ofthe test is de�ned by

α = max β(r est
c |r est

c ∈ NF), (5.26)which corresponds to the worst case of the false alarm probability. Tobe able to make the assumption that H1 is true if H0 is rejected,the threshold J must be set to obtain a su�ciently low false alarmprobability.Based on the estimates and con�dence intervals for method 2 usingthe experimental results at OP2 in table 5.5, the power function β is
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Figure 5.12: Power function β at OP2 for experimental data when rcis stuck at 12.computed and displayed in �gure 5.12. In the computations it is as-sumed that the true rc is stuck at 12 and that linear interpolation canbe used to �nd the estimates and con�dence intervals at compressionratios where no actual measurements have been performed. When de-signing a diagnosis system, there is generally a compromise between alow false alarm probability (FAP) and a low missed detection proba-bility (MDP), given by (D.6) and (D.7).The (adaptive) threshold is chosen as J = 0.15 r act
c , and �gure 5.12shows that this results in a signi�cance level of less than 0.2 %, which isassumed su�ciently low. In this case the false alarm probability comesto the cost of a low missed detection probability for r est

c close to butnot within the NF fault mode, r est
c ∈ [10.8, 13.2]. This is illustratedby the region r est

c ∈ [10.5, 10.8[ where MDP = 1 − β ≥ 0.5, i.e. theerror will not be detected in more than 50 % of the cases. But when
r est
c ≤ 10 the missed detection probability goes to zero, indicatingthat we will always detect if rc gets stuck if a proper excitation of theactuated compression ratio is made.



112 CHAPTER 5. CR ESTIM � FOCUS ON MOTORED CYCLESExample 5.1 illustrates the principle of how a diagnosis system canbe designed and analyzed using method 2 at operating point OP2. Thiscan be generalized to a diagnosis system for all operating points, andit is only a matter of design to �nd an appropriate threshold for allmethods. The diagnostic performance in terms of false alarm probabil-ity, missed detection probability and computational time are of courseexpected to become best for method 2.Therefore during driving, all methods are able to detect if the com-pression ratio is stuck at a too high or at a too low level, given anappropriate number of cycles and an appropriate excitation of rc. Thisis su�cient both for safety reasons, where the compression ratio canbe too high and engine knock is the consequence, and for fuel eco-nomic reasons, where a too low compression ratio will lead to higherfuel consumption.5.6 ConclusionsFour methods for compression ratio estimation based on cylinder pres-sure traces have been developed and evaluated for both simulated andexperimental cycles.Conclusions from the simulation resultsThe �rst three methods rely upon the assumption of a polytropic com-pression and expansion. It is shown that this is su�cient to get a roughestimate of the compression ratio rc for motored cycles, especially for alow rc and by letting the polytropic exponent become small. For a high
rc it is important to take the heat transfer into account, and then onlymethod 4 is accurate to within 0.5 % for all operating points. Method 4is however slow and not suitable for on-line implementation. Method 2on the other hand is substantially faster and still yields estimates thatare within 1.5 %. The formulation of the residual is also important,since it in�uences the estimated rc. For �red cycles, methods 1-3 yieldpoor estimates and therefore only method 4 is recommended.A sensitivity analysis, with respect to crank angle phasing, cylinderpressure bias, crevice volume, and heat transfer, shows that the thirdand fourth method are more robust. They therefore deal with theseparameter deviations better than methods 1 and 2. Of the latter two,method 2 has the best performance for all parameter deviations exceptfor an additive pressure bias.Conclusions from the experimental resultsAll methods yield approximately the same con�dence intervals for thesimulated and experimental data. The con�dence intervals resulting



5.6. CONCLUSIONS 113from method 4 are smallest of all methods, but it su�ers from a highcomputational time. Method 2 yields smaller con�dence intervals thanmethods 1 and 3, and is outstanding regarding convergence speed. Thee�ects and trends shown in the simulation evaluation are also presentin the experimental data. Therefore the conclusions made in the sim-ulation evaluation with respect to models, residuals, methods, heattransfer and crevice e�ects are the same for the experimental evalu-ation. For diagnostic purposes, all methods are able to detect if thecompression ratio is stuck at a too high or too low level.Concluding recommendationsThe accuracy of the compression ratio estimate is higher for motoredcycles with high initial pressures. Thus if it is possible to choose theinitial pressure, it should be as high as possible. Using motored cyclesassures that all pressure information available is utilized and the highinitial pressure improves the signal-to-noise ratio, while the e�ects ofheat transfer and crevice �ows remain the same.Two methods are recommended; If estimation accuracy has thehighest priority, and time is available, method 4 should be used. Method4 yields the smallest con�dence intervals of all investigated methods forboth simulated and experimental data. In the simulation case wherethe true value of the compression ratio is known, method 4 gave esti-mates with smallest bias. If computational time is the most importantproperty, method 2 is recommended. It is the most computationallye�cient of all investigated methods, and yields the smallest con�denceintervals out of methods 1-3.
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6Using prior knowledge forsingle-zone heat releaseanalysisInternal combustion engines operate by converting the chemical energyin the air-fuel mixture into useful work by raising the cylinder pressurethrough combustion. The cylinder pressure data itself is therefore are�ection of the combustion process, heat transfer, volume change etc.and thus gives important insight into the control and tuning of theengine. To accurately model and extract information from the cylinderpressure is important for the interpretation and validity of the result.Due to the short time scale of the process, a sequence of measurementsfrom an engine gives huge amounts of data. These large sets of datahave to be analyzed e�ciently, systematically, and with high accuracy.The objective here is therefore to develop a tool for e�cient, systematicand accurate o�-line heat release analysis of cylinder pressure data.Problem outlineThe focus is on a single-zone heat release model (Gatowski et al., 1984)that describes the cylinder pressure accurately and has a low compu-tational complexity. A low computational complexity is an importantfeature when analyzing large data sets. However, this model includesat most 16 unknown parameters, as shown in section 3.8, among whichthere are couplings causing identi�ability problems. This is due to thatthe estimation problem is on the verge of being over-parameterized. Anexample is the clearance volume and the crevice volume, which are hardto identify simultaneously. This is often solved by setting one of theseparameters to a constant �xed value. The correct value of the constant117



118 CHAPTER 6. USING PRIOR KNOWLEDGE FOR. . .parameter is however unknown, and is therefore most likely set with anerror. This error causes a bias in the other parameter estimates.Problem solutionTwo methods for parameter estimation are developed and compared.Method 1 is called SVD-based parameter reduction and is summarizedas:1. Estimate the parameter values and variances using a constrainedlocal optimizer.2. Find the most uncertain parameter, i.e. the one that has thehighest variance by using singular value decomposition (SVD) ofthe estimated hessian, for the given measured cylinder pressure.3. Set the uncertain parameter from step 2 constant using priorknowledge of the parameter and return to step 1.The uncertain parameters are set constant one-by-one in step 3, whichreduces the variance for the remaining (e�cient) parameters when nomodeling error is induced. A recommended number of e�cient pa-rameters is then found by minimizing the Akaike �nal prediction errorcriterion (Ljung, 1999). Step 3 is motivated by the following; The mostuncertain parameters generally drift o� from their nominal values. Thisnominal parameter deviation will cause a bias even in the most certainparameters. This motivates why the most certain parameter is not setconstant. However, if the most uncertain parameters are set �xed totheir nominal values, it is believed that this will reduce the bias in thee�cient parameters.The second method uses prior knowledge of all the parameters ex-plicitly in the optimization. The parameters x are estimated by mini-mizing the criterion function:
WN =

1

N

N∑

i=1

(p(θi) − p̂(θi, x))
2 + (x − x#)T δ (x− x#) (6.1)w.r.t. x, i.e. by minimizing the standard prediction error ε(θi, x) =

p(θi)− p̂(θi, x) using a regularization technique. Method 2 is thereforenamed regularization using prior knowledge. The �rst term in (6.1)minimizes the di�erence between the modeled p̂(θ, x) and measured
p(θ) cylinder pressure, while the second term pulls the parameters xtowards x#, i.e. towards the nominal values obtained from prior knowl-edge. The matrix δ and vector x# account for prior knowledge of theparameters, where δ in�uences how strong the pulling force should be.This can be interpreted as that all parameters are assigned a prior



6.1. OUTLINE 119probability density function (pdf), with a nominal mean value x#. Ifthe pdf is Gaussian, minimizing WN produces the maximum a posteri-ori estimate. For example, our prior knowledge of an additive pressureo�set (after pegging with the intake manifold pressure) could be thatthe parameter is Gaussian distributed with a nominal mean value of0 kPa, and a standard deviation of 2.5 kPa. It is however only the inter-group relation among the parameters, and not the absolute value of thestandard deviation that is important as will be shown later. The nom-inal vector x# is found from appropriate initial values and the size ofthe matrix δ is tuned using simulations to give a balanced compromisebetween the prior knowledge and the measured cylinder pressure.A fundamental problem is that the true values of the parameters areunknown in a real engine, which makes the evaluation of the two meth-ods on experimental data di�cult. This is mainly due to two reasons:First of all, the chosen model structure is bound to be incorrect sincenot every physical process in�uencing the measured cylinder pressureis modeled, which will cause inexact parameter values. Secondly thecriterion function can be small for a given data set, although the pa-rameter estimates are, due to physical reasons, bad. It is therefore notsu�cient to minimize the criterion function on validation data to evalu-ate the two proposed methods. To overcome these obstacles simulatedpressure traces, with well-known parameter values and a well-knownmodel structure, are used. In the simulations noise of the same orderas for the experimental data is added to the measurement signal. Themethods are evaluated on simulated data from motored and �red cy-cles with respect to estimation bias, variance and residual analysis usingboth false and correct prior knowledge. The results are also validatedon experimental data from an SI engine.6.1 OutlineThe outline of this chapter and the two following chapters is presentedhere. One cylinder pressure is described in section 6.2. It has been de-rived in chapters 2 and is summarized here for convenience. Then theproblem associated with this parameter estimation application is illus-trated in section 6.3 by two simple approaches, which are based purelyon either data �tting or parameter prior knowledge, and they are bothunsuccessful. Therefore two methods, referred to earlier in this chapteras method 1 and 2, that incorporate parameter prior knowledge in theestimation problem are proposed in section 6.4. These two methodsare then evaluated using simulated and experimental data in chapter 7for motored cycles, and in chapter 8 for �red cycles. The compiledconclusions from both evaluations are given in section 9.3. A methodof how to express the prior knowledge is also presented in general termsin section 6.4, and in chapters 7 and 8 for the speci�c cases.



120 CHAPTER 6. USING PRIOR KNOWLEDGE FOR. . .6.2 Cylinder pressure modelingOne single-zone models is used to describe the cylinder pressure traceand it is referred to as the standard model. Gatowski et al. (1984)develops, tests and applies a single-zone model for heat release analysis.See section 2.5 for the derivation and section 3.8 for details on theparameters and model components. The model is based on the �rstlaw of thermodynamics and maintain simplicity while still includingthe well known e�ects of heat transfer and crevice �ows.6.2.1 Standard modelThe most important thermodynamic property when calculating theheat release rates in engines is the ratio of speci�c heats, γ(T, p, λ) =
cp

cv
(Gatowski et al., 1984; Chun and Heywood, 1987; Guezennec andHamama, 1999). In the standard model γ is represented by a linearfunction in mean charge temperature T

γlin(T ) = γ300 + b(T − 300), (6.2)i.e. model B1 in chapter 4. The standard cylinder pressure model issimulated by using (3.36)�(3.45).6.2.2 Cylinder pressure parametersThe parameters used in the standard model and how to �nd its nominalvalues was given in chapter 3. In the standard model, two parameters(γ300 and b) are estimated for γ.6.3 Problem illustrationTo illustrate the di�culties associated with parameter estimation givena cylinder pressure trace, two simple but di�erent approaches are used.The �rst approach estimates all parameters in the standard cylinderpressure model simultaneously by applying a Levenberg-Marquardtmethod with constraints on the parameters, which is a local optimizerdescribed in appendix C.1. The constraints are physically motivatedand are set widely, in order to only in�uence whenever the parametervalues become physically invalid. Two examples of applied constraintsare a positive cylinder pressure at IVC, pIV C , and a mean charge tem-perature at IVC, TIV C , larger than 270 K. Without these constraintsthe approach yields e.g. a TIV C -estimate that typically is approximately200 K, i.e. a physically invalid value. The second approach tunes theparameters manually one at a time until a satisfactory pressure traceis found, an approach sometimes referred to as �heat release playing�.
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Figure 6.1: Filtered experimental �ring cycle and the modeled cylinderpressure for the two simple approaches. The residual for approach 1(dash-dotted) and approach 2 (dashed) are also given in both the upperand lower plot. The RMSE:s are 1.3 and 5.8 kPa respectively.This approach requires a lot of patience combined with prior knowl-edge of nominal values as well as expert knowledge of what in�uenceeach parameter has on the cylinder pressure, and also cross-couplingsin between the parameters.The results for both approaches are given in �gure 6.1, where themodeled and measured cylinder pressure traces are displayed, and intable 6.1 where the parameter estimates are given. In fairness of thesecond approach, it should be pointed out that less than an hour wasspent on tuning the parameters, thus the result could of course bebetter. It however illustrates how time-consuming this approach canbe. As shown in �gure 6.1 approach 1 has a good residual �t, but accord-ing to table 6.1 the parameter estimates are bad. The small residualin �gure 6.1 also illustrates that the model structure is �exible enoughto describe the cylinder pressure, but that the parameters are hard toidentify. The bad parameter estimates are exempli�ed by the temper-ature at IVC, TIV C , which is as low as 270 K and also the lower bound
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6.4. ESTIMATION METHODS 123chosen for this parameter, clearly a too low value. This is compen-sated for by having a higher mean cylinder wall temperature, Tw, anda smaller γ300. Without the constraints the estimation would render aneven smaller TIV C . Typically all temperatures drift o� to non-physicalvalues, independent of initial value, when estimating all parametersat the same time. This is of course unwanted and yields parameterestimates that are inaccurate and not physically valid. The same be-havior arise for estimation problems that are either rank-de�cient orill-posed. As an illustration, the behavior for a simple linear exampleof a rank-de�cient problem is given in appendix C.2.For the second approach it is the other way around compared tothe �rst approach. The second approach gives reasonable parametervalues, see table 6.1, but the residual �t is worse than for the �rstapproach as shown in the lower part of �gure 6.1. This approach cantherefore be said to give physically valid parameter estimates, but notin a time e�cient way. In addition the user's presumption also plays arole in the estimation and could result in a bias. The residual error ishowever small compared to the measured cylinder pressure, as shownin the upper part of the �gure. However none of these approachescomply very well with all our demands on the estimation procedure;e�cient, systematic and accurate. To enhance the performance of thesetwo approaches, their advantages are combined by using the systematicminimization of the residual from the �rst approach and the parameterguess approach based on expert and prior knowledge from the second.The idea for doing so is to use prior knowledge or information aboutthe parameters and use it in a central way to enhance the estimationprocedure.6.4 Estimation methodsTwo methods that use prior knowledge of the parameters are presented.They both estimate the parameters x by minimizing the di�erence be-tween the measured p(θi) and modeled cylinder pressure p̂(θi, x), i.e.by minimizing the prediction error ε(θi, x) = p(θi)− p̂(θi, x). As shownin �gure 6.1 the data is well described by a direct simulation of thestandard model in section 6.2.1. It is therefore reasonable to use directsimulation as a predictor, which corresponds to an output-error modelassumption.The �rst method uses the prior knowledge indirectly by reducing thenumber of parameters to estimate. This is done by setting those thatare hardest to estimate to �xed values, given by the prior knowledge.Method 1 is referred to as SVD-based parameter reduction. The sec-ond method includes the prior knowledge directly into the optimizationproblem. This is achieved by including a parameter deviation penalty



124 CHAPTER 6. USING PRIOR KNOWLEDGE FOR. . .term in the criterion function, that will help to regularize and therebycontrol and attract the estimates to the vicinity of the priorly givennominal values. This method is therefore called regularization usingprior knowledge.6.4.1 Method 1 � SVD-based parameter reductionThe �rst method starts by estimating all parameters x̂ by minimizing
VN =

1

N

N∑

i=1

(p(θi) − p̂(θi, x))
2 (6.3)w.r.t. x. This is done by using a Gauss-Newton method called theLevenberg-Marquardt procedure, see appendix C.1 for details. Thenumber of parameters to estimate are then reduced one by one by set-ting them �xed, starting with the most uncertain parameter. This ismotivated by the following; The most uncertain parameters generallydrift o� from their nominal values. This nominal parameter deviationwill cause a bias even in the most certain parameters, as illustrated for

γ300 in table 6.1 for approach 1 where all parameters were estimatedsimultaneously. Altogether, this motivates why the most certain pa-rameter is not set constant. However, if the most uncertain parametersare set �xed to their nominal values, it is believed that this will reducethe bias in the e�cient parameters.Method 1 �nds these uncertain (spurious) parameters by studyingthe SVD of the estimated hessian, which re�ects how much a certainparameter a�ects the loss function VN . When the most spurious pa-rameter is found, it is set constant and the estimation starts over againwith one parameter less to estimate. This systematic procedure of re-ducing the number of parameters was presented in (Eriksson, 1998) formotored cycles. A recommended number of parameters was then foundby using the condition number of the hessian. Here all parameter es-timates x̂ for any given number of parameters are compared, and theestimate minimizing the Akaike �nal prediction error (FPE) is the bestparameter estimate, x̂∗.E�cient and spurious parametersMethod 1 aims at handling the di�culties associated with the �rst sim-ple approach in section 6.3 that were due to an over-parameterizationof the problem. The over-parameterization causes the jacobian ψ tobecome ill-conditioned or rank de�cient. A rank de�cient jacobian canoccur if one or more columns of ψ are parallel or almost parallel. Here�almost� means in the order of the working precision of the computer.This case re�ects sets or combinations of parameters that do notin�uence the criterion function that much. According to (Sjöberg et al.,



6.4. ESTIMATION METHODS 1251995; Lindskog, 1996), the parameters can be divided into two sets:spurious and e�cient parameter sets, where the former corresponds toparameters with small in�uence on the criterion function value. Due tothis small in�uence on the criterion function, it is reasonable to treatthose parameters as constants that are not estimated. This parameterclassi�cation can be made in quite a number of ways, as shown inExample 6.1.Example 6.1 � Spurious and e�cient parametersConsider the static model with two parameters
y = (x1 + x2). (6.4)If x2 is set constant and thereby considered as spurious, then x1 isconsidered to be e�cient. The other way around works equally well,and does not a�ect the �exibility of the model structure.Eigenvector of hessian HN � �nding the spurious parametersLocally, the estimated hessian HN (x̂) gives insight into how sensitive

VN (x̂) is to a certain parameter or combination of parameters. To beable to estimate a certain parameter, that parameter has to have aclear e�ect on the output predictions (Ljung, 1999, p.453). This isre�ected in the hessian, which has large values for e�cient parame-ters. Therefore, it is of interest to �nd the group of parameters thatcorresponds to the smallest e�ect, i.e. the spurious parameters, andset these parameters to appropriate constant values. This is reason-able since the spurious parameters are the hardest to estimate with thegiven model M(x) and the observed data ZN . The observed data isde�ned as ZN = [y(θ1), u(θ1), y(θ2), u(θ2), . . . , y(θN ), u(θN )], given theinputs u(θ) and outputs y(θ).The spurious parameters are classi�ed by �nding the smallest sin-gular value of HN (x̂, ZN ), and from the corresponding eigenvector thegroup of parameters can be picked out. An algorithm for this is givenby algorithm 6.1. The algorithm assumes that the parameters thatin�uence this eigenvector of the hessian HN (x̂, ZN ) are the same forthe estimate x̂, as for the true solution xt. The use of the algorithm isillustrated in example 6.2.Algorithm 6.1 can include an optional preferred ordering of the pa-rameters, that is used in step 7. The ordering tells us which parameteris best known a priori, and which parameter we therefore prefer to set�xed �rst. This preferably applies to parameters that are similar intheir physical properties, such as two temperatures, which then can begrouped together and have a relative ordering. This ordering should be



126 CHAPTER 6. USING PRIOR KNOWLEDGE FOR. . .based on prior knowledge of the parameters, and could be the resultof a pre-estimation of the parameters, knowledge of the measurementsituation and sensor properties, or by expert knowledge. For example,the cylinder wall temperature Tw and the mean charge temperature atIVC, TIV C , can be ordered as B1 = [Tw TIV C ] if it is believed that Twis better known than TIV C . This means that if the two temperaturesend up in the same group of parameters in the eigenvector from thehessian and as long as TIV C is not totally dominating, Tw will be setconstant prior to TIV C .A special case for the preferred ordering groups, is when only one(large) group B1 containing all parameters is used. This case is sup-ported by the algorithm, but not recommended since it could result inthat one spurious parameter is exchanged for another although thereis no physical coupling in between them. As mentioned earlier, it ispreferable if the parameters in the same ordering group are similar intheir physical properties or coupled in the chosen model structure. Thisspeaks in favor of using multiple ordering groups. An example of thisare the parameters C1, Tw and TIV C which are coupled by the heattransfer model (3.43b) and the temperature model (3.40).It is assumed in the algorithm that a parameter only occurs in oneordering group Bi. In the algorithm there are two ad-hoc decisionrules, in step 4 and step 6 respectively. These are motivated after thealgorithm.Algorithm 6.1 � Determining the spurious parameter using a pre-ferred orderingLet x̂eff be estimated parameters from the local optimizer used for
d# e�cient parameters and xsp are the spurious parameters.1.Compute the estimated hessian HN (x̂, ZN ) (C.8), where x̂ =

(x̂eff xsp)T .2.Compute the singular values ς1 ≥ . . . ≥ ςd# ≥ 0 and the corre-sponding eigenvectors v1, . . . , vd# , by using singular value decom-position (SVD).3.The eigenvector vd# which corresponds to the smallest singularvalue ςd# , is chosen. Then the element in vd# that has the largestabsolute value is named ek and is picked out. This element corre-sponds to the most spurious parameter according to the data.4.If the element ek is dominating, the preferred ordering is overrid-den. This is realized as if the absolute value of the element ek is



6.4. ESTIMATION METHODS 127greater than 0.9, go to step 8.5.If no preferred ordering exists, go to step 8.6.Form a group A of elements from the eigenvector vd# correspond-ing to ςd# , by using the following strategy: Find the elements in
vd# that have absolute values greater than √

0.1. Sort these ele-ments in a descending order of their size in group A.7.Find the ordering group Bi to which ek belongs. The elementin Bi that has the highest ordering in Bi and at the same timebelongs to group A, is the new ek.8.Return the parameter xk that corresponds to element ek.Steps 1�3 in algorithm 6.1 are similar to the approach in principalcomponent analysis, but here a parameter is set �xed rather than adirection of the eigenvector.If one parameter dominates the eigenvector vd# substantially (ac-cording to the data), then this parameter is labeled spurious no matterwhat the preferred ordering, i.e. prior knowledge, says. This assuresthat the dominating parameter is not exchanged. This approach is im-plemented in step 4 such that a parameter is classi�ed as dominating ifits absolute value is greater than 0.9, which corresponds to more than81 percent of the total vector length of vd# .In step 6 another ad-hoc decision rule is used. It is based upon theassumption that if a parameter xk is to be exchanged for another xj ,they both have to have an in�uence on the eigenvector vd# . In step 6a parameter is classi�ed as in�uencing if its absolute value is greaterthan √
0.1, i.e. if it constitutes more than 10 percent of the total lengthof eigenvector vd# . This assures that a parameter is not exchanged forone that only constitutes a small part of vd# .The numerical values in steps 4 and 6 are ad-hoc choices, and cantherefore be adjusted according to the speci�c requirements of the user.Example 6.2 � Determining the spurious parameter using algorithm 6.1Consider an estimation problem where there are �ve unknown parame-ters x1, . . . , x5. The parameters are ordered relative to each other intoordering groups Bi. For this example they are given by B1 = [x1, x2]and B2 = [x3, x4, x5]. Algorithm 6.1 is used to �nd the most spuriousparameter in three di�erent cases, all having di�erent hessians. Fol-lowing the algorithm, �rst the estimated hessian is computed (step 1),



128 CHAPTER 6. USING PRIOR KNOWLEDGE FOR. . .and from this the singular values are found (step 2). The eigenvectorthat corresponds to the smallest singular value is v5 (step 3). Threedi�erent cases are now illustrated by using di�erent v5 vectors.a)The elements ek in Group Aa are found by
v5 =









0
1
0
0
0









⇒ Aa = {e2}using steps 3�4. The absolute value of this element is greater than0.9, and therefore x2 is returned by the algorithm using step 8.b)The elements ek in Group Ab are found by
v5 =









0
0.7
−0.7
0.14
0









⇒ Ab = {e2, e3}using steps 3�6. In step 7 no re-ordering of the elements occurssince the elements e2 and e3 belong to di�erent ordering groups
Bi, and therefore x2 is returned in step 8.c)The elements ek in Group Ac are found by

v5 =









−0.4
0.65
0.5
0.2
−0.2









⇒ Ac = {e2, e3, e1}using steps 3�6. In step 7 it is found that the largest element e2belongs to B1 as well as e1. The ordering tells us that e1 shouldbe picked out before e2, and thus x1 is returned in step 8.Note that without the preferred ordering Bi, all three cases would re-turn parameter x2.Loss function VN � �nding the number of e�cient parametersThe value of the estimated loss function VN (x̂, ZN ) serves not onlyas a measure of the model �t to the measured output, but also asa test quantity for over-parameterization. By increasing the number



6.4. ESTIMATION METHODS 129of parameters, and thereby the �exibility of a model, more and morefeatures in the measured output data can be explained by the model,and thereby decreasing the value of the loss function. It is thereforereasonable that the loss function is a monotonically decreasing functionof the number of model parameters. But by adding more and eventuallyunnecessary parameters, the parameters adjust themselves to featuresin the particular noise realization, and will in fact decrease the lossfunction even more. This is known as over-�t (Ljung, 1999, p.501),and is unwanted since the noise realization is bound to change.To be able to compare model structures with di�erent numbers ofe�cient parameters in a fair way, the Akaike's Final Prediction Er-ror (FPE) Criterion (Akaike, 1969) is used. In the derivation of theAkaike FPE it is assumed that the true system can be described by ourmodel M(x), and that the parameters are identi�able such that thehessian is invertible. The expectation value of the loss function VN isthen found to be (Ljung, 1999, pp.503):
EVN (x̂) ≈ VN (x̂, ZN ) + λ0

2d

N
, (6.5)where λ0 is the noise variance (compare (C.18b)), N is the number ofsamples and d is the number of parameters for model M(x). The moreparameters the model structure uses, the smaller the �rst term willbe. Each new parameter contributes with a variance penalty of 2λ0/N ,which is re�ected by the second term. Any parameter that improvesthe �t of VN with less than 2λ0/N will thus be harmful, and introducean over-�t. Such a parameter is termed spurious.From equation (6.5) and an estimate of λ0 (C.18b), the Akaike FPE

V FPE
N (x̂, d) is stated as (Ljung, 1999, pp.503)

EVN (x̂) ≈ 1 + d
N

1 − d
N

VN (x̂, ZN ) =: V FPE
N (x̂, d). (6.6)The equation shows how the loss function VN (x̂) should be modi�ed togive a fair measure of the number of model parameters.Algorithm � Method 1We are now ready to formulate the algorithm.Algorithm 6.2 � SVD-based parameter reductionLet xinit be the initial values for the parameters x ∈ R

d×1. The pa-rameter vector is partitioned as x =
[
xeffxsp

]T , where xeff ∈ R
d

#×1are the e�cient parameters and xsp ∈ R
(d−d

#)×1 are the spurious pa-rameters. The maximum and minimum number of e�cient parametersare given by d#
max and d#

min respectively, related by 1 ≤ d#
min ≤ d#

max ≤
d.



130 CHAPTER 6. USING PRIOR KNOWLEDGE FOR. . .1.Initialization: Set the best parameter estimate x̂∗ = xinit and thenumber of e�cient parameters d# = d#
max.2.Use the Levenberg-Marquardt procedure (C.11) to estimate thee�cient parameters x̂eff in x̂ =

[
x̂effxsp

]T . The vector xinit isused as initial values for xeff and �xed values for xsp.3.If there are more than d#
min e�cient parameters left, i.e. d# >

d#
min, compute the most spurious parameter xsp

new out of xeff us-ing Algorithm 6.1. Then move xsp
new from xeff to xsp and reducethe number of e�cient parameters by one, i.e. d# = d# − 1. Re-turn to step 2.4.Compute the Akaike FPE V FPE

N (x̂eff , d#) from (6.6) for all d#.Find the number of e�cient parameters d∗ that minimizes
V FPE

N (x̂eff , d#). The best estimate is then given by
x̂∗ = x̂eff (d∗).5.Return the best parameter estimate x̂∗.The algorithm can be made more computationally e�cient, either byreducing the maximum number of e�cient parameters d#

max in step 1,i.e. by making more parameters spurious from the start, or by increasingthe minimum number of e�cient parameters d#
min for the criteria instep 4. Both these simpli�cations of course rely upon some kind ofprior knowledge. Another improvement in computation time can beachieved if several parameters are made spurious at the same time instep 4. A test for this is to consider only parameters for which theratio ς21/ς

2
i is larger than the machine precision. If d#

max < d, i.e.the maximum number of e�cient parameters are less than the numberof parameters, the initial partitioning of the parameter vector x intoe�cient and spurious parameters has to be done by the user. For thesake of completeness, the number of e�cient parameters in chapters 7and 8 are set to d#
min = 1 and d#

max = d.6.4.2 Method 2 � Regularization using prior knowl-edgeThe second method uses prior knowledge of the parameters explicitly inthe optimization. The drive for this is to regularize the solution of theestimation problem, and this is done by including a parameter penaltyterm in the loss function.



6.4. ESTIMATION METHODS 131Regularization through prior knowledge of the parametersAs mentioned earlier, a regularization technique can be used to avoidan ill-conditioned jacobian ψ and thereby avoiding a singular or almostsingular hessian HN . In the Levenberg-Marquardt procedure, this wasdone by adding ν > 0 to (C.10) and thereby a positive de�nite HN isguaranteed. A regularizing e�ect is also imposed by adding a penaltyterm to the criterion function VN (x, ZN ) (C.2) resulting in
WN (x, x#, ZN , δ) = 1

N

∑N
i=1

1
2 ε

2(θi, x) + (x− x#)T δ(x− x#)

= VN (x, ZN ) + δx V
δ
N (x, x#, δ). (6.7)It di�ers from the basic criterion VN by also penalizing the squared dis-tance between x and x#, where x# are the nominal parameter values.It is divided into two terms, where VN corresponds to the residual er-ror introduced by the measurement and V δ

N corresponds to the nominalparameter deviation. The scalar term δx is named regularization factorand will be returned to later. The main reason for using this criterionis: If the model parameterization contains many parameters, it maynot be possible to estimate several of them accurately. There are thenadvantages in pulling the parameters towards a �xed point x# (Ljung,1999, pp.221). This de�nitively applies to an ill-posed problem. Thepenalty term V δ
N in (6.7) will e�ect the parameters with the smallestin�uence on VN , i.e. the spurious ones, the most. This forces the spuri-ous parameters to the vicinity of x#. The regularization matrix δ canbe seen as a tuning knob for the number of e�cient parameters. Alarge δ simply means that the number of e�cient parameters d# be-comes smaller and that more parameters are locked to the vicinity of

x#. It can also be seen as the weighted compromise between residualerror ε and nominal parameter deviation ε#x = x− x#. A large δ thuscorresponds to a large con�dence in the nominal parameter values.The impact of the prior on the �nal estimate will now be illustratedin the following example.Example 6.3 � Impact of prior x# and δ on �nal estimate xAgain, consider the static model
y = (x1 + x2), (6.8)which formed the base for example 6.1. Here, x1 = x2 = 1 are the truevalues of the parameters, the nominal values are given by x#

1 and x#
2respectively, the measurement is y and the regularization matrix δ isgiven by δ = diag(δ1, δ2). The residual ε is then formed as

ε(x) = y − ŷ(x) = y − (x1 + x2). (6.9)



132 CHAPTER 6. USING PRIOR KNOWLEDGE FOR. . .The criterion function WN (x, x#, ZN , δ) (6.7) is thereby given as
WN (x, x#, ZN , δ) = (y − x1 − x2)

2 + (x− x#)T δ(x− x#). (6.10)It is minimized analytically by di�erentiating WN partially w.r.t. eachparameter and setting the partial derivative to zero, resulting in thefollowing set of equations
(1 + 2δ1)x1 + x2 = y + 2δ1x

#
1 , (6.11a)

x1 + (1 + 2δ2)x2 = y + 2δ2x
#
2 . (6.11b)There are two solutions of (6.11), one for δ = 0 and the other for δ 6= 0.For the δ = 0 case, which corresponds to no prior knowledge of theparameters, the solution is given by

x1 + x2 = y, (6.12)i.e. a parameterized solution which has an in�nite number of solutions.For δ 6= 0, the solution is given by
x1 = δ2

y − (x#
1 + x#

2 )

δ1 + δ2 + δ1δ2
+ x#

1 , (6.13a)
x2 = δ1

y − (x#
1 + x#

2 )

δ1 + δ2 + δ1δ2
+ x#

2 . (6.13b)In the special case when the measurement y is fully captured by themodel (6.12) and the prior parameter values x#
i , i.e. if y = x#

1 + x#
2 ,then the estimates xi are given by the nominal values x#

i . However,when the prior does not exactly match the measurement, i.e. when
y 6= x#

1 + x#
2 , the estimates xi are biased from their nominal values.Equation 6.13 illustrates that δ can be seen as a tuning knob; thelarger the components δi are, the more the estimates xi are drawn tothe nominal values x#

i . In the case when δ1 � δ2, x1 is more attractedto x#
1 than x2 is to x#

2 .Minimizing the criterion function WNThe regularizing e�ect imposed by the penalty term in WN (6.7) re-quires that the optimization search method is reformulated. The ex-pressions for the gradient and the hessian of WN (6.7) are thereforegiven here. For comparison, references to the derivation of a local op-timizer without regularization (appendix C.1) are given. The gradient
VN (x, ZN )′ (C.4) and the hessian approximation HN (C.8) for suchan optimizer have to be rewritten when the parameter penalty termin (6.7) is included. It is here assumed that there are no cross-couplings



6.4. ESTIMATION METHODS 133between the parameter prior knowledge, i.e. the regularization matrix
δ is assumed to be diagonal. The gradient is then written as

W ′
N (x, x#, ZN , δ) = 1

N

∑N
t=1 ψ(t, x)ε(t, x) + 2δ(x− x#)

= V ′
N (x, ZN ) + 2δ(x− x#),

(6.14)where as before the jacobian vector ψ(t, x) = d
dxε(t, x) is given by (C.5).The hessian W ′′

N (x, ZN , δ) is then computed as
W ′′

N (x, ZN , δ) = V ′′
N (x, ZN ) + 2δ

≈ HN (x, ZN ) + 2δ = Hδ
N (x, ZN , δ),

(6.15)and its approximation is given by Hδ
N (x, ZN , δ) = HN (x, ZN ) + 2δ.The estimate x̂ is found numerically by updating the estimate of theminimizing point x̂i iteratively as

x̂i+1(x#, ZN , δ)

= x̂i(x#, ZN , δ) − µi
N [Hδ,i

N (x̂i, ZN , δ)]−1W ′
N (x̂i, x#, ZN , δ)

= x̂i(x#, ZN , δ) + di(x̂i, x#, ZN , δ), (6.16)where i is the ith iterate, in which di is the search direction and Hδ,i
Nis the approximate hessian in (6.15).Prior distribution of parametersBoth x# and δ in (6.7) can represent prior knowledge of the parame-ters. If a gaussian probability distribution can be assigned as a priorprobability density function (pdf) to the parameters x with mean x#and covariance matrix 1

2Nδ , the maximum a posteriori estimation ismade when the noise is gaussian distributed with zero mean (Ljung,1999, pp.221). However, since no restrictions are made considering thescaling of the two terms VN and V δ
N , they can di�er quite substantiallyin size and can therefore be hard to compare in a fair way. This issolved by introducing a regularization factor δx in the regularizationmatrix δ according to

δ = δx diag(δi), i = 1, . . . , d, (6.17)where δi are called regularization elements. The factor δx is then usedas a tuning knob to �nd a good compromise between residual error εand nominal parameter deviation ε#x . In (6.17) no cross-terms in thecovariance matrix are considered. The methodology could however beextended to cover the case of non-zero cross-terms, with slight modi-�cations of the expressions in (6.14), (6.15) and (6.17) by exchangingthe diagonal matrix δ for a symmetric positive semi-de�nite matrix δ.



134 CHAPTER 6. USING PRIOR KNOWLEDGE FOR. . .The diagonal elements δi in δ are given by
δi =

1

2Nσ 2
i

, (6.18)where σi is the standard deviation for parameter xi and it is assumedthat there are no cross-terms in the covariance matrix. From hereonthe nominal value x# and the regularization elements δi are referred toas the prior knowledge, and the tuning parameter δx is referred to asthe regularization parameter.How to determine the regularization parameter δx?The best way to determine δx would be to �nd the δx that minimizesthe size of the true parameter error, εt
x = x − xt. However the trueparameter values xt are only available in simulations, and this approachis therefore not applicable for experimental data. It can however beused for evaluation of simulated data.A systematic method for �nding δx that gives a good compromisebetween the measures VN and V δ

N is therefore sought. In order to �ndan unequivocal δx, it is important that VN and V δ
N are monotonic. Thetwo measures VN and V δ

N are directly related to ε and ε#x according toRMSE(ε) =

√

1

2
VN (6.19a)RMSE(Lδ ε#x ) =

√

1

d
V δ

N (6.19b)where Lδ = diag(δi)
1/2 and d is the number of parameters. The twomeasures in (6.19) are also monotonic whenever VN and V δ

N are.Figure 6.2 shows an example of the dependence between RMSE(ε)and RMSE(Lδ ε#x ). For large values of δx, the regularized estimates
xδ are pulled towards the nominal values x#, i.e. a small RMSE(Lδ

ε#x ). The matrix Lδ serves as a weighting function and determines howstrong the pulling force is for the individual parameters. The form onwhich the prior is given is therefore important for the shape of theresulting curve. The notation xδ is used for the estimate x̂(δ) fromhereon. For small values of δx, the pulling force is small and the esti-mates are no longer suppressed by the prior and therefore free to adjustto the measurement data. This results in an RMSE(ε) that is approx-imately the same as the noise level. These two cases are the extremesconcerning con�dence in the prior knowledge and measurement datarespectively.For moderate δx in between the two extremes, there is a sharptransition where the residual error ε falls while the nominal parame-ter deviation x# remains basically constant. Due to that the upper
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Figure 6.2: Example of a L-curve. The dashed-dotted lines correspondto the noise level and parameter deviation xt − x# used in the simula-tion.part of the graph resembles the letter �L�, the curve is called an L-curve (Hansen and O'Leary, 1993). The noise level and the parameterdeviation x# −xt are known in simulations, and are therefore includedin �gure 6.2 as dashed lines. The cross-over point of these two linesis close to the corner of the L. It is therefore natural to expect thatthe corresponding δx is a good compromise between data �tting andpenalizing the parameter deviation (Engl et al., 1996).Note that the L-curve is computed in a set of discrete points thatcan be connected by e.g. a cubic spline. Typically there is a widerange of δx:s corresponding to the points on the L-curve near its cor-ner. Therefore, the location of the corner should be found by somenumerical optimization routine, and not by visual inspection (Hansenand O'Leary, 1993; Engl et al., 1996), especially if one wants to autom-atize the search procedure.



136 CHAPTER 6. USING PRIOR KNOWLEDGE FOR. . .Routines for determining δxThree optimization routines for determining δx are presented here:1. Millers a priori choice rule for δx (Miller, 1970). Consider com-puting an estimate x̂ for which
RMSE(ε(x̂, x#, δ, ZN)) ≤ mε, (6.20a)

RMSE(Lδ ε#x (x̂, x#, δ, ZN)) ≤ mδ. (6.20b)Then Miller showed that
δx =

mδ

mε
(6.21)yields a regularized estimate xδ such that RMSE(ε(xδ, x#, δ, ZN))

≤
√

2mε and RMSE(Lδ ε#x (xδ, x#, δ, ZN)) ≤
√

2mδ. The resultis valid for linear systems. Then if mε and mδ are good estimatesof RMSE(η) and RMSE(Lδ ε#x ) respectively, the regularizationparameter δx from (6.21) yields a solution close to the L-curve'scorner (Hansen, 1998).2. Morozovs discrepancy principle (Morozov, 1984). The regulariza-tion parameter δx is the solution to the problem
RMSE(ε(x, x#, δ, ZN)) = aεRMSE(η), (6.22)where η is the noise level and aε ≥ 1 is a constant chosen by theuser. Typically this routine overestimates δx (Hansen, 1994), andtherefore gives a solution which is regularized to hard.3. Maximum curvature of Hansen's L-curve (Hansen and O'Leary,1993). The curvature τ is de�ned as

τ(δx) =
ψ′′

ε (δx)ψ′
δ(δx) − ψ′

ε(δx)ψ′′
δ (δx)

(

ψ′
ε(δx)2 + ψ′

δ(δx)2
)3/2

, (6.23a)
ψε(δx) = log||ε(x, x#, δ, ZN)||2, (6.23b)

ψδ(δx) = log||Lδε#x (x, x#, δ, ZN)||2. (6.23c)The L-curve is approximated by a 2D spline curve given the set ofdiscrete points for which it is computed, and from which δx cor-responding to the point of maximum curvature τ is determined.The �rst two routines require knowledge of the noise level η, while thethird does not. The latter is thus categorized as error-free in Engl et al.(1996).If the noise level is changed and an approximative value for thenew δx is sought for routines 1 and 2, the following example gives anapproximation if the new noise level is known.



6.4. ESTIMATION METHODS 137Example 6.4 � Impact of measurement noise on regularization param-eter δxThe objective is to keep the ratio between the residual loss function
VN and the prior loss function V δ

N constant. Assume that measure-ment noise is white and described by ε1(t) and that this results in theresidual loss function VN (ε1) and the prior (or nominal parameter) lossfunction V δ
N (ε1). Now assume a second noise realization such that itcan be described by ε2(t) = aε1(t), i.e. the �rst one is multiplied by afactor a. This means that the standard deviation σ is increased by afactor a and yields a residual loss function VN (ε2)

VN (ε2) =
1

N

N∑

i=1

(a ε i
1 )2 = a2VN (ε1). (6.24)Keeping the ratio between VN (ε2) and V δ

N (ε2) constant results in
VN (ε1)

V δ
N (ε1)

=
VN (ε2)

V δ
N (ε2)

=
a2VN (ε1)

V δ
N (ε2)

⇒ V δ
N (ε2) = a2V δ

N (ε1) (6.25)which is realized by setting the prior factor δx(ε2) = a2δx(ε1). Thus ifthe standard deviation of the measurement noise is increased by a factor
a, the prior factor δx should be increased by a2 as a �rst approximation.This is natural since the regularization parameter δx is related to thevariance through (6.17)�(6.18).Special case: Equal δiIn the special case when all elements δi are equal, the matrix Lδ =
diag(δi)

1/2 is given by the identity matrix times a constant. This as-sures that RMSE(ε#x ) is monotonic whenever V δ
N is, and thus the mea-sure RMSE(ε#x ) can be used in the L-curve plots instead of RMSE(Lδε#x ).The advantage is that RMSE(ε#x ) corresponds directly to the nominalparameter deviation. This will be used in chapters 7 and 8 wheneverall δi:s are equal.Algorithms � Method 2Algorithms for three versions of method 2 are now given. They di�erin how they �nd the regularization parameter δx based on the threeoptimization routines described earlier, and are labeled M2:1, M2:2 andM2:3 respectively. In all cases when the criterion function WN (6.7) isminimized, the initial values xinit are given by the nominal values x#.



138 CHAPTER 6. USING PRIOR KNOWLEDGE FOR. . .Algorithm 6.3 � Millers a priori choice rule (M2:1)1.Assign a prior x#
i and δi to each of the parameters x ∈ R

d×1.The regularization matrix is then formed as δ = δx diag(δi).2.Compute boundariesmε andmδ in (6.20), that give δx from (6.21).3.Minimize WN (6.7) w.r.t. x using δx from step 2.4.Return the estimate xδ,∗.Algorithm 6.4 requires an investigation for �nding the search regionfor δx in which the corner is always included. This region is denoted
∆x, and it only needs to be computed once for each application.Algorithm 6.4 � Morozovs discrepancy principle (M2:2)1.Assign a prior x#

i and δi to each of the parameters x ∈ R
d×1.The regularization matrix is then formed as δ = δx diag(δi).2.Assign the parameter aε (6.22) a numerical value slightly largerthan 1.3.Compute the RMSE(η) by minimizing the criterion function WN(6.7) with δx = 0.4.Minimize the criterion function WN (6.7) for the discrete points

δx ∈ ∆x, equally spaced in a logarithmic scale.5.Find the δx for which (6.22) is ful�lled, by using a cubic splineinterpolation.6.Minimize WN (6.7) w.r.t. x using δx from step 5.7.Return the estimate xδ,∗.



6.4. ESTIMATION METHODS 139A quicker version of algorithm 6.4 is to reuse an estimation of the noiselevel made earlier in step 3. Another alternative to make the algorithmfaster is to start with the lowest value of δx in step 4 and computefor as long as RMSE(ε(δx)) ≤ aεRMSE(η). A third alternative is touse nearest neighbor interpolation in step 5, in which step 6 becomesobsolete. This is an option worth to consider if relatively many discretepoints are used in ∆x. This will be further investigated in chapters 7and 8.Algorithm 6.5 also requires an investigation for �nding the searchregion ∆x for δx in which the corner is always included.Algorithm 6.5 � Hansen's L-curve (M2:3)1.Assign a prior x#
i and δi to each of the parameters x ∈ R

d×1.The regularization matrix is then formed as δ = δx diag(δi).2.Minimize the criterion function WN (6.7) for the discrete points
δx ∈ ∆x, equally spaced in a logarithmic scale.3.Find the δx for which (6.22) is ful�lled, by using a cubic splineinterpolation.4.Minimize WN (6.7) w.r.t. x using δx from step 3.5.Return the estimate xδ,∗.An alternative is to use nearest neighbor interpolation in step 3, inwhich step 4 becomes obsolete. This is an option worth to consider ifrelatively many discrete points are used in ∆x. This will be furtherinvestigated in chapters 7 and 8.Note that in step 1 for all versions of method 2, the parameters

x ∈ R
d×1 could be assigned a Gaussian distributed prior, as xi ∈

N(x#
i , σi). The matrix δ is then formed as δ = δx diag(δi), where δi isgiven by (6.18). As mentioned earlier, this results in the maximum aposteriori estimate.6.4.3 How to determine the prior knowledge?The prior knowledge is used for more reasons than to give the bestparameter estimates. It should primarily be used to re�ect the insightand knowledge the user has of the system at hand, and to give physicallyreasonable parameter values.



140 CHAPTER 6. USING PRIOR KNOWLEDGE FOR. . .Nominal parameter values x#The nominal prior parameter values x# can be determined in at leastthree alternative ways:1. By using the parameter initialization methods described in chap-ter 3 for every parameter xi.2. By using expert prior knowledge of what the numerical value of
x# should be.3. A combination of alternative 1 and 2.Depending on the validity of the prior for parameter xi, it has to beupdated at certain events. For the cylinder pressure models describedin section 6.2 this can be exempli�ed by the following; Consider the twoparameters: pressure sensor o�set ∆p and clearance volume Vc. Theformer is assumed to be constant during one engine cycle accordingto section 3.1, and therefore has to be updated for every engine cycle.On the other hand, in section 3.2 the latter parameter is assumed tobe engine dependent. It therefore only needs to be updated once adi�erent engine is used.Regularization elements δiThe element δi in the regularization matrix δ re�ects the uncertainty ofthe nominal parameter value xi and is related to the standard deviation

σi of the prior pdf, as pointed out earlier. As for x# there are threecorresponding alternatives to determine δi. If the �rst alternative isused, the standard deviation of x#
i is computed directly from the pa-rameter initializations given in chapter 3. This value does however notre�ect how uncertain the model approximation is when computing x#

i .If the nominal value x# is unsure, δi should be chosen small to give alarge parameter �exibility and a small penalty on the criterion func-tion WN (6.7). On the other hand when x#
j is determined with a highcon�dence, this should be re�ected in large value of δj (compared to

δi). This corresponds to penalizing |xj − x#
j | harder in WN (6.7), andthereby exercising a strong pulling force on xj towards x#

j . The param-eter uncertainty is generally di�erent for the individual parameters inthe case of cylinder pressure modeling. In this case it is therefore moresuitable to base δi upon the second alternative, i.e. expert knowledgeof the uncertainty.Also, from (6.17) it can be concluded that it is only the relativeintergroup size of δi that is relevant, since the regularization parameter
δx compensates for contingent scalings. It is therefore not vital for theperformance of method 2 that the best value in a εt

x-sense for δi is used,as long as the relative size to the other parameters stands. This also



6.4. ESTIMATION METHODS 141speaks in favor for the second alternative. It also suggests that otherprobability density functions can be assigned to the parameters, as longas they are of the same kind.Note that only the nominal value, and not the uncertainty of x#
ithat is related to δi, is used in method 1. The prior values x# and δare determined for each speci�c application, and this issue is thereforereturned to in chapters 7 and 8.6.4.4 Summarizing comparison of methods 1 and 2Both methods use prior knowledge of the parameters in the estimationproblem, but they di�er in how they use it. Method 1 only uses thenominal value x# indirectly when setting the spurious parameters �xed,while method 2 is more �exible and uses both the nominal value x#and the parameter uncertainty δ directly in the criterion function toregularize the solution. If the prior knowledge in method 2 is Gaussiandistributed, the estimation method yields the maximum a posterioriestimate (Ljung, 1999, pp.221).
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7Results and evaluation formotored cycles
Method 1 and method 2 described in section 6.4 will now be evaluatedfor motored cylinder pressure data. The evaluation covers both simu-lated and experimental data. As mentioned earlier in chapter 6 this isdue to that the true value of the parameters are unknown in the exper-imental data. The experimental data is collected on a turbo-charged2.0L SAAB engine, whose engine geometry is given in appendix C.4.In this and the following chapter, it is worth noting that all numer-ical calculations have been made for normalized values of the param-eters, while the individual parameter values that are given in tablesare not normalized if not explicitly stated. The purpose of the nor-malization is to yield parameters that are in the order of 1, and thenormalization is described in appendix C.1.7.1 Simulation results � motored cyclesFirst the simulated engine data will be described, followed by a discus-sion on the parameter prior knowledge used. The focus is then turnedto evaluating the performance of method 1, followed by method 2.7.1.1 Simulated engine dataCylinder pressure traces were generated by simulating the standardmodel from section 6.2.1 with representative single-zone parameters,given in appendix C.5. Eight operating points were selected with143
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Figure 7.1: Simulated cylinder pressures for the di�erent operatingpoints OP1�8.engine speeds N ∈ {1500, 3000} rpm, mean charge temperatures atIVC TIV C ∈ {310, 370} K and cylinder pressures at IVC pIV C ∈
{50, 100} kPa, where table C.3 de�nes the individual operating points.For each operating point a cylinder pressure trace was simulated andten realizations of Gaussian noise with zero mean and standard devi-ation 3.8 kPa were added, forming altogether 80 motored cycles. Thechosen noise level is the same as the one used in chapter 5, and thusre�ects the level seen in experimental data. The data was sampled witha resolution of 1 crank-angle degree (CAD). In �gure 7.1, one motoredcycle is shown for each operating point. The cylinder pressures corre-sponding to OP1 and OP8 di�er the most, and will therefore be thetwo extremes in the investigation.7.1.2 Parameter prior knowledgeThe simulations are evaluated using simulated pressure traces withknown parameter values and a known model structure. To resemblethe experimental situation, both a false and a correct prior knowledgeof the nominal parameter values x# will be used. For method 1, apreferred ordering of the parameters can be assigned and this will bedone later in section 7.1.3. For method 2, the regularization elements
δi needs to be assigned. In the simulations a gaussian distributed prior
x ∈ N(x#, σ) is assumed, where δi are given by (6.18), i.e. as

δi =
1

2Nσ 2
i

. (7.1)When (7.1) was stated it was assumed that there are no cross-terms inthe covariance matrix.



7.1. SIMULATION RESULTS � MOTORED CYCLES 145Two di�erent setups of nominal parameters x# will be used, andfor each of these setups two cases of regularization elements δi will beinvestigated for method 2.Two cases (of δi)In the �rst case, the standard deviation σi for each parameter xi ischosen as σi = 0.01 xt
i. This choice is made for two reasons; As men-tioned earlier the absolute value of δi is not interesting in itself, ratherit is the relative size of δi compared to δj that is. This was due to theregularization parameter δx. By choosing the same δi for all parame-ters, this allows for a direct measure of the nominal and true parameterdeviations, ε#x and εt

x respectively, in the plots of an L-curve. Secondly,since each parameter is assigned the same parameter uncertainty, thisresults in a parameter guiding of the estimates towards the nominalvalues but it does not give any joint ordering of the parameters. Thiscase can therefore be seen as the �rst and simplest approach. It willfrom hereon also be referred to as δi = c, where c is a constant.In the second case the regularization elements are determined byour prior knowledge of the parameter uncertainty, and it illustrates theapplication of the methods to an experimental situation. It can beseen as the more advanced case of the two, and typically yields regu-larization elements that are not the same. This case is referred to as
δi 6= c. For this particular application the standard deviation σi foreach parameter are given in table 7.1. These values are not veri�edexperimentally, they are merely chosen since they are physically rea-sonable. To illustrate the principle of how the uncertainties are set,consider that the nominal value for the crevice volume Vcr is 1 cm3which is approximately 1.5 percent of the clearance volume Vc. Ac-cording to section 3.4 a reasonable region for Vcr is [1, 2] %Vc. Nowif the standard deviation for Vcr is chosen as σi = 0.15 cm3, this cor-responds to that 95 percent of the values belongs to that region. Thetwo parameters ∆p and ∆θ are set to their expected uncertainty, andresults in relative mean errors (RME) that are 50 %.Two setups (of x#)The �rst setup uses an equal relative parameter deviation. These nom-inal parameter deviations from the true parameter values, i.e. ε#−t

x =
x# − xt, are chosen to be {0, 1, 2.5, 5} %xt. This will from hereon bereferred to as the false prior (FP) at the speci�ed level. This setup ischosen in order to investigate what in�uence the prior knowledge hason the individual parameters.The second setup is based upon a relative parameter deviation di-rectly related to the relative uncertainty for each parameter. This is
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xi Vc C1 TIV C pIV C γ300 bUnit [cm3] [-] [K] [kPa] [-] [K−1]
σi 0.5 0.114 10 2.5 0.005 1 · 10−5RME [%] 0.9 5.0 2.7 5.0 0.4 10.0
xi Tw Vcr ∆p ∆θ KpUnit [K] [cm3] [kPa] [deg] [-]
σi 10 0.15 2.5 0.05 0.005RME [%] 2.5 15.0 50.0 50.0 0.5Table 7.1: Assigned standard deviation σi of the model parameters xiused for second case of δi:s. The relative mean error (RME) corre-sponding to one standard deviation from the true value (for OP1) isalso given.implemented as a nominal parameter deviation from the true values ofone standard deviation of the prior knowledge, i.e. x#

i = (1 + σi)x
t,where the individual standard deviations σi are given in table 7.1.7.1.3 Method 1� Results and evaluationFirst method 1 is evaluated for setup 1 using no preferred orderingof the parameters, i.e. the algorithms rely fully upon the measureddata and include no prior knowledge of the parameters. Secondly, apreferred ordering is introduced and it is investigated how this e�ectsthe estimation problem.The evaluation starts by determining in which order the parametersare set �xed. Then the minimizing number of e�cient parameters usingAkaike's FPE is given, followed by a recommendation of how manyparameters to estimate. After that an investigation of the estimationaccuracy is performed, followed by a residual analysis.Evaluation without a preferred ordering � setup 1First of all, the order in which the parameters are set �xed for setup 1when using algorithm 6.2 without a preferred ordering is investigated.This corresponds to keeping track of the spurious parameters xsp

new instep 3. In this case all parameters need to be included, and thereforethe maximum and minimum number of e�cient parameters are givenby d#
max = d and d#

min = 1, where d = 11 is the number of parameters.The resulting parameter order without a preferred ordering is givenby
b ≺ pIV C ≺ Vcr ≺ TIV C ≺ ∆θ ≺ ∆p ≺ C1 ≺ Tw ≺ Vc ≺ Kp ≺ γ300,(7.2)
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Figure 7.2: Minimizing number of parameters d∗ for method 1, whenusing no preferred ordering.which re�ects a typical average case. Here b ≺ pIV C means that b isset �xed prior to pIV C . The underlined parameters are invariant inposition to the investigated noise realizations, false prior levels and dif-ferent operating conditions. The other parameters however di�er in afew number of cases and out of the three variations, mostly from di�er-ent noise realizations. The di�erences in order appear almost withoutexception as permutations of two groups, namely [C1, TIV C , Tw] and
[Kp, pIV C ]. This means that pIV C is sometimes replaced by Kp andthat TIV C is at some instances replaced by either C1 or Tw. It is alsoworth to mention that γ300 is the most e�cient parameter of them all,according to (7.2).The minimizing number of parameters using algorithm 6.2 are givenin �gure 7.2 for OP1 and OP8, which are the two extremes in thesimulation-based investigation. Ten di�erent noise realizations corre-sponding to ten engine cycles have been used, as well as four di�erentcases of false prior. The corresponding results for all eight operatingpoints are given in table 7.2, but now as a mean value for the ten cycles.



148 CHAPTER 7. RESULTS AND EVALUATION MOTORED. . .Operating point (OP)FP [%] 1 2 3 4 5 6 7 80 5.3 5.4 6.1 6.1 5.5 5.3 6.1 6.01 5.3 4.9 6.1 6.1 5.2 4.9 6.1 6.02.5 5.2 4.9 6.1 6.1 5.2 4.9 6.1 6.05 5.1 5.0 6.2 6.0 5.1 5.2 6.1 5.9
d∗ ∈ [4, 8] [4, 8] [4, 8] [4, 8] [4, 8] [4, 8] [4, 7] [4, 8]Table 7.2: Minimizing number of parameters d∗ for method 1, withouta preferred ordering. Four false prior levels are used and the range of

d∗ is given for each operating point.Table 7.2 shows that the average numbers of d# are between 4.9 and6.1, but �gure 7.2 and table 7.2 indicate that d# ∈ [4, 8]. The variationin d# depending on the level of false prior FP is comparatively small,but the variation is larger depending on the operating point. Thismakes it hard to determine how many e�cient parameters in (7.2) touse.Estimation accuracyTables 7.3 and 7.4 show the parameter estimates for the entire range of
d#, i.e. from 11 to 1 parameter, for one engine cycle. For this speci�ccycle (OP1, cycle1), the Akaike FPE is minimized by four parameters,i.e. d∗ = 4. The false prior level used is 0 % in table 7.3 and 5 % intable 7.4 respectively. The parameters are set �xed using algorithm 6.1,i.e. in accordance with (7.2), and this corresponds to the emphasizedvalues in two tables. For instance when pIV C is set �xed at 50.0 kPafor d# = 9, this is indicated in the tables by emphasizing the nominalvalue. The parameter values for pIV C are then �xed for d# ∈ [1, 8] aswell, but to increase the readability these values are left out.Table 7.4 shows that the parameter estimates are clearly biasedwhen a false prior is present. As expected the individual parameterestimates depend upon the number of e�cient parameters d#, as wellas the false prior level. The estimates of course also depend upon whatparameters that are classi�ed as e�cient. In order to have a ε̄t

x ≤ 1 %,a maximum of three parameters in combination with a false prior levelof 0 % is required, see table 7.3. For FP = 5 % (table 7.4), the samelimit on d# is found if the true parameter deviation should be less orequal to the false prior level, i.e. ε̄t
x ≤ 5 %. This means that for d# ≥ 4,the parameter estimates deviate more from xt than x# does.However, by considering the individual estimates it is notable thatthe C1-estimate has the largest normalized bias in general. Until C1is �xed the other parameters, especially Kp, TIV C , γ300 and to some
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7.1. SIMULATION RESULTS � MOTORED CYCLES 151extent Tw, compensate for the bad C1-estimates. This results in biasedestimates for these parameters as well. When C1 is �xed, the pressuregainKp still has a considerable bias, especially in the presence of a largefalse prior. It is however believed that Kp is known more accurately apriori through calibration, compared to the other parameters. There-fore if a preferred parameter ordering is to be used, it is recommendedthat Kp and C1 are set �xed at an early stage.As mentioned earlier, the bias in the individual parameters dependupon d# and FP . This is exempli�ed by the two parameters Vc and
γ300, which have their smallest biases for �ve parameters for both casesof the false prior level, according to tables 7.3 and 7.4. These twoparameters have already been shown to be important in the sensitivityanalysis in table 3.2. This illustrates that if ε̄t

x or individual parametersare monitored to �nd the best d#, this can result in di�erent numbersof recommended parameters, depending on the speci�c application. Forthe speci�c application considered in chapter 5, where the focus was onestimating Vc, it is appropriate to settle for �ve e�cient parameters inmethod 4.To summarize, method 1 does not yield a unequivocal number ofe�cient parameters, as it �uctuates in between four and eight. Using amean value of d# is not optimal either since it does not correspond tothe best parameter estimates, especially in the presence of a false prior.This is however not unexpected, since the minimization of VN (6.3) isonly based upon the residuals, and is therefore not in�uenced directlyby the parameter estimates.Residual analysisIn �gure 7.3 the residuals for two cases of false prior o�set at OP1 areshown. The upper plots show the residual corresponding to minimiza-tion of the Akaike criterion, in these cases d∗ =4. The middle plotsdisplay the di�erence between the modeled pressure for 4 and 1 param-eter, while the lower plots show the di�erence for 4 and 11 parameters.The data is well described by both 11 pars and 4 pars, for both 0and 5 % false prior o�set. However for less than four parameters theresidual becomes larger, re�ecting that too few parameters are used todescribe the data. This e�ect is more pronounced for FP = 5 %, as thedi�erence between the modeled pressure for d# =4 and d# =1 becomeslarger.The parameter values for d# =4 and d# =11 are however not thesame, see table 7.4, and this re�ects that it is not su�cient to have asmall residual error for an accurate parameter estimate.
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Figure 7.3: Upper: The residual for four parameters when the falseprior is 0 and 5 %. Middle: Di�erence between the cylinder pressurefor four parameters and one parameter. Lower: Di�erence betweenthe cylinder pressure for eleven and four parameters. The scales aredi�erent for 0 and 5 %.Evaluation with a preferred ordering � setup 1To include parameter prior knowledge and to gain a more unequivo-cal order in which the parameters are set spurious, the aforementionedpermutations of the parameters are used in our case when a preferredordering is used. The preferred ordering is given by the followingordering groups: B1 = [b, Tw, C1, TIV C ], B2 = [Kp, pIV C , ∆θ, ∆p],
B3 = [Vcr, Vc] and B4 = [γ300]. The order of the parameters in eachgroup Bi is set according to what is believed to be known a priori ofthe parameters. For instance, for group B1 the slope coe�cient b for γ,is well known from the chemical equilibrium program used in chapter 4and is therefore set �rst in the group. The order given here shouldby no means be interpreted as the best one, rather as a fully-quali�edsuggestion.This results in the following parameter order with a preferred or-
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b ≺ Kp ≺ Vcr ≺ TIV C ≺ ∆θ ≺ ∆p ≺ Tw ≺ C1 ≺ Vc ≺ pIV C ≺ γ300.(7.3)The di�erence in orders between (7.2) and (7.3) occurs for two locations;Firstly forKp and pIV C , and secondly for C1 and Tw. The permutationshowever still exist, but are reduced in their number of occurrences andwould extinguish if the ad-hoc decision rules corresponding to step 4and step 6 in algorithm 6.1 were set to 1 and 0 respectively. Theparameter TIV C is set �xed prior to Tw and C1 although its relativeorder in B1, which also is an e�ect of the ad-hoc decision rules inalgorithm 6.1.The minimizing number of parameters d∗ at OP1 and OP8 aregiven in �gure 7.4, and the mean value of d∗ is given in table 7.5 forall operating points and false prior levels. The individual parameterestimates for one engine cycle are given in tables 7.6 and 7.7 for FP =

0 % and 5 % respectively.Compared to the case with no preferred ordering, the spread of d∗ issmaller, especially for OP8 as shown in �gure 7.4. This is also re�ectedin table 7.5, where the mean values are more focused. However, astables 7.6 and 7.7 both indicate, the estimates are not signi�cantlyimproved compared to tables 7.3 and 7.4.Due to the unsuccessful results of method 1 for setup 1, the evalu-ation for setup 2 is left out.Summary of method 1To summarize, using method 1 to estimate the parameters in the pres-ence of a false prior has not been successful. Minimizing the AkaikeFPE criterion gives a recommended number of parameters between 4and 8, but this number �uctuates with both operating point and noiserealization. If we instead just consider the true parameter deviation, amaximum of three parameters can be used in order to yield ε̄t
x ≤ 1 % inthe case of no false prior. In the case of a false prior it gets even worse.Method 1 is therefore in itself not recommended to use for estimation,and is therefore not investigated further for the simulation part of thechapter.It can however be used for a speci�c application, like compressionratio estimation in chapter 5. In this case only the Vc-estimate is mon-itored when deciding upon the e�cient number of parameters to use,and this results in that �ve parameters are used.Method 1 has also given valuable insight in which parameters thatare most e�cient. For instance it has been shown that γ300 is themost e�cient parameter, given the structure of the standard model insection 3.8.
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Figure 7.4: Minimizing number of parameters d∗ for method 1, whenusing a preferred ordering. Operating point (OP)FP [%] 1 2 3 4 5 6 7 80 5.1 5.6 5.5 5.3 5.5 5.6 5.3 5.31 5.2 5.6 5.3 5.3 5.5 5.5 5.3 5.32.5 5.1 5.6 5.3 5.3 5.5 5.5 5.1 5.15 5.7 5.5 5.1 5.1 5.5 5.5 5.1 5.1
d∗ ∈ [3, 7] [4, 7] [5, 8] [5, 7] [4, 6] [4, 7] [5, 7] [5, 7]Table 7.5: Minimizing number of parameters d∗ for method 1, whenusing a preferred ordering. Four false prior levels are used and therange of d∗ is given for each operating point.
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Figure 7.5: Values of the regularization parameter δx used in the in-vestigations.7.1.4 Method 2� Results and evaluationFirst some important implementation details are given. Then the threeversions of method 2 are evaluated using the two setups described insection 7.1.2.Implementation detailsFirst the interesting search region for the regularization parameter δxis discussed, followed by a motivation for the implementation choicesthat can be made for each speci�c version of method 2.The search region ∆x for the regularization parameter δx is chosenas δx ∈ [10−11, 105], which is found by testing to assure that the L-shape corresponding to �gure 6.2 occurs for all examined cases. Theregion is then divided into three intervals, where δx is equally spaced ina logarithmic scale for each interval. The middle interval is where thecorner of the L-curve is expected to appear, and this interval is thereforemore densely sampled. The limits of the intervals are 105, 101, 10−8and 10−11, and the number of samples are 14, 50 and 5 respectively.The regularization parameter is plotted in �gure 7.5. These numericalvalues are all based upon that the residual ε is computed in bars, andshould therefore be altered if a di�erent unit is used.Millers a priori choice rule, see algorithm 6.3, will from hereon be re-ferred to as M2:1. It requires that the constantsmε and mδ from (6.20)are set. The drive for setting these values is twofold; First of all theregularization parameter δx from (6.21) must be assured to be on thehorizontal plateau of the L-curve (see �gure 6.2), preferably as closeto the leftmost corner as possible. Secondly, the same equations for
mε and mδ should be used for all operating points and setups. Theconstant mε is therefore chosen as mε = 1.01RMSE(η), and corre-



158 CHAPTER 7. RESULTS AND EVALUATION MOTORED. . .sponds to a data �tting which is 1 % above the estimated noise level.The other constant is chosen as a nominal parameter deviation of 1 %,which is then weighted with the uncertainty matrix Lδ. This results in
mδ = RMSE(0.01Lδ), and assures that both requirements are ful�lledfor all the investigated cases.The second version M2:2 is called Morozovs discrepancy principle(algorithm 6.4), where the constant aε needs to assigned. Due to thesame reasons as for M2:1, it is chosen as

ln(aε) = 0.05 ln(RMSE(ε(x#))) + 0.95 ln(RMSE(η)), (7.4)where RMSE(ε(x#)) is the RMSE of the residual for the nominal pa-rameter values x#. Including RMSE(ε(x#)), which corresponds to
δx → ∞, assures the �exibility to di�erent false prior levels.Algorithm 6.5 is the third version and is named Hansen's L-curve orM2:3. It uses a 2D cubic spline function of order four (Hansen, 1994) to�nd the position of maximum curvature. Apart from that, no choicesare required.An example of an L-curve is given in �gure 7.6 for one engine cycleat OP1 and FP = 5 %. It also shows the true parameter deviation ε̄t

xand the false prior level, as well as the results for the three versionsof method 2 and the optimal choice of δx. The optimal choice of δx isdetermined as the one minimizing ε̄t
x = RMSE(εt

x), for the δx:s used inthe computation. It is hereon referred to as δ∗x.Evaluation for setup 1Method 2 is now evaluated for setup 1, where the nominal values aregiven by x# = (1 + FP)xt for FP ∈ {0, 1, 2.5, 5} % and the assignedstandard deviation σ = 0.01xt is equal for all parameters, which yieldsequal regularization elements δi, i.e. case 1 of δi (δi = c). In section 6.4.2it was shown that in the special case of equal δi:s, ε̄#x = RMSE(ε#x )could be used in the L-curve plots.Figure 7.6 shows that as δx is decreased, ε̄t
x becomes smaller until itreaches its optimal value. This means that the estimate is a compromisebetween the data and the prior knowledge, and it lies in between thetrue value and the nominal (false) value, which is good. The �gure alsoillustrates that all three versions of method 2 �nd positions close to thecorner of the �L�, at least visually.Evaluation for OP1 and OP8: The focus will now be on evaluatingthe performance of method 2 for the two extreme operating points OP1and OP8. Figure 7.7 displays the optimal δ∗x at ten consecutive cycles,for which only the noise realization di�ers. The false prior level isindicated by the �gure legend, and the corresponding mean value for

δ∗x are given within the parentheses. The values for FP = 0 % are leftout since they all correspond to the highest value of δx.
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Figure 7.6: L-curve (solid line) for one engine cycle at OP1 withFP=5 % (dotted line) for setup 1. The results for the three versionsof method 2 and the optimal choice of regularization parameter areindicated by the legend. The mean true parameter deviation ε̄t
x (dash-dotted line) is also given.The �gure shows that there is a di�erence in optimal δ∗x dependingboth on the false prior level and the operating point. There is alsoa smaller di�erence depending on the cycle number, which is mostpronounced for OP1 at FP = 5 %. A general trend for δ∗x at a givenoperating point, is that δ∗x decreases with FP. This is expected since alower δx is required when ε̄#x is larger, for the two terms VN and δxV δ

NinWN (6.7) to become well balanced. It does however not say anythingabout the estimation accuracy.The estimation accuracy is investigated in �gure 7.8, where the trueparameter deviations corresponding to the optimal δx:s in �gure 7.7 aregiven. Again, the false prior level is indicated by the �gure legend andthe corresponding mean value for ε̄t
x are given in percent within theparentheses.Figure 7.8 illustrates that the resulting ε̄t

x is less than the speci�ed
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7.1. SIMULATION RESULTS � MOTORED CYCLES 161False prior (FP) [%]OP 0 1 2.5 51 1 · 105 0.0030 0.00093 0.000222 1 · 105 0.0024 0.00072 2.6 · 10−53 1 · 105 0.0011 0.0044 0.00244 1 · 105 0.0011 0.0024 0.000985 1 · 105 0.0024 0.00098 1.0 · 10−56 1 · 105 0.0024 0.00072 0.000227 1 · 105 0.0011 0.0044 0.00248 1 · 105 0.0077 0.0025 0.0013Table 7.8: Value of optimal regularization parameter δ∗x, for operatingpoints OP1 to OP8 for setup 1. For FP = 0 %, δ∗x is the highest valueused in the computation. Operating point (OP)FP [%] 1 2 3 4 5 6 7 80 10−7 10−7 10−7 10−7 10−7 10−7 10−7 10−71 0.78 0.76 0.77 0.76 0.77 0.76 0.77 0.762.5 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.95 3.7 3.7 3.8 3.8 3.8 3.8 3.8 3.8Table 7.9: Mean true parameter deviation ε̄t
x [%] corresponding tooptimal δ∗x in table 7.8, for setup 1 and operating points OP1 to OP8.false prior level FP. This renders an estimate in between the true andnominal value, i.e. a compromise between data and prior knowledge,although the estimate is more biased towards the nominal value. The�gure also shows that for a given FP, the true parameter deviation ε̄t

x isfairly constant from cycle-to-cycle. In the worst case (OP1, FP = 5 %),the di�erence between the estimates are within 0.2 %. This suggeststhat it is not vital to �nd exactly the optimal δ∗x, to get good estimates.Evaluation for all OP:s: The focus is now turned to evaluatingmethod 2 for all operating points. The optimal δ∗x is given in table 7.8for all operating points and false prior levels used in setup 1. The cor-responding true parameter deviations ε̄t
x are summarized in table 7.9.The numerical values in tables 7.8 and 7.9 are given as mean values forten cycles.Table 7.8 shows that the optimal δ∗x di�ers for the FP level andoperating point used, and the e�ect is most pronounced for changes inthe FP level. This is in accordance with what was pointed out earlier.Table 7.9 shows that the true parameter deviation ε̄t

x is less than thefalse prior level used for FP > 0 %. The table also illustrates that even



162 CHAPTER 7. RESULTS AND EVALUATION MOTORED. . .OP δ∗x δx (M2:1) δx (M2:2) δx (M2:3) mv(δ∗x)1 3.7 3.8 4.1 4.0 3.92 3.7 3.8 4.1 4.0 3.93 3.8 3.9 3.9 3.9 3.84 3.8 3.8 3.9 3.9 3.85 3.8 3.8 4.1 4.0 3.96 3.8 3.8 4.1 4.0 3.97 3.8 3.9 3.9 3.9 3.88 3.8 3.9 3.9 3.8 3.8Max Di� 0 0.092 0.35 0.31 0.21Mean Di� 0 0.040 0.19 0.15 0.094Time [s] 2579 32 1333 2579 57Table 7.10: True parameter deviation ε̄t
x for the optimal δ∗x in table 7.8,the three versions of method 2 and as mean value for the optimal δ∗xcorresponding to table 7.8. The numerical values are given in percentand are evaluated for FP = 5 % for setup 1. The mean computationaltime for completing the estimation for one engine cycle is also given.though the optimal δ∗x varies depending on the operating point at agiven FP level, this has almost no e�ect on the estimation accuracy.It therefore seems probable that the estimation accuracy is relativelyinsensitive to variations in δx.This is further investigated by computing the mean value of the op-timal δ∗x in table 7.8, discarding FP = 0 %. This value is from hereon de-noted mv(δ∗x), and is used together with the three versions of method 2to compute the true parameter deviation in table 7.10. The ε̄t

x-valuesin table 7.10 are computed as a mean value of ten cycles for all op-erating points at FP = 5 %. The maximum and mean di�erence arecomputed relative to δ∗x. All of these values are given in percent. Themean computational time is also given, where the following assump-tions have been made; For δ∗x and algorithm M2:3 all δx in the searchregion ∆x are used, and are therefore included in the computationaltime. Algorithm M2:2 starts by estimating the noise level η, and thenincreases the δx ∈ ∆x until the criterion (6.22) is ful�lled, see steps 4and 5 in algorithm 6.4. Thus the computational time for this algorithmcan di�er quite extensively from cycle to cycle, depending on when a δxresulting in RMSE(ε(δx)) > aεRMSE(η) is found. For algorithm M2:1and mv(δ∗x) the computational time is based on one value of δx, i.e. itis assumed that these values are found priorly.Table 7.10 shows that the estimation accuracy in terms of ε̄t
x is notas good for the approximative methods as for the optimal one, sincethe true parameter deviation ε̄t

x increases for all four approximations of
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δx. However the mean di�erence is small, especially for M2:1 and themean-value based mv(δ∗x) as the table indicates. The latter is howevernot an option when considering experimental data, since then δ∗x is notavailable, and is therefore not included in the tables from hereon. Analternative is to use the mean value for δx(M2 : 3), which is available.The performance of M2:3 itself is however not better than that of M2:1,according to the mean di�erence in table 7.10. It is therefore expectedthat using the mean value of δx(M2 : 3) instead does not result inbetter results than for M2:1.There is a disadvantage of M2:1 compared to M2:3 when changingoperating conditions, in that it might require some ad-hoc tuning ofone of the parameters mε and mδ to assure good performance. Thishas however not been required in the simulations. However if it wouldbe required, one should instead consider using M2:3 which is �exibleto changing operating conditions and is the second best choice withrespect to estimation accuracy, given that the required computationaltime is available. The third choice would be M2:2, but like M2:1 itmight require some ad-hoc tuning, in this case for the parameter aε.The two algorithms M2:2 and M2:3 both tend to give too highvalues of δx compared to δ∗x, as illustrated in �gure 7.6. This resultsin estimates closer to the nominal values, i.e. estimates that are over-smoothed by the regularization. For M2:2, this is due to the restrictivechoice made when determining the ad-hoc constant aε in M2:2. Thise�ect has already been pointed out for M2:2 by Hansen (1994).Concerning computational time, algorithmM2:1 andmv(δ∗x) are thefastest and they di�er merely due to that they use a di�erent numberof iterations to minimize the loss function WN . Compared to M2:3,M2:1 is approximately 80 times faster according to table 7.10.Estimation accuracy for xi: Now the attention is turned to the esti-mation accuracy for the individual parameters xi. Tables 7.11 and 7.12show the individual parameter estimates and the corresponding meantrue and nominal parameter deviations ε̄t

x and ε̄#x at OP1 and OP8respectively for FP = 5 %. These parameter values are computed asmean values for ten consecutive cycles. The tables also entail the rel-ative mean estimation error (RME) in percent, as well as numericalvalues for the true and (emphasized) nominal values.Both tables show that the estimates for C1, TIV C , Tw, ∆p, ∆θ,and especially for Vcr and b, are regularized to the vicinity of their re-spective nominal value x#
i , indicated by an RME close to 5 %. Theseseven parameters corresponds fairly well with the order in which theparameters are set spurious for method 1 when no preferred ordering isused, compare (7.2). The di�erence is pIV C , otherwise it correspondsto the seven most spurious parameters. The estimates for the otherparameters, i.e. Vc, pIV C , γ300 and Kp ends up close to their true val-
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166 CHAPTER 7. RESULTS AND EVALUATION MOTORED. . .ues especially for OP8. This is due to the higher pIV C , which resultsin a higher cylinder pressure and therefore a better excitation of theparameters and a better signal-to-noise ratio. For both cases the esti-mates for pIV C has the overall smallest RME (< 0.4 %) closely followedby Kp, while the accuracy for Vc and γ300 are within 3.1 % and 1.5 %respectively for all versions. The estimates of the two latter parametersare signi�cantly better for OP8 compared to OP1.The estimation accuracy also depend upon the routine used to de-termine the regularization parameter δx. From table 7.10 it was foundthat routine M2:1 gave the smallest overall mean error, followed byM2:3 and M2:2. When considering the individual estimates of the fourparameters, the same relative ordering is found if both operating pointsare considered. In the case for M2:1, the accuracy for the four param-eters is high; The estimates are within 0.5 %. The other estimates endup as a compromise in between the true value and the (false) nominalvalue, except for Tw. In the case of the two parameters Vcr and b, thesetwo estimates coincides with the nominal values.In the presence of a false prior of 5 %, the estimates for method 2are equally or more accurate compared to method 1 for all numberof e�cient parameters, as shown by comparing the ε̄t
x-columns in ta-bles 7.4 and 7.11. This illustrates that method 2 is more robust to afalse prior than method 1 and this results in better estimates.Evaluation for setup 2Method 2 is now evaluated for setup 2, where the nominal values aregiven by x#

i = (1 + σi)x
t
i, for which the standard deviations are givenin table 7.1. The assigned regularization elements are given for twocases; The �rst case is δi = 1

2N
1

(0.01xt
i)

2 , i.e. all elements are equal, andin the second case δi = 1
2Nσ2

i

. Therefore some of the plots and tablesbased on the second case from now on use the weighted versions of thenominal parameter deviation RMSE(Lδ ε#x ) and so on. The two casesare abbreviated as δi = c and δi 6= c respectively, where c is a constant.The L-curves based on one engine cycle for each case at OP1 aregiven in �gures 7.9 and 7.10 respectively. For completeness, the cor-responding L-curves at OP8 are given in �gures C.5 and C.6 in ap-pendix C.7. The individual parameter estimates are given in tables 7.14�7.17, and corresponds to the form used in table 7.11. Tables 7.14and 7.15 represent case 1 (δi = c), while the corresponding tables forcase 2 (δi 6= c) are given in tables 7.16 and 7.17. Note that the optimalregularization parameter δ∗x now is determined as the one minimizingthe weighted true parameter deviation, i.e. RMSE(Lδ εt
x). The nom-inal and true parameter deviations ε̄t

x and ε̄#x for both cases at OP1and OP8 are then summarized in table 7.13.
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Figure 7.9: L-curve (solid line) for one engine cycle at OP1 with falseprior RMSE(ε#−t
x ) (dotted line), when using setup 2 and case 1 of the δi(δi = c). The results for the three versions of method 2 and the optimalchoice of regularization parameter are indicated by the legend. The trueparameter deviation RMSE(εt

x) (dash-dotted line) is also given.
δi = c δi 6= cOP1 OP8 OP1 OP8

δx: ε̄t
x ε̄#x ε̄t

x ε̄#x ε̄t
x ε̄#x ε̄t

x ε̄#x[%] [%] [%] [%] [%] [%] [%] [%]
δ∗x 14.1 22.8 14.9 18.2 6.1 20.3 6.5 20.1
δx(M2 : 1) 22.1 1.4 22.1 0.7 6.2 20.7 6.6 20.9
δx(M2 : 2) 20.6 5.8 20.5 5.7 10.5 27.6 10.7 27.3
δx(M2 : 3) 22.1 0.9 22.1 0.3 9.4 18.9 9.4 18.4
x# 22.1 0.0 22.1 0.0 22.1 0.0 22.1 0.0
xt 0.0 22.1 0.0 22.1 0.0 22.1 0.0 22.1Table 7.13: Mean true and nominal parameter deviation for method 2using two cases of δi at OP1 and OP8 for setup 2.
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Figure 7.10: L-curve (solid line) for one engine cycle at OP1 withweighted false prior RMSE(Lδ ε#−t
x ) (dotted line), when using setup 2and case 2 of the δi (δi 6= c). The results for the three versionsof method 2 and the optimal choice of regularization parameter areindicated by the legend. The weighted true parameter deviationRMSE(Lδ εt

x) (dash-dotted line) is also given.Evaluation for individual estimates xi: When considering the fourparameters Vc, pIV C , γ300 and Kp, the estimates are again better forthe second case as shown in tables 7.14�7.17. It is also notable that theestimates for the case of δi 6= c do not necessarily end up in betweenthe true and nominal value, see for instance the negative RME:s for
pIV C and ∆θ in table 7.16. This re�ects a more �exible solution, thanthe one for the case of δi = c.Evaluation for all OP:s. Table 7.13 shows that the mean true pa-rameter deviation is smaller when δi 6= c than for δi = c, for all threeversions of method 2 and for the optimal choice of δx. It is also worthto mention that the mean nominal parameter deviation ε̄#x is relativelysmall for δi = c and signi�cantly higher for δi 6= c. This together withthe smaller ε̄t

x re�ects that the second case is more robust to a false



7.1. SIMULATION RESULTS � MOTORED CYCLES 169prior, which of course is preferable.Now the focus is turned to �nding which version of method 2 thatperforms the best. In the case of δi = c both M2:1 and M2:3 arerestrictive and yield estimates close to the nominal values. This is,as pointed out previously, re�ected by a relatively low value of ε̄#x intable 7.13. M2:2 actually performs better than these two, but thedi�erence is small and the estimation bias is still signi�cant as re�ectedby the ε̄t
x-columns.In the case of δi 6= c, all three versions render weighted parameterdeviations RMSE(Lδ εt

x) and RMSE(Lδ ε#x ) that are virtually the same,see tables 7.16 and 7.17. The only di�erence is in RMSE(Lδ ε#x ) forM2:2, which is due to the relatively large error in ∆θ. However whenconsidering ε̄t
x for all investigated operating points, it is lowest for M2:1and fairly close to the optimal, followed by M2:3 at most instances asshown in table 7.13. If computational time is crucial and thereforeneeds to be taken into account, M2:1 is outstanding as shown earlier intable 7.13 and would therefore unequivocally be the �rst choice.7.1.5 Summary for simulation resultsMethod 1 resulted in parameter estimates that are signi�cantly biasedin the presence of a false prior, since the bias is larger than the falseprior level used. It is therefore in itself not recommended to use forestimation of all parameters in the given formulation. For a speci�capplication such as for example compression ratio estimation it canhowever serve as a guideline of how many parameters to use.Method 2 outperforms method 1 since it is more robust to a falseprior level and yields more accurate parameter estimates. The drive formethod 2 was to regularize the solution such that the parameters thatare hard to determine are pulled towards their nominal values, whilethe e�cient parameters are free to �t the data. This has shown to bethe case in the simulations. Method 2 is systematic and accurate, andtherefore ful�lls two of the requirements for the estimation tool.The user can chose between two cases of the parameter uncertainty,namely δi = c and δi 6= c. The former is directly applicable once nomi-nal values of the parameters are determined and yields good estimates.However, they can be too restricted by the nominal values, as seen insetup 2. Instead it is recommended to use the second case. It requiresmore e�ort to decide upon the uncertainty for each parameter, butpays o� in better estimates that are more robust to a false nominalparameter value.Method 2 is given in three versions, and the version M2:1 followedby M2:3 give the most accurate results for changing operating condi-tions, false prior levels and noise realizations. M2:1 is also computa-tionally e�cient and outstanding compared to the other versions. It



170 CHAPTER 7. RESULTS AND EVALUATION MOTORED. . .
δ x

:V c
C

1
T

I
V

C
p

I
V

C
γ
3
0
0

b
T

w
V

c
r

∆
p

∆
θ

K
p

ε̄t x
ε̄# x

[cm3 ][-]
[K][kPa]
[-][K−1 ]
[K][cm3 ]
[kPa][deg]
[-][%]
[%]

δ∗ x

58.81.48
38052.0
1.411-0.000
118382
1.16.1
0.090.950
14.122.8

RME-0.
0-35.22
.84.0
0.817.6
-4.59.7
21.2-5.5
-5.014.1
22.8

δ x
(M

2
:
1
)

58.72.39
37950.5
1.404-0.000
114101
.157.5
0.150.989
22.11.4

RME-0.
14.92
.50.9
0.310.0
2.615.0
49.949.9
-1.122.1
1.4

δ x
(M

2
:
2
)

59.22.16
33850.5
1.410-0.000
1124361
.157.4
0.140.964
20.65.8

RME0.
8-5.3-
8.70.9
0.711.8
9.015.0
47.443.2
-3.620.6
5.8

δ x
(M

2
:
3
)

59.32.39
38051.0
1.398-0.000
114101
.157.5
0.151.001
22.10.9

RME0.
95.0
2.72.1
-0.210.0
2.515.0
50.050.0
0.122.1
0.9

x
#

59.32.39
38052.5
1.405-0.000
114101
.157.5
0.151.005
22.10.0

RME(x# )
0.95.0
2.75.0
0.410.0
2.515.0
50.050.0
0.522.1
0.0

x
t

58.82.28
37050.0
1.400-0.00
01400
15.0
0.101.000
0.022.1

Table7.14:P
arameterestim
atesandcorre
spondingrelat
ivemeanestim
ationerror(R
ME)forOP1
whenδ i=c,
using

method2and
setup2.



7.1. SIMULATION RESULTS � MOTORED CYCLES 171
δ x

:V c
C

1
T

I
V

C
p

I
V

C
γ
3
0
0

b
T

w
V

c
r

∆
p

∆
θ

K
p

ε̄t x
ε̄# x

[cm3 ][-]
[K][kPa]
[-][K−1 ]
[K][cm3 ]
[kPa][deg]
[-][%]
[%]

δ∗ x

59.11.56
296103.6
1.409-0.000
1154041
.126.5
0.110.949
14.918.2

RME0.
6-31.7-
4.63.6
0.715.3
1.012.4
30.28.0
-5.114.9
18.2

δ x
(M

2
:
1
)

58.72.39
319100.9
1.404-0.000
114111
.157.5
0.150.989
22.10.7

RME-0.
14.93
.00.9
0.310.0
2.615.0
49.949.9
-1.122.1
0.7

δ x
(M

2
:
2
)

59.22.18
283100.8
1.410-0.000
1114381
.157.4
0.140.964
20.55.7

RME0.
8-4.3-
8.80.8
0.711.4
9.415.0
47.442.9
-3.620.5
5.7

δ x
(M

2
:
3
)

59.32.39
320102.0
1.397-0.000
114101
.157.5
0.151.000
22.10.3

RME0.
95.0
3.32.0
-0.210.0
2.515.0
50.050.0
0.022.1
0.3

x
#

59.32.39
320102.5
1.405-0.000
114101
.157.5
0.151.005
22.10.0

RME(x# )
0.95.0
3.22.5
0.410.0
2.515.0
50.050.0
0.522.1
0.0

x
t

58.82.28
310100.0
1.400-0.00
01400
15.0
0.101.000
0.022.1

Table7.15:P
arameterestim
atesandcorre
spondingrelat
ivemeanestim
ationerror(R
ME)forOP8
whenδ i=c,
using

method2and
setup2.



172 CHAPTER 7. RESULTS AND EVALUATION MOTORED. . .
δ x

:V c
C

1
T

I
V

C
p

I
V

C
γ
3
0
0

b
T

w
V

c
r

∆
p

∆
θ

K
p

L
δ
εt x

L
δ
ε# x

[cm3 ][-]
[K][kPa]
[-][K−1 ]
[K][cm3 ]
[kPa][deg]
[-][%]
[%]

δ∗ x

59.02.37
37749.9
1.405-0.000
1084111
.155.5
0.101.004
3.13.3

RME0.
43.82
.0-0.3
0.48.5
2.815.0
9.0-3.1
0.43.1
3.3

δ x
(M

2
:
1
)

59.02.36
37749.8
1.405-0.000
1084111
.155.4
0.101.004
3.13.3

RME0.
43.72
.0-0.3
0.48.5
2.815.0
8.8-4.5
0.43.1
3.3

δ x
(M

2
:
2
)

59.02.35
37649.8
1.405-0.000
1084121
.155.3
0.071.004
3.13.8

RME0.
33.11
.6-0.5
0.48.4
3.015.0
5.3-29.6
0.43.1
3.8

δ x
(M

2
:
3
)

59.12.36
37750.0
1.405-0.000
1094121
.156.2
0.091.004
3.33.1

RME0.
63.71
.9-0.1
0.39.4
3.015.0
24.2-7.0
0.43.3
3.1

x
#

59.32.39
38052.5
1.405-0.000
114101
.157.5
0.151.005
4.80.0

RME(x# )
0.95.0
2.75.0
0.410.0
2.515.0
50.050.0
0.54.8
0.0

x
t

58.82.28
37050.0
1.400-0.00
01400
15.0
0.101.000
0.04.8

Table7.16:P
arameterestim
atesandcorre
spondingrelat
ivemeanestim
ationerror(R
ME)forOP1
whenδ i6=c,
using

method2and
setup2.



7.1. SIMULATION RESULTS � MOTORED CYCLES 173
δ x

:V c
C

1
T

I
V

C
p

I
V

C
γ
3
0
0

b
T

w
V

c
r

∆
p

∆
θ

K
p

L
δ
εt x

L
δ
ε# x

[cm3 ][-]
[K][kPa]
[-][K−1 ]
[K][cm3 ]
[kPa][deg]
[-][%]
[%]

δ∗ x

59.02.37
31799.6
1.405-0.000
1094111
.155.5
0.101.004
3.22.4

RME0.
53.92
.3-0.4
0.48.8
2.815.0
10.6-3.8
0.43.2
2.4

δ x
(M

2
:
1
)

59.02.37
31799.6
1.405-0.000
1094111
.155.5
0.091.004
3.22.5

RME0.
53.92
.2-0.4
0.48.8
2.915.0
10.2-6.7
0.43.2
2.5

δ x
(M

2
:
2
)

59.02.36
31599.4
1.405-0.000
1094121
.155.4
0.071.004
3.23.0

RME0.
43.41
.8-0.6
0.48.7
3.115.0
7.3-29.6
0.43.2
3.0

δ x
(M

2
:
3
)

59.12.37
31799.9
1.404-0.000
1094121
.156.2
0.091.004
3.32.2

RME0.
64.02
.3-0.1
0.39.5
2.915.0
24.3-5.4
0.43.3
2.2

x
#

59.32.39
320102.5
1.405-0.000
114101
.157.5
0.151.005
4.20.0

RME(x# )
0.95.0
3.22.5
0.410.0
2.515.0
50.050.0
0.54.2
0.0

x
t

58.82.28
310100.0
1.400-0.00
01400
15.0
0.101.000
0.04.2

Table7.17:P
arameterestim
atesandcorre
spondingrelat
ivemeanestim
ationerror(R
ME)forOP8
whenδ i6=c,
using

method2and
setup2.



174 CHAPTER 7. RESULTS AND EVALUATION MOTORED. . .
−100 −50 0 50 100

0

5

10

Crank angle [deg ATDC]

P
re

ss
ur

e 
[b

ar
]

Experimental motored data; OP1−4

OP2

OP1

Figure 7.11: Experimentally measured motored cylinder pressures atoperating conditions OP1�4.can therefore be stated that the third requirement is also ful�lled. Forthe simulated motored cycles, M2:1 is therefore recommended as thebest choice.7.2 Experimental results � motored cyclesThe attention is now turned to the issue of evaluating the methodson experimental engine data. As mentioned before, the true modelstructure and parameter values are unknown. Therefore it is importanttoo see if the e�ects and trends from the simulation-based evaluation arealso present when the methods are applied to experimental data. Firstthe experimental engine data will be described, followed by a discussionon the parameter prior knowledge used. The focus is then turned toevaluating the performance of method 1, followed by method 2.7.2.1 Experimental engine dataData is collected during stationary operation at engine speeds N ∈
[2000, 5000] rpm, intake manifold pressures pman ∈ [32, 43} kPa alto-gether forming four di�erent operating points. These operating pointsare de�ned in the upper part of table 7.18.For each operating point 101 consecutive motored cycles with thefuel injection shut-o� were sampled for two cylinders with a crank-angleresolution of 1 degree, using an AVL GU21D cylinder pressure sensor.Figure 7.11 displays one measured cycle for each operating point.



7.2. EXPERIMENTAL RESULTS � MOTORED CYCLES 1757.2.2 Parameter prior knowledgeThe parameter prior knowledge used in the experimental evaluation isbased on di�erent strategies to set the nominal parameter values x#and the regularization elements δi.Nominal parameter values x#The nominal parameter values x# are set based on a combination ofthe parameter initial methods described in chapter 3 and expert priorknowledge of what the numerical value of x# should be. The valuesfor x# for each operating point are given as the emphasized values intable 7.19. Of these parameters it is only the nominal value for ∆pthat is updated for each cycle, while the others are updated for eachoperating condition.Regularization elements δiTwo cases of regularization parameter elements are used in method 2and they correspond to the two cases used in the simulation-basedevaluation done previously. The �rst case, again denoted δi = c, setsthe standard deviation σi for each parameter as σi = 0.01x̄#
i , where

x̄#
i is the mean value of x#

i for one operating point. It is used toassure that σi does not �uctuate in size from cycle-to-cycle. In thesimulation-based evaluation xt was used instead of x̄#.The second case (δi 6= c) is based on expert knowledge of the un-certainty for each parameter and it is therefore subjectively chosen bythe user. The standard deviation used here in the experimental eval-uation coincides with the one used for the simulation-based evaluationin table 7.1.The �rst case is updated for each operating point, while this is notrequired for the second case.7.2.3 Method 1� Results and evaluationMethod 1 is evaluated only without a preferred ordering, since no gainwas found in the simulation-based evaluation by using one. The pa-rameter order for all four operating points is given by
C1 ≺ Kp ≺ ∆θ ≺ TIV C ≺ Vcr ≺ ∆p ≺ b ≺ Tw ≺ Vc ≺ pIV C ≺ γ300,(7.5)which re�ects the average case. This parameter order di�ers somewhatfrom the corresponding order found in simulations (7.2), but γ300 is stillthe most e�cient parameter. The underlined parameters in (7.5) areinvariant in position for the investigated operating conditions cycle-to-cycle variations. The other parameters di�er in order as permutations
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N [rpm] 2000 3000 4000 5000
pman [kPa] 43 32 35 37mean(d∗) 9.5 10.3 10.4 10.4
d∗ ∈ [9, 10] [9, 11] [9, 11] [9, 11]Table 7.18: Mean number and region of d∗ for 101 experimental cyclesat OP1�4.of the three groups [TIV C , Tw], [∆p, b] and [Kp, C1]. These groups arenot exactly the same as the ones for the simulation-based evaluation.The minimizing number of parameters d∗ using algorithm 6.2 aregiven in table 7.18 as a mean over the 101 cycles at all four operatingpoints. The range of d∗ for each operating point is also given. Thetable shows that the mean values of d∗ are larger and the variation issmaller in the experimental case, compared to the simulations given intable 7.2.The mean value, standard deviation, and relative mean error forthe individual estimates are given in table 7.19. The relative meanerror is computed relative to the nominal parameter value at each cycleand is given in percent. All parameters give reasonable values exceptfor C1, TIV C , and Tw that yield unreasonably large parameter values.In accordance with the simulation-based evaluation in section 7.1.3,method 1 is not recommended to use for parameter estimation in thegiven formulation. The attention is therefore turned to method 2.7.2.4 Method 2� Results and evaluationThe same implementation settings, as for the simulation-based evalua-tion in section 7.1.4, are used and are therefore not repeated here.Results for case 1 (δi = c) and case 2 (δi 6= c)The results are �rst described for case 1. An example of an L-curve isgiven in �gure 7.12. A fourth version, M2:3+, is also included in the�gure. The algorithm is motivated and fully described in appendix C.3.This version is an extension of M2:3, and uses a smaller search region

∆x of δx as compared to the original form. Version M2:3+ uses theregularization parameter δx from M2:1 as a mid-value of the search re-gion ∆x, for a ∆x given by 25 samples of δx from �gure 7.5. The usageof M2:3+ is only needed for experimental cycles and is due to problemsoccurring when searching for the maximum curvature of the L-curve.For simulated cycles this problem has not occurred, and therefore re-sults in the same value of δx for M2:3 and M2:3+.
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Figure 7.12: L-curve (solid line) for one engine cycle at OP1, whenusing case 1 of the δi (δi = c). The results for the four versions ofmethod 2 are indicated by the legend.OP1 OP2 OP3 OP4
N [rpm] 2000 3000 4000 5000
pman [kPa] 43 32 35 37

δx(M2 : 1) mean 3.8 · 10−5 4.1 · 10−5 6.5 · 10−5 4.2 · 10−5

σest 6.3 · 10−5 3.9 · 10−5 1.5 · 10−6 4.8 · 10−5

δx(M2 : 2) mean 2.3 · 10−8 7.5 · 10−8 9.6 · 10−8 6.3 · 10−8

σest 1.9 · 10−8 8.1 · 10−8 6.6 · 10−8 4.3 · 10−8

δx(M2 : 3) mean 4.2 · 10−8 3.9 · 10−8 0.4 · 10−8 2.1 · 10−8

σest 1.5 · 10−8 3.4 · 10−8 0.8 · 10−8 4.1 · 10−8

δx(M2 : 3+) mean 5.1 · 10−5 9.2 · 10−5 9.0 · 10−5 3.4 · 10−5

σest 1.6 · 10−5 4.3 · 10−6 5.8 · 10−5 3.4 · 10−5Table 7.20: Mean value and standard deviation (σest) of δx for the fourversions of method 2 using case 1, evaluated for 101 experimental cyclesat OP1�4.



7.2. EXPERIMENTAL RESULTS � MOTORED CYCLES 179Table 7.20 summarizes the mean value and standard deviation ofthe computed regularization parameter δx for 101 experimental cycles.This is done for all four operating points and for each of the four ver-sions of method 2. The corresponding individual parameter estimatesare given as mean values for 101 cycles at each operating point in ta-ble 7.21, as well as the corresponding (emphasized) nominal values x#and the nominal parameter deviation ε̄#x . More detailed results forOP1 are given in table C.6, where also the standard deviation andthe relative mean error with respect to the nominal parameters x# aregiven.The corresponding �gures and tables for case 2 are given in �g-ure 7.13, table 7.22, table 7.23 that now also include the weightednominal parameter deviation RMSE(Lδ ε#x ), and table C.7 respectively.Evaluation for case 1 (δi = c)Case 1 is considered �rst. Figure 7.12 illustrates that the L-curve doesnot have as sharp transition as in the corresponding simulated casegiven in �gure 7.9. The di�erence is believed to be due to that themodel structure is not correct. Figure 7.12 also shows that the fourversions yield di�erent regularization parameters δx. The two versionsM2:2 and M2:3 render approximately the same δx, which is con�rmedin table 7.20 for all operating points. M2:1 and M2:3+ result in higher
δx:s in the mean, and therefore relies more on the prior knowledgecompared to M2:2 and M2:3.For all four operating points table 7.20 shows that the regularizationparameter for the four versions are ordered in size according to

δx(M2 : 3+) > δx(M2 : 1) > δx(M2 : 2) > δx(M2 : 3), (7.6)with two exceptions. For OP1 it is the other way around for M2:2 andM2:3, and the same goes for M2:1 and M2:3+ at OP4. As expected thedi�erence between δx(M2 : 1) and δx(M2 : 3+) is smaller than between
δx(M2 : 1) and δx(M2 : 3). Unlike M2:1, M2:3+ is assured to �nd aconvex corner of the L-curve. For the investigated operating points,M2:3+ gives a higher value of δx, than for M2:1, M2:2 and M2:3. ForM2:3 this corresponds to the high value of the left-most curvature foundin �gure C.4. Table 7.20 also shows that the mean value of δx dependsupon operating condition, and that for a given version of method 2 δxis in the same order of magnitude for all four operating points.The di�erent δx:s result in di�erent nominal parameter deviationsand individual estimates, as shown in table 7.21 for OP1-4. In generalM2:2 and M2:3 yield similar parameter estimates, especially for OP1.This is due to that δx is approximately the same. These estimates arehowever unreasonably large, see e.g. TIV C , Tw andKp, while b is unrea-sonably small. All parameters except Vc and γ300 deviate signi�cantly
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7.2. EXPERIMENTAL RESULTS � MOTORED CYCLES 181from their respective nominal value. This is re�ected in the relativelylarge nominal parameter deviation ε̄#x , and is due to a small δx.The individual estimates for M2:1 and M2:3+ are all reasonable,which is expected since they end up close to their nominal values. Theestimates are in general closer to x# for all parameters (except for Vcand γ300), than for M2:2 and M2:3. Out of M2:1 and M2:3+, the latterhas a smaller nominal parameter deviation ε̄#x for all operating pointsexcept OP4. This corresponds to the ordering given in (7.6). Themaximum deviation occurs for the parameters C1, TIV C and Tw forboth versions.To summarize the evaluation for δi = c, using M2:1 or M2:3+ yieldestimates that deviate less than 6 and 11 percent from the nominalvalues in the mean.Evaluation for case 2 (δi 6= c)Now the second case will be evaluated. Figure 7.13 displays that thefour versions yield approximately the same δx, which is con�rmed bytable 7.22 for OP1-4. In general, the mean values and standard devia-tions of the regularization parameter for the three versions M2:1, M2:3and M2:3+ are basically the same for all operating points, as shown intable 7.22. The reason that M2:3 and M2:3+ do not coincide is thatthe former �nds a corner at a smaller δx in some instances. The secondversion (M2:2) yields a δx that has a lower mean value than the otherthree, which re�ects a higher con�dence in the data.Concerning the individual parameter estimates in table 7.23, allfour versions render estimates that are reasonable. An exception is theWoschni heat transfer coe�cient C1, which can be considered to be toolarge for M2:2. A trend for all versions is that the estimated pIV C issmaller than the nominal pIV C , which is partly compensated by ∆pand TIV C that are larger than their nominal values.As for the simulation-based evaluation the parameters Vcr, Kp, and
b are attracted to the vicinity of their nominal values, while otherslike Vc and γ300 are adjusted to the data. Out of the four versions,M2:3+ closely followed by M2:1 yields the smallest weighted nominalparameter deviations for all OP:s, as indicated by table 7.23.Compared to case 1, the estimates for M2:2 and M2:3 are muchcloser to their nominal values, which is re�ected by the ε̄#x -columns intables 7.21 and 7.23. For M2:1 and M2:3+ it is the other way around.This is mostly due to the ∆p-estimate, which yields a large normalizednominal deviation and therefore contributes very much to ε̄#x .To summarize the evaluation for δi 6= c, using M2:1 or M2:3+ yieldweighted nominal parameter deviations that are less than 15 percentin both cases.
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Figure 7.13: L-curve (solid line) for one engine cycle at OP1, whenusing case 2 of the δi (δi 6= c). The results for the four versions ofmethod 2 are indicated by the legend.OP1 OP2 OP3 OP4
N [rpm] 2000 3000 4000 5000
pman [kPa] 43 32 35 37

δx(M2 : 1) mean 3.3 · 10−5 3.5 · 10−5 5.5 · 10−5 3.6 · 10−5

σest 1.1 · 10−5 9.6 · 10−6 2.6 · 10−5 1.3 · 10−5

δx(M2 : 2) mean 7.8 · 10−6 4.4 · 10−6 3.0 · 10−5 2.1 · 10−5

σest 3.7 · 10−5 2.7 · 10−5 1.0 · 10−4 8.1 · 10−5

δx(M2 : 3) mean 2.8 · 10−5 5.9 · 10−5 5.6 · 10−5 3.2 · 10−5

σest 2.0 · 10−5 5.1 · 10−5 2.7 · 10−5 2.1 · 10−5

δx(M2 : 3+) mean 3.4 · 10−5 6.3 · 10−5 6.6 · 10−5 3.5 · 10−5

σest 2.1 · 10−5 2.1 · 10−5 2.6 · 10−5 2.0 · 10−5Table 7.22: Mean value and standard deviation (σest) of δx for the fourversions of method 2 using case 2, evaluated for 101 experimental cyclesat OP1�4.
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184 CHAPTER 7. RESULTS AND EVALUATION MOTORED. . .Summary of method 2In the simulations the gain in choosing case 2 instead of case 1 wasnot distinct. However in the experimental situation the gain in usingcase 2 is stronger, especially for M2:2 and M2:3 since all estimates arephysically reasonable. It has also been shown that M2:1 and M2:3+give more reasonable estimates, compared to M2:2 and M2:3. VersionM2:3+ is more �exible to changes in operating condition than M2:1,since it �nds a convex corner of the L-curve. For motored cycles, this�exibility has not been shown to be necessary for the examined oper-ating points. To conclude, the argumentation speaks in favor of usingversion M2:1 and case 2 of δi for motored cycles.7.3 Summary of results for motored cyclesBoth the simulation and experimental studies showed that method 1did not render accurate estimates. It was even hard to decide uponthe number of e�cient parameters to use. However, method 1 allowsfor the parameters to be ordered in how e�cient they are for the givenestimation problem and data. It was also shown that γ300 is the moste�cient parameter.Method 2 outperforms method 1 since it is more robust to a falseprior level and yields more accurate parameter estimates, according tothe simulation-based evaluation. In the experimental situation method2 was found to give reasonable estimates for all parameters. The drivefor method 2 was to regularize the solution such that the parametersthat are hard to determine are pulled towards their nominal values,while the e�cient parameters are free to �t the data. This has shownto be the case in the simulations.The user can chose between two cases of the parameter uncertainty,namely δi = c and δi 6= c. The former is directly applicable once nomi-nal values of the parameters are determined and yields good estimates,almost as good as for the second case when considering only the sim-ulations. However, when also considering the experimental evaluationthe gain in using the second case is stronger. Thus it is recommendedto use the second case. It requires more e�ort to decide upon the un-certainty for each parameter, but pays o� in better estimates that aremore robust to a false nominal parameter value.Method 2 was originally given in three variants, and variant M2:1gives the most accurate results for changes in operating condition, falseprior levels and noise realizations for simulated cylinder pressure data.In the experimental evaluation a fourth variant, M2:3+, was includedto cope with unreasonably high curvature for low δx that can occur forexperimental data. It was found that the two variants M2:1 and M2:3+



7.3. SUMMARY OF RESULTS FOR MOTORED CYCLES 185both yield reasonable estimates, and that the �exibility of M2:3+ fora change in operating condition was not necessary. Since M2:1 is alsocomputationally e�cient and outstanding compared to the other vari-ants, usage of M2:1 together with δi 6= c is therefore recommended asthe best choice for motored cycles.
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8Results and evaluation forfired cycles
Method 1 and method 2 described in section 6.4 will now be evalu-ated for �red cylinder pressure data. These methods were evaluatedfor motored cycles in chapter 7 and the evaluation in this chapter fol-lows the same structure. The evaluation covers both simulated andexperimental data.It is worth noting that all numerical calculations have been madefor normalized values of the parameters, while the individual parametervalues that are given in tables are not normalized if not explicitly stated.The purpose of the normalization is to yield parameters that are in theorder of 1, and the normalization is described in appendix C.1.8.1 Simulation results � �red cyclesFirst the simulated engine data will be described, followed by a discus-sion on the parameter prior knowledge used. The focus is then turnedto evaluating the performance of method 1, followed by method 2.8.1.1 Simulated engine dataCylinder pressure traces were generated by simulating the standardmodel from section 6.2.1 with representative single-zone parameters,given in appendix C.6. Six operating points were selected with en-gine speeds N ∈ {1500, 3000} rpm, mean charge temperatures at IVC
TIV C ∈ {370, 414} K, cylinder pressures at IVC pIV C ∈ {50, 100} kPa187
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Figure 8.1: Simulated cylinder pressures for the di�erent operatingpoints OP1�6.
xi Vc C1 TIV C pIV C γ300 b Tw VcrUnit [cm3] [-] [K] [kPa] [-] [K−1] [K] [cm3]
σi 0.5 0.114 10 2.5 0.005 1 · 10−5 10 0.15RME [%] 0.9 5.0 2.4 5.0 0.4 14.3 2.1 15.0
xi ∆p ∆θ Kp C2 Qin θig ∆θd ∆θbUnit [kPa] [deg] [-] [m/(s K)] [J] [deg] [deg] [deg]
σi 2.5 0.05 0.005 1.62 · 10−4 25 1 2 2RME [%] 50.0 50.0 0.5 5.0 5.0 6.7 10.0 10.0Table 8.1: Assigned standard deviation σi of the model parameters

xi used for the second case of δi:s. The relative mean error (RME)corresponding to one standard deviation from the value (for OP1) isalso given.and di�erent heat release traces, where table C.5 de�nes the individualoperating points. For each operating point a cylinder pressure tracewas simulated and ten realizations of Gaussian noise with zero meanand standard deviation 3.8 kPa were added, forming altogether 60 �redcycles. The chosen noise level is the same as the one used in chapter 5(and chapter 7), and thus re�ects the level seen in experimental data.The data was sampled with a resolution of 1 crank-angle degree (CAD).In �gure 8.1, one �red cycle is shown for each operating point. Thecylinder pressures corresponding to OP1 and OP6 di�er the most, andwill therefore be the two extremes in the investigation.8.1.2 Parameter prior knowledgeThe setting of parameter prior knowledge for �red cycles is based onthe same principles as for motored cycles, see section 7.1.2, and most



8.1. SIMULATION RESULTS � FIRED CYCLES 189details are therefore not repeated here. The standard model for �redcycles entails 16 parameters, i.e. �ve more than for the motored cycle.This has consequences for the second case of δi, i.e. δi 6= c, where theexpected parameter uncertainty for the �ve extra parameters must beassigned. For this particular application the standard deviation σi foreach parameter are given in table 8.1.8.1.3 Method 1� Results and evaluationFirst of all, the order in which the parameters are set �xed when usingalgorithm 6.2 without a preferred ordering is investigated. This corre-sponds to keeping track of the spurious parameters xsp
new in step 3.In this case all parameters need to be included, and therefore themaximum and minimum number of e�cient parameters are given by

d#
max = d and d#

min = 1, where d = 16 is the number of parameters.The resulting parameter order without a preferred ordering is givenby
C2 ≺ C1 ≺ Kp ≺ Tw ≺ ∆θ ≺ ∆p ≺ Vcr ≺ TIV C

≺ b ≺ θig ≺ Vc ≺ pIV C ≺ ∆θb ≺ Qin ≺ ∆θd ≺ γ300, (8.1)which re�ects a typical case. As before, the underlined parameter isinvariant in position to the investigated noise realizations, false priorlevels and di�erent operating conditions. The other parameters di�erin position, and compared to the simulated motored case the permuta-tion groups are larger and as well as the variation in position. At manyinstances the di�erence in order occurs as permutations of the threegroups [b, C1, C2, TIV C , pIV C , Tw], [Kp, pIV C , Qin] and [θig , ∆θd], butthis is not the case as frequently as in the motored case. The �rstgroup is expected since these parameters are coupled to temperaturethrough Woschni's heat transfer correlation (3.43) and the linear modelof γ (3.44), and corresponds well to the motored case described in (7.2)except for b which is now included. All parameters in the second grouphave a multiplicative e�ect on the cylinder pressure, although Qin hasno e�ect on the compression phase prior to ignition. Comparing theparameter order for motored (7.2) and �red (8.1) cycles, the order ischanged for most positions. However γ300 is again the most e�cientparameter, given the structure of the standard model.The minimizing number of parameters using algorithm 6.2 are givenin �gure 8.2 for OP1 and OP6, that are the two extremes in thesimulation-based investigation. Ten di�erent noise realizations corre-sponding to ten engine cycles have been used, as well as four di�erentcases of false prior. The corresponding results for all six operatingpoints are given in table 8.2, but now as a mean value for the tencycles.
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5 % (12.6)Figure 8.2: Minimizing number of parameters d∗ for method 1, whenusing no preferred ordering.Table 8.2 shows that the number of e�cient parameters d# rangefrom 3 to 16, which is also illustrated in �gure 8.2. The table alsoillustrates that for a high load, i.e. OP2, OP4 and OP6, the numberof e�cient parameters d# increases. Compared to the motored cyclesthe variation in d# depending on the level of false prior FP is larger,but again the variation is larger depending on the operating point. Thelarge range of d# makes it hard to use the Akaike FPE to determinehow many of the parameters in (8.1) that are e�cient.Estimation accuracyTable 8.3 shows the parameter estimates for the entire range of d#, i.e.from 16 to 1 parameter, for one engine cycle in the presence of a falseprior level of 5 %. For this speci�c cycle (OP1, cycle1), the Akaike FPEis minimized by seven parameters, i.e. d∗ = 7. The results for a falseprior level of 0 % is given in appendix C.7, see table C.8.Table 8.3 shows that the parameter estimates are biased when a



8.1. SIMULATION RESULTS � FIRED CYCLES 191Operating point (OP)FP [%] 1 2 3 4 5 60 3.6 10.2 4.2 12.6 3.8 11.81 6.2 15.8 5.6 11.0 5.6 12.82.5 7.4 15.6 5.4 13.4 5.6 13.05 7.6 14.0 6.0 12.2 6.4 12.6
d∗ ∈ [3, 10] [3, 16] [3, 8] [4, 16] [3, 9] [3, 16]Table 8.2: Minimizing number of parameters d∗ for method 1, withouta preferred ordering. Four false prior levels are used and the range of

d∗ is given for each operating point.false prior is present, which was also found for motored cycles in ta-ble 7.4. As expected the individual parameter estimates depend uponthe number of e�cient parameters d#, the false prior level and whatparameters that are classi�ed as e�cient. In order to have a true pa-rameter deviation that is smaller than the false prior level, a maximumof eight parameters should be used according to the ε̄t
x-column. For themotored case, this number was as low as three according to table 7.4.The ε̄t

x-column also shows that ε̄t
x is minimized by seven parameters,which is also the minimizer of the Akaike FPE for this particular cycle.This is more of a coincidence than a pattern.If the individual estimates are considered, it is notable that the

C1-estimate has the largest normalized bias in general, which was alsothe case for the motored cycles. Until C1 is �xed the other parameters,especially TIV C and b, and to some extentQin,Kp, and Tw, compensatefor the bad C1-estimates. This results in biased estimates for theseparameters as well. When C1 is �xed, the pressure gain Kp and themean wall temperature Tw still have considerable biases.The two parameters γ300 and Vc was shown to be important in thesensitivity analysis in table 3.2. If the estimation accuracy of thesetwo parameters would decide how many parameters to use, the answerwould be eight parameters. This motivates why eight parameters areused for compression ratio estimation on �ring cycles in chapter 5.Due to the unsuccessful results of applying method 1 to setup 1without a preferred ordering of the parameters, as well as the unsuccess-ful results for a preferred ordering for the motored case in section 7.1.3,the investigations concerning a preferred parameter ordering as well assetup 2 are left out.Summary of method 1To summarize, the usage of method 1 for estimating all the parametersin the presence of a false prior has not been successful, which con�rms
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8.1. SIMULATION RESULTS � FIRED CYCLES 193the results found for the motored cycles in chapter 7. Minimizing theAkaike FPE criterion gives a recommended number of parameters be-tween 3 and 16, which �uctuates with both operating point and noiserealization and therefore hardly gives any guidance at all. If we in-stead just consider the true parameter deviation, a maximum of eightparameters can be used in order to yield a true parameter deviationthat is less than the applied false prior level. For a speci�c application,like compression ratio estimation in section 5.3.4, eight parameters arerecommended to be used.Method 1 has also given valuable insight in which parameters thatare most e�cient. For instance it has been shown that γ300 is themost e�cient parameter, given the structure of the standard model insection 3.8.8.1.4 Method 2� Results and evaluationNow the focus is turned to evaluating method 2. First the results arepresented and then the performance of the three versions M2:1, M2:2and M2:3 are evaluated using the two setups described previously insection 7.1.2.Implementation detailsThe implementation details described in section 7.1.4 for motored cy-cles apply here as well and are therefore only repeated in a summarizedmanner. The interesting search region ∆x for the regularization pa-rameter δx is again chosen as δx ∈ [10−11, 105], see �gure 7.5, to assurethat the L-shaped corner is included for all examined cases. When itcomes to the three versions of method 2, the constants mε and mδ forM2:1 and aε for M2:2 are computed in the same manner for both �redand motored cycles, see section 6.4.2 for details. Version M2:3 requiresno choices to be made.Results for setup 1The results of method 2 are now given for setup 1, where the nominalvalues are given by x# = (1 + FP)xt for FP ∈ {0, 1, 2.5, 5} % and theassigned standard deviation σ = 0.01xt is equal for all parameters,yielding equal regularization elements δi, i.e. case 1 of δi (δi = c).An example of an L-curve is given in �gure 8.3 for one engine cycleat OP1 and FP = 5 %. It also shows the true parameter deviation ε̄t
xand the false prior level, as well as the results from the three versionsof method 2 and the optimal choice of δx. As before, the optimal δ∗x isdetermined as the one minimizing ε̄t

x = RMSE(εt
x), for the δx:s used inthe computation.
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Figure 8.3: L-curve (solid line) for one engine cycle at OP1 withFP=5 % (dotted line) for setup 1. The results for the three versionsof method 2 and the optimal choice of regularization parameter areindicated by the legend. The mean true parameter deviation ε̄t
x (dash-dotted line) is also given.The optimal δ∗x is given in table 8.4 for all operating points andfalse prior levels used in setup 1. The corresponding true parameterdeviations ε̄t

x are summarized in table 8.5. The numerical values inboth tables are given as mean values for the ten cycles.Table 8.6 summarizes the results for all six operating points in termsof the true parameter deviation ε̄t
x in percent as mean values of tencycles at FP=5 %. The results are similar for the other false priorlevels used. The mean and maximum di�erence compared to δ∗x arealso given, together with the mean computational time for completingthe estimation of one engine cycle.Table 8.7 shows the individual parameter estimates and the corre-sponding mean true and nominal parameter deviations ε̄t

x and ε̄#x atOP1 for FP = 5 %. The corresponding table for OP6 is given in ta-ble 8.8. These parameter values are computed as mean values for ten



8.1. SIMULATION RESULTS � FIRED CYCLES 195FP [%] 1 2 3 4 5 60 1 · 105 1 · 105 1 · 105 1 · 105 1 · 105 1 · 1051 0.085 0.091 0.095 0.56 0.15 0.00812.5 0.0062 0.011 0.051 0.0013 0.02 0.00335 0.002 0.0044 0.008 0.00098 0.019 0.0044Table 8.4: Value of optimal regularization parameter δ∗x, for setup 1and operating points OP1 to OP6. For FP = 0 %, δ∗x is the highestvalue used in the computation.FP [%] 1 2 3 4 5 60 10−7 10−7 10−7 10−7 10−7 10−71 0.8 0.8 0.8 0.8 0.8 0.72.5 1.9 1.9 1.9 1.6 1.8 1.65 3.4 3.5 3.4 3.0 3.3 3.2Table 8.5: Mean true parameter deviation ε̄t
x [%] corresponding tooptimal δ∗x in table 8.4, for setup 1 and operating points OP1 to OP6.consecutive cycles. The tables also entail the relative mean estimationerror (RME) in percent, as well as numerical values for the true and(emphasized) nominal values.Evaluation for setup 1Evaluation for OP1: Figure 8.3 is very similar to �gure 7.6 in that ε̄t

xbecomes smaller for a decreasing δx until it reaches its optimal value,and that all three versions of method 2 visually �nd positions closeto the corner of the �L�. Note that the estimate lies in between thetrue value and the nominal (false) value, and therefore is a compromisebetween the data and the prior knowledge.The placement order on the L-curve in �gure 8.3 in which the ver-sions occur is however somewhat altered compared to the motored case.As for the motored case, the approximative versions are a little moreconservative than the optimal δ∗x, resulting in higher values of δx andestimates that are closer to the nominal values. This is however prefer-able to a situation where δx is too low, which would result in parameterestimates that have drifted away from the nominal ones.Just as for the motored case, the optimal regularization parameter
δ∗x is approximately the same for di�erent noise realizations, but de-pends upon the operating point and false prior level used. Concerningthe estimation accuracy, the true parameter deviation ε̄t

x is fairly con-stant from cycle-to-cycle and di�erent operating points, for a given FP



196 CHAPTER 8. RESULTS AND EVALUATION FIRED. . .OP δ∗x δx (M2:1) δx (M2:2) δx (M2:3) mv(δx)1 3.4 4.1 4.1 4.0 4.02 3.5 4.0 4.0 3.9 3.93 3.4 4.1 4.1 4.0 4.04 3.0 4.0 4.0 4.0 4.05 3.3 4.0 4.0 3.9 4.06 3.2 3.9 3.9 3.6 3.8Max Di� 0 0.98 1 0.95 0.95Mean Di� 0 0.69 0.69 0.58 0.65Time [s] 21275 296 9109 21275 358Table 8.6: True parameter deviation ε̄t
x for the optimal δ∗x in table 8.4,the three versions of method 2 and as mean value for the optimal δ∗xcorresponding to table 8.4. The numerical values are given in percentand are evaluated for FP = 5 % for setup 1. The mean computationaltime for completing the estimation for one engine cycle is also given,where the assumptions made are the same as for the motored cycles insection 7.1.4.level. These statements are not shown, but are in accordance with themotored cycles and are based on the similarity of �gures 7.8 and 7.9for the motored cycles.Evaluation for all OP:s. The focus is now turned to evaluatingmethod 2 for all operating points. Table 8.4 shows that the optimal

δ∗x changes with the FP level and operating point, and the e�ect ismost pronounced for changes in the FP level. However the estimationaccuracy is approximately the same although the optimal δ∗x variesdepending on the operating point at a given FP level, as shown intable 8.5. The table also shows that the true parameter deviation ε̄t
xis less than the false prior level used for FP > 0 %. This is all inaccordance with what was concluded earlier for motored cycles.Table 8.6 shows that the true parameter deviation is larger for theapproximative versions of δx as compared to the optimal choice δ∗x.However all estimates are a compromise between the true and nominal(false) values, and are somewhat biased towards the nominal ones. Asillustrated earlier for �gure 8.3, the approximative versions resulted inconservative δx:s, which in turn results in estimates that are close tothe nominal ones, i.e. estimates that are over-smoothed by the regu-larization. The mean di�erence in ε̄t

x compared to δ∗x is in the orderof 0.6-0.7 % as indicated in the table. The di�erence in between theapproximative versions is however relatively small. Compared to thecorresponding motored case in table 7.10 the estimation accuracy for δ∗xis higher for �red cycles, while the approximative versions yield approx-



8.1. SIMULATION RESULTS � FIRED CYCLES 197imatively the same accuracy. Algorithm M2:3 however has the overallhighest accuracy of the three versions, and is in the mean 0.1 % moreaccurate than M2:1 and M2:2 for all the examined operating points.These two versions yield approximately the same estimate and theycould both be trimmed to give better estimates, which would howeverrequire ad-hoc tuning. This is therefore not pursued here since the goalhas been to compute the values for the constants mε, mδ and aε in thesame way, regardless of operating point.As pointed out in section 7.1.4, M2:1 (and M2:2) could have a disad-vantage compared to M2:3 when changing operating conditions whichcould either result in some loss in estimation accuracy or requires anad-hoc tuning of the parameters in M2:1. The former e�ect is seen intable 8.6 by comparing the columns for M2:1 and M2:3, especially forOP6. For the motored cycles this e�ect did not show up, which couldbe due to the simpler model of cylinder pressure, but is more likely dueto that the changes in thermodynamic properties are larger when anoperating point is changed for the �ring cycles.The computational time given in table 8.6 again shows that algo-rithm M2:1 and mv(δ∗x) are the fastest and they di�er merely due tothat they use a di�erent number of iterations to minimize the loss func-tion WN . Compared to M2:3, M2:1 is approximately 70 times fasteraccording to table 8.6, while M2:2 is approximately 30 times slowerthan M2:1. As expected the computational time increases signi�cantlyfor �red cycles as compared to motored, the increase is approximativelya factor eight in the mean. The increase is due to the more complexmodel, more parameters to estimate and more iterations performedbefore convergence of the local optimizer for each speci�c δx.Estimation accuracy for xi: Now the focus is turned to the esti-mation accuracy for the individual parameters xi. Tables 8.7 and 8.8show that the estimates for C1, TIV C , b, Tw, ∆p, and especially for Vcr,
∆θ and C2, are regularized to the vicinity of their respective nominalvalue x#

i , indicated by an RME close to 5 %. These eight parame-ters correspond fairly well with the order in which the parameters areset spurious for method 1 when no preferred ordering is used, com-pare (8.1). The di�erence is Kp, otherwise it corresponds to the eightmost spurious parameters. The estimates for the other parameters, ex-cept for θig and Kp, yield estimates that are in between the true and(false) nominal value. For all examined operating points the estimationaccuracy is highest for γ300, which has an overall RME within 1.5 %,closely followed by ∆θb (1.6 %), pIV C and Qin (within 1.8 %). Theaccuracy for Vc is within 3.2 %.The estimation accuracy also depends upon the routine used to de-termine the regularization parameter δx. From table 8.6 it was foundthat routine M2:3 gave the smallest overall mean error, followed by
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200 CHAPTER 8. RESULTS AND EVALUATION FIRED. . .M2:1 and M2:2. When considering the individual estimates of the�ve parameters, the same relative ordering is found if all six oper-ating points are considered. In the case for M2:3 the accuracy of theestimates for the �ve parameters is within 3 %. This value is largerthan the 0.5 % which was found for the corresponding motored case,and is probably due to the more complex model structure and harderestimation problem in the �red case. The other estimates end up as acompromise in between the true value and the (false) nominal value,except for θig and Kp. In the case of the two parameters ∆p and C2,these two estimates coincide with the nominal values for all cases of δxin table 8.7. For the two parameters Vcr and ∆θ the estimates coincidewith the nominal ones for the approximative versions, but not for theoptimal choice of δx.As pointed out for the motored case, in the presence of a false priorof 5 % the estimates for method 2 are equally or more accurate com-pared to method 1 for all number of, except seven, e�cient parameters,as shown by comparing the ε̄t
x-columns in tables 8.3 and 8.7. This againillustrates that method 2 is more robust to a false prior than method 1and this results in better estimates. The di�erence between method 1and method 2 are however smaller in the �red case.Results for setup 2The results for method 2 is now presented for setup 2, where the nom-inal values are given by x#

i = (1 + σi)x
t
i, for which the standard de-viations are given in table 8.1. The assigned regularization elementsare given for the two cases δi = c and δi 6= c. The �rst case is

δi = 1
2N

1
(0.01xt

i)
2 , i.e. all elements are equal, and in the second case

δi = 1
2Nσ2

i

. The tables and �gures follow the same structure as for thecorresponding motored case in section 7.1.4.The L-curves based on one engine cycle for each case at OP1 aregiven in �gures 8.4 and 8.5 respectively. The individual parameterestimates are given in tables 8.10�8.13, and corresponds to the formused in table 8.7. Tables 8.10 and 8.11 represent case 1 (δi = c) for OP1and OP6, while the corresponding tables for case 2 (δi 6= c) are givenin tables 8.12 and 8.13. It is worth to mention again that the secondcase uses the weighted versions of the nominal parameter deviationRMSE(Lδ ε#x ) and so on in the tables and �gures. Therefore the optimalregularization parameter δ∗x is now determined as the one minimizingthe weighted true parameter deviation, i.e. RMSE(Lδ εt
x). The nominaland true parameter deviations ε̄t

x and ε̄#x for both cases at OP1 andOP6 are then summarized in table 8.9.
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Figure 8.4: L-curve (solid line) for one engine cycle at OP1 with falseprior ε̄#−t
x (dotted line), when using setup 2 and case 1 of the δi (δi =

c). The results for the three versions of method 2 and the optimalchoice of regularization parameter are indicated by the legend. Thetrue parameter deviation ε̄t
x (dash-dotted line) is also given.Evaluation for setup 2Evaluation for OP1: Figures 8.4 and 8.5 both illustrate the L-shapedcurve which was also found for the corresponding motored case. Thethree approximative versions of method 2 all yield estimates that areclose to the corner of the �L�. This is however not the case for theoptimal regularization parameter. Figure 8.4 (δi = c) shows that theoptimal δ∗x is not as close to the corner as in the approximative ver-sions. This is directly re�ected in the parameter estimates for δ∗x thatare close to the true values. They are closer than the estimates fromthe approximative versions, as seen in the ε̄t

x- and ε̄#x -columns in ta-bles 8.10 and 8.11. For δi 6= c the optimal δ∗x is closer to the corner asshown in �gure 8.5, which is also re�ected in a better consistency be-tween the optimal and approximative versions. It also re�ects a better
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Figure 8.5: L-curve (solid line) for one engine cycle at OP1 withweighted false prior RMSE(Lδ ε#−t
x ) (dotted line), when using setup 2and case 2 of the δi (δi 6= c). The results for the three versionsof method 2 and the optimal choice of regularization parameter areindicated by the legend. The weighted true parameter deviationRMSE(Lδ εt

x) (dash-dotted line) is also given.
δi = c δi 6= cOP1 OP6 OP1 OP6

δx: ε̄t
x ε̄#x ε̄t

x ε̄#x ε̄t
x ε̄#x ε̄t

x ε̄#x[%] [%] [%] [%] [%] [%] [%] [%]
δ∗x 6.5 16.6 6.2 17.7 5.8 15.2 11.2 16.0
δx(M2 : 1) 18.3 3.8 18.3 3.2 11.1 12.7 14.3 11.7
δx(M2 : 2) 18.3 4.1 18.3 3.3 12.8 10.4 13.8 8.6
δx(M2 : 3) 18.2 4.3 18.2 3.9 11.4 12.5 12.6 11.9
x# 18.8 0.0 18.7 0.0 18.8 0.0 18.7 0.0
xt 0.0 18.8 0.0 18.7 0.0 18.8 0.0 18.7Table 8.9: Mean true and nominal parameter deviation for method 2using two cases of δi at OP1 and OP6 for setup 2.
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x and Lδε#x , as they are equal insize in tables 8.12 and 8.13. This speaks in favor of using δi 6= c.Evaluation for the individual estimates xi: Now consider the es-timation accuracy of the individual parameters xi, and especially theestimates produce by M2:1, M2:2 and M2:3. Tables 8.10 and 8.11 showthat the estimates for the parameters C1, b, and especially for Vcr, ∆p,

∆θ and C2 are regularized to the vicinity of their respective nominalvalue x#
i , indicated by an RME that is close to the one for the nominalparameter values. Most of the remaining parameters end up in theregion between the true and nominal values, except for the estimatesof C1, Vc, γ300 and Kp. These parameters end up just outside of theregion with estimates that are within 6 % for the worst case (Kp).For δi 6= c, tables 8.12 and 8.13 show that C1, TIV C , γ300, Tw, Vcr,

∆θ and C2 end up near their respective nominal value, while the burnangle parameters θig , ∆θd and ∆θb, and the released energy Qin yieldestimates within 2.3 %. The estimates of the four parameters Vc, γ300,
Qin and ∆θb are again better for δi 6= c than δi = c, while the accuracyof pIV C is approximately the same.The conclusion from tables 8.10-8.13 is that the regularization isused to pull parameters that are hard to estimate toward their nominalvalues, while the e�cient parameters are free to �t the data. This wasthe drive for using method 2, and it works as intended.Evaluation for all OP:s: Table 8.9 shows that for δi = c the trueparameter deviation ε̄t

x is almost as large as the false prior level used,while for δi 6= c the true and nominal parameter deviations ε̄t
x and ε̄#xare approximately equal in size. This is also illustrated in the weightedtrue and nominal parameter deviations, Lδεt

x and Lδε#x , in tables 8.12and 8.13. As pointed out earlier, it re�ects a better compromise be-tween prior knowledge and measurement data for the second case. Fromtable 8.9 it can also be concluded that the true parameter deviation ε̄t
xis smaller for the second case for all three versions of method 2, whichalso was the case for evaluation based upon motored cycles, see ta-ble 7.13. As for the corresponding motored case the mean nominalparameter deviation ε̄#x is relatively small for δi = c and signi�cantlyhigher for δi 6= c. This together with the smaller ε̄t

x re�ects that thesecond case is more robust to a false prior, which of course is preferable.Note that the false prior level for the �red cycles is smaller than for themotored cycles, which is due to the larger number of parameters andthat the RME of the false prior in setup 2 for ∆p and ∆θ are 50 %, seetable 8.1.Now the attention is turned to �nding which version of method 2that performs the best. In the case of δi = c all three versions arerestrictive and yield estimates close to the nominal values. This is,as pointed out previously, re�ected by a relatively low value of ε̄#x in
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208 CHAPTER 8. RESULTS AND EVALUATION FIRED. . .table 8.9. Out of these three, M2:3 performs best, but the di�erenceis small and the estimation bias is still signi�cant as re�ected by the
ε̄t

x-columns.In the case of δi 6= c, all three versions render weighted parame-ter deviations RMSE(Lδ εt
x) and RMSE(Lδ ε#x ) that are approximatelythe same and fairly close to the optimal, see tables 8.12 and 8.13. Ta-ble 8.9 shows that ε̄t

x is smallest for M2:1 at OP1 and for M2:3 at OP6.However when considering ε̄t
x for all investigated operating points, it islowest for M2:3 followed by M2:2 and M2:1 for all six operating pointsexcept OP1.8.1.5 Summary for simulation resultsMethod 1 resulted in parameter estimates that are signi�cantly biasedin the presence of a false prior, since the bias is larger than the falseprior level used. It is therefore in itself not recommended to use forestimation of all parameters in the given formulation. When the trueparameter deviation is available, the number of e�cient parameters canbe determined for a speci�c application such as for example compressionratio estimation.Method 2 outperforms method 1 since it is more robust to a falseprior level and yields more accurate parameter estimates. The drive formethod 2 was to regularize the solution such that the parameters thatare hard to determine are pulled towards their nominal values, whilethe e�cient parameters are free to �t the data. This has shown to bethe case in the simulations for both �red and motored cycles.The user can chose between two cases of the parameter uncertainty,namely δi = c and δi 6= c. The former is directly applicable once nomi-nal values of the parameters are determined and yields good estimates.The second case is however more robust to false prior as seen in setup 2,and it is therefore recommended since it pays o� in better estimates.Method 2 is given three versions; For the �red cycles it has beenshown that M2:3 yields the best estimates in terms of estimation accu-racy. For motored cycles it was shown that M2:1 could be used in allthe examined operating points without any noticeable loss in estima-tion accuracy. This has not been the case for the �red cycles, where achange in operating conditions changes the thermodynamic propertiesmore signi�cantly and results in larger biases for M2:1 than for M2:3.The di�erence in estimation accuracy between M2:1 and M2:3 is how-ever small, within 0.3 % and 2 % for setup 1 and 2 respectively, whilethe di�erence in computational time is more signi�cant. Thus if timeis available the recommendation is to use M2:3, while if computationaltime is an important feature M2:1 is recommended.



8.2. EXPERIMENTAL RESULTS � FIRED CYCLES 2098.2 Experimental results � �red cyclesThe methods will now be evaluated on experimental engine data. Thestructure of the section is similar to the corresponding motored case, i.e.section 7.2. Thus �rst the experimental engine data will be described,followed by a discussion on the parameter prior knowledge used. Thefocus is then turned to evaluating the performance of method 1, fol-lowed by method 2.8.2.1 Experimental engine dataData is collected during stationary operation at engine speeds N ∈
[1200, 3500] rpm, intake manifold pressures pman ∈ [32, 130} kPa andignition angle θig ∈ [−33, −5] deg ATDC, altogether forming six di�er-ent operating points. These operating points are de�ned in the upperpart of table 8.14, and are also given in table C.9 in appendix C.7.For each operating point 101 consecutive �red cycles were sampledfor two cylinders with a crank-angle resolution of 1 degree, using anAVL GU21D cylinder pressure sensor. But due to the longer compu-tational time for �ring cycles as compared to motored, especially forM2:3 as shown in table 8.6, only the �rst 40 cycles will be considered inthe evaluation. Figure 8.6 displays one measured cycle for each oper-ating point. The operating points are numbered in an ascending orderof their maximum cylinder pressure.8.2.2 Parameter prior knowledgeThe parameter prior knowledge used in the experimental evaluation isbased on di�erent strategies to set the nominal parameter values x#and the regularization elements δi.Nominal parameter values x#The nominal parameter values x# are set based on a combination ofthe parameter initial methods described in chapter 3 and expert priorknowledge of what the numerical value of x# should be. The valuesfor x# for each operating point are given as the emphasized valuesin table 8.15. The nominal values are also given in table C.10 in ap-pendix C.7. Of these parameters it is only the nominal values for ∆p,
∆θd and ∆θb that are updated for each cycle, and therefore for thesethree, their respective mean value is given in the table. The otherparameters are updated for each operating condition.
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Figure 8.6: Experimentally measured �red cylinder pressures at oper-ating conditions OP1�6.Regularization elements δiTwo cases of regularization parameter elements are used for method 2and they correspond to the two cases used in the simulation-basedevaluation done previously. The �rst case (δi = c) sets the standarddeviation σi for each parameter as σi = 0.01x̄#
i , where x̄#

i is the meanvalue of x#
i for one operating point. It is used to assure that σi does not�uctuate in size from cycle-to-cycle. In the simulation-based evaluation

xt was used instead of x̄#.The second case (δi 6= c) is based on expert knowledge of the un-certainty for each parameter and it is therefore subjectively chosen bythe user. The standard deviation used here in the experimental eval-uation coincides with the one used for the simulation-based evaluationin table 8.1.The �rst case is updated for each operating point, while this is notrequired for the second case.
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N [rpm] 1200 1500 1500 2000 3000 3500
pman [kPa] 32 55 130 123 103 120
θig [deg ATDC] -33 -26 -5 -12 -28 -24mean(d∗) 13.2 13.2 13.1 11.8 13.6 14.3
d∗ ∈ [11, 16] [12, 16] [9, 16] [10, 15] [11, 16] [11, 16]Table 8.14: Mean number and region of d∗ for 40 experimental cyclesat OP1�6.8.2.3 Method 1� Results and evaluationMethod 1 is evaluated without a preferred ordering, since no gain wasfound in the simulation-based evaluation by using one in section 7.1.3.The parameter order for all six operating points is given by

∆p ≺ C2 ≺ Tw ≺ pIV C ≺ ∆θ ≺ Vcr ≺ C1 ≺ TIV C

≺ ∆θd ≺ b ≺ Qin ≺ Kp ≺ ∆θb ≺ Vc ≺ θig ≺ γ300, (8.2)which re�ects the most common case. This parameter order di�erssomewhat from the corresponding order found in simulations (8.1), forinstance θig and ∆θd have changed places, but γ300 is still the moste�cient parameter and invariant in position for the investigated oper-ating conditions and cycle-to-cycle variations. The other parametersdi�er in order at most instances as permutations of the three groups
[b, C1, C2, TIV C , pIV C , Tw, Vcr], [Kp, pIV C , Qin, ∆θb] and [θig, ∆θd].The same groups were found in the simulation-based evaluation in sec-tion 8.1.3 except for Vcr and ∆θb that are now included in the �rst andsecond group respectively.The minimizing number of parameters d∗ using algorithm 6.2 aregiven in table 8.14 as a mean over the 40 cycles at all six operatingpoints. The range of d∗ for each operating point is also given. Thetable shows that the mean values of d∗ are more stable between oper-ating points and that the variation is smaller in the experimental case,compared to the simulation given in table 8.2. The trend of more e�-cient parameters for high loads seen in table 8.2 does not show up intable 8.14.The mean value, standard deviation, and relative mean error for theindividual estimates are given in table 8.15. The relative mean erroris computed relative to the nominal parameter value at each cycle andis given in percent. All parameters give reasonable values except for
Tw and Vcr that yield unreasonably large parameter values, while TIV Cand to some extent also Vc yield small values. The parameter C1 yieldsestimates that are either too small, reasonable or too large. Especiallyfor OP3 and OP4 the C1-estimate becomes too small, while at the same
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8.2. EXPERIMENTAL RESULTS � FIRED CYCLES 213time a high pIV C , an advanced ignition angle θig and a prolonged burndelay angle ∆θd as compared to the nominal values is notable. The lackof accuracy for the estimates is due to the high mean number of e�cientparameters found in table 8.14. These high numbers are probably dueto that the Akaike FPE assumes that the system considered is coveredby the model structure used. All models are approximations and thisis the case here, especially for �ring cycles, since not every physicalprocess in�uencing the measured cylinder pressure is modeled. Thecombination of modeling error and the measurement noise makes theAkaike criterion become minimized for a high value of d∗.In accordance with the simulation-based evaluation in section 8.1.3,method 1 is not recommended to use for parameter estimation in thegiven formulation. The attention is therefore turned to method 2.8.2.4 Method 2� Results and evaluationIn the experimental evaluation of method 2 for motored cycles in sec-tion 7.2.4, a fourth version called M2:3+was included. The algorithmwas motivated and fully described in appendix C.3, and it will also bestudied here in the experimental evaluation for �ring cycles.First the results are presented for the two cases of δi:s, δi = c and
δi 6= c, and then the performance of the four versions M2:1, M2:2,M2:3 and M2:3+ are evaluated. The same implementation settings, asfor the simulation-based evaluation in section 8.1.4, are used and aretherefore not repeated here.Results for case 1 (δi = c) and case 2 (δi 6= c)The results are �rst described for case 1. An example of an L-curve isgiven in �gure 8.7. Table 8.16 summarizes the mean value and standarddeviation of the computed regularization parameter δx for 40 experi-mental cycles. This is done for all six operating points and for eachof the four versions of method 2. The individual parameter estimatesare given as mean values for 40 cycles at each OP in table 8.18, as wellas the corresponding (emphasized) nominal values x# and the nominalparameter deviation ε̄#x .The corresponding �gures and tables for case 2 are given in �g-ure 8.8, table 8.17, table 8.19 that now also include the weighted nom-inal parameter deviation RMSE(Lδ ε#x ).Evaluation for case 1 (δi = c)Case 1 is considered �rst. Figure 8.7 illustrates that the L-curve doesnot have as sharp transition as in the corresponding simulated casegiven in �gure 8.4. The di�erence is believed to be due to that the
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Figure 8.7: L-curve (solid line) for one engine cycle at OP1, when usingcase 1 of the δi (δi = c). The results for the four versions of method 2are indicated by the legend.
δx: OP1 OP2 OP3 OP4 OP5 OP6

δx(M2 : 1) mean 1.8 · 10−2 4.0 · 10−1 3.9 · 100 6.7 · 10−1 7.3 · 10−1 1.1 · 100

σest 2.0 · 10−2 8.8 · 10−2 1.4 · 100 1.5 · 100 7.1 · 10−1 4.2 · 10−1

δx(M2 : 2) mean 4.9 · 10−7 2.9 · 10−7 9.5 · 10−6 1.1 · 10−6 3.4 · 10−6 8.8 · 10−7

σest 2.2 · 10−6 1.2 · 10−7 1.0 · 10−5 1.2 · 10−5 3.7 · 10−4 2.0 · 10−6

δx(M2 : 3) mean 2.8 · 10−5 7.3 · 10−6 7.3 · 10−6 6.2 · 10−6 8.0 · 10−6 1.5 · 10−6

σest 4.9 · 10−4 3.3 · 10−5 1.3 · 10−4 2.6 · 10−5 1.5 · 10−4 1.2 · 10−5

δx(M2 : 3+) mean 3.2 · 10−3 9.7 · 10−3 8.8 · 10−2 6.3 · 10−2 4.1 · 10−2 4.8 · 10−2

σest 3.8 · 10−3 2.0 · 10−3 3.1 · 10−2 1.8 · 10−2 1.1 · 10−2 1.1 · 10−2Table 8.16: Mean value and standard deviation (σest) of δx for the fourversions of method 2 using case 1, evaluated for 40 experimental cyclesat OP1�6.



8.2. EXPERIMENTAL RESULTS � FIRED CYCLES 215model structure is not correct. Figure 8.7 also shows that the fourversions yield di�erent regularization parameters δx. Version M2:1 isthe most conservative of them all and yields the highest δx, closelyfollowed by M2:3+. Then there is a gap to the two versions M2:2 andM2:3, which in turn render approximately the same δx. Both M2:3 andM2:3+ correspond to corners on the L-curve, although the corner forM2:3 is hardly visible to the eye.For all six operating points table 8.16 shows that the regularizationparameter for the four versions are ordered in size according to
δx(M2 : 1) > δx(M2 : 3+) > δx(M2 : 3) > δx(M2 : 2), (8.3)except for OP3 where it is the other way around for M2:2 and M2:3. Asexpected the di�erence between δx(M2 : 1) and δx(M2 : 3+) is smallerthan between δx(M2 : 1) and δx(M2 : 3). Version M2:3+ is more�exible to changes in operating condition than M2:1, since it �nds aconvex corner of the L-curve. For the examined operating points, M2:1yields a higher δx than M2:3+. Using M2:3 in its original form or M2:2results in lower values of δx. For M2:3 this corresponds to the highvalue of the curvature found in �gure C.2. Table 8.16 also shows thatthe mean value of δx depends upon operating condition, and that for agiven version of method 2 δx is in the same order of magnitude for allsix operating points.The di�erent δx:s result in di�erent nominal parameter deviationsand individual estimates, as shown in table 8.18 for OP1-6. The ε̄#x -column shows that M2:1 yields the smallest nominal parameter devia-tion of all versions, closely followed by M2:3+. The nominal deviations

ε̄#x are within 2.2 % and 4.4 % respectively for all operating points con-sidered. The other two versions, M2:2 and M2:3, render a signi�cantlylarger ε̄#x , where the parameters b, γ300 and TIV C give unreasonablevalues. Of these parameters, b is the largest contributor to the nom-inal deviations. At some instances the ignition angle θig is advancedcompared to the nominal value, and this is compensated by a longer�ame development angle ∆θd, see e.g. OP2. In the experimental eval-uation for motored cycles it was found that Kp yielded unreasonableestimates, see table 7.21, but this is not the case for the �ring cycles.Of the other parameters pIV C , Kp, C2, Qin and ∆θb all end up within5 % of their nominal values for all operating points.The individual estimates for M2:1 and M2:3+ are all reasonable,which is expected since they end up close to their nominal values. Themaximum deviation occurs for the parameters θig and ∆θd for bothversions, the others are all within 5 %.To summarize the evaluation for δi = c, using M2:1 or M2:3+ yieldestimates that deviate less than 3 and 5 percent in the mean.
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Figure 8.8: L-curve (solid line) for one engine cycle at OP1, when usingcase 2 of the δi (δi 6= c). The results for the four versions of method 2are indicated by the legend.
δx: OP1 OP2 OP3 OP4 OP5 OP6

δx(M2 : 1) mean 7.7 · 10−4 1.4 · 10−2 1.7 · 10−1 3.5 · 10−2 3.2 · 10−2 5.3 · 10−2

σest 6.1 · 10−4 3.0 · 10−3 3.8 · 10−2 5.2 · 10−2 2.1 · 10−2 2.3 · 10−2

δx(M2 : 2) mean 4.3 · 10−5 5.6 · 10−5 3.8 · 10−3 1.4 · 10−4 1.9 · 10−3 7.1 · 10−4

σest 3.4 · 10−4 3.0 · 10−5 2.9 · 10−3 8.0 · 10−4 6.7 · 10−3 1.5 · 10−2

δx(M2 : 3) mean 1.5 · 10−6 5.8 · 10−7 8.5 · 10−5 7.3 · 10−6 1.2 · 10−4 8.7 · 10−6

σest 1.8 · 10−5 6.4 · 10−7 1.3 · 10−3 9.5 · 10−5 1.9 · 10−3 3.6 · 10−4

δx(M2 : 3+) mean 2.2 · 10−4 4.6 · 10−4 1.3 · 100 7.1 · 10−4 1.6 · 10−3 1.8 · 10−2

σest 7.9 · 10−4 3.0 · 10−4 2.4 · 100 1.8 · 10−3 1.5 · 10−3 1.1 · 10−1Table 8.17: Mean value and standard deviation (σest) of δx for the fourversions of method 2 using case 2, evaluated for 40 experimental cyclesat OP1�6.



8.2. EXPERIMENTAL RESULTS � FIRED CYCLES 217Evaluation for case 2 (δi 6= c)Now the second case will be evaluated. The L-curve in �gure 8.8 is sim-ilar to the corresponding L-curve for the simulated case in �gure 8.5,although it is not as sharp in the transition. As for case 1, both M2:3and M2:3+ correspond to corners on the L-curve, although the cornerfor M2:3 is hardly visible to the eye. Figure 8.8 also displays that thethree versions M2:1, M2:2 and M2:3+ yield approximately the same δxfor OP1, while M2:3 yields a smaller δx. This observation is con�rmedby table 8.17. However the variation in δx for M2:1, M2:2 and M2:3+ islarger for the other �ve operating points, and thus re�ect that the ver-sions typically are a little more spread out on the L-curve as comparedto OP1.Table 8.17 shows that for all six operating points the regularizationparameter for the four versions are ordered in size according to
δx(M2 : 1) > δx(M2 : 3+) > δx(M2 : 2) > δx(M2 : 3), (8.4)except for OP3 where it is the other way around for M2:1 and M2:3+.Compared to (8.3), the ordering is the same apart from M2:2 and M2:3which now have changed places. As for the �rst case, M2:3 results inlow values of δx, due to the same reason. It is also found that the meanvalue of δx depends upon operating conditions, and that for a givenversion of method 2 δx is in the same order of magnitude for almost allsix operating points. The only exception is OP3 for version M2:3+.As expected, the di�erent δx:s result in di�erent nominal parameterdeviations and individual estimates, as shown in table 8.19 for OP1-6.The column for weighted parameter deviation, Lδε#x , shows that M2:1and then M2:3+ yield the smallest nominal parameter deviations ofall versions, except for OP3 where it is the other way around. Thiscorresponds to the ordering given in (8.4). The other two versions,M2:2 and M2:3, render a signi�cantly larger Lδε#x , mainly due to lowestimates of γ300 and TIV C as seen for OP2. Considering the ε̄#x -column, these values are larger than the corresponding column for δi =

c, see table 8.18. This is mainly due to the relatively large contributionof nominal deviation in ∆θ for δi 6= c. The nominal deviations ε̄#xfor M2:1 and M2:3+ are within 67 % and 76 % respectively for alloperating points considered.Now consider the individual estimates in table 8.19; Just as for
δi = c, the ignition angle θig is advanced compared to the nominalvalue, and this is compensated by a longer �ame development angle
∆θd. Another trend is that ∆θ is larger than the nominal value for alloperating points. For M2:2 and M2:3 the parameters pIV C , Vcr, Kp,
C2, Qin and ∆θb all end up within 5 % of their nominal values. Theseparameters are the same as for δi = c, but now also includes Vcr. ForM2:3+the estimates of C1, pIV C , γ300, Tw, Vcr, Kp, C2, Qin, ∆θb and
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220 CHAPTER 8. RESULTS AND EVALUATION FIRED. . .for M2:1 also the parameters Vc and TIV C , are all within 5 % of theirnominal value. Compared to δi = c, fewer parameters are within thislimit, but as before all the estimates are still reasonable.To summarize the evaluation for δi 6= c, using M2:1 or M2:3+ yieldweighted nominal parameter deviations that are less than 10 and 17percent respectively.Summary of method 2To summarize, case 1 and 2 yield di�erent estimates and for the ver-sions M2:2 and M2:3 almost the same parameters are close (within5 %) of their nominal values. For M2:1 and M2:3+ more parametersare within this limit, especially for case 1. It can however not be deter-mined which case that gives the best estimates, since the true values areunknown. But it has been shown that the extension of M2:3 to M2:3+has resulted in a more robust algorithm. It has also been shown thatM2:1 and M2:3+ give more reasonable estimates, compared to M2:2and M2:3. This is in line with the results from the simulation study.The simulation study also showed that case 2 (δi 6= c) is to be preferred,and therefore this is the recommended choice.Unlike M2:1, M2:3+ �nds a convex corner of the L-curve. Thismakes M2:3+ more �exible to changes in operating condition. There-fore if time is available, M2:3+ is preferable to M2:1.8.3 Summary of results for �red cyclesFor method 1 the same conclusions as for the motored cycles in sec-tion 7.3 can be drawn; Both the simulation and experimental studiesshowed that method 1 did not render accurate estimates. It was evenhard to decide upon the number of e�cient parameters to use. How-ever, method 1 allows for the parameters to be ordered in how e�cientthey are for the given estimation problem and data. It was also shownthat γ300 is the most e�cient parameter.According to the simulation-based evaluation, method 2 is more ro-bust to an introduced false prior than method 1 since it yields moreaccurate parameter estimates. The di�erence in accuracy is howeversmaller between method 1 and 2 for �ring cycles compared to the mo-tored case. Just as for the motored case, the simulation study showedthat the regularization pulls some of the parameters towards their nom-inal values, while the e�cient parameters are free to �t the data.Method 2 was originally formulated for three variants. For thesimulation-based evaluation variant M2:3 is the most accurate one, fol-lowed by M2:2 and M2:1. From the experimental evaluation it wasfound that an extension of variant M2:3, called M2:3+, was needed to



8.4. FUTURE WORK 221cope with unreasonably high curvature for low δx that can occur forexperimental data. With this extension, the two variants M2:1 andM2:3+ both give reasonable estimates, and where M2:3+ is more �ex-ible to changes in operating condition of the two.Considering the two cases of parameter uncertainty, δi = c and
δi 6= c, it was found in the simulations that the second case was rec-ommended since it pays o� in better estimates that are more robustto a false nominal parameter value. The experimental evaluation canneither con�rm or decline this observation, since both cases yield rea-sonable estimates, at least for variants M2:1 and M2:3+.Thus if computational time is available, variant M2:3+ of method 2is recommended due to its accuracy. However if computational time isan important feature variant M2:1 is the best choice. The chosen vari-ant should preferably be combined with case 2 (δi 6= c), i.e. individuallyset parameter uncertainty.The compiled conclusions from the evaluations of motored and �reddata are given in section 9.3.8.4 Future WorkIt would be interesting to include a multi-zone cylinder pressure modelas a reference model in the simulation study done in section 8.1. Such astudy would shed more light on what happens when the chosen modelstructure is not covered by the cylinder pressure data, while the truevalue of the parameters are known. It would therefore resemble thesituation for the experimental �ring cycles better. The study couldalso include the model of the speci�c heat ratio developed in chapter 4.This extended model, in chapter 4 named model D1, is simulated byusing (3.36)�(3.43), (4.28), (A.9) and algorithm A.1. This inclusionwould allow for a direct performance comparison of the standard andextended cylinder pressure models.
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9Summary and conclusions
The theme of the thesis is cylinder pressure modeling and estimation.The results from part I are given in section 9.1, which repeats theconclusions from section 4.7. In the same way, the results for part IIare given in section 9.2, which repeats the conclusions from section 5.6.The compiled conclusions for part III are then given in section 9.3.9.1 A speci�c heat ratio model for single-zone heat release modelsThe �rst part of the thesis is on single-zone heat release modeling, wherethe speci�c heat ratio model constitutes a key part. Chapter 2 givesan overview of single-zone heat release models, while chapter 3 givesa more thorough description of the model components. In chapter 4various speci�c heat ratio models are investigated. The conclusionsfrom chapter 4 are now given here.Based on assumptions of frozen mixture for the unburned mixtureand chemical equilibrium for the burned mixture, the speci�c heat ratiois calculated, using a full equilibrium program, for an unburned and aburned air-fuel mixture, and compared to several previously proposedmodels of γ. It is shown that the speci�c heat ratio and the speci�cheats for the unburned mixture are captured to within 0.25 % by alinear function in mean charge temperature T for λ ∈ [0.8, 1.2]. Fur-thermore the burned mixture is captured to within 1 % by the higher-223



224 CHAPTER 9. SUMMARY AND CONCLUSIONSorder polynomial in cylinder pressure p and temperature T developedin Krieger and Borman (1967) for the major operating range of a sparkignited (SI) engine. If a linear model is preferred for computationalreasons for the burned mixture, then the temperature region should bechosen with care which can reduce the modeling error in γ by 25 %.With the knowledge of how to describe γ for the unburned andburned mixture respectively, the focus is turned to �nding a γ-modelduring the combustion process, i.e. for a partially burned mixture. Thisis done by interpolating the speci�c heats for the unburned and burnedmixture using the mass fraction burned xb. The objective was to �nd amodel of γ, which results in a cylinder pressure error that is lower thanor in the order of the measurement noise. It is found that interpolatingthe linear speci�c heats for the unburned mixture and the higher-orderpolynomial speci�c heats for the burned mixture, and then forming thespeci�c heat ratio
γ(T, p, xb) =

cp(T, p, xb)

cv(T, p, xb)
=
xb c

KB
p,b + (1 − xb) c

lin
p,u

xb cKB
v,b + (1 − xb) clinv,u

(9.1)results in a small enough modeling error in γ. This modeling errorresults in a cylinder pressure error that is lower than 6 kPa in mean,which is in the same order as the cylinder pressure measurement noise.It was also shown that it is important to evaluate the model errorin γ to see what impact it has on the cylinder pressure, since a smallerror in γ can yield a large cylinder pressure error. This also stressesthat the γ-model is an important part of the heat release model.Applying the proposed model improvement D1 (9.1) of the speci�cheat ratio to the Gatowski et al. (1984) single-zone heat release model issimple, and it does not increase the computational burden immensely.Compared to the original setting, the computational burden increaseswith 40 % and the modeling error introduced in the cylinder pressureis reduced by a factor 15 in mean.9.2 Compression ratio estimationFour methods for compression ratio estimation based on cylinder pres-sure traces are developed and evaluated for both simulated and exper-imental cycles in chapter 5. The conclusions are given here.Conclusions from the simulation resultsThe �rst three methods rely upon the assumption of a polytropic com-pression and expansion. It is shown that this is su�cient to get a roughestimate of the compression ratio rc for motored cycles, especially for alow rc and by letting the polytropic exponent become small. For a high
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rc it is important to take the heat transfer into account, and then onlymethod 4 is accurate to within 0.5 % for all operating points. Method 4is however slow and not suitable for on-line implementation. Method 2on the other hand is substantially faster and still yields estimates thatare within 1.5 %. The formulation of the residual is also important,since it in�uences the estimated rc. For �red cycles, methods 1-3 yieldpoor estimates and therefore only method 4 is recommended.A sensitivity analysis, with respect to crank angle phasing, cylinderpressure bias, crevice volume, and heat transfer, shows that the thirdand fourth method are more robust. They therefore deal with theseparameter deviations better than methods 1 and 2. Of the latter two,method 2 has the best performance for all parameter deviations exceptfor an additive pressure bias.Conclusions from the experimental resultsAll methods yield approximately the same con�dence intervals for thesimulated and experimental data. The con�dence intervals resultingfrom method 4 are smallest of all methods, but it su�ers from a highcomputational time. Method 2 yields smaller con�dence intervals thanmethods 1 and 3, and is outstanding regarding convergence speed. Thee�ects and trends shown in the simulation evaluation are also presentin the experimental data. Therefore the conclusions made in the sim-ulation evaluation with respect to models, residuals, methods, heattransfer and crevice e�ects are the same for the experimental evalu-ation. For diagnostic purposes, all methods are able to detect if thecompression ratio is stuck at a too high or too low level.Concluding recommendationsThe accuracy of the compression ratio estimate is higher for motoredcycles with high initial pressures. Thus if it is possible to choose theinitial pressure, it should be as high as possible. Using motored cyclesassures that all pressure information available is utilized and the highinitial pressure improves the signal-to-noise ratio, while the e�ects ofheat transfer and crevice �ows remain the same.Two methods are recommended; If estimation accuracy has thehighest priority, and time is available, method 4 should be used. Method4 yields the smallest con�dence intervals of all investigated methods forboth simulated and experimental data. In the simulation case wherethe true value of the compression ratio is known, method 4 gave esti-mates with smallest bias. If computational time is the most importantproperty, method 2 is recommended. It is the most computationallye�cient of all investigated methods, and yields the smallest con�denceintervals out of methods 1-3.



226 CHAPTER 9. SUMMARY AND CONCLUSIONS9.3 Prior knowledge based heat release anal-ysisThe objective in part III, as stated in the beginning of chapter 6, wasto develop an estimation tool that is accurate, systematic and e�cient.For this purpose two methods that incorporate parameter prior knowl-edge in a systematic manner are presented in chapter 6. Method 1is based on using a singular value decomposition (SVD) of the esti-mated hessian, to reduce the number of estimated parameters one-by-one. Then the suggested number of parameters to use is found as theone minimizing the Akaike �nal prediction error. Method 2 uses aregularization technique to include the prior knowledge in the criterionfunction. The compiled conclusions from the evaluation of the methodson motored (chapter 7) and �red (chapter 8) are given here.Method 1 restrains the estimation problem, since not all parame-ters are estimated simultaneously. More importantly, it introduces anestimation bias in the e�cient parameters since the uncertain parame-ters are almost unavoidably false. Method 2 enables estimation of allparameters simultaneously, which is an important feature when a pa-rameter's prior knowledge is false. Compared to method 2, method 1yields more biased parameter estimates in the case of a false prior.It has also been shown by using method 1 that, given the Gatowskiet al. cylinder pressure model, the constant γ300 in the linear γ-modelis the most important parameter.The drive for method 2 was to regularize the solution such that theparameters that are hard to determine are pulled towards their nominalvalues, while the e�cient parameters are free to �t the data. This hasshown to be the case in the simulations for both �red and motoredcycles.The user can chose between two cases of the parameter uncertainty,either equal (in a normalized sense) or individually chosen. The for-mer is directly applicable once nominal values of the parameters aredetermined and yields good estimates in the simulations. For exper-imental motored cycles it has been shown that the second case givesmore accurate and reasonable parameter estimates, while this can notbe determined from the �ring cycles. The conclusion is still to use thesecond case. It requires more e�ort to decide upon the uncertaintyfor each parameter, but pays o� in better estimates that are more ro-bust to a false nominal parameter value. Once a choice of parameteruncertainty has been done, no user interaction is needed.Method 2 was originally formulated for three versions. The versionsdi�er in how they determine how strong the regularization should be.For the simulation-based evaluation versionM2:1 andM2:3 where foundto be the most accurate one for motored and �red cycles respectively.



9.3. PRIOR KNOWLEDGE BASED HEAT RELEASE ANALYSIS227From the experimental evaluation it was found that an extension ofversion M2:3, called M2:3+, was needed. With this extension, the twoversions M2:1 and M2:3+ both give reasonable estimates, and whereM2:3+ is more �exible to changes in operating condition of the two, afeature which is more required for �ring cycles than for motored cycles.Method 2 can therefore be said to be systematic and accurate, andtherefore ful�lls two of the requirements for the estimation tool.Thus if computational time is available, version M2:3+ of method 2is recommended due to its accuracy. However if computational timeis an important feature version M2:1 is the best choice. The chosenversion should preferably be combined with individually set parameteruncertainties, i.e. case 2. In this formulation the third requirement isalso ful�lled.To summarize, the proposed tool for heat release analysis is e�cient,systematic and accurate, and can be used for engine calibration, as adiagnostic tool or as an analyzing tool for future engine designs.
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AA specific heat ratio model� further detailsAdditional details and argumentation for the results in chapter 4 aregiven in this appendix. Each section is referenced from various sectionsin chapter 4, and this appendix is therefore a complement.A.1 Temperature modelsTwo models for the in-cylinder temperature will be described, the �rstis the mean charge single-zone temperature model. The second is atwo-zone mean temperature model, used to compute the single-zonethermodynamic properties as mean values of the properties in a two-zone model.A.1.1 Single-zone temperature modelThe mean charge temperature T for the single-zone model is foundfrom the ideal state equation pV = mtotRT , assuming the total mass ofchargemtot and the mass speci�c gas constant R to be constant. Theseassumptions are reasonable since the molecular weights of the reactantsand the products are essentially the same (Gatowski et al., 1984). If allthermodynamic states (pref ,Tref ,Vref ) are known/evaluated at a givenreference condition ref , such as IVC, the mean charge temperature Tis computed as
T =

TIV C

pIV CVIV C
pV. (A.1)This model has already been described in section 3.3.1.237



238 APPENDIX A. A SPECIFIC HEAT RATIO MODEL. . .A.1.2 Two-zone mean temperature modelA two-zone model is divided into two zones; one containing the un-burned gases and the other containing the burned gases, separated bya in�nitesimal thin divider representing the �ame front. Each zone ishomogeneous considering temperature and thermodynamic properties,and the pressure is the same throughout all zones, see e.g. (Nilsson andEriksson, 2001). Here a simple two-zone model will be used to �nd theburned zone temperature Tb and the unburned zone temperature Tu,in order to �nd a more accurate value of γ(T ) as an interpolation ofthe thermodynamic properties for burned and unburned mixtures. Themodel is called temperature mean value approach (Andersson, 2002),and is based on a single-zone combustion model and polytropic com-pression of the unburned charge. The single-zone temperature can beseen as a mass-weighted mean value of the two zone temperatures.Prior to start of combustion (SOC), the unburned zone temperature
Tu equals the single-zone temperature T :

Tu,SOC = TSOC . (A.2)The unburned zone temperature Tu after SOC is then computed assum-ing polytropic compression (2.11) of the unburned charge according to:
Tu = Tu,SOC

(
p

pSOC

)1−1/n

= TSOC

(
p

pSOC

)1−1/n

. (A.3)The crank angle position for ignition θig is assumed to coincide withSOC, and then the unburned zone temperature Tu is given by:
Tu(θ) =

{
T (θ) θ ≤ θig

T (θig)
(

p
p(θig)

)1−1/n

θ > θig .
(A.4)Energy balance between the single-zone and the two-zone models yields:

(mb +mu)cvT = mbcv,bTb +mucv,uTu. (A.5)In order to have a fast computation it is assumed that cv = cv,b = cv,u,i.e. a caloric perfect gas, which ends up in
T =

mbTb +muTu

mb +mu
= xbTb + (1 − xb)Tu, (A.6)where xb is the mass fraction burned. The single-zone temperature Tcan be seen as the mass-weighted mean temperature of the two zones.If a temperature and pressure dependent model of cv would be used,the weight of Tb in (A.6) would increase, resulting in a lower value for

Tb since cv,b > cv,u. From (A.6), Tb is found as
Tb =

T − (1 − xb)Tu

xb
. (A.7)



A.2. SAAB 2.3L NA � GEOMETRIC DATA 239The burned zone temperature is sensitive to low values of the mass frac-tion burned, xb. Therefore Tb is set to the adiabatic �ame temperaturefor xb < 0.01. The adiabatic �ame temperature Tad for a constantpressure process is found from:
hu(Tu) = hb(Tad, p) (A.8)where hu and hb are the enthalpy for the unburned and burned mixturerespectively. An algorithm for computing the zone temperatures issummarized as:Algorithm A.1 � Temperature mean value approach1.Compute the single-zone temperature T in (A.1).2.Compute the mass fraction burned xb by using the Matekunaspressure ratio concept (2.21)�(2.22).3.Compute the unburned zone temperature Tu using (A.4).4.If xb ≥ 0.01 then; Compute the burned zone temperature Tbfrom (A.7).else; Compute the burned zone temperature Tb from (A.8).5.Return T , Tu and Tb.In step 2 the Matekunas pressure ratio concept could be exchanged forany of the single-zone heat-release models given in chapter 2, but theMatekunas concept is used due to its computational e�ciency.As an illustration, the zone temperatures for the cylinder pressuretrace displayed in �gure 4.8 are shown in �gure A.1.A.2 SAAB 2.3L NA � Geometric dataA SAAB 2.3L NA engine is for simulated and experimental data inchapters 2�4. The geometric data for the crank and piston movementare given in the following table:
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Figure A.1: Upper: Single-zone temperature T (=T1zone), unburned Tuand burned Tb zone temperatures for the cylinder pressure given in �g-ure 4.8. Bottom: Corresponding mass fraction burned trace calculatedusing Matekunas pressure ratio.Property Abbrev. Value UnitBore B 90 [mm]Stroke S 90 [mm]Crank radius ar = S
2 45 [mm]Connecting rod l 147 [mm]No. of cylinders ncyl 4 [-]Displacement volume Vd 2290 [cm3]Clearance volume Vc 62.9 [cm3]Compression ratio rc 10.1 [-]A.3 Parameters in single-zone modelThe nominal parameters used in the single-zone model (3.36)�(3.45)are summarized in table A.1 for operating point 2. The parametervalues for Qin, pIV C and TIV C di�er for all the nine operating pointsaccording to table A.2. All the other parameters remain the same.The di�erence between the γ-models is expected to be largest during



A.3. PARAMETERS IN SINGLE-ZONE MODEL 241Par. Description Value
γ300 constant ratio of speci�c heat [-] 1.3678
b slope for ratio of speci�c heat [K−1] −8.13 · 10−5

C1 Woschni heat transfer parameter [-] 2.28
C2 Woschni heat transfer parameter [m/(s K)] 3.24 · 10−4

∆θ crank angle phasing [deg] 0
θig ignition angle [deg ATDC] -15
θd �ame development angle [deg] 20
θb rapid burn angle [deg] 40
Vc clearance volume [cm3] 62.9
Vcr single aggregate crevice volume [% Vc] 1.5%
∆p pressure bias in measurements [kPa] 0
Tw mean wall temperature [K] 440
TIV C mean charge temperature at IVC [K] 341
pIV C cylinder pressure at IVC [kPa] 50
Qin released energy from combustion [J] 760
Kp pressure sensor gain [-] 1Table A.1: Nominal parameter values for OP2 in the single zone model.OP pIV C [kPa] TIV C [K] Qin [J]1 25 372 3302 50 341 7603 100 327 16204 150 326 24405 200 325 32601 25 372 3306 50 372 7007 100 372 14208 150 372 21409 200 372 2850Table A.2: Operating points (OP) for the simulated cylinder pressure.

combustion, therefore a slow burn rate is used to extend the periodwhen the models di�er. Compared to table 3.1 the following parametersare changed; The burn related angles θig, θd and θb are changed, tore�ect a slower burn rate. The o�sets ∆θ and ∆p are both set to zerosince they do not have an e�ect on the investigation.



242 APPENDIX A. A SPECIFIC HEAT RATIO MODEL. . .A.4 Crevice energy termThe energy term u′ − u in (2.26) describes the energy required to heatup a unit mass that enters the cylinder from the crevice volume. Theterm depends on which γ-model is used and therefore has to be statedfor every γ-model except B1, which is already done in (2.32) for theoriginal setting in the Gatowski et al.-model.For model D1, the energy term u′ − u in (2.32) is:
u′ − u =

∫ T ′

T cv dT

= xb

∫ T ′

Tb
cKB
v,b dT + (1 − xb)

∫ T ′

Tu
clinv,u dT

= xb(u
KB(T ′, p) − uKB(Tb, p)) + (1 − xb)

R
bu ln

(
γu

lin(T ′)−1
γu

lin
(Tu)−1

)

,(A.9)where we have used that cv = xbc
KB
v,b +(1−xb)c

lin
v,u in the second equal-ity, and in the third equality that cv =

(
∂u
∂T

)

V
for the burned mixtureand equation (2.31) for the linear approximation of the unburned mix-ture. The �rst term in (A.9) is given directly by the Krieger-Bormanpolynomial in its original form (4.9). The second term is easily com-puted when knowing the coe�cient values γu

300 and bu for the linearunburned mixture model, i.e.
γu

lin = γu
300 + bu(Tu − 300), (A.10)where the coe�cients γu

300 and bu are given in table 4.2.Di�erent modeling assumptions in terms of single-zone or two-zonemodels result in di�erent temperatures T ′. In these cases the temper-ature T ′ is as follows: For the single-zone model
T ′ =

{
Tw dmcr < 0
T dmcr ≥ 0,

(A.11)for the burned zone
T ′ =

{
Tw dmcr < 0
Tb dmcr ≥ 0,

(A.12)and according to
T ′ =

{
Tw dmcr < 0
Tu dmcr ≥ 0

(A.13)for the unburned zone. Note that (A.9) is zero whenever T ′ = T , i.e.when the mass �ows to the crevice volume.Now the attention is turned to the crevice energy term u′ − u forthe γ-models (4.19)�(4.31). For C1, C3 and C4 approximations are madeduring the combustion phase. In order to see if a modeling error in u′−uhas a large impact on the cylinder pressure, a sensitivity analysis willbe performed after all models have been described. Model B1 (4.19):
u′ − u = R

b ln
(

γlin(T ′)−1
γlin(T )−1

)

, (A.14)



A.4. CREVICE ENERGY TERM 243according to (2.32). Model B2 (4.20):
u′ − u = uB2

(T ′) − uB2
(T ). (A.15)Model B3 (4.21):

u′ − u = uB3
(T ′, p) − uB3

(T, p). (A.16)Model B4 (4.22):
u′ − u = (T ′ − T ) R

γB4

. (A.17)Model C1 (4.23):
u′ − u =

∫ T ′

T
R

γC1

dT

= R
∫ T ′

T
R

xbγb
300+(1−xb)γu

300+xbbb(Tb−300)+(1−xb)bu(Tu−300)
dT

≈ R
∫ T ′

T
R

xbγb
300+(1−xb)γu

300+(xbbb+(1−xb)bu)(T−300)
dT

= R
xbbb+(1−xb)bu ln

(
γC1

(T ′)−1

γC1
(Tb,Tu)−1

)

, (A.18)where the approximation is an equality whenever xb = 0, xb = 1 or
dmcr ≥ 0. The coe�cients for the unburned mixture γu

300 and bu aregiven in table 4.2 and the values for γb
300 and bb are taken from table 4.3for temperature region E (T ∈ [1200, 3000] K).Model C2 (4.24):

u′ − u = uC2
(T ′) − uC2

(T ). (A.19)Model C3 (4.25):
u′ − u =

∫ T ′

T
R

γC3

dT

= R
∫ T ′

T
R

xbγKB+(1−xb)γu
lin

dT

≈ R(xb

∫ T ′

Tb

R
γKB

dT + (1 − xb)
∫ T ′

Tu

R
γu

lin
dT )

xb(u
KB(T ′, p) − uKB(Tb, p)) + (1 − xb)

R
bu ln

(
γu

lin(T ′)−1
γu

lin
(Tu)−1

)

,(A.20)where the approximation is an equality whenever xb = 0, xb = 1 or
dmcr ≥ 0. The approximation made for C3 yields the same energyterm as for D1 (A.9).For model C4 (4.26) the energy term is approximated in the same wayas for C3, i.e.

u′ − u =
∫ T ′

T
R

γC4

dT

≈ xb(ub(T
′, p) − ub(Tb, p)) + (1 − xb)(uu(T ′) − uu(Tu))(A.21)



244 APPENDIX A. A SPECIFIC HEAT RATIO MODEL. . .where the internal energies for burned, ub, and unburned mixture, uu,are computed from CHEPP (4.3), and the approximation is an equalitywhenever xb = 0, xb = 1 or dmcr ≥ 0. The approximation made for C4yields the same energy term as for the reference model D4 (A.25).Model C5 (4.27):
u′ − u =
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T
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(A.22)The energy term corresponding to xb < 0.01 is at most instances equalto zero, but not when the start of combustion occurs after TDC.Model D2 (4.29):
u′ − u = xb(u

KB(T ′, p) − uKB(Tb, p)) + (1 − xb)(uu(T ′) − uu(Tu)).(A.23)Model D3 (4.30):
u′ − u = xb(ub(T

′, p) − ub(Tb, p)) + (1 − xb)
R
bu ln

(
γu

lin(T ′)−1
γu

lin
(Tu)−1

)

.(A.24)Model D4 (4.31):
u′ − u = xb(ub(T

′, p) − ub(Tb, p)) + (1 − xb)(uu(T ′) − uu(Tu)).(A.25)Crevice term sensitivityAn investigation of what impact a modeling error in the crevice termhas on the cylinder pressure is now performed. The same sensitivityanalysis as in section 3.9 is made, but this time the crevice volume
Vcr is set to 0 in the nominal cylinder pressure. The results from thesimulations are summarized in table A.3.The investigation shows that the RMSE(p) is higher for all parame-ters except Tw, TIV C and ∆p when Vcr = 0, suggesting that the crevicevolume has a dampening e�ect on the cylinder pressure error. Thechange in all the measures RMSE, maximum residual value and sensi-tivity S are small, when compared to table 3.2. Although the sensitivityanalysis is performed in a speci�c operating point and therefore onlyvalid locally, this result indicates that a correct crevice-term modelingis not crucial for the single-zone heat-release models. It also indicatesthat the crevice e�ect has a small impact on the resulting cylinder pres-sure. Therefore a modeling error in u′−u such as for models C1, C3 and
C4 will not have not a crucial e�ect on the �nal result and conclusions



A.5. SIMPLE RESIDUAL GAS MODEL 245Par. Nominal & perturbation value RMSE Max Res S[kPa] [kPa] [-]
γ300 1.3678 0.137 [-] 542.0 1471.10 5.40
∆θd 15 5 [deg] 282.5 1081.2 0.60
θig -20 5 [deg ATDC] 248.3 904.0 0.74
Vc 62.9 6.29 [cm3] 217.5 632.2 1.80
Kp 1 0.1 [-] 188.4 477.2 1.56
Tw 440 44 [K] 108.7 283.5 0.86
Qin 1500 150 [J] 103.6 271.9 0.81
∆θb 30 5 [deg] 105.2 412.7 0.46
pIV C 100 10 [kPa] 97.5 221.5 0.77
TIV C 340 44 [K] 62.8 175.2 0.35
b -8.13 ·10−5 -8.13 ·10−6 [K−1] 27.0 82.7 0.20

∆θ 0.4 0.2 [deg] 10.6 32.7 0.2
∆p 30 10 [kPa] 10.0 10.0 0.2
C2 3.24 ·10−3 3.24 ·10−4 [m/(sK)] 4.1 8.8 0.3
C1 2.28 0.228 [-] 1.7 2.10 0.1Table A.3: Nominal and perturbation values, where the perturbationsare performed by adding or subtracting the perturbation from the nomi-nal value. The root mean square error (RMSE), maximal residual (MaxRes) and sensitivity function S (3.46) are computed for the worst casefor each parameter.drawn. It is important to note that the γ-model is very important forthe cylinder pressure model. This is primarily through its direct in�u-ence by coupling the pressure, temperature and volume changes to eachother. The crevice e�ect is also directly dependent on the γ-model, buthere γ only has a secondary e�ect on the total cylinder pressure model.A.5 Simple residual gas modelAn approximative model for �nding the residual gas fraction xr = mr

mtotand temperature Tr cited in Heywood (1988, p.178) is used to �nd
TIV C . The residual gas mass is given by mr and the total cylinder gasmass by mtot. The residual gas is left behind from the exhaust processand �lls the clearance volume Vc at pressure pexh and temperature T6,where pexh is the exhaust manifold pressure and T6 is the mean chargetemperature at θ = 360 [deg ATDC], i.e. at the end of the exhauststroke. The intake manifold contains a fresh air-fuel charge at pressure
pman and temperature Tman. As the intake valve opens, the residualgases expand according to the polytropic relation (2.11) to volume Vrand temperature Tr according to

Vr = Vc

( pexh

pman

)1/n

, (A.26a)
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Tr = T6

(pman

pexh

) n
n−1

. (A.26b)The rest of the cylinder volume Vaf is �lled with fresh air-fuel charge,i.e. Vaf = V − Vr. The ideal gas law is then used to compute theresidual gas fraction xr as
xr =

mr

maf +mr
=

pmanVr

RTr

pmanVaf

RTman
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RTr

= . . .

=

(
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Tman

(
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−
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)(n−1)/n
))−1

, (A.27)and the mean charge temperature at IVC is then computed as
TIV C = Trrcxr

(
pman

pexh

)

, (A.28)where Tr = 1400 K and (n−1)/n = 0.24 are appropriate average valuesto use for initial estimates (Heywood, 1988, p.178).A.6 Fuel composition sensitivity of γSo far, the focus has only been on iso-octane C8H18 as the fuel used.Since the actual fuel composition can di�er over both region of countryand time of year, it is interesting to see what happens with the speci�cheat ratios when the fuel composition is changed. Consider the generalfuel CaHbOc, which is combusted according to
1

λ (a+ b/4 − c/2)
CaHbOc + (O2 + 3.773N2) −→

y1O + y2O2 + y3H + y4H2 + y5OH

+y6H2O + y7CO + y8CO2 + y9NO + y10N2, (A.29)where a, b and c are positive integers.First our attention is turned to the properties of hydrocarbons andthen to a few alcohols, when considering burned mixtures. Then asimilar investigation is made for unburned mixtures. Finally the prop-erties of partially burned mixtures and their in�uence on the cylinderpressure are examined.A.6.1 Burned mixture � HydrocarbonsConsidering hydrocarbons CaHb only (c = 0), the hydrocarbon ratio
y = b/a will determine the properties of the air-fuel mixture, sincethe a and b are only relative proportions on a molar basis (Heywood,



A.6. FUEL COMPOSITION SENSITIVITY OF γ 2471988)[p.69]. The speci�c heat ratio is computed using CHEPP forthe fuels given in table A.4. Gasoline 1 and 2 are commercial fuelslisted in Heywood (1988)[p.133]. The fuels methane and gasoline 2 areextreme points for the hydrocarbon ratio y in the study, a region whichcovers most hydrocarbon fuels. In the upper plot of �gure A.2 thespeci�c heat ratio for the fuels at λ = 1 and p = 7.5 bar are displayed.They are computed using model D4 (4.31). The di�erence between thefuels is hardly visible. Therefore, the fuels are compared to iso-octane,and the di�erence in γ is plotted in the lower part of �gure A.2.The di�erence is small, and smallest for the commercial gasoline asexpected, since the hydrocarbon ratio y is closest to that of iso-octane.The NRMSE(γ) are found in table A.4, for p1 = 7.5 and p2 = 35 barrespectively. Compared to table 4.5, the fuel composition introduces asmaller error in γ than the Krieger-Borman polynomial. Therefore theiso-octane γ can be used as a good approximation for a burned mixturefor the hydrocarbon fuels used in this study.A.6.2 Burned mixture � AlcoholsConsidering more general fuels such as alcohols, the speci�c heat ratioof methanol CH3OH is computed and compared to the ones found foriso-octane and methane respectively. The comparison with methaneshows what in�uence the extra oxygen atom brings about, and thecomparison with iso-octane yields the di�erence to the fuel used here asa reference fuel. The speci�c heat ratios are computed using D4 (4.31).The results are displayed in �gure A.3, where the upper plot shows
γ for the three fuels listed in table A.5. The lower plot shows thedi�erence in γ for methanol when compared to iso-octane and methanerespectively. In �gure A.3 and table A.5 the results for the fuels arecompared to methanol instead of iso-octane due to three reasons; Firstof all this allows for a direct comparison of the results for methaneand methanol. Secondly, it allows for a comparison of methanol andiso-octane. Thirdly γ for methane and iso-octane have already beencompared in �gure A.2 and table A.4.Surprisingly, the di�erence in γ is smaller between iso-octane andmethanol than between methane and methanol as shown in �gure A.3,which is also concluded by comparing the NRMSE:s from table A.5.These NRMSE:s are in fact quite large, which is found by comparingthem to the ones found in table 4.4. This suggests that the error intro-duced by using iso-octane γ to describe methanol γ is almost as largethe error introduced by the linear model γb

lin. If a better approximationof the methanol γ is needed, one should use CHEPP (Eriksson, 2004)to compute the thermodynamic properties for methanol and then esti-mate the coe�cients in the Krieger-Borman polynomial (4.9) in a leastsquares sense.
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Figure A.2: Upper: Speci�c heat ratio for various fuels. Lower: Dif-ference in γ for methane CH4 and gasoline 2 C7.76H13.1, compared toiso-octane C8H18.
Fuel CaHb y NRMSE @ p1 NRMSE @ p2A B A BMethane CH4 4 0.19 % 0.17 % 0.16 % 0.15 %Iso-octane C8H18 2.25 0 0 0 0Gasoline 1 C8.26H15.5 1.88 0.06 % 0.05 % 0.05 % 0.04 %Gasoline 2 C7.76H13.1 1.69 0.09 % 0.07 % 0.07 % 0.07 %Table A.4: Burned mixtures: Di�erent fuels and their chemical com-position. The NRMSE(γ) is formed as the di�erence compared to iso-octane, and evaluated at λ = 1 and temperature regions A and B, for

p1 = 7.5 and p2 = 35 bar respectively.
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Figure A.3: Upper: Speci�c heat ratio for various fuels. Lower: Dif-ference in γ for methanol CH3OH compared to iso-octane C8H18 andmethane CH4.
Fuel CaHbOc NRMSE @ p1 NRMSE @ p2A B A BMethanol CH4O 0 0 0 0Methane CH4 0.80 % 0.75 % 0.81 % 0.72 %Iso-octane C8H18 0.73 % 0.60 % 0.70 % 0.60 %Table A.5: Burned mixtures: Di�erent fuels and their chemical compo-sition. The NRMSE is formed as the di�erence for methanol comparedto methane and iso-octane respectively, and evaluated at λ = 1 andtemperature regions A and B, for p1 = 7.5 and p2 = 35 bar respec-tively.



250 APPENDIX A. A SPECIFIC HEAT RATIO MODEL. . .A.6.3 Unburned mixturesThe speci�c heat ratios for both unburned hydrocarbons and alcoholsare analyzed in a similar manner as for the burned mixtures presentedearlier. The results are summarized in table A.6. All fuels but methaneare captured fairly well by the reference fuel iso-octane. Comparinggasoline 1 with the linear model of the unburned mixture given in ta-ble 4.2, one see that it introduces an NRMSE which is of the same order.A trend in the results shows that for hydrocarbons, the speci�c heat ra-tio is more accurately determined for burned mixtures than unburned.This conclusion can be drawn by comparing tables A.4 and A.6. Forthe alcohol methanol it is the other way around, compare tables A.5and A.6. Fuel CaHbOc y = b/a NRMSEMethane CH4 4 2.57 %Iso-octane C8H18 2.25 0Gasoline 1 C8.26H15.5 1.88 0.18 %Gasoline 2 C7.76H13.1 1.69 0.39 %Methanol CH3OH 4 0.50 %Table A.6: Unburned mixtures: Di�erent fuels and their chemicalcomposition. The NRMSE(γ) is formed as the di�erence comparedto iso-octane, and evaluated at λ = 1 for temperature region T ∈
[300, 1000] K.A.6.4 Partially burned mixture � in�uence on cylin-der pressureThe cylinder pressure at OP 2 given in �gure 4.8 is used to exemplifythe impact a certain fuel has on the cylinder pressure, given that all theother operating conditions are the same. The reference model (4.18) isused to model γ for each fuel. The impact is displayed as the RMSEfor the pressure in table A.7, as well as the NRMSE and MRE for γ.Iso-octane is used as the reference fuel. Compared to table 4.6, thecylinder pressure impact (RMSE(p)) of the fuels listed in table A.7 arelarger than the impact of D1, see the RMSE(p) column in table 4.6,for all fuels except gasoline 1. However for all fuels but methane, theRMSE(p) introduced is increased with less than 75 % compared toiso-octane, which is acceptable.The goal is to �nd a model that approximates the actual γ well.Model D1 is computationally e�cient and will therefore be used in theevaluation. Table A.8 evaluates the impact the use of the polynomialsin model D1 has on a speci�c fuel, in terms of MRE(γ), NRMSE(γ)



A.7. THERMODYNAMIC PROP. BURNED MIXTURE 251Fuel MRE: NRMSE: RMSE:
γ [%] γ [%] p [kPa]Methane 2.8 2.0 36.6Iso-octane 0.0 0.0 0.0Gasoline 1 0.20 0.12 2.2Gasoline 2 0.40 0.29 5.3Methanol 0.85 0.63 5.1Table A.7: Evaluation of the impact on cylinder pressure and speci�cheat ratio for various fuels using iso-octane as reference fuel, for thesimulated cylinder pressure at OP 2 in �gure 4.8.

Fuel MRE: NRMSE: RMSE:
γ [%] γ [%] p [kPa]Methane 2.7 1.9 34.3Iso-octane 0.27 0.10 2.8Gasoline 1 0.27 0.15 1.5Gasoline 2 0.47 0.29 3.3Methanol 1.1 0.70 5.4Table A.8: Evaluation of the impact on cylinder pressure and speci�cheat ratio for various fuels by using modelD1, for the simulated cylinderpressure at OP 2 in �gure 4.8.

and RMSE(p). In the evaluation model D4 has been used for a speci�cfuel to generate the thermodynamic properties of the mixture, fromwhich a cylinder pressure simulation has been performed. This refer-ence pressure and speci�c heat ratio has then been compared to theones given by model D1 for the same operating conditions at OP 2.The table shows that the RMSE(p) for gasolines 1 and 2 are close tothe one found for iso-octane. In fact, the RMSE(p) is only increased by20 %. It can therefore be concluded that model D1 can be used for fuelsthat have a hydrocarbon ratio close to 2, at least within [1.69, 2.25]and still have a modeling error in the order of the noise. Note thatthe closer y is to 2, the smaller RMSE(p) is. This is due to that thehydrocarbon ratio for the Krieger-Borman polynomial used in D1 is 2.This also explains why the RMSE(p) are smaller in table A.8 comparedto table A.7.
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Figure A.4: Speci�c heat cv,b for burned stoichiometric mixture usingCHEPP, the corresponding linear function clinv,b and cKB
v,b found usingthe Krieger-Borman polynomial.

Region T ∈ clinv,b cKB
v,bMRE NRMSE MRE NRMSE

A [500, 3500] 0.68 % 0.20 % 0.42 % 0.21 %
B [500, 3000] 0.68 % 0.23 % 0.09 % 0.03 %
C [500, 2700] 0.68 % 0.27 % 0.04 % 0.02 %
D [500, 2500] 0.68 % 0.30 % 0.04 % 0.02 %
E [1200, 3000] 0.38 % 0.20 % 0.09 % 0.04 %Table A.9: Maximum relative error (MRE) and normalized root meansquare error (NRMSE) of speci�c heat cv,b for di�erent temperatureregions at λ = 1 and p = 7.5 bar.



A.7. THERMODYNAMIC PROPERTIES FOR BURNEDMIXTURE253A.7 Thermodynamic properties for burnedmixtureThis section entails further details on thermodynamic properties for theburned mixture. The focus is on approximative models for the speci�cheats. As mentioned in section 4.6, there is a potential of improvingthe Krieger-Borman polynomial. Here it will be shown why. Figure A.4displays the reference speci�c heat cv,b as well as the two approxima-tions, i.e. the linear and the Krieger-Borman model respectively. Thelinear approximation has poor performance over the entire tempera-ture region, and does not capture non-linear behavior of the referencemodel very well. The Krieger-Borman polynomial �ts the referencemodel quite well for T < 2800 K, but for higher temperatures the �tis worse. This is re�ected in table A.9, which displays the maximumrelative error (MRE) and normalized root mean square error (NRMSE)for a number of temperature regions.For temperature regions B�E, the NRMSE for cKB
v,b is immenselylower than for region A, which veri�es that the Krieger-Borman poly-nomial works well for temperatures below 3000 K. Actually the Krieger-Borman polynomial has poorer performance than the linear model forhigh temperatures, as seen by comparing the NRMSE:s for tempera-ture region A. This shows that there is a potential of enhancing theKrieger-Borman polynomial, at least for temperatures above 3000 K.If a better model approximation is sought, one should �rst increasethe polynomial order in T of (4.10) with at least 1, to better catchthe behavior for T > 3000 K in �gure A.4. The thermodynamic prop-erties can then be computed using CHEPP (Eriksson, 2004), and allcoe�cients estimated in a least squares sense.The corresponding results for speci�c heat cp,b are shown in �g-ure A.5 and table A.10, from which the same conclusions as for cv,b canbe drawn.Region T ∈ clinp,b cKB

p,bMRE NRMSE MRE NRMSE
A [500, 3500] 0.51 % 0.17 % 0.39 % 0.19 %
B [500, 3000] 0.51 % 0.19 % 0.08 % 0.03 %
C [500, 2700] 0.51 % 0.23 % 0.03 % 0.02 %
D [500, 2500] 0.51 % 0.25 % 0.03 % 0.02 %
E [1200, 3000] 0.31 % 0.17 % 0.08 % 0.03 %Table A.10: Maximum relative error (MRE) and normalized root meansquare error (NRMSE) of speci�c heat cp,b for di�erent temperatureregions at λ = 1 and p = 7.5 bar.
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Figure A.5: Speci�c heat cp,b for burned stoichiometric mixture usingCHEPP, the corresponding linear function clinp,b and cKB
p,b found usingthe Krieger-Borman polynomial.A.8 Thermodynamic properties for partiallyburned mixtureThe operating points (OP) for the simulated cylinder pressure tracesused to evaluate the proposed γ-models are given in table A.2. In op-erating points 1-9 the mean charge temperature at IVC, TIV C , is com-puted as a function of exhaust pressure pexh (A.28), see appendix A.5.The released energy Qin is computed as in (3.27), where the residualgas ratio xr is determined from (A.27). The cylinder pressure at IVC,

pIV C , here ranges from 25 kPa up to 200 kPa, i.e. from low intake pres-sure to a highly supercharged pressure. The values of the parameters inthe single-zone heat release model are given in tables A.1 and A.2. Thecorresponding cylinder pressures during the closed part of the cycle areshown in �gure A.6, where the upper �gure shows the cylinder pressurefor operating points 1-5, and the lower plot displays operating point 1and 6-9.The results from applying operating points 1-9 to the approxima-tive γ-models are summarized in the following tables and �gures; Ta-bles A.11 and A.12 summarizes the maximum relative error and nor-
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Figure A.6: Upper: Simulated cylinder pressure for operating points1-5. Lower: Simulated cylinder pressure for operating points 1 and6-9.malized root mean square error in speci�c heat ratio γ, table A.13summarizes the root mean square error for the cylinder pressure p. Fig-ures A.7 to A.10 display the approximative γ-models and the reference
γ-model as function of crank angle degree and single zone temperaturerespectively, for the cylinder pressure trace given in �gure 4.8. In those�gures, the reference model γCE is the dashed line and the solid linecorresponds to each speci�c model. Figures A.11 and A.12 illustratesthe corresponding cylinder pressure errors introduced by the model er-ror each γ-model brings along.



256 APPENDIX A. A SPECIFIC HEAT RATIO MODEL. . .OP B1 B2 B3 B4 C1 C2 C3 C4 C5 D1 D2 D31 4.1 5.9 5.2 7.7 2.3 7.3 2.2 2.1 8.1 0.29 0.28 0.0492 4.1 5.9 5.2 7.8 2.3 7.3 2.4 2.3 8.4 0.27 0.26 0.0393 3.6 5.5 4.7 7.4 1.9 6.9 2.3 2.1 8.6 0.26 0.25 0.0364 3.3 5.1 4.4 7.2 1.8 6.5 2.1 1.9 8.6 0.26 0.25 0.0365 3.1 4.9 4.1 7 2.1 6.3 2 1.8 8.7 0.26 0.25 0.0361 4.1 5.9 5.2 7.7 2.3 7.3 2.2 2.1 8.1 0.29 0.28 0.0496 3.5 5.3 4.6 7.2 1.7 6.7 1.8 1.7 8.1 0.26 0.25 0.0497 3 4.8 4.1 6.7 1.4 6.2 1.5 1.5 8.1 0.24 0.24 0.058 2.7 4.5 3.8 6.4 1.7 5.9 1.4 1.3 8.1 0.24 0.23 0.059 2.5 4.2 3.6 6.2 2 5.7 1.3 1.2 8.1 0.23 0.22 0.05Mean 3.4 5.2 4.5 7.1 1.9 6.6 1.9 1.8 8.3 0.26 0.25 0.044Table A.11: Maximum relative error (MRE) [%] for γ.OP B1 B2 B3 B4 C1 C2 C3 C4 C5 D1 D2 D31 1.4 2.6 1.8 4.2 0.62 4.1 0.59 0.52 1.5 0.11 0.1 0.0162 1.3 2.7 1.8 4.5 0.69 4.1 0.65 0.58 1.5 0.098 0.094 0.0143 1.2 2.6 1.7 4.6 0.82 4 0.62 0.55 1.6 0.095 0.091 0.0144 1.2 2.4 1.6 4.5 0.93 3.9 0.58 0.5 1.7 0.096 0.091 0.0145 1.1 2.4 1.6 4.4 1 3.8 0.56 0.47 1.7 0.097 0.092 0.0141 1.4 2.6 1.8 4.2 0.62 4.1 0.59 0.52 1.5 0.11 0.1 0.0166 1.2 2.4 1.7 4.1 0.57 4 0.51 0.44 1.6 0.098 0.092 0.0177 1.1 2.3 1.6 4 0.69 3.8 0.44 0.38 1.6 0.094 0.088 0.0178 1.1 2.2 1.5 3.9 0.81 3.8 0.4 0.34 1.7 0.092 0.086 0.0179 1 2.1 1.5 3.9 0.91 3.7 0.38 0.32 1.8 0.092 0.086 0.017Mean 1.2 2.4 1.7 4.2 0.77 3.9 0.53 0.46 1.6 0.097 0.092 0.016Table A.12: Normalized root mean square error (NRMSE) [%] for γ-models.OP B1 B2 B3 B4 C1 C2 C3 C4 C5 D1 D2 D31 26.1 37.3 33.3 29.5 17.2 61.6 9.7 8.6 34.2 1.3 1.2 0.12 52.3 85.8 76.0 62.8 39.8 140.7 25.4 22.8 82.9 2.8 2.6 0.33 98.4 172.5 152.9 125.7 74.1 289.4 53.3 47.3 192.3 5.9 5.3 0.74 135.1 248.8 221.0 180.3 98.4 427.0 76.7 67.3 305.4 9.2 8.2 1.05 168.1 321.7 286.3 232.3 118.9 561.7 99.0 86.0 422.8 12.5 11.2 1.41 28.7 37.3 33.3 29.5 17.2 61.6 9.7 8.6 34.2 1.3 1.2 0.16 42.0 70.0 62.7 49.6 28.5 120.0 17.5 15.2 75.2 2.5 2.2 0.37 73.1 130.9 117.7 91.5 45.3 233.2 31.4 26.9 163.5 4.9 4.3 0.78 100.3 188.4 169.8 130.7 58.0 343.9 44.3 37.5 256.4 7.4 6.4 1.19 125.1 243.7 220.2 168.4 68.2 453.0 56.6 47.4 352.2 9.9 8.5 1.5Mean 84.9 153.6 137.3 110.0 56.6 269.2 42.4 36.7 191.9 5.8 5.1 0.7Table A.13: Root mean square error (RMSE) [kPa] for cylinder pres-sure.
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BCompression ratioestimation � further details
Further details and argumentation for the results found in chapter 5 aregiven in this appendix. Each section is referenced from various sectionsin chapter 5 and this appendix is therefore a complement.B.1 Taylor expansions for sublinear approachThis section presents the calculations that support the algorithm de-velopment in section 5.3. In particular the relation between the tworesiduals

ε1a(C1, n) = ln p(θ) − (C1 − n ln(Vid(θ) + Vc)) (B.1)and
ε1b(C2, Vc) = Vid(θ) − (C2 p(θ)

−1/n − Vc) (B.2)is investigated. By using that C1 = lnC and C2 = C1/n, the followingrelation is obtained
ε1a = n ln p1/n − lnC n

2 + n ln(Vid(θ) + Vc)

= −n ln

(
C2 p(θ)

−1/n

Vid(θ) + Vc

)

= −n ln

(

1 − Vid(θ) − (C2 p(θ)
−1/n − Vc)

Vid(θ) + Vc

)

= −n ln

(

1 − ε1b

Vid(θ) + Vc

)

.263



264 APPENDIX B. COMPRESSION RATIO ESTIMATION. . .If the residuals are small, i.e. ε1b � Vc ≤ Vid(θ) + Vc, then the Taylorexpansion gives
−n ln

(

1 − ε1b

Vid(θ) + Vc

)

≈ n

Vid(θ) + Vc
ε1b. (B.3)It then follows that

ε1a(θ, x) ≈ n

Vid(θ) + Vc
ε1b(θ, x), (B.4)which is the sought relation.B.2 Variable Projection AlgorithmA computationally e�cient algorithm described in Björck (1996, p. 352)is summarized here.Algorithm B.1 � Variable projectionPartition the parameter vector x such that x = (y z)T , where ε(y, z)is linear in y. Rewrite ε(y, z) as

ε(y, z) = F (z)y − g(z) (B.5)Let xk = (yk, zk) be the current approximation.1.Solve the linear subproblem
min
δyk

‖F (zk)δyk − (g(zk) − F (zk)yk)‖2
2 (B.6)and set xk+1/2 = (yk + δyk, zk).2.Compute the Gauss-Newton direction pk at xk+1/2, i.e. solve

min
pk

‖C(xk+1/2)pk + ε(yk+1/2, zk)‖2
2 (B.7)where C(xk+1/2) = (F (zk), ∂

∂z ε(yk+1/2, zk)) is the Jacobian ma-trix.3.Set xk+1 = xk+1/2 + αkpk, do a convergence test and return tostep 1 if the estimate has not converged. Otherwise return xk+1.The polytropic model in (5.8) is rewritten as
ln p(θ) = C2 − n ln(Vd(θ) + Vc). (B.8)This equation is linear in the parameters C2 = lnC and n and nonlinearin Vc and applies to the form given in (B.5). With the notation from the



B.3. SVC � GEOMETRIC DATA 265algorithm above, the parameters are x = (C2 n Vc)
T , with y = (C2 n)Tand z = Vc. The measurement vector is formed as g = − ln p and theregression vector as F = [−I ln(Vc + Vd(θ))].Another possibility is to rewrite the polytropic model (5.8)to thefollowing

Vd(θ) = C1p(θ)
−1/n − Vc. (B.9)This equation does also �t into the form of (B.5). However this for-mulation is not as appropriate as (B.8), due to that the parameters

C1 = C1/n and n are coupled.B.3 SVC � Geometric dataThe SVC engine is used for simulated and experimental data in chap-ter 5. The geometric data for the crank and piston movement are givenin the following table:Property Abbrev. Value UnitBore B 68 [mm]Stroke S 88 [mm]Crank radius ar = S
2 44 [mm]Connecting rod l 158 [mm]No. of cylinders ncyl 5 [-]Displacement volume Vd 1598 [cm3]Maximum compression ratio r max

c 14.66 [-]Minimum compression ratio r min
c 8.13 [-]Pin-o� xoff [-2.2, 4.7] [mm]Tilting angle v [0, 4] [deg]B.4 Parameters in single-zone modelThe nominal parameters used in the single-zone model (5.4) are sum-marized in the table B.1. For motored cycles the numerical values of

Tw and TIV C are 400 K and 310 K respectively, while for �red cycles
Tw = 440 K and TIV C = 340 K have been used. Compared to ta-ble 3.1 the following parameters are changed; The clearance volume
Vc is altered since a di�erent engine is simulated. The crank angleo�set ∆θ and pressure o�set ∆p are both set to zero since their ef-fect is investigated explicitly in section 5.4.4. The pressure at IVC
pIV C ∈ {0.5, 1.0, 1.8} bar depends on the operating point.
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Par. Description Value
γ300 constant ratio of speci�c heat [-] 1.3678
b slope for ratio of speci�c heat [K−1] −8.13 · 10−5

C1 Woschni heat transfer parameter [-] 2.28
C2 Woschni heat transfer parameter [m/(s K)] 3.24 · 10−4

∆θ crank angle phasing [deg] 0
θig ignition angle [deg ATDC] -20
∆θd �ame development angle [deg] 15
∆θb rapid burn angle [deg] 30
Vc clearance volume [cm3] 22.8�45.7
Vcr single aggregate crevice volume [cm3] 1.5% Vc(rc = 11)
∆p pressure bias in measurements [kPa] 0
Tw mean wall temperature [K] 440
TIV C mean charge temperature at IVC [K] 340
pIV C cylinder pressure at IVC [kPa] 100
Qin released energy from combustion [J] 500
Kp pressure sensor gain [-] 1Table B.1: Nominal parameter values in the single-zone model.



CPrior knowledge approach� further details
Further details and argumentation for the results found in chapters 6�8are given in this appendix.C.1 Levenberg-Marquardt methodThe parameters x are estimated by minimizing the di�erence betweenthe measured cylinder pressure and the modeled cylinder pressure, i.e.by minimizing the prediction error. A Gauss-Newton method calledthe Levenberg-Marquardt procedure is used to �nd the parameter es-timate x̂ for methods 3 and 4 in chapter 5 and for methods 1 and 2 inchapters 6�8 for any given number of parameters.A thorough presentation of system identi�cation is given in Ljung(1999), from which most of the material presented in the subsequentsubsections are from. The material is included here for two reasons:First to describe how the parameter estimation is performed when us-ing the Levenberg-Marquardt procedure. Secondly as a comparison tothe expressions given in section 6.4.2 for method 2, where a regular-ization term is included in the criterion function. The �rst subsectionstates the equations used when minimizing the prediction error for anonlinear estimation problem. The Levenberg-Marquardt procedure isthen presented as a special case. The next subsection concerns issuessuch as stopping criteria, local minima, scaling of the parameters andasymptotic variance of the estimate.267



268 APPENDIX C. PRIOR KNOWLEDGE APPROACH. . .C.1.1 Minimizing prediction errors using a local op-timizerWhen the estimation problem is non-linear in the parameters, typ-ically the minimum of the loss function can not be computed an-alytically as in the linear case. Instead, numerical search routinesmust be used (Björck, 1996). Given an observed data set ZN =
[y(1), u(1), y(2), u(2), . . . , y(N), u(N)] of inputs u(t) and outputs y(t),a good model M(x) describing the data set ZN is found by minimizingthe prediction error

ε(t, x) = y(t) − ŷ(t|x), t = 1, 2, . . . , N (C.1)where y(t) is the output of the system and ŷ(t|x) is the predicted outputof the model M(x). The prediction error is also termed residual. Theprediction error is minimized by using a norm on ε(t, x) and minimizethe size of it. A quadratic norm is our choice here and it can be writtenas
VN (x, ZN ) =

1

N

N∑

t=1

1

2
ε2(t, x). (C.2)The term VN is a measure of the validity of M(x) and is often calledloss function or criterion function. A problem on this form is knownas the nonlinear least-squares problem in numerical analysis (Ljung,1999, pp.327) and can be solved by an iterative search for minimum, anumber of methods are described in e.g. (Björck, 1996). The estimate

x̂ is de�ned as the minimizing argument of (C.2):
x̂(ZN ) = arg min

x
VN (x, ZN ). (C.3)Minimizing the criterion function VN (x, ZN )To �nd the solution to (C.3) numerical methods are employed and thesemethods use the gradient and hessian, or approximations of them. Thegradient of (C.2) is

V ′
N (x, ZN ) =

1

N

N∑

t=1

ψ(t, x)ε(t, x), (C.4)where ψ(t, x) is the jacobian vector given by
ψ(t, x) =

d

dx
ε(t, x) = − d

dx
ŷ(t|x) =

[

−∂ŷ(t|x)
∂x1

. . . − ∂ŷ(t|x)
∂xd

]T

,(C.5)



C.1. LEVENBERG-MARQUARDT METHOD 269where d are the number of parameters. For our problem, the jacobian
ψ(t, x) is computed numerically with a forward di�erence approxima-tion, as

∂ε(t, x)

∂xj
≈ ε(t, x+ ∆xj) − ε(t, x)

∆xj
. (C.6)Computing the central di�erence approximation instead of the forwardone, would double the amount of computations. Di�erentiating thegradient with respect to x yields the hessian of (C.2) as

V ′′
N (x, ZN ) =

1

N

N∑

t=1

ψ(t, x)ψT (t, x) +
1

N

N∑

t=1

ψ′(t, x)εT (t, x), (C.7)where ψ′(t, x) = − d2

dx2 ŷ(t|x). It is however computationally heavy tocompute all d2 terms in ψ′(t, x). An approximation is therefore desir-able and it is made reasonable by the following assumption; Assumethat at the global minimum x∗, the prediction errors are independent.Thus close to x∗ the second sum in (C.7) will be close to zero, and thefollowing approximation can be made close to optimum (Ljung, 1999,p.328):
V ′′

N (x, ZN ) ≈ 1

N

N∑

t=1

ψ(t, x)ψT (t, x) = HN (x, ZN ). (C.8)By omitting the second sum in (C.7), the estimate HN (x, ZN ) is as-sured to be positive semide�nite, which guarantees convergence to astationary point.The estimate x̂ can be found numerically by updating the estimateof the minimizing point x̂i iteratively as
x̂i+1(ZN ) = x̂i(ZN ) − µi

N [Ri
N (x̂i, ZN )]−1V ′

N (x̂i, ZN )

= x̂i(ZN ) + di(x̂i, ZN ), (C.9)where i is the ith iterate, in which di is the search direction and Ri
N isthe approximate hessian HN in (C.8). Finding the estimate x̂ in thismanner is known as a Gauss-Newton method.Regularization � Levenberg-Marquardt procedureIf the model M(x) is over-parameterized or the data ZN is not infor-mative enough, this causes an ill-conditioned jacobian which results inthat the approximative hessian HN (x, ZN ) may be singular or close tosingular. This causes numerical problems when computing the iterativeestimates in (C.9), when inverting HN . One way to avoid this is theLevenberg-Marquardt procedure, which uses

Ri
N (x̂i, ZN , ν) = Hi

N (x̂i, ZN ) + νI (C.10)



270 APPENDIX C. PRIOR KNOWLEDGE APPROACH. . .to regularize the approximation of the hessian. The iterative parameterestimate x̂i then becomes
x̂i+1(ZN , ν) = x̂i(ZN ) − µi

N [Ri
N (x̂i, ZN , ν)]−1V ′

N (x̂i, ZN)

= x̂i(ZN ) + di(x̂i, ZN , ν). (C.11)For ν > 0, the hessian approximation Ri
N (x̂i, ZN , ν) is guaranteed tobe positive de�nite. With ν = 0 this is the Gauss-Newton method andby increasing ν the step size is reduced and the search direction di isturned towards the gradient, resulting in the steepest descent directionas ν → ∞.Generally it can not be guaranteed that di(x̂i, ZN , ν) in (C.11) isa descent direction. This can happen if the prediction errors are largeor if (C.6) is not a good approximation (close to the optimum) (Eriks-son, 1998). The approach here is to start up with a ν > 0, and if

VN (x̂i+1, ZN ) > VN (x̂i, ZN ) occurs, ν is increased and new values of
di+1 and x̂i+1 are computed until di+1 is a descent direction.Stopping criteriaA stopping criterion must be stated in order for the optimization pro-cedure to terminate. In theory this should be done when the gradient
V ′

N is zero, so an obvious practical test is to terminate once ‖V ′
N‖ issmall enough. Another useful test is to compute the relative di�er-ence in loss function VN between two iterations, and terminate if thisdi�erence is less than a given tolerance level. The algorithm can alsoterminate after a given maximum number of iterations.Local minima and initial parameter valuesGenerally, the optimization procedures converge to a local minimum of

VN (x, ZN ). This is due to that although the stated optimization prob-lem may only have one local minimum, i.e. the global one, the function
VN (x, ZN ) can have several local minima due to the noise in the data
ZN . To �nd the global minimum, there is usually no other way than tostart the iterative optimization routine at di�erent feasible initial val-ues xinit and compare the results (Ljung, 1999, p.338). Therefore, theinitial values should be chosen with care by e.g. using prior knowledge.Good initial values generally pays o� in fewer iterations and a fasterconvergence of the optimization procedure. For instance the Newton-type methods have good local convergence rates, but not necessarilyfar from optimum.Scaling of parametersThe optimization procedure works best when the size of the unknownparameters are all in the same order (Gill et al., 1981, p.346). From



C.1. LEVENBERG-MARQUARDT METHOD 271table 3.1, where the unknown parameters are summarized, it can beconcluded that the nominal parameter values range over 10 decades.Therefore a scaling in terms of a linear transformation of the parametersis introduced,
xs = Dx, (C.12)where D is a diagonal matrix with Di,i = 1/xi, xi 6= 0. It is ofimportance for the implementation that the initial guess of xi, xinit

i ,is assured to be non-zero. The gradient of VN (xs, ZN) in the scaledparameters is given by
V ′

N (xs, ZN) = D−Tψ(x)εT (x) = D−TV ′
N (x, ZN ), (C.13)since ψ(t, xs) = D−Tψ(t, x). The linear transformation matrix D isdiagonal and invertible, and therefore D−T = D−1. The hessian of

VN (xs, ZN) is given by
V ′′

N (xs, ZN) = D−TV ′′
N (x, ZN )D−1, (C.14)since ψ′(t, xs) = D−TxD−1.Scaling of parameters � regularized caseThis subsection deals with the issue of scaling the parameters whenusing method 2 in section 6.4.2, i.e. regularization using prior knowl-edge. Whenever the parameters x are rescaled with D from (C.12),the nominal values x# and the regularization matrix must be rescaledas well. The rescaled nominal values x#,s are de�ned by

x#,s = Dx#, (C.15)where D is a diagonal matrix with Di,i = 1/xi, xi 6= 0. The elements
δs
i in the diagonal scaled regularization matrix δs is thereby de�ned by

δs
i =

1

2N( σi

Di,i
)2

=
D2

i,i

2Nσ 2
i

. (C.16)Asymptotic variance and parameter con�dence intervalConsider the case when our model M(x) has the correct model struc-ture and is provided with data ZN , such that the measured output canbe predicted correctly by the model. This would mean that there is nobias in the parameter estimate x̂, and thus x̂ → x̂∗ asymptotically asthe number of data N goes to in�nity. It can then be shown (Ljung,1999, pp.282) that the probability distribution of the random variable√
N(x̂ − x̂∗) converges asymptotically to a Gaussian distribution withzero mean and covariance matrix P . This is formalized as

(x̂− x̂∗) ∈ AsN(0,
P

N
). (C.17)



272 APPENDIX C. PRIOR KNOWLEDGE APPROACH. . .For a quadratic prediction-error criterion the covariance matrix P isestimated by
P̂N = λ̂N

(

1

N

N∑

t=1

ψ(t, x̂)ψT (t, x̂)

)−1

= λ̂N

(
HN (x̂, ZN )

)−1
, (C.18a)

λ̂N =
1

N

N∑

t=1

ε2(t, x̂), (C.18b)for the parameter estimate x̂ and N data points, where λ̂N is the es-timated noise variance and HN (x̂, ZN ) is the approximated hessianin (C.8). When using scaled parameters according to (C.12), one hasto re-scale the hessian using (C.14) in a straight forward manner.The result in (C.18) has a natural interpretation. The more dataor the less noisier measured output, the more accurate the estimate.Also, since ψ is the gradient of ŷ, the asymptotic accuracy of a certainparameter is related to how sensitive the prediction is with respect tothis parameter. Therefore, the more or less a parameter a�ects theprediction, the easier or harder respectively it will be to determine itsvalue (Ljung, 1999, p.284).The asymptotic covariance in (C.18) can be used to compute con-�dence intervals for the parameter estimates x̂, and thereby give areliability measure of a particular parameter x̂i. When (C.17) is valid,the (1 − α)-con�dence interval for the true parameter x̂∗i is formedas (Ljung, 1999, p.302)
P (|x̂i − x̂∗i| > α) ≈

√
N

√

2πP̂ ii
N

∫

|y|>α

exp(−y2N/2P̂ ii
N)dy, (C.19)where P̂ ii

N is the i-th diagonal element of P̂N . From this, it can bestated that the true parameter value x̂∗i lies in the interval around theparameter estimate x̂i with a certain signi�cance 1 − α. The size ofthe interval is determined by α, and for a 95 % con�dence interval thelimits for parameter x̂i are
x̂i ± 1.96

√

P̂ ii
N

N
. (C.20)C.2 Linear exampleAccording to Hansen (1998), a rank-de�cient or an ill-posed estimationproblem can be solved by the same methods. Therefore, the maindi�culties with an ill-posed problem is illustrated by the following rank-de�cient example partly from Hansen (1994);



C.2. LINEAR EXAMPLE 273Example C.1 � Linear rank-de�cient problemConsider the following least-squares problem
min

x
||Ax− b||2, (C.21)where A and b are given by

A =





0.16 0.10
0.17 0.11
2.02 1.29



 , b =





0.27
0.25
3.33



 . (C.22)The true solution is xt = [1 1]T , and the measurement vector b is foundby adding a small noise perturbation according to:
b =





0.16 0.10
0.17 0.11
2.02 1.29





[
1.00
1.00

]

+





0.01
−0.03
0.02



 . (C.23)The A-matrix of this linear problem has a condition number of 1.1 ·103,i.e. it is ill-conditioned and thus potentially sensitive to noise. Indeed,solving the ordinary least-squares problem as it is formulated in (C.21)ends up in an estimate xLS = [7.01 −8.40]T , which is far from the truesolution xt = [1 1]T .The large condition number implies that the columns of A are nearlylinearly dependent. One approach could therefore be to merge the twoparameters into one, and replace A = [a1 a2] with either [a1 0] or [0 a2],since they are well-conditioned independently. This results in the twosolutions
xa1

= [1.65 0]T , xa2
= [0 2.58]T , (C.24)which are better than xLS but still far from the true solution.Introducing constraints on the parameters results could result in bet-ter estimates, however the di�culty now lies in how to chose the con-straints. When setting the constraints to |x − xt| ≤ α, for α equal to0.02, 1 and 10, the estimates becomes

x0.02 = [1.02 0.98]T , x1 = [1.65 0.00]T , x10 = [7.01 − 8.40]T = xLS ,(C.25)i.e. the solution lies on the boundary as long as xLS is not included inthe interval.This example illustrates three main di�culties with ill-posed prob-lems (Hansen, 1994):1. The condition number of A is large.



274 APPENDIX C. PRIOR KNOWLEDGE APPROACH. . .2. Replacing A with a well-conditioned matrix derived from A doesnot necessarily lead to a useful solution.3. Care must be taken when imposing additional constraints.C.2.1 Linear example for methods 1 and 2We now return to example C.2 for the two methods presented in sec-tion 6.4.Example C.2 � Linear rank-de�cient problem, cont.Methods 1 and 2 are now applied to the estimation problem describedin Example C.1 by using prior knowledge of the parameters x. Thetrue values are given by xt = [1 1]T , and the nominal values x# aregiven in four cases; x# = [1 1]T , x# = [1.05 1]T , x# = [1 1.05]T and
x# = [1.05 1.05]T . The �rst case corresponds to a true prior knowledgeand the remaining three involves a false prior knowledge. The resultsof the estimations are given in table C.1. For method 1, either x1or x2 could be set spurious and therefore both cases are given. Formethod 2, the estimate is a function of the regularization parameter
δx. This is illustrated in �gure C.1, where the compromise between theresidual error VN and the nominal parameter error V δ

N is obvious. Theestimate corresponding to the L-corner of the curve, which is the bestcompromise between VN and V δ
N , is the one given in table C.1.Nominal x# M1(x1 �xed) M1(x2 �xed) M2

[1 1]T [1 1.01]T [1.01 1]T [1.01 1.00]T

[1.05 1]T [1.05 0.94]T [1.01 1]T [1.02 0.98]T

[1 1.05]T [1 1.01]T [0.98 1.05]T [1.01 1.01]T

[1.05 1.05]T [1.05 0.94]T [0.98 1.05]T [1.00 1.01]TTable C.1: Parameter estimates for methods 1 and 2, in four cases ofprior knowledge. The true values are [1 1].Table C.1 shows that when the prior is true, the estimate is closeto the true estimate and approximately the same for methods 1 and 2.This is also the case for method 1, as long as the prior is true for allspurious parameters, in which case a better estimate is found than formethod 2. However, in the presence of a false prior in the spuriousparameters, method 2 yields a smaller estimation bias than method 1.This highlights one of the features with method 2, namely the com-promise between the data �tting and the parameter prior knowledge.
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Figure C.1: L-curves for linear example corresponding to true prior(0 %) and false prior (5 %), i.e. case 1 and 4 in table C.1. The circlescorrespond to the estimates in the corners of the L-function.Note also that the bias depends upon which parameter that has thefalse prior, as illustrated by comparing rows 2 and 3 for method 2.In this case the false prior in x2 results in a smaller estimation bias,compared to if the false prior is in x1.C.3 Motivation for M2:3+This section gives a motivation for why the version M2:3 needs to beextended, or at least handled with care. Note that the focus of thesection is on �ring cycles, while the results and conclusions are validfor the motored cycles as well.Consider �gure C.2 where the upper plot displays the L-curve cor-responding to OP1 for experimental �ring cycles using method 2 and
δi = c, i.e. the same L-curve as in �gure 8.7. In the lower plot the cor-responding positive, i.e. convex, curvature τ (6.23) from algorithm 6.5is given. The corresponding �gures for a simulated �red cycle and anexperimental motored cycle are given in �gures C.3 and C.4. They cor-respond to the L-curves presented earlier in �gure 8.4 and �gure 7.12.
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Figure C.2: Upper: L-curve for experimental �ring cycles usingmethod 2 and δi = c at OP1. The four versions are indicated bythe legend. Lower: Corresponding positive curvature τ from (6.23).
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Figure C.3: Upper: L-curve for simulated �ring cycles using method 2and δi = c at OP1. Lower: Corresponding positive curvature τfrom (6.23).
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Figure C.4: Upper: L-curve for experimental motored cycles usingmethod 2 and δi = c at OP1. The four versions are indicated bythe legend. Lower: Corresponding positive curvature τ from (6.23).Figure C.2 shows that the curvature τ is maximized for a relativelylow value of δx, as shown for M2:3. The corresponding curvature doesnot show up in the simulated case in �gure C.3, and is thus believedto correspond to a �false� corner. Such a corner is believed to be dueto that the measurement noise causes a jump in RMSE(ε) between twodi�erent local minima. The same behavior occurs for case 2. It will beshown in the evaluation of case 1 and 2 for experimental �red cycles, seesection 8.2.4, that the estimates for experimental cycles for M2:3 areless accurate than the estimates for M2:1. This is shown in tables 8.18and 8.19 for case 1 and 2.The correct corner is instead close to M2:1, here exempli�ed byboth �gure C.2 and �gure C.3. Therefore the extension of M2:3 is touse a smaller region ∆x of δx. Since M2:1 is both fast and close tothe correct corner in the L-curve, the regularization parameter δx fromM2:1 is used as a mid-value for this region. The lower and upper limitof this region ∆x is then chosen as to assure that a convex curvature isincluded. This is done by assuring that the curvature τ is positive forat least one sample of δx, and that the position for maximum τ is aninterior point of the region ∆x.



278 APPENDIX C. PRIOR KNOWLEDGE APPROACH. . .For this application the δx:s are distributed according to the 69samples in �gure 7.5, and it has proved to be su�cient to use ±12samples of δx, starting from δx(M2 : 1). This typically yields a region of
δx that covers four orders of magnitude. This choice of ∆x also reducesthe computational time approximately by a factor 69

25 for M2:3+ ascompared to M2:3. Applying these modi�cations to M2:3 renders thecorner shown for M2:3+ in �gure 8.7, and therefore M2:3+ performsas intended for both case 1 and 2.The algorithm for M2:3+ is given by:Algorithm C.1 � Hansen's L-curve with Miller initialization (M2:3+)1.Assign a prior x#
i and δi to each of the parameters x ∈ R

d×1.The regularization matrix is then formed as δ = δx diag(δi).2.Compute boundariesmε andmδ in (6.20), that give δx from (6.21).3.Compute the region ∆x with δx from step 2 as the mid-value, andthe upper and lower limit as chosen relative to the same δx.4.Minimize the criterion function WN (6.7) for the discrete points
δx ∈ ∆x, equally spaced in a logarithmic scale.5.Find the δx for which (6.22) is ful�lled, by using a cubic splineinterpolation.6.Minimize WN (6.7) w.r.t. x using δx from step 5.7.Return the estimate xδ,∗.Steps 1 and 2 in algorithm C.1 correspond to steps 1 and 2 in al-gorithm 6.3 (M2:1), step 3 computes the region ∆x, while steps 4�7correspond to steps 2�5 in algorithm 6.5 (M2:3).



C.4. L850 � GEOMETRIC DATA 279C.4 L850 � Geometric dataThe L850 engine is used for simulated and experimental data in chap-ters 6�8. The geometric data for the crank and piston movement aregiven in the following table:Property Abbrev. Value UnitBore B 86 [mm]Stroke S 86 [mm]Crank radius ar = S
2 43 [mm]Connecting rod l 145.5 [mm]No. of cylinders ncyl 4 [-]Displacement volume Vd 1998 [cm3]Clearance volume Vc 58.8 [cm3]Pin-o� xoff 0.8 [mm]Compression ratio rc 9.5 [-]C.5 Parameters in single-zone model � mo-tored cyclesThe nominal parameters used in the single-zone model (3.36)�(3.45)are summarized in table C.2 for operating point 1. The parametervalues for N , pIV C and TIV C di�ers for all the eight operating pointsaccording to table C.3. All the other parameters remain the same.Compared to table 3.1 the following parameters are changed; Theconstant γ300 is set to 1.40, since this is the value for pure air. Theslope coe�cient b is changed accordingly. The crank angle o�set ∆θis set to 0.1 CAD, a smaller value than in table 3.1, since 0.1 CAD isthe approximate value for a well-calibrated measurement system. Theclearance volume Vc is altered due to the changed engine geometry.The crevice volume is now altered to 1 cm3, which is approximatelythe same Vcr as for table 3.1 in absolute numbers. The pressure o�setis now set to 5 kPa.C.6 Parameters in single-zone model � �redcyclesThe nominal parameters used in the single-zone model (3.36)�(3.45) aresummarized in table C.4 for operating point 1. The parameter valuesfor Qin, pIV C , TIV C , Tw and the burn related parameters θig, ∆θd and

∆θb di�ers for all the eight operating points according to table C.5. Allthe other parameters remain the same.



280 APPENDIX C. PRIOR KNOWLEDGE APPROACH. . .Par. Description Value
γ300 constant ratio of speci�c heat [-] 1.40
b slope for ratio of speci�c heat [K−1] −1 · 10−4

C1 Woschni heat transfer parameter [-] 2.28
∆θ crank angle phasing [deg] 0.1
Vc clearance volume [cm3] 58.8
Vcr single aggregate crevice volume [cm3] 1
∆p pressure sensor bias [kPa] 5
Tw mean wall temperature [K] 400
TIV C mean charge temperature at IVC [K] 370
pIV C cylinder pressure at IVC [kPa] 50
Kp pressure sensor gain [-] 1Table C.2: Nominal parameter values for motored cycles at OP1 in thesingle-zone model.OP TIV C [K] pIV C [kPa] N [rpm]1 370 50 15002 310 50 15003 370 100 15004 310 100 15005 370 50 30006 310 50 30007 370 100 30008 310 100 3000Table C.3: Operating points (OP) for the simulated motored cylinderpressure.

Out of these, the following parameters are changed compared totable 3.1; The constant γ300 and the slope coe�cient b are set to lowervalues, although the di�erence is small. The crank angle o�set ∆θ isset to 0.1 CAD, a smaller value than in table 3.1, since 0.1 CAD isthe approximate value for a well-calibrated measurement system. Theclearance volume Vc is altered due to the changed engine geometry.The crevice volume is now altered to 0.588 cm3. The pressure o�set isnow set to 5 kPa.



C.6. SZ MODEL PARAMETERS � FIRED 281Par. Description Value
γ300 constant ratio of speci�c heat [-] 1.35
b slope for ratio of speci�c heat [K−1] −7 · 10−5

C1 Woschni heat transfer parameter [-] 2.28
C2 Woschni heat transfer parameter [m/(s K)] 3.24 · 10−4

∆θ crank angle phasing [deg] 0.1
θig ignition angle [deg ATDC] -15
∆θd �ame development angle [deg] 20
∆θb rapid burn angle [deg] 20
Vc clearance volume [cm3] 58.8
Vcr single aggregate crevice volume [cm3] 0.588
∆p pressure sensor bias [kPa] 5
Tw mean wall temperature [K] 480
TIV C mean charge temperature at IVC [K] 414
pIV C cylinder pressure at IVC [kPa] 50
Qin released energy from combustion [J] 503
Kp pressure sensor gain [-] 1Table C.4: Nominal parameter values for �red cycles at OP1 in thesingle-zone model.
Parameter OP1 OP2 OP3 OP4 OP5 OP6
N [rpm] 1500 3000 1500 3000 1500 3000
pIV C [kPa] 50 100 50 100 50 100
TIV C [K] 414 370 414 370 414 370
Tw [K] 480 400 480 400 480 400
Qin [J] 503 1192 503 1192 503 1192
θig [deg ATDC] -15 -15 -20 -20 -25 -25
∆θd [deg] 20 20 15 15 15 15
∆θb [deg] 20 20 30 30 30 30Table C.5: Operating points (OP) for the simulated �red cylinder pres-sure.



282 APPENDIX C. PRIOR KNOWLEDGE APPROACH. . .C.7 Complementary results for prior knowl-edge approachThis section contains the complementary �gures and tables that arereferenced from chapters 7 and 8.Complementary results for simulations � motored cyclesFigures C.5 and C.6 show the L-curve for one motored cycle at oper-ating point OP8 for setup 2 using δi = c and δi 6= c respectively.Complementary results for experiments � motored cyclesTables C.6 and C.7 show the mean value, standard deviation, and rela-tive mean error for the individual estimates at OP1 for method 2, using
δi = c and δi 6= c respectively. The relative mean error is computedrelative to the nominal parameter value at each cycle and is given inpercent.Complementary results for simulations � �red cyclesTable C.8 shows the individual parameter estimates for the entire rangeof d#, i.e. from 16 to 1 parameter. The numerical values are given forone engine cycle at OP1 in the presence of a false prior level of 0 %.Complementary results for experiments � �red cyclesTable C.9 de�nes the operating points used in experimental evaluation.The corresponding nominal values are given in table C.10.
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Figure C.5: L-curve (solid line) for one (motored) engine cycle at OP8with false prior RMSE(ε#−t
x ) (dotted line), when using setup 2 andcase 1 of the δi (δi = c). The results for the three versions of method 2and the optimal choice of regularization parameter are indicated by thelegend. The true parameter deviation RMSE(εt

x) (dash-dotted line) isalso given. OP1 OP2 OP3 OP4 OP5 OP6
N [rpm] 1200 1500 1500 2000 3000 3500
pman [kPa] 32 55 130 123 103 120
θig[deg ATDC] -33 -26 -5 -12 -28 -24Table C.9: Operating point conditions for experimental cycles at OP1�6.
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Figure C.6: L-curve (solid line) for one (motored) engine cycle at OP8with weighted false prior RMSE(Lδ ε#−t
x ) (dotted line), when usingsetup 2 and case 2 of the δi (δi 6= c). The results for the three ver-sions of method 2 and the optimal choice of regularization parameterare indicated by the legend. The weighted true parameter deviationRMSE(Lδ εt

x) (dash-dotted line) is also given.



DNotation
The parameters are given in appendix D.1, and the abbreviations aresummarized in appendix D.2. In the thesis various evaluation criteriaare used, and they are summarized in appendix D.3.D.1 ParametersIn system identi�cation literature, e.g. (Ljung, 1999), the conventionis to name the parameters by θ. However throughout this thesis, theparameters are instead named x. This in order to assign θ as the crankangle degree, which is common in engine literature, see e.g. (Heywood,1988).D.1.1 Heat transfer
C1 constant in Woschni's correlation [-]
C2 constant in Woschni's correlation [m/(sK)]
hc convection heat transfer coe�cient [W / (m2 K)]
p cylinder pressure for �ring cycle [Pa]
p0 cylinder pressure for motored cycle [Pa]
T mean gas temperature [K]
T0 mean gas temperature for motored cycle [K]
Tw wall temperature [K]
up mean piston speed [m/s]
w characteristic velocity [m / s]289



290 APPENDIX D. NOTATIOND.1.2 Engine geometry
A instantaneous surface area [m2]
Ach cylinder head surface area [m2]
Alat instantaneous lateral surface area [m2]
Apc piston crown surface area [m2]
ar crank radius [m]
B cylinder bore [m]
l connecting rod length [m]
rc compression ratio index [-]
S piston stroke [m]
θ crank angle [rad]
V instantaneous cylinder volume [m3]
Vc clearance volume [m3]
Vcr aggregate crevice volume [m3]
Vd displacement volume [m3]
Vid instantaneous displacement volume [m3]
v tilt angle [deg]
xoff pin-o� [m]
D.1.3 Engine cycle
Kp pressure measurement gain [-]
N engine speed [rpm]
p cylinder pressure [Pa]
∆p pressure bias [Pa]
pexh exhaust manifold pressure [Pa]
pm measured cylinder pressure [Pa]
pman intake manifold pressure [Pa]
Tman intake manifold temperature [K]
Tw mean wall temperature [K]
θ crank angle [rad]
∆θ crank angle o�set [rad]
θig ignition angle [rad]
θppp peak pressure position [rad]



D.1. PARAMETERS 291D.1.4 Thermodynamics and combustion
(A

F )s stoichiometric air-fuel ratio [-]
a Vibe parameter [-]
b slope in linear model of γ (2.30) [1/K]
cv mass speci�c heat at constant volume [ J

kgK ]
cp mass speci�c heat at constant pressure [ J

kgK ]
dmi mass �ow into zone i [kg

s ]
dmcr mass �ow into crevice region [kg

s ]
hi mass speci�c enthalpy [ J

kg ]
Mi molar mass of specie i [kg/mole]
m Vibe parameter [-]
ma air mass [kg]
maf air-fuel charge mass [kg]
mb burned charge mass [kg]
mf fuel mass [kg]
mr residual gas mass [kg]
mtot total mass of charge [kg]
n polytropic exponent [-]
Q transported heat [J]
Qch chemical energy released as heat [J]
Qht heat transfer to the cylinder walls [J]
Qin released energy from combustion [J]
qHV speci�c heating value of fuel [ J

kg ]
R speci�c gas constant [ J

kgK ]
Tb temperature in burned zone [K]
Tr residual gas temperature [K]
Tu temperature in unburned zone [K]
U internal energy [J]
Vr residual gas volume [m3]
W mechanical work [J=Nm]
xb mass fraction burned [-]
xi mass fraction of specie i [-]
x̃i mole fraction of specie i [-]
xr residual gas fraction xr = mr/mc [-]
yi CHEPP coe�cient for specie i [-]
γ speci�c heat ratio [-]
γ300 constant value in linear model of γ (2.30) [-]
γb γ for burned mixture [-]
γu γ for unburned mixture [-]
ηf combustion e�ciency [-]
∆θb rapid burn angle [rad]
∆θcd total combustion duration [rad]
∆θd �ame development angle [rad]
λ (gravimetric) air-fuel ratio [-]
φ = λ−1 (gravimetric) fuel-air ratio [-]



292 APPENDIX D. NOTATIOND.1.5 Parameter estimation
aε Morozov coe�cient (6.22)
d number of parameters in M(x)
dk descent direction for iteration kFP false prior level
HN approximative Hessian in (C.8)
Lδ weighting matrix, Lδ = (δ)1/2

M(x) model for x
mδ Miller coe�cient (6.20b)
mε Miller coe�cient (6.20a)
P covariance matrix
P̂N estimate of covariance at x̂
VN (x, ZN ) loss (criterion) function based on residual error
V δ

N penalty term based on nominal parameter deviation
v eigenvector
WN loss function using prior knowledge
x vector used to parameterize model
x̂ parameter estimate
x̂∗ parameter estimate at optimum
xδ parameter estimate when using regularization
xδ,∗ regularized parameter estimate at optimum
xeff e�cient parameter
x̂eff estimate for the e�cient parameters
xi parameter i
x̂k estimate of parameter k
xinit initial values of parameters
xs scaled parameters xs = Dx
xsp spurious parameters
xt true value of the parameters
x# nominal value of parameters
x#,s scaled nominal value of parameters
y(t) measured output
ŷ(t|x) predicted model output
ZN data set [y(1), u(1), y(2), u(2), . . . , y(N), u(N)]
α signi�cance level
δ regularization matrix
δi diagonal element in δ
δx regularization parameter
∆x search region for δx
ε prediction error y(t) − ŷ(t|x) or residual
εt

x true parameter deviation (D.8)
ε̄t

x mean true parameter deviation (D.9)
ε#x nominal parameter deviation (D.10)
ε̄#x mean nominal parameter deviation (D.11)



D.2. ABBREVIATIONS 293
ε#−t

x nominal parameter deviation from true values (D.12)
η noise level
λ0 noise variance
λ̂N estimated noise variance
µ step size for optimization algorithm
ν regularization parameter for Levenberg-Marquardt
ς singular value
σ standard deviation
τ curvature of L-curve
ψ Jacobian vector, de�ned in (C.5)D.2 AbbreviationsAFR Air-Fuel equivalence RatioAHR Accumulated Heat ReleaseATDC After TDCCAD Crank Angle DegreeCHEPP CHemical Equilibrium Program Package(Eriksson, 2004)CI Compression IgnitedPDF Probability Density FunctionECU Electronic Control UnitEVO Exhaust Valve OpeningFAP False Alarm ProbabilityFAR Fuel-Air equivalence RatioFP (level of) False PriorFPE Final Prediction ErrorGDI Gasoline Direct InjectedIVC Inlet Valve ClosingMAP Maximum A PosterioriMDP Missed Detection ProbabilityMFB Mass Fraction BurnedMRE Maximum Relative ErrorNRMSE Normalized Root Mean Square ErrorRCI Relative (95 %) Con�dence IntervalRE Relative estimation ErrorRME Relative Mean estimation ErrorRMSE Root Mean Square ErrorSI Spark IgnitedSOC Start Of CombustionSVC Saab Variable CompressionSVD Singular Value DecompositionTDC Top Dead Center, engine crank position at 0 CADTWC Three-Way Catalyst



294 APPENDIX D. NOTATIOND.3 Evaluation criteriaThe evaluation criteria used in the thesis are summarized here, andgiven in a general form. Here yt denotes the true value, ŷ denotes theestimated or modeled value, y# is the nominal value and j is the sam-ple number.Root mean square error (RMSE):
RMSE =

√
√
√
√

1

M

M∑

j=1

(yt
j − ŷj)2. (D.1)Normalized root mean square error (NRMSE):

NRMSE =

√
√
√
√

1

M

M∑

j=1

(
yt

j − ŷj

yt
j

)2. (D.2)Maximum relative error (MRE):
MRE = max

j
|
yt

j − ŷj

yt
j

|. (D.3)The relative mean error (RME):
RME =

1

M

M∑

j=1

yt
j − ŷj

yt
j

. (D.4)Mean 95 % relative con�dence interval (RCI):
RCI =

1

M

M∑

j=1

1.96σj

yt
j

, (D.5)where σ is computed using (C.18) and (C.20) in appendix C.1.False alarm probability (FAP):
FAP = P (reject H0|r est

c ∈ NF) = P (T ≥ J |r est
c ∈ NF). (D.6)The variables and nomenclature used are de�ned in example 5.1.Missed detection probability (MDP):

MDP = P (not reject H0|r est
c /∈ NF) = P (T < J |r est

c /∈ NF).(D.7)The variables and nomenclature used are de�ned in example 5.1.



295True parameter deviation εt
x:
εt

x = ŷ − yt, (D.8)which is closely related to the mean true parameter deviation:
ε̄t

x = RMSE(εt
x) =

√
√
√
√

1

M

M∑

j=1

(ŷj − yt
j)

2. (D.9)Nominal parameter deviation ε#x :
εt

x = ŷ − y#, (D.10)which is closely related to the mean nominal parameter deviation:
ε̄#x = RMSE(ε#x ) =

√
√
√
√

1

M

M∑

j=1

(ŷj − y#
j )2. (D.11)Nominal parameter deviation from true values ε#−t

x :
ε#−t

x = y# − yt. (D.12)

D.3. EVALUATION CRITERIA
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