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Abstract

The aim of this thesis is to contribute to improved diagnosis of automotive
vehicles. The work is driven by case studies, where problems and challenges are
identified. To solve these problems, theoretically sound and general methods
are developed. The methods are then applied to the real world systems.

To fulfill performance requirements automotive vehicles are becoming in-
creasingly complex products. This makes them more difficult to diagnose. At
the same time, the requirements on the diagnosis itself are steadily increasing.
Environmental legislation requires that smaller deviations from specified oper-
ation must be detected earlier. More accurate diagnostic methods can be used
to reduce maintenance costs and increase uptime. Improved diagnosis can also
reduce safety risks related to vehicle operation.

Fault diagnosis is the task of identifying possible faults given current obser-
vations from the systems. To do this, the internal relations between observations
and faults must be identified. In complex systems, such as automotive vehicles,
finding these relations is a most challenging problem due to several sources of
uncertainty. Observations from the system are often hidden in considerable lev-
els of noise. The systems are complicated to model both since they are complex
and since they are operated in continuously changing surroundings. Further-
more, since faults typically are rare, and sometimes never described, it is often
difficult to get hold of enough data to learn the relations from.

Due to the several sources of uncertainty in fault diagnosis of automotive
systems, a probabilistic approach is used, both to find the internal relations,
and to identify the faults possibly present in the system given the current ob-
servations. To do this successfully, all available information is integrated in the
computations.

Both on-board and off-board diagnosis are considered. The two tasks may
seem different in nature: on-board diagnosis is performed without human inte-
gration, while the off-board diagnosis is mainly based on the interactivity with
a mechanic. On the other hand, both tasks regard the same vehicle, and in-
formation from the on-board diagnosis system may be useful also for off-board
diagnosis. The probabilistic methods are general, and it is natural to consider
both tasks.

The thesis contributes in three main areas. First, in Paper 1 and 2, meth-
ods are developed for combining training data and expert knowledge of different
kinds to compute probabilities for faults. These methods are primarily devel-
oped with on-board diagnosis in mind, but are also applicable to off-board
diagnosis. The methods are general, and can be used not only in diagnosis of
technical system, but also in many other applications, including medical diag-
nosis and econometrics, where both data and expert knowledge are present.

The second area concerns inference in off-board diagnosis and troubleshoot-
ing, and the contribution consists in the methods developed in Paper 3 and 4.
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The methods handle probability computations in systems subject to external
interventions, and in particular systems that include both instantaneous and
non-instantaneous dependencies. They are based on the theory of Bayesian
networks, and include event-driven non-stationary dynamic Bayesian networks
(nsDBN) and an efficient inference algorithm for troubleshooting based on static
Bayesian networks. The framework of nsDBN event-driven nsDBN is applicable
to all kinds of problems concerning inference under external interventions.

The third contribution area is Bayesian learning from data in the diagnosis
application. The contribution is the comparison and evaluation of five Bayesian
methods for learning in fault diagnosis in Paper 5. The special challenges in
diagnosis related to learning from data are considered. It is shown how the five
methods should be tailored to be applicable to fault diagnosis problems.

To summarize, the five papers in the thesis have shown how several chal-
lenges in automotive diagnosis can be handled by using probabilistic methods.
Handling such challenges with probabilistic methods has a great potential. The
probabilistic methods provide a framework for utilizing all information avail-
able, also if it is in different forms and. The probabilities computed can be
combined with decision theoretic methods to determine the appropriate action
after the discovery of reduced system functionality due to faults.



Sannolikhetsbaserad Diagnos med
Fordonstillämpningar

Den här arbetet har utförts med i första hand ett motiv: att bidra till förbättrad
feldiagnos i moderna, hög-automatiserade fordon. För att uppfylla ständigt
ökande krav på säkerhet, funktionalitet, tillgänglighet, komfort och minskad
miljöpåverkan blir fordon, som till exempel lastbilar och bilar, allt mer kom-
plexa. Detta gör dem också svårare att diagnosticera och felsöka. Samtidigt
ökar kraven på precision och hastighet för diagnossystemen. För att fordo-
nen ska uppfylla allt mer krävande miljörelaterade lagkrav behöver allt mindre
fel upptäckas tidigare. Noggrannare diagnos ökar tillgängligheten hos fordonet,
förkortar verkstadsbesöken, och sänker driftskostnaderna. Bättre diagnos bidrar
även till säkrare fordon, för både förare och medtrafikanter.

Diagnos handlar om att hitta fel som är närvarande i ett system genom att
använda ett flertal observationer från systemet och relationer mellan dessa. I da-
gens och morgondagens moderna fordon innebär detta många utmaningar, i syn-
nerhet eftersom de flesta relationer innehåller osäkerheter. Det är utmanande
att konstruera noggranna och tillförlitliga fysikaliska modeller av systemen, då
de är mycket komplexa och verkar i en omgivning som ständigt förändras när
fordonet kör på vägen. Vidare är det ofta svårt att samla data från fordonen för
att lära relationer mellan observationer, i synnerhet från feltillstånd, eftersom
fel typiskt är ovanliga och ibland till och med har okänd effekt på observa-
tionerna. Dessutom är beräkningskapaciteten, åtminstone för diagnos som ska
utföras ombord på fordonet, ofta begränsad. Detta beror på att de processorer
som klarar den utsatta miljön ombord har betydligt sämre prestanda än pro-
cessorer till exempel i en PC. På verkstaden möts man av svårigheten att felen
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i fordonet inte nödvändigtvis är synligt när fordonet är stilla. Till exempel är
det svårt att upptäcka problem med bromsarna när inte bromsarna används.

Flera av utmaningarna inom fordonsdiagnos är relaterade till osäkerheter
och otillräcklig information. Därför antas ett sannolikhetsbaserat förhållningssätt
i den här avhandlingen, både när det gäller att hitta relationerna mellan obser-
vationerna, och för att detektera fel. Målet är att beräkna sannolikheterna att
lika fel är närvarande. För att lyckas med detta är det viktigt att all tillgänglig
information används i beräkningarna.

I avhandlingen betraktas både diagnos utförd ombord på fordonet och diag-
nos gjord på verkstad. Diagnos ombord och verkstadsdiagnos kan förefalla vara
två helt olika problem. Ombord görs diagnosen automatiskt i styrsystemet och
(i de flesta fall) helt utan inblandning av människor, till skillnad från diagnos
på verkstäder som i första hand utförs av mekanikern, stöttad av ett felsökn-
ingsverktyg. Å andra sidan gäller diagnosen samma fordon, och information
från diagnosen i styrsystemet ombord kan vara till stor hjälp under felsöknin-
gen på verkstaden. Inom det ramverk för diagnos, baserat på sannolikhetsteori,
som används och utvecklas i den här avhandlingen, är metoderna generella och
kan appliceras på diagnos både ombord och på verkstaden. Därför blir det
naturligt att betrakta båda typerna av diagnos.

Den här avhandlingen bidrar i första hand inom tre områden. Det första
området är metoder för att kombinera olika typer av information i sannolikhets-
beräkningar. I artiklarna 1 och 2 har metoder utvecklats för att kombinera
träningsdata och expertkunskap av olika typer. Metoderna är generella och
kan inte bara användas inom diagnos, utan även inom många fält, till exem-
pel medicinsk diagnos och ekonomisk modellering. Metoderna i artiklarna 1
och 2 har i första hand utvecklats med avseende på diagnos ombord, men kan
självklart även användas inom verkstadsdiagnos.

Det andra området avhandlingen bidrar till är inom modellering och sanno-
likhetsberäkningar för felsökning på verkstäder. Artiklarna 3 och 4 beskriver
sådana metoder. Den största utmaningen i felsökning är att hantera yttre
påverkan på systemet. Till exempel, när fordonet repareras förändras sys-
temet och de beroenden som finns mellan komponenter förändras och försvin-
ner. Metoderna som utvecklats i artiklarna 3 och 4 är baserade på Bayesianska
nätverk, och innefattar bland annat ett nytt ramverk för händelse-styrda icke-
stationära dynamiska Bayesianska nätverk och en effektiv men enkel algoritm
för att kunna använda vanliga statiska Bayesianska nätverk i modellering för
felsökning. Ramverket för händelse-styrda icke-stationära dynamiska Bayesian-
ska nätverk är inte enbart användbara inom felsökning, utan och kan användas
i många frågeställningar där sannolikhetsberäkningar ska göras i system som
utsätts för yttre påverkan.

Det tredje bidraget, presenterat i artikel 5, är en jämförelse och utvärdering
av olika metoder lära relationer mellan observationer och fel från träningsdata.
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Att lära från data för diagnos ställer särskilda krav på algoritmerna som an-
vänds, och i artikel 5 har ett fem olika metoder anpassats till diagnos-problemet
och deras prestanda har jämförts.

Genom hela avhandlingen har arbetet drivits av fallstudier av delsystem i
en modern lastbil, där olika problem och svårigheter har identifierats. Teo-
retiskt sunda och generella metoder har utvecklats för att lösa dessa problem.
Metoderna har sedan applicerats på de riktiga systemen i lastbilen.
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Preface

I believe searching faults is like a detective’s work. We observe the system,
discuss the hidden relations, using whatever we know about the system, and
draw conclusions about whether there are faults present and, if so, which faults.
Therefore, searching faults and doing diagnostic work is about understanding
relations between observations and different faults, and to distinguish the rel-
evant information in the observations. To design a diagnosis system, we have
to find the relations. To perform diagnostic work, we have to reason using the
relations and the current observations.

There are several different methods for learning the hidden relations in sys-
tems to diagnose: building models, using data, applying expert systems, and so
on. However, digging deeper into the problem designing a diagnosis system, we
notice that the available information is (often) not sufficient to exactly deter-
mine if there are faults present, nor to distinguish between them. We are left
with a bunch of possible explanations.

This fact leads into the field of probability theory. When dealing with prob-
abilities, and in particular probabilities about “real-world” events, such as “what
is the probability that this truck is fault free?”, one need to know what “proba-
bility” is.

So, what is probability? Before beginning the work with this thesis, I would
have said something like “Well, the probability is the relative frequency. I sup-
pose.” However, I must confess, I had some problems with this interpretation.
First, even if fault F is present in 1 out of 100 trucks, i.e. has relative frequency
0.01, what is the probability that the fault is present in this particular truck?
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Second, if a person I trust tells me that this truck is fault free, what is the prob-
ability that this the truck is fault free then? It is reasonable that it depends on
how much I trust the person?

My problems with the interpretation of probability are, at least philosophi-
cally, solved through inspiring and interesting discussions with Mikael Sternard
and Mathias Johansson at the Signals and Systems group at Uppsala University
five years ago. They introduced me to E. T. Jaynes’ book Probability – the Logic

of Science on probability as an extension to logic. According to Jaynes, prob-
ability is a property of the spectator and his state of knowledge rather than a
“physical” property of the object. This gave me an understanding of probability
as a measure of belief that has made this thesis possible. Without Mikael and
Mathias it is highly probable that this thesis had been something completely
different.

One of the most important persons during the work with this thesis has
been my supervisor Dr. Mattias Nyberg. He has supported me through this
work by pushing my ideas further, and efficiently puncturing my bad ideas. He
has always new questions coming up, and new ideas about how the world and
the work is. It has been an intellectual challenge to work with Mattias - and I
love challenges.

This thesis has been performed as a collaborative industrial research project
between Scania CV AB in Södertälje and the division of Vehicular Systems,
Department of Electrical Engineering, Linköping University. I thank my man-
agers at Scania for supporting this work and making it financially possible.
Thanks to Prof. Lars Nielsen, for letting me join the Vehicular Systems group
in Linköping, and to the people at the group, and in particular at the diagnosis
group of Vehicular Systems, for the interesting discussions and for broadening
my perspective on diagnosis (and many other things).

Other persons that have been more important for this work are my co-
supervisor Dr. Jose M. Peña, with his knowledge on Bayesian networks; Dr. Nils-
Gunnar Vågstedt and Hans Ivendahl at Scania, with their encouragement, and
“real-world related questions” that have helped me to focus on the real prob-
lems; and Prof. Petri Myllymäki and Hannes Wettig at the CoSCo group at
Helsinki University for hosting me and introducing me to learning methods.

Carl Svärd, Håkan Warnquist, and Dr. Tony Lindgren have proof-read parts
of this thesis. Your comments have been invaluable.

A special thank to Dr. Erik Frisk for his support on LATEX, his never-ending
interest, and his clever comments and questions.

To Support(er) Petter Lindh, for his infectious harmony, and his thoughtful
comments, always given to me with excellent timing and content.

Many people know that I am addicted to long-distance running, and I think
that the work with this thesis has been much like running a marathon race. A
marathon is a challenge that, during the race, is sometimes simply fun, some-
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times painful and heavy, often exhausting – but, the whole way through, a great
pleasure! I will end this marathon with thanking my supporters that have helped
me, encouraged me, and supported me through this marathon: my friends, my
grandparents, and my wonderful family Karin, Kjell, Eva, and Johan.

Anna Pernestål

Linköping 2009
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1
Introduction

You insist that there is something a machine cannot do. If you tell me precisely

what it is that a machine cannot do, then I can always make a machine that

does just that!

J. von Neumann, 1948

1.1 Background

1.1.1 Why Automotive Diagnosis?

To meet steadily increasing requirements on performance, safety, and decreased
environmental impact, modern automotive vehicles are becoming increasingly
complex products. For example, functions are developed for active safety sys-
tems, for exhaust gas after-treatment, and to optimize fuel economy. The func-
tions typically integrate mechanics, chemical processes, hydraulics, and electric
components, as well as electronic control units (ECUs) and software. The num-
ber of ECUs is steadily increasing to satisfy requirements on increased func-
tionality. As an example, during the last fifteen years the number of ECUs in
an Scania heavy truck has increased from about five fifteen years ago to about
35-40 in modern trucks of today.

The complexity and increased functionality of modern vehicles make them
more challenging to monitor, diagnose, and troubleshoot. At the same time
the requirements on the diagnosis system itself are increasing As depicted in

3
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Figure 1.1: There are several interesents with requirements on the diagnosis
system of an automotive vehicle.

Figure 1.1, there are several interesents having requirements on the diagnosis
system in a heavy truck. At the workshop, the mechanic needs support to be
able to perform fast and efficient troubleshooting and repair of the complex
automotive vehicles. To fulfill demanding environmental legislation, faults that
increase exhaust emissions must be detected within specified times, and safety
legislation regulates faults related to safety issues. The manufacturer needs a
diagnosis system that is easily configured during development of new products,
and that can be used also in the early phases of product testing. A powerful
diagnosis system is also an important factor for manufacturers of automotive
vehicles in the competition for customers, and will continue to be so in the
future. For the driver, the diagnosis system should reduce safety risks without
producing any unexpected behavior of the truck, nor any annoying false alarms.
For haulage contractors, increased uptime and reduced service and maintenance
costs are important. This can be achieved with an accurate and efficient diag-
nosis system.

1.1.2 Diagnosis is a Challenge

Fault diagnosis is about finding faults that possibly are present in the system
by using numerous observations and their internal relations. The internal re-
lations can be described by different types of models of the system and the
faults. However, in complex systems, such as automotive vehicles of today and
tomorrow, finding the internal relations and building models is a most chal-
lenging task, since the relations often are hidden and may include uncertainty.
Building accurate physical models of the automotive systems is complicated,
both due to the complexity of the systems and since the systems are operated
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in continuously changing surroundings. In addition, in particular considering
heavy trucks and buses, many vehicles are rebuilt or reconfigured after leaving
the factory to satisfy customers’ specific needs. Reconfigurations can for exam-
ple include containers with refrigerators for food transport, changed in-take air
systems for trucks operating in deserts, external systems for handling timber, or
changed rear axle gear ratio. These reconfigurations lead to that the knowledge
about the actual configuration of the vehicle in the on-board diagnosis system
in the ECU is limited. Uncertainty is further increased by measurement noise
in sensors, and by the dispersion in quality in the sensor populations.

In automotive diagnosis, collecting data to learn from is often difficult,
mainly since faults are rare. One alternative is to implement faults and col-
lect data. However, since there are many different faults, and some are difficult,
or even impossible, to implement, there will most often only be a limited data
available from a small subset of faults that should be diagnosed. In particular,
there will typically only be data from single faults, but the diagnosis system
should also handle multiple faults. Moreover, there may be faults that causes
abnormal behavior but that are previously unseen.

On-board the vehicle, diagnosis is performed in ECUs, where the hardware
capacity in terms of CPU power and data storage is limited. Off-board, at
the workshop, the hardware capacity is less limited. On the other hand, there
can be faults that are present in the vehicle but that are not excited while the
vehicle is at the workshop.

1.1.3 Approaches to Diagnosis

One common and efficient approach to diagnosis is to use models of the sys-
tem and apply model based diagnosis (MBD). The models can be of different
types. Each of the model types have different advantages and drawbacks in the
automotive application.

One important class of models used for diagnosis is physical models, as for
example in [Peischl and Wotawa, 2003, Lucas, 2001, Hamscher et al., 1992, Ko-
rbicz et al., 2004, Gertler, 1998]. However, as described in the previous section,
accurate modeling of automotive vehicles is difficult due to several sources of
uncertainty. Other diagnosis methods are based on models learned from data,
as for example the ones in [Gustafsson, 2001, Russell et al., 2000, Basseville and
Nikiforov, 1993]. The collection of data for diagnosing automotive vehicles is
associated with two main problems. First, to distinguish faults with data driven
techniques, data from both the fault free case as well as from fault situations
is needed. Data from the fault free case can typically be collected by running
and observing the system. Data from faults is, on the other hand, difficult to
collect from observing the system since faults are rare. Second, the diagnosis
system should work when the product is newly released to the market, but at
this point the amount of data is often limited. In addition, each new release
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of a product needs a new set of data, even when the differences from previous
releases only are small.

The uncertainties described in the section above makes it difficult, or even
impossible, to determine exactly which fault that is present in the vehicle. Many
diagnosis algorithms, for example those based on the General Diagnosis Engine
(GDE) [de Kleer, 1992] and its extension Sherlock [de Kleer and Williams,
1992] or Reiter’s method based on first principles logic [Reiter, 1992], deter-
mines a list of all faults that can possibly explain the current behavior of the
system. With uncertainty in models and measurements, this list may be very
long, since faults can not be excluded with certainty. In GDE, Sherlock, and
Reiter’s methods these lists are focused on more probable faults, mainly in the
sense that explanations with a small number of faulty components are preferred
before explanations with a larger number of faulty components. In this thesis,
we handle the uncertainties by taking a probabilistic approach, and compute
the probabilities for the faults and combination of faults, given all available
information. In the probabilistic approach, faults that are impossible are as-
signed probability zero, and possible faults are ranked after their probability. In
addition, having computed the probabilities for faults, we can apply a decision-
theoretic approach, where the probabilities are combined with a loss function to
determine the counter action to perform. The concept of combining probabili-
ties with loss functions can be used both for on-board and off-board diagnosis,
but with different loss functions.

1.2 Problem Formulation

The main objective in this thesis is to contribute to improved diagnosis of auto-
motive vehicles. We let the work be driven by case studies of real applications,
where challenges and problems are identified. Methods for solving the identified
problems are developed, and applied to the real systems. Fault diagnosis is a
challenging and complicated task, and although the tasks of diagnosing different
systems or subsystems are similar, there are also differences, for example in the
type of background knowledge available. We strive for making the diagnosis
methods theoretically sound and general. The soundness of the methods makes
it easier to track and understand the meaning of their output and to guaran-
tee their performance. Moreover, development engineers can tailor the general
methods to suite their particular application.

We consider both on-board and off-board diagnosis of automotive vehicles.
The two tasks may seem different in nature. On-board diagnosis is performed in
the automotive on-board control system during operation of the vehicle, mostly
without human integration. Off-board diagnosis is performed by a mechanic
supported by a troubleshooting tool. In the troubleshooting tool, diagnosis is
based on the possibility of human interaction with the system. On the other
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hand, both on- and off-board diagnosis regard the same vehicle, and models used
in diagnosis rely on the same internal relations in, or models of, the system.

Within the probabilistic framework used in this thesis, the main objective
is to compute the probability distribution for faults, or system status, given all
information available:

p(system status|all available information). (1.1)

This probability can then be combined with decision theory to determine the
appropriate action; for example the best on-board control strategy, the best
troubleshooting action, whether to set of an alarm or not, etc. The probability
(1.1) is used both on-board and off-board. “All available information” can be
divided into three main parts: expert knowledge about the system, data, and
current observations. The expert knowledge and the data are the same in both
on- and off-board diagnosis of the same vehicle, and therefore it is natural to
consider both tasks in the thesis. However, since different kinds of observations
are available for on-board diagnosis during operation and at off-board at the
workshop, different subparts of expert knowledge and data may play different
roles. This also means that information stored from the on-board diagnosis may
contribute to improved off-board diagnosis, and vice versa.

The computation of the probability (1.1) is central in this thesis. We consider
different kinds of information, or knowledge, and use different computation
approaches. In particular, we focus on the following questions:

• How do standard methods for learning from data perform in the compu-
tation of (1.1)?

• Which are the main issues regarding the training data available for diag-
nosis?

• In the computation of (1.1), the different pieces of information are to
be combined. The different information pieces can be of widely different
types, and include for example dynamical physical models, state machines,
fault models, structural knowledge about fault effects, experimental and
observational data, function specifications. How should these different
kinds of information be integrated in the computations?

• To compute (1.1), dependency relations between different subparts of the
diagnosed system are used. In probabilistic terms, the dependency re-
lations represent information flow. However, the physical relation that
caused the dependency may not be present at the time the relation is
used. For example, at the work shop it can be observed that oil has
leaked out during operation of the system, although there is no oil leaking
out when the system is at rest. In particular, during off-board diagnosis,
what are the effects of these different kinds of dependencies?
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• During off-board diagnosis and troubleshooting at workshops, “all infor-
mation available” includes knowledge about that parts of the system have
been repaired. The repairs are external interventions that change the de-
pendency structure of the system. Therefore, one important question is:
how should external interventions be handled in the computation of (1.1)?

• In on-board diagnosis, hardware capacities are limited, and in off-board
diagnosis fast computations are crucial to reduce troubleshooting and re-
pair time. Therefore, one important question is thus: how to compute the
probability (1.1) as efficiently as possible?
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Contributions

We balance probabilities and choose the most likely. It is the scientific use of

the imagination.

Sherlock Holmes, in “The Hound of the Baskervilles”, 1902

2.1 Thesis Overview

Besides this introductory part, Part I, this thesis consists of three parts: an
introduction and brief survey of probabilistic methods for diagnosis, five ap-
pended papers, and conclusions. An overview of the three parts, and relations
between the papers and chapters is shown in Figure 2.1.

Part II is an introductory survey of probability, diagnosis, and in particular
probabilistic methods for diagnosis. It constitutes, together with the current
Part I, the bottom layers in Figure 2.1. In Chapter 3, a brief introduction to
Bayesian probability is given. Rather than a being a reference on probability
theory presenting computation rules, it is intended as a discussion of inter-
pretations of probability. In particular the interpretation used in this thesis
is presented. In Chapter 4 a brief survey of previous works on model-based
diagnosis, and in particular probabilistic diagnosis.

Part III is the main part of this thesis, and consists of the five appended
papers. In all five papers there are both application-related and theoretical con-
tributions. The theoretical contributions are in the fields of learning, modeling
and inference. As depicted in Figure 2.1, Papers 1, 2, and 5 contribute to the

9
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Figure 2.1: Overview of the thesis.
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theory of learning, while Papers 3 and 4 consider learning. All five papers have
theoretical contributions in the field of inference. In the application-related
view, Papers 1 and 2 have a clear focus on on-board diagnosis, while Papers 3
and 4 focus on off-board troubleshooting. In Paper 5 theoretical methods are
handled that are applicable to both on- and off-board diagnosis.

In Part IV, a conclusion of the work and the results in the thesis are pre-
sented. Moreover, an outlook is provided, discussing future challenges and ap-
plications of probabilistic diagnosis in automotive systems.

2.2 Appended Papers – Summary and Contribu-

tions

In this section we give an overview of the appended papers, together with a
brief summary of each of the papers. For each paper, we also present the
contributions, both the theoretical contributions related to development of new
methods, and the application-related contributions related to diagnosis of real
automotive vehicles.

2.2.1 Paper 1 - Data and Process Knowledge

Anna Pernestål and Mattias Nyberg. (2008). Bayesian Fault Diagnosis for
Automotive Engines by Combining Data and Process Knowledge. Submitted
to IEEE Transactions on Systems, Man, and Cybernetics part A.

Paper 1 is based on the publication:

• Anna Pernestål and Mattias Nyberg. (2007). Probabilistic Fault Diag-
nosis Based on Incomplete Data. In Proceedings of the European Control

Conference (ECC 2007), Kos, Greece.

Summary

The objective is to develop a diagnosis method that computes probabilities of
faults, and that is applicable to real automotive systems. A careful application
study is performed, and requirements on the diagnosis system are listed.

The diagnosis method should compute the probabilities for faults, using all
available information. The case study has shown that the available information
comprise several types of information: training data; different kinds of moni-
toring functions, such as diagnostic tests or residuals; and sensor readings. The
training data available is typically limited in amount. Furthermore, the training
data is often experimental, i.e. collected after first actively implementing faults,
instead of simply observing the system and wait for faults to appear. For many
automotive systems there are physical models available of the system, but they
are typically not detailed enough to rely on alone in fault diagnosis. Finally,
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the computational burden should be kept small to meet hardware capacity lim-
itations of on-board ECU processors.

A method for computing the probabilities of faults given both the physical
models and the (limited amount of) training data is developed. The method is a
combination of two previous types of methods – consistency based methods us-
ing the Fault Signature Matrix (FSM) such as Sherlock [de Kleer and Williams,
1992] and structured hypothesis testing [Nyberg, 2000], and standard proba-
bilistic methods using training data only, see for example [Heckerman et al.,
1995]. In an application to the task of diagnosing the gas flow of a heavy truck
diesel engine, the new method is illustrated on real world data.

In the paper it is also discussed how the new, combined method relates to
these previous methods for diagnosis, and that the diagnosis result always is at
least as good as using one of the previous methods.

Contributions

• The detailed investigation of the automotive diagnosis problem.

• The translation of physical characteristics of the diagnosed process to
assumptions in the probability computations.

• The method for combining training data and expert knowledge in terms
of an FSM in computations of probabilities of faults.

• The application of the new method to the diagnosis of a real world auto-
motive diesel engine.

• The investigation of the new method’s relation to previous works such as
Sherlock [de Kleer and Williams, 1992], structured hypotheses testing [Ny-
berg, 2000], model-based probabilistic methods, and Bayesian networks.

2.2.2 Paper 2 - Data and Likelihood Constraints

Anna Pernestål and Mattias Nyberg. (2007). Bayesian Inference by Combining
Training Data and Background Knowledge Expressed as Likelihood Constraints.
Submitted to International Journal of Approximate Reasoning.

Paper 2 is based on the publication:

• Anna Pernestål and Mattias Nyberg. (2007). Using Prior Information in
Bayesian Classification - with Application to Fault Diagnosis. In 27th

International Workshop on Bayesian Inference and Maximum Entropy

Methods in Science and Engineering (MaxEnt 2007), Albany, USA.
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Summary

A new method is developed for learning the posterior probability distribution of
a class variable C given an observation vector x = (x1, . . . , xn) and background
information i consisting of a combination of training data and expert knowl-
edge in terms of likelihood constraints. Likelihood constraints are constraints
on linear combinations on the parameters in the distributions p(xi|C, i). The
likelihood constraints are very general, and can be used to express several types
of expert knowledge, such as explicit knowledge about certain values of the
parameters in the probability computations, or knowledge about the values of
linear combinations of parameters. Also, constraints such as “variable Xi has
the same, but unknown, distribution given C = c1 and C = c2” can be expressed
using likelihood constraints.

Likelihood constraints appear naturally in many different kinds of applica-
tions, such as medical and technical diagnosis and econometrics. In particu-
lar, the constraints in probability computations considered in the previous pa-
pers [Boutilier et al., 1996] and [Jaeger, 2004] are special cases of the likelihood
constraints considered here.

In the paper, the derivation of the new method is shown in detail. The
method leads to multidimensional integrals that do not have any closed form
solutions in general. In the paper, an approximate solution method based on
Laplace approximation is proposed. All the computations are illustrated in
detail on two examples, of which one is a diagnosis task.

Contributions

• The method for integration of expert knowledge in terms of likelihood
constraints and training data in probability computations.

• The translation of constraints in general terms into likelihood constraints.

• The application of the new method to the diagnosis problem.

2.2.3 Paper 3 - Non-Stationary Dynamic Bayesian Net-

works

Anna Pernestål and Mattias Nyberg. (2009). Non-Stationary Dynamic Bayesian
Networks in Modeling of Troubleshooting Processes. Submitted to International

Journal of Approximate Reasoning.
Paper 3 is partly based on the publication:

• Anna Pernestål, Håkan Warnquist, and Mattias Nyberg. (2009). Model-
ing and Troubleshooting with Interventions Applied to an Auxiliary Truck
Braking System. In Proceedings of 2nd IFAC Workshop on Dependable

Control of Discrete Systems (DCDS’09), Bari, Italy.



14 Chapter 2. Contributions

Summary

The task of troubleshooting automotive vehicles is considered, and in particular
the computation of probabilities of faults in a process that is subject to external
interventions. The task is further complicated by the fact that there is a mixture
of two kinds of dependencies that are used in troubleshooting: instantaneous
and non-instantaneous. For example, during operation of a vehicle there may
be oil leaking out from a pipe through a worn out gasket. When the system is
at rest, the oil on the outside of the pipe can be used to identify the leakage,
although the oil is not leaking out at rest. If the oil is cleaned up, the system
must be operated again in order to verify whether the leakage is still present.

The external interventions changes the dependency structure of in the model:
we say that they cause events. To to model processes with both instant and non-
instant dependencies and events, the framework of event-driven non-stationary
dynamic Bayesian networks (nsDBN) is developed. The framework is general,
not only to troubleshooting, but to modeling of all kinds processes where there
are events. It is also shown how an event-driven nsDBN is efficiently character-
ized by an initial Bayesian network (BN), a nominal transition BN, and three
sets used to define the events.

Modeling is an artwork, and in the paper we provide guidelines for devel-
opment engineers to simplify the task. We also describe the troubleshooting
problem in the framework of event-driven nsDBN, and illustrate the computa-
tions on a typical subsystem of an automotive vehicle.

Contributions

• The general framework of event-driven nsDBN, that facilitates probability
computations in systems that are subject to external interventions that
affects the dependency structure.

• The formulation of the troubleshooting problem within this framework.
This opens for solving troubleshooting problems in the automotive filed,
where it is important to handle general dependency structures, multiple
faults, and without any simple function verification.

• The illustration of the use of event-driven nsDBN on an automotive ex-
ample.

2.2.4 Paper 4 - Modeling and Inference for Troubleshoot-

ing

Anna Pernestål, Mattias Nyberg, and Håkan Warnquist. (2009). Modeling and
Efficient Inference for Troubleshooting Automotive Systems. Technical Report

LiTH-ISY-R-2921. Department of Electrical Engineering, Linköping University.
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Paper 4 is partly based on the publications:

• Anna Pernestål, Håkan Warnquist, and Mattias Nyberg. (2009). Model-
ing and Troubleshooting with Interventions Applied to an Auxiliary Truck
Braking System. In Proceedings of 2nd IFAC Workshop on Dependable

Control of Discrete Systems (DCDS’09), Bari, Italy.

• Håkan Warnquist, Anna Pernestål, and Mattias Nyberg. (2009). Any-
time Near-Optimal Troubleshooting Applied to an Auxiliary Truck Brak-
ing System. In Proceedings of 7th IFAC Symposium on Fault Detection,

Supervision and Safety of Technical Processes (SAFEPROCESS 2009).
Barcelona, Spain.

Summary

The objective in this paper is to propose a troubleshooting system that applies
to real automotive applications. To do this, a case study of a mechatronic system
of an automotive heavy truck, an auxiliary braking system, is performed. Three
main issues are identified as important to account for in the troubleshooting sys-
tem: the need for assembling/disassembling the vehicle during troubleshooting,
the difficulty to verify whether the system is fault free, and the need for time
efficient inference to reduce waiting time for the mechanic. The first two issues
leads to that probabilities need to be computed in a system that is subject to
external interventions.

A decision-theoretic approach is used to design a troubleshooting system
consisting of two parts: a planner, that suggests the next troubleshooting ac-
tion; and a diagnoser that supports the planner with probability computations.
To compute the probabilities in the diagnoser the framework of event-driven
nsDBNs presented in Paper 3 can be used. In the nsDBN probabilities for all
ingoing variables can be used, but the diagnoser it is shown to be sufficient to
compute conditional probabilities for observations. Therefore, we take off in the
nsDBNs, and develop a new method for computing the necessary probabilities
in the diagnoser. The method is based on an algorithm that through simple
manipulations updates a static BN as events occur. The algorithm is carefully
derived and proved in the paper. In the paper we also discuss practical issues
related to modeling for troubleshooting.

Contributions

• The development of a troubleshooting system that is applicable to real au-
tomotive systems. In particular, assembling/disassembling of the system
is possible, and no specific function verification is presumed.

• The detailed case study, and the extensive discussion of practical issues
related modeling for troubleshooting.
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• The new efficient inference algorithm for troubleshooting, based on an
algorithm that updates a static Bayesian network as external interventions
occur. In particular, it is proved that the algorithm provides the same
probabilities as an nsDBN.

2.2.5 Paper 5 - Comparing Methods for Learning

Anna Pernestål, Hannes Wettig, Tomi Silander, Mattias Nyberg, and Petri
Myllymäki. (2009). A Comparison of Bayesian Methods for Learning in Fault
Diagnosis. Submitted to Pattern Recognition Letters.

Paper 5 is based on the publications:

• Anna Pernestål, Hannes Wettig, Tomi Silander, Mattias Nyberg, and Petri
Myllymäki. (2008). A Bayesian Approach to Learning in Fault Isolation.
In Proceedings of 19th International Workshop on Principles of Diagnosis

(DX’08), Blue Mountains, Australia.

Summary

In this paper, five approaches for learning from data are compared and evaluated
on the problem of fault diagnosis and isolation. Based on the five approaches are
previously presented in the literature, eight methods where derived. The com-
pared methods are: Direct Inference [Pernestål and Nyberg, 2007], two versions
of naive Bayesian networks [Jensen and Nielsen, 2007] with discrete and binary
observations respectively, two verisons of general Bayesian networks [Jensen and
Nielsen, 2007, Silander and Myllymäki, 2006] with discrete and binary obser-
vations respectively, linear regression [Bishop, 2005], logistic regression [Roos
et al., 2005], and weighted logistic regression, a version of logistic regression that
is developed to handle experimental training data. The methods are tailored
to suite the fault diagnosis and isolation problem, and to handle issues in fault
diagnosis, such the experimental data and that there are faults from which there
is not data.

To evaluate the methods, relevant performance measures are discussed. Fi-
nally the methods are compared on data from a real-world automotive diesel
engine. Among the compared methods, logistic regression is shown to perform
best on this

Contributions

• The application and comparison of eight different Bayesian methods for
learning from data, applied to the fault diagnosis problem.

• The investigation of special characteristics of training data in diagnosis, for
example that the amount of data often is limited, and that data typically
is experimental.
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• The tailoring of these methods to suite the fault diagnosis problem, and
in particular the unseen fault patterns and the experimental data.

2.3 List of Publications

Here follows a list of publications that are not appended to the thesis, but that
constitute an important background work to the appended papers. They are
listed in order of publication.

• Anna Pernestål, Mattias Nyberg, and Bo Wahlberg. (2006). A Bayesian
Approach to Fault Isolation with Application to Diesel Engine Diagnosis.
In Proceedings of 17th International Workshop on Principles of Diagnosis

(DX’06), Peñaranda, Spain.

• Anna Pernestål, Mattias Nyberg, and Bo Wahlberg. (2006). A Bayesian
Approach to Fault Isolation Structure Estimation and Inference. In Pro-

ceedings of IFAC Symposium on Fault Detection, Supervision and Safety

of Technical Processes (SAFEPROCESS 2006), Beijing, China.

• Anna Pernestål. (2006). A Bayesian Method for Fault Identification – a
discussion on the Assignment of Priors. In Reglermöte 2006, Stockholm,
Sweden.

• Anna Pernestål. (2007). A Bayesian Approach to Fault Isolation with Ap-
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3
Bayesian Probability Theory

Probability is nothing but common sense reduced to calculation.

Laplace, 1812

In automotive dignosis, there are several sources of uncertainty: noise, model
errors, lack of training data, etc. In this thesis we use probability theory to
handle these uncertainties, and to determine faults that are possibly present in
the monitored system. Rules for manipulating and updating probabilities are
described for example in [Blom, 1994, Durrett, 2004, Casella and Berger, 2001].
However, one problem that remains when using probabilities to infer about the
real world is to assign numbers to the probabilities. To do this, it is necessary to
understand the word “probability”. In this chapter, we briefly discuss different
interpretations of probability and, in particular the interpretation of probability
used in this thesis. This chapter is a shorter version of Appendix A.

3.1 Dealing With Uncertainty

Human life is to a great deal a life lived under uncertainty. Every day we
make decisions under uncertainty, both in professional life and in private. For
example: will the stock market raise or fall today? My car does not start, which
part has caused the failure? Should I bring an umbrella tonight? How much
should I bet on my favorite soccer team in the next game? Should I fold in the
poker game? What conclusions can be drawn from the laboratory experiment?
There is no upper limit on the number of such situations.

23
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The situations listed above are very different in their nature. Sometimes the
probability calculation relies on data, as in laboratory experiments. In other
cases the probability calculations are based on known facts, for example, the
number of spades in a deck of card is well known and thus the probability of
drawing a spade can be computed. In yet other cases, it seems like probabilities
are more or less based on personal feelings, for example in sports betting.

In each situation, the human brain deals with uncertainty. It considers
the available information, for example: yesterday’s stock market trend or the
observation that the headlights of my car does not light. The brain weighs
factors speaking fore and against an event, and makes decisions (which may be
more or less clever).

In the problem considered in this thesis, diagnosis of automotive vehicles,
we deal with uncertainty in a formal way. Given observations of different kinds
from a system, the aim is to construct an algorithm that, just like the human
brain, considers the available information and evaluates the probabilities that
different faults are present. The available information can for example comprise
data, different kinds of models with unknown model errors, drawings, and func-
tionality specification documents. To be able to transform these fundamentally
different types of information and construct the diagnosis algorithm that com-
putes probabilities for faults, one might ask oneself questions as: What is this
“uncertainty”? What is “probability”? What does the “probability that it will
rain tonight” mean? Is it unique? Can we put a number on it?

In reference literature on probability theory, for example [Blom, 1994, Dur-
rett, 2004, Casella and Berger, 2001, O’Hagan and Forster, 2004], formulas
and tools for manipulating probabilities are presented, as in the following toy
example.

Example 3.1.1 (Was it the Sprinkler?).

Sanna wakes up a morning and wants to know whether it has rained during the
night. She knows that the prior probability for rain is p(rain) = 0.3. Moreover,
she knows that, if it has rained, the lawn will be wet, i.e. that p(wet lawn|rain) =
1. She also knows that, if there is no rain, there is a sprinkler that cause the
lawn to be wet with probability p(wet lawn|no rain) = 0.2.
After waking up, Sanna notices that the lawn is wet. She can then compute the
probability that it has rained by using Bayes’ rule and marginalization [Blom,
1994] as follows:

p(rain|wet lawn) =
p(wet lawn|rain)p(rain)

p(wet lawn)
=

=
p(wet lawn|rain)p(rain)

p(wet lawn|rain)p(rain) + p(wet lawn|no rain)p(no rain)
=

=
1 · 0.3

1 · 0.3 + 0.2 · 0.7
= 0.68 . . .
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These computations are perfectly fine as long as the numbers, such as “the
probability for rain is 0.3”, are known. In the example above, the numbers where
simply stated, but how are they found? To assign numbers in the probability
distributions to use in computations, it is necessary to know what “probability”
means.

3.2 Interpretations of Probability

The discussion about the definition of the word “probability” has been going
on for more than 200 years [Hacking, 1976]. Depending on the background
of the researchers, there where several different interpretations during these
years. Among the different interpretations of probability, there are two main
paths [Hacking, 1976, O’Hagan and Forster, 2004, Jaynes, 2001]: the idea of
probability as a frequency in an ensemble, often called the frequentist view or
frequency-type, on the one hand; and the idea of probability as the degree of

belief in a proposition, often referred to as the Bayesian view or belief-type,
on the other hand. In frequentist view, probability is defined by the relative
frequency of an event, and is a property of the object. Consider for example
the statement:

This coin is biased towards heads. The probability of getting heads is

about 0.6.

This statement expresses probability in the frequency-type meaning, and is true
depending on “how the world is”. This statement can (at least hypothetically)
be tested by tossing the coin (infinitely) many times. If the relative frequency
for heads is 0.6, the statement is true, if the relative frequency for heads is
something else, the statement is false. In the Bayesian view, probability is the
degree of belief, given some evidence. Consider now this sentence about the
same coin:

Taking all the evidence into consideration, the probability of getting a

head in the next roll is about 0.6.

This statement is true depending on how well evidence supports the particular
probability assignment. The probability is subjective in the sense that it de-
pends on the evidence. This statement can be true, depending on the evidence,
even if the relative frequency turns out to be something else than 0.6.

These two views, the frequency-type and the belief-type, are different in a
philosophical sense, and a natural question is why the same word, “probability”,
is used for both of them. Hacking [Hacking, 1976] gives one explanation: in
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daily life, we (humans) switch back and forth between the two perspectives.
Consider the following example.

Example 3.2.2 (Switching Between Frequency and Belief).

A truck of model R arrives to a mechanic at a workshop. The mechanic knows
that among all model R trucks, one out of ten of the trucks that arrives to the
workshop has fault F present. The mechanic concludes that choosing a random
model R truck of those that has been (or are) at the workshop, the probability
that fault F is found is 0.1. This probability is of frequency-type.
Consider now the particular truck that just arrived to the workshop. What is
the probability that this truck is has fault F? The truck is either faulty of fault
free, so there is no randomness, but still the mechanic would (probably) say
that the probability is 0.1. He reasons as follwos. Out of all model R trucks
that has visited the workshop, fault F was present in 1 out of 10. This truck
is a model R and has arrived to the workshop. Taking those three pieces of
information into account, the probability that this particular truck has fault F

is 0.1.

The two interpretations of probability, as well as methods for assigning proba-
bilities is further discussed in Appendix A. Instead, we now concentrate on the
interpretation of probability used in this thesis.

3.3 The Interpretation of Probability Used in the

Thesis

In this thesis, as in Example 3.2.2, we consider a specific vehicle. The vehicle is
either fault-free or faulty, but since we, in general, not have enough information
about the vehicle to determine its fault status, we use probabilities.

Although not being dogmatic, we will in this thesis mainly take a Bayesian,
or belief-type, view on probability. We let the probability be determined by
the evidence, or background information, given. To denote this, if i denotes
all information given, we write the probability for an event A as p(A|i). We
let the probability be defined by is given behind the |-sign, i.e. by the evidence
of background information. In this interpretation, the probability is subjective
in the sense that different evidence give different probabilities. On the other
hand, the probability is objective in the sense that we assume that it is uniquely

determined about what is given behind the |-sign. This implies that we, to be
formal, require enough information behind the |-sign to uniquely determine the
probability. For example, if D denotes the number of eyes coming up when
rolling a dice, the probability for getting six eyes in a certain trial is written

p(D = 6|S) =
1

6
,
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where

S =

The dice is unbiased. The dice has six sided. We apply principle

of indifference, that says that if there are n possible events and

there is no reason for favoring any of the events over the others,

each event should be assigned probability 1/n.

The example above show a quite lengthy and intricate way of writing something
that is implicitly understood. Furthermore, in many situations, it is uninterest-
ing and/or extremely complicated to explicitly state every piece of information
that is behind the |-sign. Therefore, we often simply denote this knowledge
“background knowledge” (background information) and write i. When the back-
ground knowledge is clear from the context we sometimes omit i as well.

We have, in this thesis, adopted the Bayesian interpretation of probability
since it is appealing and natural for the reasoning in the problems related to
diagnosis that we are faced to, or, as O’Hagan [O’Hagan and Forster, 2004]
expresses it: “the Bayesian interpretation is fundamentally sound, very flexible,
produce clear and direct inferences, and make use of all information”1.

However, we are not dogmatic, and there are cases where the frequentist view
is similar or equal. Technically, the rules of probabilities and the computations
are the same in both interpretations of probabilities [Hacking, 1976]. This means
that the methods presented in this thesis are valid and make sense regardless
of the probability interpretation of the user.

1In contrast to classical methods that have “philosophical flaws”, limited range, indirect
interpretation of the inference, and not utilize prior information [O’Hagan and Forster, 2004].
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4
A Brief Survey of Probability Based

Diagnosis

4.1 Model-Based Diagnosis

4.1.1 Diagnosis Methods

During the last two decades, fault diagnosis of technical systems has become a
steadily increasing field of research. One important reason is the introduction of
more complex and capable computers and electronic control units (ECU), that
mitigates improved system functionality that make the systems more difficult to
diagnose. At the same time, the better ECUs provide a platform for improved
diagnosis algorithms.

There is a huge number of different methods for doing diagnosis. In its
most general form, diagnosis is to, based on knowledge about the system, study
observations from the system and then draw conclusions about the state of the
system. Different diagnosis methods are based on different “knowledge about
the system” and consider observations in different ways.

In model-based diagnosis (MBD), models of the system under diagnosis are
used to describe the relations between observations and faults, see Figure 4.1.
The model typically describes how possible faults affect the observations. Dur-
ing diagnosis, these relations are inverted and the observations are used to draw
conclusions about which faults that are present. There is a wide variety in
model-types that can be used in diagnosis, and in Figure 4.2 an overview is
given. This is by no means the only way of characterizing model-based diagno-
sis methods, and it is not complete, but gives an idea of some model-types that

29
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Model

Fault 1

Fault 2

Fault 3

Observation 4

Observation 3

Observation 2

Observation 1

Internal
variables

Inference

Effect

Figure 4.1: A diagnosis model describing how faults affect observations of the
system. During diagnosis, observations are made ad the inverted relations are
used to make inference about which faults that may be present.

appears in the literature. In the remainder of this section we present four types
of models and a selection of works based on each of the model type.

4.1.2 Logical Models

Among the first modern methods for MBD we find Reiter’s method based on
first order logic [Reiter, 1992]. The system under diagnosis is described by
using logical statements. In Reiter’s method, the diagnoses are assignments
of component states to all components in the system that are consistent with
the observations made of the system. During the same time period as Reiter’s
method was developed, the General Diagnostic Engine (GDE) [de Kleer, 1992]
and its descendant Sherlock [de Kleer and Williams, 1992] based on similar ideas
where presented.

4.1.3 Black Box Models

Black box models, or data driven models, are learned from training data, and
can for example be various classification methods [Duda et al., 2001, Devroye
et al., 1996, Bishop, 2005, Russell et al., 2000, Chiang et al., 2001, Sorsa et al.,
1991], among which we find for example Support Vector Machines (SVM) [Lee
et al., 2007, Ge et al., 2004, Saunders et al., 2000], methods for Case Based
Reasoning (CBR) [Bregon et al., 2007], and Bayesian networks learned from
data [Verron et al., 2007, Pernestål et al., 2008]. Since data driven models
are learned from data, they require no explicit knowledge about the process
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Figure 4.2: An overview of model based diagnosis methods.

under diagnosis. The main drawback with the data driven models in diagnosis
is that they, in their general form, require data from all fault cases that are to
be diagnosed – a situation that is rarely fulfilled in fault diagnosis applications
since faults are rare.

4.1.4 Physical Models

Examples of physical model types are for example state space models and Dif-
ferential Algebraic Equations (DAE). Physical models are used in diagnosis
in several ways [Blanke et al., 2003, Patton et al., 2000, Isermann and Ballé,
2007, Isermann, 2006, Cordier et al., 2004, Staroswiecki and Comtet-Varga,
2001]. Among the diagnosis methods based on physical models we find for ex-
ample parity space [Basseville and Nikiforov, 1993, Gertler, 1998, Zhang et al.,
2006], structural analysis [Krysander, 2006], structural hypothesis testing [Ny-
berg, 2000], Bayesian network methods learned from physical principles [Roy-
choudhury et al., 2006, Schwall, 2005], and qualitative models [Daigle et al.,
2007, Mosterman and Biswas, 1999]. In diagnosis using physical models, data
is sometimes needed to tune the model, but the diagnosis result depend to a
larger extent on the accuracy of the model than on the data. For automotive
systems, the operation conditions and surroundings are continuously changing
and it is typically difficult to build a model that is sufficiently accurate in all
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operating conditions.

4.1.5 Discrete Event Systems

One large branch of diagnosis concerns diagnosis of Discrete Event Systems
(DES), see for example the workshop series DCDS [Dotoli and Larizza, 2009].
When considering DES, the system is modeled by a set of states and transitions
between these states [Kurien and Nayak, 2000]. Some states represent that the
system is faulty. Diagnosis then becomes the task of tracking the sequence of
states that system has been in, given observations from the system. Two com-
monly used model approaches are Petri nets [Murata, 1989, Aghasaryan et al.,
1998] and state automatons [Lunze and Supavatanakul, 2002, Supavatanakul
et al., 2006].

4.2 Probabilistic Methods for Diagnosis

4.2.1 An Example: the Car Start Problem

In this thesis, we apply probabilistic methods for diagnosis. Basically, this means
that we compute probabilities for faults. The idea of using probabilistic meth-
ods for diagnosis is not new. In fact, diagnosis is one of the most common
applications in introductory courses on probability theory. One example is the
“Car start problem” [Jensen and Nielsen, 2007], where the task is to determine
why a car does not start. A simple version of the car start problem is shown
in Figure 4.3, where variables are shown as circles and dependencies between
the variables are given by directed edges, point in the direction of causal in-
fluence. For example, the amount of fuel (Fuel?) and whether the starter rolls
(Starter Roll?) have causal impact on the whether the car starts (Car Start?),
and the state Fuel?. So, if probabilistic diagnosis problems can be solved in the
basic course on probability, what is the problem? In the example above, the
model, i.e. the causal dependencies between variables, is assumed to be known.
This is typically not the case in real applications. Furthermore, dependencies
need to be quantified. Finally, we need methods for inference, for example, to
determine the probability that the fuel tank is empty, given that the car does
not start and that the battery is fully charged. These three tasks are often chal-
lenging. In next section, we give a more precise formulation of the challenges
in probabilistic diagnosis.

4.2.2 What is Probabilistic Diagnosis?

As stated in Chapter 1, the aim is to compute the probability distribution

p(system status|all available information), (4.1)
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Car Start?

Fuel?
Starter
Roll?

Fuel Meter
Standing

Battery
Starter
Motor

Figure 4.3: A basic example of diagnosis: the car start problem. The probability
that the car starts is dependent on the fuel tank level (Fuel?), the battery status
(Battery), and the status of the starter motor (Starter Motor).

where “all available information” may include current observations, training
data, and other kinds of knowledge about the system. This distribution (4.1)
is sometimes referred to as the belief state.

The knowledge about the system is often represented with some kind of
model, for example one of those described in Section 4.1. Regardless of which
kind of model that is used, it is often impossible determine exactly which faults
that are present in the system. Reasons may for example be that the number
of observation points is limited, that there are noise and model errors present,
or the unknown and changing operating environment. These factors cause us
to reason under uncertainty.

We divided the probabilistic diagnosis problem into two subproblems:

1. Learning. To construct, or learn, an adequate model of the system under
diagnosis, including dependency structures and strength of dependencies.

2. Inference. To use the model to make inference, and compute the prob-
ability distribution for the system state, or for faults.

Depending on the model type used, these two steps will be more or less difficult.

4.3 Methods For Probabilistic Diagnosis

There are numerous methods for probabilistic diagnosis in the literature, based
on different kinds of models. In this section, we review methods based on
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three model-types that are most closely related to the methods presented in the
appended papers in Part III. We discuss the kind of dependency relations and
uncertainties that are modeled within each model type. We also consider the
complexity of the two steps Learning and Inference, and summarize advantages
and drawbacks.

4.3.1 Dynamic Physical Models

Model Type. Dynamic physical systems, such as combustion engines, au-
tomotive robots, chemical plants and many others, are often described by a
state space model or by differential algebraic equations (DAEs) [Wahlström,
2009, Verma et al., 2004, Patton et al., 2000]. In a probabilistic setting, a
discrete time state space model can for example written as

zt ∼ p(zt|z0:t−1, x0:t−1, y1:t−1, u1:t−1)

xt = f(zt, xt−1, wt, ut), wt ∼ p(wt)

yt = g(zt, xt, vt, ut), vt ∼ p(vt)

where yt are sensor readings, ut known control signals, xt continuous internal
states, zt discrete internal states, wt and vt are process and measurement noise
respectively. In this model, yt and ut comprise the observations, and the faults
states is a (subset) of zt. All variables may be scalar or vector-valued.

Learning. Learning a dynamic physical model consists in determining the
functions f and g, and distribution of the internal state zt, and the distributions
p(wt) and p(vt) of the noise wt and vt. The functions f and g are often equations
representing the physical behavior of the system, and known by domain experts.
The distribution p(zt|z0:t−1, x0;t−1, y1:t−1, u1:t−1) describes transitions between
discrete states in the system. The discrete variable zt represents faults, and
the probability for transitions is often assumed to be known. The distributions
p(wt) and p(vt) are generally assumed to be known, and often considered to be
Gaussian.

Inference. With this type of model, the belief state (4.1) that we search is the
probability p(zt|y1:t−1, u1:t−1). If the functions f and g are linear (or linearized),
and vt and wt are (assumed to be) Gaussian the Kalman Filter can be used to
determine the belief state, see for example [Gustafsson, 2001].

A more general approach, that applies to non-linear f and g, and non-
Gaussian vt and wt, is the Particle Filter [Doucet et al., 2001], where the
relevant distributions are approximated using a swarm of “particles”, or realiza-
tions of p(xt|x0:t−1, y1:t−1, z0:t−1) and p(yt|x0:t, y0:t−1, zt−1). There are several
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diagnosis applications based on particle filters, see for example [Freitas et al.,
2003, Narasimhan et al., 2004, Verma et al., 2004, Koller and Lerner, 2000, Dear-
den and Clancy, 2002, Li and Kadirkamanathan, 2001].

Advantages. If the state space description is known and can be linearized,
the Kalman Filter method is straight forward and computational efficient. State
space models often exists for control, and these models can be reuse for diag-
nosis.

Drawbacks. The Kalman and Particle filters can often be used straight-
forwardly to detect abnormal behavior of the system. However, to isolate the
particular fault that is present is often more challenging. Methods for diagno-
sis typically require multiple copies of the model and a bank of filters. This
increases the computational burden. Furthermore, to isolate faults, models de-
scribing the effects of the faults on the process are needed.

4.3.2 Data-Driven Black Box Models

Model Type. Black Box models are learned from training data. The struc-
ture of the model does not aim to represent any physical relations between inputs
and outputs. Examples of model types are given in Section 4.1.3. Sometimes,
learning black box models is referred to as machine learning.

Learning. If no explicit information is known about the system under diag-
nosis, but there is a lot of training data, i.e. tuples of observations and corre-
sponding fault statuses, from the system under diagnosis, there are methods
for learning the black-box models presented in literature [Duda et al., 2001, De-
vroye et al., 1996, Bishop, 2005, Russell et al., 2000]. The methods are generally
based on optimization of a performance measure by tuning parameters in the
models. For a Bayesian approach, data can be used to learn a Bayesian net-
work (BN) [Silander and Myllymäki, 2006], where the nodes in the BN represent
observations and faults.

Inference. Depending on the type of black box model used, inference may be
simple or complicated. However, in most of the methods, the learning part is
the most time consuming, and designed to provide straight-forward inference.
This is particularly true for regression methods and neural networks.

Advantages. No explicit knowledge about the process is needed.
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Drawbacks. The main drawback with the data-driven black box probabilistic
methods is that a large amount of data from all faults considered is needed.
Often it is difficult to obtain data from the faulty cases, since faults are rare.
The black box methods may also be difficult to interpret, and therefore they may
also be difficult to verify. Even if there is knowledge of the process available,
the existing methods for learning data driven probabilistic models can typically
not integrate this information with the data.

4.3.3 Bayesian Networks

Model Type. A Bayesian network (BN) is a representation of a factorization
of a joint distribution of a set of variables X1, . . . , Xn . A BN is a directed,
acyclic graph, where nodes represent variables and edges between nodes rep-
resent dependency relations. To each node there is a conditional probability
distribution (CPD) for the corresponding variable given its parents associated.
Introductions to Bayesian networks are given for example in [Jensen and Nielsen,
2007] and [Russell and Norvig, 2003].

Learning. In literature several ways of learning BNs for diagnosis are pre-
sented. The most common are: to learn from data, see Section 4.3.2; to use
BNs set up by experts as in [Lerner et al., 2000, Schwall, 2005]; or to sys-
tematically derive the BNs from sets of physical equations by using a bond
graph [Roychoudhury et al., 2006]. Also, for a given dependency, the CPDs can
be learned from data.

The structures of the BNs used for diagnosis in the literature are differ-
ent. Some of the most common are: two-layer BNs, where the nodes are either
observations (in terms of sensor signals, residuals or diagnostic tests) or com-
ponents as in [Schwall, 2005, Verron et al., 2009], multilayer BNs including
internal variables and capturing the structure of the system as in [Schwall and
Gerdes, 2002], and dynamic Bayesian networks (DBN) capturing the dynamics
of systems [Murphy, 2002, Roychoudhury et al., 2006].

Inference. When the BN is known, standard methods can be used for in-
ference. The most common are variable elimination and join tree. For large
BNs with many nodes and many dependencies the inference methods may
become computationally intractable and approximation methods must be ap-
plied [Jensen and Nielsen, 2007]. Methods for learning DBNs are presented
in [Murphy, 2002].

Advantages. BNs representing physical structures are usually easy to inter-
pret and validate. Also, they can be easily updated with local changes if the
system under diagnosis is changed [Russell and Norvig, 2003].
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Drawbacks. In some systems there may be several unknown and hidden ef-
fects. These may be difficult to learn and model in the BN, but may be im-
portant for the diagnosis result [Pernestål et al., 2006]. Furthermore, even if
dependency structures of BNs for diagnosis by experts, learning the numbers in
the CPDs is often more difficult since standard methods for parameter learn-
ing, as for example in [Heckerman et al., 1995] require data from all faults to
be detected.
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Abstract

We consider fault diagnosis of complex systems, motivated by the prob-
lem of fault diagnosis of an automotive diesel engine. Previous fault
diagnosis algorithms are typically based either on process knowledge,
for example a Fault Signature Matrix (FSM), or on training data. Both
these methods have their advantages and drawbacks. The main con-
tribution in the present work is that we show how to integrate process
knowledge and training data to improve fault diagnosis for automotive
processes. We carefully investigate the characteristics of our motivat-
ing application, and we derive a new method for fault diagnosis based
Bayesian inference. To illustrate the new fault diagnosis method we
have applied it to the diagnosis of the gas flow of an automotive engine
using data from real driving situations. It is shown that diagnosis per-
formance is improved compared to previous methods using solely data
or process knowledge. Finally we study the relation between the new
method and previous state of the art methods for fault diagnosis.

1This paper has been submitted to IEEE Transactions on Systems, Man, and Cybernetics
Part A. It is based on the papers [Pernestål and Nyberg, 2007b].
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1 Introduction

Fault diagnosis is the task of detecting and localizing faults currently present
in a process, given a set of observations from the process. The observations can
for example be sensor readings, residuals, or different kinds of diagnostic tests.

When faults occur, appropriate counter actions should be performed to avoid
accidents, maintain usability, and minimize repair costs. The aim of diagnosis
is to provide enough information so that this can be done in an optimal way.
Here we present a probability based method for fault diagnosis, where the prob-
abilities for different faults are computed given all information available. The
probabilities can then be combined with decision theoretic methods to deter-
mine the best action given the current situation.

Many approaches to fault diagnosis have been proposed in literature. Typ-
ically, they either rely on a model of the process, so called model based di-
agnosis (MBD), as e.g. in [Gertler, 1998, de Kleer and Williams, 1992, Reiter,
1992, Schwall and Gerdes, 2002, Narasimhan and Biswas, 2007], or they are data
driven e.g. using statistical or pattern recognition methods as in [Fouladirad and
Nikiforov, 2005, Verron et al., 2007, Lee et al., 2007]. All these methods have
their advantages and drawbacks. The MBD methods utilize a model of the
relations between faults and observations, e.g. differential equations [Gertler,
1998], logical models [de Kleer and Williams, 1992, Reiter, 1992], or probabilis-
tic models [Schwall and Gerdes, 2002, Narasimhan and Biswas, 2007], and they
perform well on processes where detailed and accurate models exist. However,
this is generally not the case for real, complex processes. The data driven fault
diagnosis methods, on the other hand, require no model of the process. Instead,
they use a lot of training data from all possible faults. The main drawback
with data driven method is that often there is only a limited amount of data
available since faults occur rarely or are sometimes even unknown.

Our motivating application is diagnosis of an automotive diesel engine. Our
aim is not to solve the diagnosis task for this specific application, but rather
to use the application as inspiration to develop a new, general method for fault
diagnosis, suitable for different automotive applications. When studying the
diesel engine application, we have realized that process knowledge gives models
with performance insufficient for MBD methods. Furthermore, the amount
of data, especially from situations with faults present, is limited. However,
an important fact is that there are both process knowledge and training data
available. Inspired by this fact, our approach is to integrate process knowledge
and data, which each are insufficient, into one combined diagnosis method with
improved performance.

In automotive processes, the aim of diagnosis is to provide information to
choose the best possible action to avoid accidents and maintain usability. We
therefore focus on computing the probabilities for different faults. The probabil-
ities can then be combined with decision theoretic methods as the ones described



2. The Automotive Diagnosis Problem 51

for example in [Heckerman et al., 1995a, Warnquist et al., 2009, Langseth and
Jensen, 2002] to find the optimal counter action.

This new, combined method for diagnosis is the main contribution in the
paper. In order to develop the method we first carefully investigate the charac-
teristics of automotive diagnosis problems and formulate the diagnosis problem
in terms of probabilities. In particular, we discuss underlying assumptions ex-
plicitly. We focus on process knowledge expressed as a Fault Signature Matrix
(FSM), and give an interpretation of it in the probabilistic framework. To illus-
trate the power of the new method we apply it to diesel engine diagnosis, using
training data from a real driving situation.

There are previous works on combining data and process knowledge for diag-
nosis, see e.g. [Bregon et al., 2007, Alonso-González et al., 2008, Becraft et al.,
1991]. The two main differences are that these previous works typically re-
quires more training data, and, most importantly, we compute the probabilities
for faults while they provide classification.

The paper is outlined as follows. First, we explain the characteristics of our
motivating application and its requirements on the diagnosis method, and dis-
cuss related work in Section 2. In Section 3 is the problem formulated formally,
and in in Section 4 is the knowledge available for fault diagnosis is studied in
detail. The computations of the probabilities for different faults given training
data only is presented in Section 5, and in Section 6 the computations are ex-
tended to also take process knowledge into account. In Section 7 the method
is illustrated on the problem of fault diagnosis on the automotive diesel engine,
using training and evaluation data from real driving situations. In Section 8 we
discuss practical design choices. Finally, we give a thorough investigation of the
relations to previous model-based fault diagnosis methods in Section 9 before
we conclude the paper in Section 10.

2 The Automotive Diagnosis Problem

One of our main objectives with the work presented in this paper, besides that
it should be general and theoretically sound, is that it should be applicable
on real world automotive processes, and tackle the challenges associated with
such applications. We let the work be motivated by the diagnosis of a heavy
truck diesel engine. Here we provide the background of the application, and
describe its specific characteristics and requirements in Section 2.1, before we
summarize the requirements on the diagnosis method in Section 2.2, and present
some previous work in Section 2.3. A concrete description of the process studied,
the gas flow of a heavy truck diesel engine, is given in Section 7.
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2.1 Motivating Application

Characteristics of the Automotive Processes

The processes we consider, automotive processes such as combustion engines,
EGR2 systems, SCR3 catalysts, and particle filters are often large and complex.
They are often difficult to model, both due to their complexity, but also since
they consist of several different parts: there are chemical processes, thermo-
dynamics, mechanics, mechatronics etc. Furthermore, there are often large
vehicle-to-vehicle variations due to tolerances, aging and rebuilding of vehicles.
Finally, automotive systems operate in continuously varying surroundings: the
environment such as humidity and ambient pressure, the operation point, the
driver’s behavior. All this make detailed models and descriptions of the pro-
cesses unreliable.

Fault Characteristics

Automotive diagnosis is of course important for detecting safety related faults
and avoid accidents, but the main part of diagnosis in production engines is
related to emission and performance monitoring. For example, a fault in the
ambient temperature sensor may cause erroneous control of the after treatment
system which in turn results in increased NOx emissions. Another example is
a clogged exhaust gas pipe that in turn causes increased fuel consumption. In
contrast to many safety related faults, the emission and performance related
faults have a relatively slow and small impact on the process. On the other
hand, while safety related faults must be detected and isolated quickly to avoid
accidents, it is often enough to detect and isolate emission and performance
related faults within a couple of hours.

The main challenge when diagnosing emission and performance related faults
is rather their small impact on the system in combination with the difficulty of
modeling the systems accurately.

On-Line Information

To control the automotive process it is equipped with sensors measuring e.g. tem-
peratures, pressures, flows and actuator positions. These sensor readings can
be used for diagnosis of the process. However, in many automotive applications
there already exists monitoring functions, or monitors, that are designed to de-
tect faults that appears. A monitor is a function of a set of measured signals,
and is designed to change behavior (typically mean or variance) when faults
appear. Monitors can for example be based on physical or logical models of
subparts of the process, engineering skills and specific knowledge of the process,

2Exhaust Gas Recirculation
3Selective Catalytic Reduction
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hardware redundancy, signal-in-range-checks, or state-machines. They may be
delivered by subsystem suppliers, or by development engineers. The monitors
may be binary, discrete or continuous, and many of them are results several
man-years of research and development. Many of the monitors are black-box
systems. Diagnostic tests and residuals are typical examples of monitors

The sensor readings could be used directly in the diagnosis. However, using
monitors is generally more efficient since in these information important for
diagnosis is extracted from the sensor readings. For example, for diagnosis it
is often more interesting to know the relation between to sensor values rather
than their actual values.

For the diesel engine studied in the current paper, there are several hundred
of monitors available. It is important to notice that although a monitor is
designed to detect a specific fault, it does not certainly do so due to noise and
uncertainties. Furthermore, a monitor may be designed to detect a subset of
faults, and several different monitors may be designed to detect the same fault.
Thus, there is no one-to-one relation between faults and monitors. In order to
choose the correct counter action it is necessary to collect the information from
all monitors and compute the probability that different faults are present.

Training Data

Beside the monitoring functions and sensor readings, there is typically also
some training data available. Training data consists of samples of monitor
outputs together with information about the current status of the truck. There
is often training data available from the fault free case, but data from fault
situations is much more rare. The reason is that the diagnosis method should
be implemented (and parameters in the methods set) in the vehicle control
unit during the product development phase. At this stage only a few test
vehicles are available, and training data can mainly be collected from the fault
free case. To gain training data from faulty cases, faults may be implemented
and data collected. However, some faults are dangerous or even impossible
to implement. Furthermore, implementing many faults and combinations of
faults is extremely time consuming and thus infeasible. Therefore the amount
of training data available for the diagnosis method is typically limited, only
available from some faults, and is experimental (not distributed according to
the prior probability for the different modes). These restrictions on training
data leads to that standard methods for learning (see e.g. [Heckerman et al.,
1995b, Duda et al., 2001] can not be used since they generally requires more
data and that data is observational (i.e. non-experimental).
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Computational Limitations

On-board processors of heavy trucks have limited processor and storage capac-
ities (128 kB internal memory, 1 MB external memory and 128 MHz processor
are typical values), which limits both the number of computations that can be
performed on-board as well as the amount of data that can be stored. Although
both processor and storage capacities of on-board processors are increasing, low-
capacity processors will always be more robust and cheaper, and motivates the
development of low-complexity diagnosis algorithms [Cascio et al., 1999].

2.2 Requirements on the Solution

In both on- and off-board diagnosis of automotive processes, when an abnor-
mal situation appears, the objective is to determine the best action to perform
to return the process to an efficient and safe operation state. We believe that
such a choice is best performed using decision theoretic algorithms, where the
probabilities that different faults are present combined with a cost function.
Another advantage with decision theory is that it makes it possible to compute
the expected costs of the different faults using the monitoring functions avail-
able. Solving the decision theoretic problem is indeed interesting, but strongly
application dependent and a research area in itself, see e.g. [Heckerman et al.,
1995a, Warnquist et al., 2009, Langseth and Jensen, 2002] for some examples
where the expected cost of repair is competed.

A fault or combination of faults is called a mode, and the focus in the
current paper is to derive a generic method for computing the probabilities
that different modes are present in an automotive process, given the current
observations of the monitoring functions and taking into account restrictions
that are common in automotive applications. We consider the probabilities
for the different faults as the output from our fault diagnosis method, and a
mode with non-zero probability is called a diagnosis. To make the probability
computations as good as possible, we aim at using all information available.
The information at hand is more carefully described in Section 4, but basically a
mixture of engineering knowledge about constraints on the monitoring functions
and training data.

We summarize the discussion above with listing the requirements on the
fault diagnosis method for automotive processes.

• The probabilities for different faults should be computed, using all infor-
mation available.

• Available information comprise training data, different kinds of monitoring
functions, and possibly also sensor readings.

• The method should handle that the amount of training data available for
learning may be limited.
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• The method should handle that training data often is experimental.

• There is no detailed and accurate model of the whole system available.

• The computational burden should be kept small to meet specifications of
ECU-processors.

2.3 Related Work

Before going into the details of the current method we first provide a short
survey of previous work on automotive diagnosis and a brief comparison with
previous work on combining data and knowledge and other closely related di-
agnosis methods.

Automotive Diagnosis

Automotive diagnosis is important and challenging, and is indeed previously
studied in the literature. Several previous works are based on different kinds of
models of the processes. In [Lee et al., 2005] model-based diagnosis of a spark
ignition engine in a production vehicle is presented, in [Gertler et al., 1995]
parity equations generated from nonlinear dynamic engine model are used to
isolate actuator and sensor faults, in [Cascio et al., 1999] qualitative models
are used, and in [Schwall and Gerdes, 2002] Bayesian networks. The diagnosis
performance of these previous works is of course dependent on the quality of the
model. These previous works typically study smaller subparts of the processes,
where sufficiently good models exist. In the current application, we search a
general method to operate on larger processes and where no sufficiently good
model exist. Furthermore, with exception of the Bayes net based methods, they
do not provide the probabilities for faults.

There are also some previous work on data driven diagnosis of automotive
systems. For example in [Vemuri and Polycarpou, 1997] the limited accuracy of
models is considered, and observational data from all modes is used to train a
neural network for diagnosis. Such data does not exist in the current application.

These previous works on automotive diagnosis also points out several impor-
tant application related features which we also have noted and tries to tackle.
Examples are the processor limitations, vehicle aging, vehicle-to-vehicle differ-
ences [Cascio et al., 1999, Lee et al., 2005].

Combining Data and Knowledge

The approach of combining data and process knowledge for diagnosis is pre-
viously studied in e.g. [Bregon et al., 2007, Alonso-González et al., 2008]. In
these works process knowledge is first used in terms of an FSM, and then the
result is focused using classification techniques. Another example is [Becraft
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Table 1: Sensors in the diesel engine
sensor description

pem exhaust gas pressure
pim inlet manifold gas pressure
Tim inlet manifold temperature
pamb ambient pressure
Tamb ambient temperature
uEGR EGR valve position
wcmp flow through the compressor
neng engine speed
ntrb turbine speed

et al., 1991], where data based Neural Network methods are applied, and then
expert knowledge is used refine the diagnosis. These previous works on com-
bining data and process knowledge typically rely on the existence of data from
all faults that are considered. Furthermore, they provide classification of rather
than computation of the probability for the faults. In contrast, the Bayesian
approach to fault diagnosis suggested here provides a solid ground for proba-
bility computations and a unified framework that can take advantage also of a
limited amount of data.

Utilizing the Monitoring Functions

In many previous works on diagnosis, monitoring functions are thresholded and
used to set up a binary FSM [Gertler, 1998, Korbicz et al., 2004]. However,
if the FSM is extended by considering also the magnitude and direction of
change, more information can be gained from the monitors. This is the aim in
the current paper, as well as in [Pulido et al., 2005, Narasimhan and Biswas,
2007, Zhao et al., 2005]. In these previous works the direction and magnitude
of change are to be specified in the design, while in the current work they are
learned from data.

2.4 Example Application: The Diesel Engine

A schematic figure of the motivating application, the gas flow of the diesel engine
is depicted in Figure 1. In total there are more than hundred possible faults
that may appear on the engine. However, in order to make the results easier to
overview we consider only faults in nine of the sensors in the engine, listed in
Table 1, as well as previously unknown faults, i.e. faults with unknown effects.

We consider a set of ten monitors, that are representative and easily run
in our test environment. The monitors are sensitive to different subsets of the
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Figure 1: A schematic figure of the gas flow through a diesel engine with EGR

faults. In Figure 2, one of the monitors, r4, is plotted. In the upper plot, a fault
in wcmp appears at t = 700s, and in the lower plot, a fault in Tim appears at
t = 620s. As seen in Figure 2, the monitoring function output may differ from
zero even in the fault free case (before t = 620s), i.e. there are model errors.
These errors depend on unmodeled factors such as driver’s behavior, operation
point, and humidity. In our application, the monitors are based on continuous
residuals, which means that they must be sampled and discretized.

To illustrate the nature of the observations, two of the sampled monitor-
ing function outputs and the thresholds used for each of them are plotted in
Figure 3 for six different faults. The observations corresponding to these two
monitors are in the following referred to as X3 and X4. The observation X4

is the discretization of monitor r4. Exact where to put the bin edges in the
discretization, and how many bins to use is considered as a design parameter
and discussed further in Section 8.

3 Problem Formulation

As stated in Section 2 the fault diagnosis task is to determine the probability
distribution for the modes of the process, given the current observations and all
other information at hand. In this section we introduce the necessary notation
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Figure 2: One of the monitoring functions, when faults in wcmp (upper) and in
Tim (bottom) appears.
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Figure 3: The observations X3 and X4 for six different modes, including the
fault free mode.

and give a formal problem formulation.
The process under diagnosis is assumed to be in one of several prede-

fined modes, which are characterized by one or several faults that are present,
e.g. “leakage in pipe P1” or “bias in sensor S1 and leakage in pipe P1”. There
are also the modes “no fault”, where everything is functioning correctly, and
“unknown fault”.

3.1 Notation

At a certain instant j the system under diagnosis is described by two dis-
crete variables: a scalar mode variable Cj , and an observation vector Xj =

(Xj
1 , . . . X

j
R). Sometimes it may be more intuitive to characterize the mode

variable as a vector where each element denotes the presence or absence of a
certain fault. If a vector is used, the different modes can be enumerated, so
without loss of generality we can assume that Cj is scalar.

The mode variable Cj can take the values c1, . . . , cL. A value ci is called a
mode, and represents one of the predefined modes of the process. The modes
are mutually exclusive.

Each element Xj
l in the observation vector Xj can take Kl different values

and has the domain Xl = {xl1, . . . , xlKl
}. Consequently, the observation vector

Xj has domain X = X1 × X2 × . . . × XR. To denote an assignment of the
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observation vector we write Xj= xk, k = 1, . . . ,K, where K =
∏R

l=1 Kl. Each
value xk is a vector, and we write xk = (xk[1], . . . ,xk[R]) to denote the elements
explicitly. With this notation xk[i] is the value of Xj

i , when the value of Xj is
xk.

For example, with Xj = (Xj
1 , X

j
2), and Xj

i ∈ {xi1, xi2}, i = 1, 2 we have
Ki = 2 and K = 4. Furthermore, if x1 = (x11, x12), then x1[1] = x11 and
x1[2] = x12.

Sometimes we will also use the notation Xj= xj and Cj= cj to stress that
xj and cj are the values of the observation and the mode at sample j.

For discrete probability distributions we use the notation p(Y = y|I), and
for continuous probability density functions we use the notation f(y|I). Here,
I denotes the background information. In the current work we have adopted
the view of probability as described for example in [Jaynes, 2001], where the
probability is uniquely determined by the information given behind the “ |”-sign.
For the sake of brevity we will not write out the background information in the
formulas, although it is conceptual important, and thus we write p(Y = y) or
f(y).

3.2 Formal Problem Formulation

The objective is to determine the probabilities for different modes, given the
information at hand. The information at hand includes training data, denoted
D, as well as other knowledge about the process to be diagnosed, denoted iR. As
stressed in Section 1, both training data and process knowledge are important
for fault diagnosis.

Assume that r consecutive observation vectors are collected and that the
same fault is present during the collection of these samples. We can now state
the fault diagnosis problem formally as to compute

p(CJr = ci|X
J1 = xk1

,XJ2 = xk2
, . . . ,XJr = xkr

,D, iR), (1)

i.e. to compute the probabilities that mode ci is present at an instant Jr, given
the training dataD, the process knowledge iR, and the values of the observations
XJ1 = xk1

, . . . ,XJr = xkr
from the process under diagnosis. Here we have used

subscripts on J to denote that observation vectors from consecutive instants,
and on k to enumerate the values of the observations.

4 Two Types of Knowledge

In Section 3.2 we mentioned that there may be two types of knowledge available
for the fault diagnosis: training data and process specific knowledge. In this
section we describe what is included in these two types of knowledge in detail.
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4.1 Training Data

In many fault diagnosis problems, there is training data available. Train-
ing data consists of two ordered sets: X1:N = (X1,X2, . . . ,XN ) and C1:N =

(C1, C2, . . . , CN ). A realization of training data is written x1:N , c1:N , and
the notation D is used to denote simultaneous assignments C1:N = c1:N and
X1:N= x1:N .

Training data is assumed to be collected by setting the process into different
modes (or by simulation) and then recording observations. We say that training
data is experimental , in contrast to observational data data which is collected
by passively observing the process under operation. The fact that training data
is experimental implies that training data does not have the same distribution
as the data on which the fault diagnosis method will be applied to. Since the
process is forced to certain modes, training data can for example not be used
to learn the prior probability of the different faults, and for experimental data
the following assumption holds.

Assumption 1 (Experimental Training Data). The training data does not

alone provide any information about which modes that are more probable than

others, i.e. it holds that

p(Cj= ci|D) = p(Cj= ci).

In Section 5.2 we also discuss the situation when there is also observational
training data available, i.e. when Assumption 1 not holds.

4.2 Process Knowledge

Several previous algorithms for fault diagnosis rely on knowledge about that
some values of the observations can impossibly occur under certain modes. We
refer to this kind of information as response information. Response information
may for example arise due to knowledge about physical properties of the process,
typically expressed as qualitative or quantitative models.

Knowledge about physical properties leads to that some values of the ob-
servations can be recognized as impossible under certain modes. Consider for
example the diagnosis of an electrical circuit. For the mode “open circuit” all
observations of the current icirc in the circuit, except the value icirc = 0, are
impossible.

Response information may also arise due to the construction of monitoring
functions that are used as observations. For example, if the monitors are de-
signed to have zero probability for false alarms, as for example in [Nyberg, 2005],
then all values of the observations except the values representing “no alarm” are
impossible in the fault free mode.

Many previous fault diagnosis algorithms rely on response information only,
see e.g. [de Kleer and Williams, 1992, Gertler, 1998, Reiter, 1992, Nyberg, 2005].
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Table 2: Example of an FSM.
c1 c2 c3

Xj
1 {x11, x12} {x11, x12, x13} {x11, x13}

Xj
2 {x21, x22, x23} {x21, x22} {x21, x22}

In [Gertler, 1998] response information is organized in a residual structure. The
residual structure represents binary observations and is a matrix with one row
for each observations and one column for each mode. If mode number i is known
to cause observation k to alarm this is marked with a 1 in row k and column
j in the residual structure. Otherwise a 0 is put in that position. In [Korbicz
et al., 2004] the residual structure is called a Binary Diagnostic Matrix (BDM).

The BDM can be extended to take also multi-valued observations into ac-
count, as for example in e.g. [Daigle et al., 2006, Pulido et al., 2005, Korbicz
et al., 2004]. This extension of the BDM is called a Fault Information Sys-
tem (FIS) or a Fault Signature Matrix (FSM). In Table 2 a part of an FSM
from [Daigle et al., 2006] is given. This FSM represents two three-valued ob-
servations Xj

i ∈ {xi1, xi2, xi3}, i = 1, 2 and three modes4. For each mode the
possible values of the observations are listed.

In Table 3 the FSM is given for faults in the nine sensors in the engine ap-
plication in Section 2.4 listed in Table 1 and for ten observations. This FSM
depicts whether the observations can possible deviate from its nominal (fault
free) behavior or not. That is, a 0 in the i:th column and k:th row in Ta-
ble 3 means that only the nominal values of observation Xj

k are possible under
mode ci, while a “ ·” means that all values of the observation Xj

k are possible.
This interpretation of the FSM is similar to the one used in Structured Hy-
pothesis Tests [Nyberg, 2005]. However, note that although there for a certain
observation are 0s in two columns representing two different modes, this does
not imply that that the observation has the same distribution under these two
modes. It only means that no other than nominal values are possible under the
corresponding modes.

5 Diagnosis Using Training Data

To do fault diagnosis, we search the probability (1) that the mode ci is present
when values XJ1 = xk1

, . . . ,XJd = xkd
are observed, given training data and

process knowledge. Sample numbers Jl, l = 1, . . . , d are not included in training
data, i.e. Jl /∈ {1, . . . , N}.

4In [Daigle et al., 2006] the possible values of the observations are 0, +, and −, but here
we have translated them to xi1, xi2, and xi3 respectively to fit the current notation.
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Table 3: The FSM for the nine sensors and ten of the observations for the diesel
engine.

neng ntrb pamb pem pim tamb tim uEGR wcmp

X1 0 · · 0 · · 0 0 ·
X2 0 · · 0 · · 0 0 ·
X3 · · · 0 0 · · · 0

X4 · · · 0 0 0 · · ·
X5 · · · · · · · · 0

X6 · · · · · 0 · · ·
X7 · · · · 0 · · · 0

X8 · · · · 0 · · · ·
X9 · 0 · · 0 · · · 0

X10 · 0 · · 0 0 · · ·

In this section we show how to compute the probabilities given training data
only. In Section 5.1 we begin with the case where d = 1, and compute

p(CJ1 = ci|X
J1 = xk1

,D, iR). (2)

To simplify notation, we will omit subscript 1 on J and k. In Subsection 5.3 the
results are generalized to several observations. Then, in Section 6 the method
is extended to also take response information into account.

5.1 One Observation

The strategy for computing the probabilities (2) when d = 1 and given training
data only follows the same principles as in [Heckerman et al., 1995b, Pernestål
and Nyberg, 2007b, Kontkanen et al., 2001]. Unlike previous works we here
carefully state all assumptions, and focus on details important for the diagnosis
problem. Furthermore, in contrast to [Heckerman et al., 1995b, Kontkanen
et al., 2001], we consider the case of drawing conclusions about one variable
(the mode variable) given the values of other variables (the observation vector),
and we use experimental data. In the end of the subsection we consider the case
with observational data as well.

To compute the probability (2) we begin with rewriting it by applying Bayes’
theorem and using Assumption 1,

p(CJ= ci|X
J= xk,D) =

=
p(XJ= xk|CJ= ci,D)p(CJ= ci|D)

∑L
l=1 p(X

J= xk|CJ= cl,D)p(CJ= cl|D)
=

=
p(XJ= xk|C

J= ci,D)p(C
J= ci)

∑L
l=1 p(X

J= xk|CJ= cl,D)p(CJ= cl)
. (3)
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The term p(CJ= ci) is the prior probability for mode ci and is assumed to be
known.

To compute the likelihood p(XJ = xk|C
J = ci,D) in (3) we begin with

partitioning training data into one part containing the training data from mode
ci and one containing the training data from all other modes. To do this, we
define two index sets for each mode ci,

Ici = {l ∈ {1, . . . , N} : C
l = ci},

Ic̄i = {l ∈ {1, . . . , N} : C
l 6= ci}.

Let XIci be a vector consisting of the elements in X1:N with indices given by
Ici , and similarly for CIci , XIc̄i , and CIc̄i . We use the notation Dci to denote
the training data from mode ci only, i.e.

Dci= (XIci= xIci ,CIci= cIci ).

Example 5.1 (Notation).

To exemplify the notations, consider a training data set consisting of three
samples X1:3= (X1,X2,X3), and C1:3= (C1, C2, C3) with C1= ci, C2= cj 6= ci,
and C3= ci. For mode ci we have the index sets Ici = {1, 3} and Ic̄i = {2}. The
training data is partitioned as XIci = (x1,x3), CIci = (ci, ci), and XIc̄i = x2,
CIc̄i = cj .

Before going into the details, we discuss two properties of the observations
and the process under diagnosis.

Assumption 2 (No Memory). The probability for an observation Xj = xj is

dependent only on the simultaneous value of the mode Cj = cj, and independent

of the mode at all other samples, i.e.

p(Xj= xk|(C
1, . . . , CN ) = (c1, . . . , cN )) = p(Xj= xk|C

j= cj).

In practice, Assumption 2 means that the process has no memory in the
sense that an observation is independent of what might have happened in the
past, and is closely related to the standard Markow assumption on dynamic
processes.

Furthermore, we assume that the process under diagnosis is such that if it
is known that two observations are collected from two different modes, knowing
the value of one of the observations does not affect our belief in the other. When
doing this assumption we rely on that when changing mode, the behavior of the
system is changed.

Assumption 3 (Independent Observations). When modes are known, obser-

vations from different modes are independent

p(Xq= xk,X
r= xl|C

q= ci, C
r= cj) =

= p(Xq= xk|C
q= ci, C

r= cj)p(X
r= xl|C

q= ci, C
r= cj),
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where i 6= j.

Note that Assumption 3 does not hold for observations from the same mode.
We can now state the following lemma about the likelihood in (3).

Lemma 1. Assume that Assumptions 2 and 3 are fulfilled. Then it holds that

p(XJ= xk|C
J= ci,D) = p(XJ= xk|C

J= ci,Dci). (4)

Lemma 1 is proved in Appendix, and says that the probability for a certain
observation, given that the mode is ci is only dependent on the training data
from that particular mode. The next step in our way to determine the likelihood
is to introduce parameters Θci with values θci = (θ1ci , . . . , θKci) such that

p(Xj= xk|C
j= ci,Θci= θci) = θkci , (5a)

K∑

k=1

θkci = 1, θkci > 0, k = 1, . . . ,K. (5b)

Equation (5) is a general way to parameterize a discrete distribution, since any
discrete distribution can be described in this way [O’Hagan and Forster, 2004].
Furthermore, we need the following assumption on the process under diagnosis.

Assumption 4 (Independent Samples). When the parameters Θci are known,

observations from mode ci are independent:

p(Xq= xk,X
r= xl|C

q= ci, C
r= ci,Θci= θci) =

= p(Xq= xk|C
q= ci,Θci= θci)× . . .

p(Xr= xl|C
r= ci,Θci= θci).

Assumption 4 should be interpreted as “for a given mode, the underlying pro-
cess produces observation vectors that are independent”. On the other hand, if
the parameters are not known, two observations are in general dependent. Note
that elements within an observation vector does not need to be independent
even if parameters are given, but only that observation vectors from different
times are independent. In our motivating example Assumption 4 is generally
true, and if not true it can be obtained by using sufficiently long sampling time.
We clarify the reasoning in the following toy example.

Example 5.2 (Independent trials).

Assume that there is an urn with (infinitely) many red and white balls in. Balls
are drawn independently from the urn. Let Ri denote “draw number i gives a
red ball”. Before knowing anything about fraction of red and white balls in the
urn, we assume that the probability of drawing a red ball from the urn in draw
number i is p(Ri) = 0.55.

5This assumption is referred to as the principle of indifference. See e.g. [Pernestål, 2007]
for a detailed discussion.
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Say that the first ten trials give red balls, and denote these statements with
R1, R2, . . . , R10. What is the probability that the next ball drawn is red, i.e.
what is p(R11|R1, . . . , R10)? From the first ten trials our intuition tells us
that there seems to be more red balls than white balls in the urn, i.e. that
p(R11|R1, . . . , R10) > 0.5 = p(R11). The probability of trial number eleven is
dependent on the result from the previous ten trials.
Now, assume that we learn that the fraction of red balls in the urn is θr = 8/10.
The knowledge of the parameter θr means that the probability of drawing red
ball in any draw is 0.8 regardless of the balls drawn in the previous trials,
p(R11|R1, . . . , R10, θr = 8/10) = p(R11|θr = 8/10) = 0.8.
To summarize, the example has illustrated that before the parameters are known
the trials are dependent, but when the parameters are learned the trials are
independent.

In the diagnosis application, the balls in the example above represent the
observations, and the distribution of balls represent the mode.

Let us now continue the computations of the likelihood. Let Ωci be the set
of all vectors θci that satisfies (5b). In (4), marginalize over the parameters,

p(XJ= xk|C
J= ci,Dci) =

=

∫

Ωci

p(XJ= xk|C
J= ci,Θci= θci ,Dci)× . . .

f(θci |C
J= ci,Dci)dθci . (6)

For the first factor under the integral in (6) we can use the fact that when
the parameters θci are known, the training data does not contribute to the belief
in a certain observation. This is proved in the following lemma.

Lemma 2. Assume that there are parameters according to (5). Furthermore,

assume that Assumtption 4. Then it holds that

p(XJ= xk|C
J = ci,Θci= θci ,Dci) =

= p(XJ= xk|C
J = ci,Θci = θci).

The lemma is proved in Appendix. By Lemma 2 and Equation (5b) we can
write the first factor under the integral in (6) as

p(XJ= xk|C
J= ci,Θci = θci ,Dci , ) =

= p(XJ= xk|C
J= ci,Θci = θci) = θkci . (7)

Now, return to (6), and the second factor under the integral. By applying
Bayes’ theorem we can write the density as

f(θci |C
J= ci,Dci) =

pθ(θci)fθ(θci)∫

Ωci

pθ(ξ)fθ(ξ)d(ξ)
, (8)
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where

pθ(ξ) = p(XIci= xIci |CIci= cIci ,Θci = ξ), (9a)

fθ(ξ) = f(ξ|CJ= ci,C
Ici= cIci ). (9b)

To compute the factor (9a) apply Assumption 4 and Equation (5b). This gives

p(XIci= xIci |CIci= cIci ,Θci = θci , ) =

=
∏

j∈Ici

p(Xj= xj |Cj = ci,Θci = θci) = θ
n1ci
1ci

. . . θ
nKci

Kci
, (10)

where nkci is the number of samples in training data from mode ci where the
observation is xk. From (10) we can note that the distribution of training data
is directly proportional to the multinomial distribution with parameters θci .

The factor (9b) can be rewritten using Bayes’ rule,

f(θci |C
J= ci,C

Ici= cIci ) =

=
p(CJ= ci,C

Ici= cIci |Θci = θci)f(θci)

p(CJ= ci,C
Ici= cIci )

=

=
p(CJ= ci,C

Ici= cIci )f(θci)

p(CJ= ci,C
Ici= cIci )

= f(θci), (11)

where we have used that p(Cj = cj |Θci = θci) = p(Cj = cj) in the second
equality. The result of (11) is the prior probability for the parameters.

Following [Kontkanen et al., 2001, Heckerman et al., 1995b] we assume that
it is the Dirichlet distribution6,

f(θci) =
Γ(

∑

xk∈X
αkci)

∏

xk∈X
Γ(αkci)

∏

xk∈X

θ
αkci

−1

kci
, αkci > 0, (12)

where Γ(·) is the gamma function, i.e. fulfills Γ(n + 1) = nΓ(n) and Γ(1) = 1,
and the parameters αci = (α1ci , . . . , αKci) are given. One attractive property
of Dirichlet distribution is that it is conjugate to the multinomial distribu-
tion7 [O’Hagan and Forster, 2004], and we have noted that the distribution
for the training samples is proportional to the multinomial distribution. This
makes the computations particularly simple. Furthermore, the Dirichlet distri-
bution provides the possibility of an intuitive interpretation of the parameters
αci as hypothetical samples in the sense that they represent samples that would
have been obtained if our prior information where true. For example, if it is

6In fact, it can be shown that under certain, not very restrictive assumptions the Dirichlet
distribution is the only possible choice for f(Θci |ci) [Geiger and Heckerman, 1997].

7The distribution p(X = x) is said to be conjugate to a class of likelihood functions
p(Y = y|X = x) if the resulting posterior distributions p(x|y) are in the same family as
p(X = x).
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known that the value xk is a-priori twice as probable as all other values this
is represented by setting αkci= 2αjci , j 6= k. The amount of trust put in the
prior information is regulated by choosing appropriate size of the parameters
αci ; the larger value, the more confidence is put in the prior information. The
interpretation of the parameters as hypothetical samples is further discussed
in [Pernestål, 2007, Heckerman et al., 1995b].

The likelihood p(XJ = xk|C
J = ci,D) can now be computed by inserting

(5b), (8), (10) and (12) into (6). This gives

p(XJ = xk|C
J = ci,D) =

=

∫

Ωci

θ
n1ci

+α1ci
−1

1ci
. . . θ

nxci
+αkci

kci
. . . θ

nKci
+αKci

−1

Kci
dθci

∫

Ωci

θ
n1ci

+α1ci
−1

1ci
. . . θ

nxci
+αkci

−1

kci
. . . θ

nKci
+αKci

−1

Kci
dθci

, (13)

which are Dirichlet integrals of type I. We do not go into the technical details
of solving the integrals, see [Pernestål and Nyberg, 2007c] for all details. We
now summarize the result of the computations in this section in the following
theorem.

Theorem 1. Let XJ and CJ be discrete variables, and let {1, . . . ,K} be the

domain of XJ . Let D denote training data, and assume that Assumptions 2-4

holds. Introduce parameters Θ according to (5), and let the density f(Θ) be

given by (12).
Then it holds that

p(XJ= xk|C
J= ci,D) =

nkci + αkci

Nci +Aci

, (14)

where nkci is the number of samples in training data where the observation is

Xj = xk when Cj = ci, Nci =
∑K

k=1 nkci , and Aci =
∑K

k=1 αkci .

The posterior probability p(CJ= ci|X
J= xk,D) can now be computed by

using Theorem 1 and (3),

p(CJ= ci|X
J= xk,D) =

=
nkci + αkci

Nci +Aci

p(CJ= ci)
∑L

j=1

nkcj
+αkcj

Ncj
+Acj

p(CJ= cj)
. (15)

Before extending the algorithm with observational data and several obser-
vations, we consider the soundness of the method presented. A diagnosis is a
mode that is consistent with the observations [Hamscher et al., 1992]. In our
terminology, a mode with non-zero posterior probability is a diagnosis. In the
method presented above, modes can only be assigned zero posterior probability
by response information. Response information includes knowledge observa-
tions that are impossible under different modes. Therefore, there is no risk for
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assigning zero probability to the true underlying mode, and thus the true un-
derlying mode will always be among those with non-zero posterior probability.
This is further discussed in the comparison with related work in Section 9

5.2 Adding Observational Data

Now, let us conclude this section by instead of only experimental data consider
the case where there is also observational data available, as described in Sec-
tion 4.1. All the computations above in the current section holds, except the
computation of p(CJ = ci|D) in (3). Since parts of the data is observational, the
training data D includes information about how probable different faults are.
The approach for computing the probability for the modes given the training
data is similar to the one used in the previous section, and all details are given
in [Pernestål and Nyberg, 2007a]. Here we are content to summarize the result:

p(CJ= ci|D) =
N Io

ci
+ βci

N Io +B
, (16)

where N Io
ci

is the number of observational training samples where the mode is ci,
N Io is the total number of observational samples, βci are hypothetical samples
describing our a priori knowledge about mode ci, and B =

∑L
i=1 βci .

In particular, if all training samples are experimental, (16) becomes p(CJ=

ci|D) = βci/B which represents our a priori information about the modes for-
mulated in terms of the parameters βci , and is consistent with Assumption 1.

5.3 Several Observations

We will now generalize the results in the previous section, and compute the
probability (1) for d > 1. The only difference compared to the previous section is
the computation of the likelihood. To keep the notation simple we demonstrate
the computations on a special case where d = 3. It is then straightforward
to extend the computations to the case where there are more values of the
observations available.

Assume that the observations XJ1 = xk, XJ2 = xk, and XJ3 = xl are ob-
tained. To compute the likelihood, we use the same principle as in (6) and
marginalize over the parameters Θci ,

p(XJ1= xk,X
J2= xk,X

J3= xl|C
J3= ci,D) =

=

∫

Ωci

pX(θci)f(θci |C
J3= ci,Dci)dθci =

=

∫

Ωci

θ2cikθcilf(θci |C
J3= ci,Dci)dθci , (17)
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where

pX(θci) = p(XJ1= xk,X
J2= xk,X

J3= xl|C
J3= ci,Θci= θci ,Dci).

In (17) we have used (5) and Assumption 4 to obtain the last equality. The
distribution for the parameters in (17) is computed according to Equations (8)
to (12), and we obtain

∫

Ωci

θ2kciθlcif(θci |C
J3= ci,Dci)dθci =

=

∫

Ωci

θ
ν1ci
1ci

. . . θ
νkci

+2

kci
. . . θ

νlci
+1

lci
. . . θνKci

dθci
∫

Ωci

θ
ν1ci
1ci

. . . θ
νkci

kci
. . . θ

νlci

lci
. . . θνKci

dθci
, (18)

where

νkci = nkci + αkci − 1.

As in (13), the integrals in (18) are Dirichlet integrals of type 1, and can be
solved analytically [Pernestål and Nyberg, 2007c]. The solution is

p(XJ1= xk,X
J2= xk,X

J3= xl|C
J3= ci,D) =

=
(nkci + αkci + 1)(nkci + αkci)(nlci + αlci)

(Nci +Aci + 2)(Nci +Aci + 1)(Nci +Aci)
.

With a similar derivation, the results for an arbitrary size of the set of
observations can be computed. First we need some notation. Let Xobs ⊆ X be
the set of distinct values observed on the elements of XJ1:r = (XJ1 , . . . ,XJr ),
and let Dxk

be the number of observations in XJ1:d that take the value xk. In
the example above we have Xobs = {xk,xl} and Dxk

= 2, Dxl
= 1. Using this

notation, we can summarize the results in the following theorem.

Theorem 2. Let Xobs and Dxk
be defined as in the previous paragraph. Let CJd

and XJl , l = 1, . . . , d, be discrete variables, and let {1, . . . ,K} be the domain

of XJl . Let D denote training data, and assume that Assumptions 1-4 holds.

Introduce parameters Θ according to (5), and let the density f(Θ) be given by

(12). Then it holds that

p(XJ1 = xk1
, . . . ,XJr = xkr

|CJr = ci,D) =

=

∏

xk∈Xobs

∏Dxk
−1

m=0 (nkci + αkci +m)
∏d−1

m=0(Nci +Aci +m)
,

where nkci is the number of samples in training data where the observation is

Xj = xk when Cj = ci, Nci =
∑K

k=1 nkci , and Aci =
∑K

k=1 αkci .
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6 Diagnosis Using Response Information and

Data

So far we have computed the probabilities for different modes given training
data only. In this section we add knowledge about the FSM to compute the
probabilities. We round off with discussing the complexity of the diagnosis
algorithm.

6.1 Combining Data and Response Information

Let iR denote that response information is given. Again, we first consider the
case where d = 1. To compute the probability p(CJ = ci|X

J = xk,D, iR)

we begin with following the steps (3) to (4) in Section 5. To determine the
likelihood p(XJ = xk|CJ = ci,Dci , iR), we need to consider the effect of the
response information more carefully. Formally, the response information means
that for each mode ci and for each observation there are (possibly empty) sets
γjci ⊂ Xj of values that Xj can not take, i.e.

p(XJ
j = xjk|C

J = ci,D, iR) = 0, for xjk ∈ γjci , (19)

We now define the set γ of impossible values of X as

γci = {xl ∈ X : ∃j xl[j] ∈ γjci},

i.e. if a certain value xjk of observation element Xj is impossible under mode
ci, then all vectors xl in which element number j takes on the value xjk are also
impossible.

We exemplify how the sets γjci and γci can be determined by considering
the example represented by the FSM in Table 2 for the observation X = X1.
In words, the FSM means that under the mode c1 the observation X1 can take
on the values x11 and x12. Under mode c2 all values are possible, while under
mode c3 the values x11 and x13 are possible. This information gives the sets
γ1c1 = {3}, γ1c2 = {∅}, γ1c3 = {3}. Introduce the notation xl = x1l, l = 1, 2, 3.
We then have γc1 = {x3}, γc2 = {∅}, and γc3 = {x2}. The possible values of X
under mode ci are represented by the set XR,ci = X \ γci .

To compute the likelihood p(XJ = xk|C
J = ci,Θci = θci , iR) assume that

it is parameterized by parameters θci as in (5b). By iR we have the following
additional requirements on the parameters:

θkci = 0, ∀xk ∈ γci , (20a)

θkci > 0, ∀xk ∈ XR,ci . (20b)
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Each parameter θkci corresponds to a value in the Conditional Probability Table
(CPT) describing the likelihood. This can be represented as follows.

k p(Xj= xk|Cj= ci, θci = Θci , iR)

1 θ1ci
2 θ2ci
...

...
K θKci

In practice the requirements (20) mean that some of the values xk are im-
possible, i.e. that their corresponding θkci are identically equal to zero and their
corresponding rows can be discarded from the CPT. Thus, given the knowledge
iR the probability distribution can be described by a smaller CPT.

To compute the likelihood we follows the steps (6) to (12) in Section 5, but
in (6) we integrate over the set ΩRci of parameters θci that fulfill (20) instead
of the set Ωci .

Consider the prior probability density function f(θci |iR). Before introduc-
ing the response information, the parameters θcli were assumed to be Dirichlet
distributed, with density function given by (12). When adding the response in-
formation, the only knowledge that is added is that number of possible values of
the observation vector is decreased. For example, this decrease in number pos-
sible values could mean that the possible values are restricted from {x1,x2,x3}
to {x1,x2}. This means that iR simply shrinks X to XR, but changes nothing
else. Let θ̃ci be the non-zero elements on of θci as defined in (20b). Then, the
same reasoning that led to that f(θci) in Section 5 is Dirichlet distributed, gives
that f(θ̃ci |iR) is also be Dirichlet distributed, i.e.

f(θ̃ci |iR) =
Γ(

∑

xk∈XR,ci
αk)

∏

xk∈XR,ci
Γ(αkci)

∏

xk∈XR,ci

θ̃
αkci

−1

kci
, αkci > 0.

To compute the likelihood, we note that the observation xk ∈ γci has proba-
bility zero by (19) and the definition of γci . When xk /∈ γci we apply Theorem 1.
To summarize the computations, the likelihood when response information is
present is given by

p(XJ= xk|C
J= ci,D, iR) =

{

0, if xk ∈ γci
nkci

+αkci

Nci
+Aci

otherwise.
(21)

The posterior probability for the modes given response information and training
data becomes

p(CJ= ci|X
J= xk,D, iR) =

{

0, if xk ∈ γci
pi∑

L
j=1 pj

, otherwise.
(22)

where pj = p(XJ= xk|C
J= cj ,D, iR)p(CJ = cj |iR). (23)
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In the case where several observations the likelihood becomes

p(XJ1 = xk1
, . . . ,XJd = xkd

|CJ = ci,D, iR) =

=







0, if Xobs ∩ γci 6= ∅
∏

xk∈Xobs

∏Dxk
−1

m=0 (nkci
+αkci

+m)
∏d−1

m=0(Nci
+Aci

+m)
, otherwise.

(24)

6.2 Complexity of the Method

To considering the computational complexity of the method, we see from (22)
that we first need to check if xk ∈ γcj . This check is in worst case proportional
to K, but since the FSM is typically sparse it can often be done in constant
time. The next step, computing and marginalizing the likelihood is done in
time proportional to L.

Considering storage of training data, the straight-forward approach to save
the values nkci for all i would require a huge but with many entries that are
zero. Instead, by using the sparseness of training data the performance can be
significantly decreased.

In practice, with cleverly chosen discretization of the observations, the com-
plexity of the algorithm is linear in L. In Section 8 we will discuss some prac-
tical issues regarding discretization, observations, and modes in order to keep
the complexity down.

7 Application to Diesel Engine Diagnosis

In this section we illustrate the proposed method by applying it to the diagnosis
of the gas flow of a Diesel engine, using data from real driving situations.

In this section we illustrate how to apply the probabilistic method for fault
diagnosis to the diesel engine described in Section 2.4 using data from real
riving situations. We begin with considering diagnosis using data only, and
then also add knowledge about the FSM given in Table 3. For comparison, we
also perform experiments using the FSM only. To make the results easier to
overview, we only present the diagnosis results from faults in the sensors

wcmp, uEGR, Tim, and pim. (25)

The faults are represented by positive bias faults in representative sizes, im-
plemented in the truck. Bias faults are chosen in the evaluation since they
constitute a subset of the engine where the characteristics of the Bayesian fault
diagnosis method is well illustrated, and at the same time, faults are easily im-
plemented for experiments on this set of sensors. Although all faults considered
in the present work are sensor faults, the Bayesian method applies equally well
to all other kinds of faults, such as leakages, actuator faults etc. We use the
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same notation to denote the sensors and the modes, i.e. fault in wcmp is denoted
CJ = wcmp etc. We also consider the fault free case, denoted NF , and the case
where there is a previously unknown fault, denoted UF . The mode UF could
be interpreted as “the mode is none of the other defined modes”. All in all this
gives us six modes.

7.1 Experimental Setup

The ten observations X1, . . . ,X10 with FSM given by Table 3 are used. For
each observation we have Kk = 3, and the bin edges are place such that for
each observation at least one of the edges is never passed in the fault free case.
This selection of bin edges facilitates the use of response information. Training
data used consists of 200 samples from NF , 20 samples each from wcmp and
pim, and we use d = 10. The prior probabilities are set to 0.9 for the mode NF ,
and 0.02 for the other five modes. In order to illustrate the use of experimental
data, the training data is not distributed according to the priors. All parameters
representing hypothetical samples are set equal to one, αkci = 1.

7.2 Evaluating Diagnosis Performance

The aim of diagnosis is to provide information so that the appropriate action can
be made. Therefore, the best way to evaluate a diagnosis method is to combine
it with a cost function and use decision theoretical methods to compute the
expected costs of different faults. Determining such a cost function is beyond
the scope of the current paper. Here, the posterior probabilities for faults are
the output from the method.

It is possible to define performance measures to summarize the posterior
probabilities with one single figure. In [Pernestål et al., 2008] two performance
measures that are relevant for diagnosis are discussed: the logistic score and
the percentage of correct classification. The logistic score is commonly used in
classification and statistical learning [Duda et al., 2001] and measures the ability
of the method to mimic the distribution in evaluation data. However, to use it
properly the evaluation data needs to be observational, which is not the case
in the current application. The percentage of correct classification measures
the probability of doing a correct choice if the mode with largest probability
is chosen as the true mode. It reflects the performance of the fault diagnosis
method together with the naive troubleshooting strategy “check most probable
fault first”.

In the current paper we have chosen to present the average posterior proba-
bilities since they provide the more details about the behavior of the algorithm.
To evaluate the diagnosis performance, Neval = 100 evaluation samples from
each of the six modes are considered. The mode UF is represented by a previ-
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ously unknown fault, from which neither training data nor response information
exist.

7.3 Fault Diagnosis Using Training Data Only and Re-

sponse Information Only

We compute the probabilities for faults using data only by applying Theorem 2
and the prior probabilities given above. The results are shown in Figure 4a.
In each subfigure, evaluation data is collected from different modes. The true
underlying mode is depicted in gray. Remember that the diagnosis is based
on training samples from the modes NF , wcmp, and pem only. These three
modes are isolated with high precision, while the diagnosis of the other modes
is worse. From the modes uEGR, Tim, and UF on the other hand, no training
data exists. The reason for the dominance of the mode NF when evaluation
data comes from uEGR and Tim is the high prior probability of the mode NF

in combination with that for several observations the behavior these two modes
gives similar values as the mode NF . The values of the observations from mode
UF differs significantly from observations from the other modes. Therefore, the
probability mass is almost equally distributed when evaluation data is from this
mode.

For comparison, the diagnosis result using response information only is
shown in Figure 4b. For this case, the probability mass is more equally dis-
tributed over several modes.

7.4 Fault Diagnosis Using Response Information and Train-

ing Data

We now add response information to the fault diagnosis, and compute the pos-
terior probabilities by using (24) and the priors given above. By using the FSM
in Table 3 we can form the sets XR,ci for each mode. For the mode UF no re-
sponse information exists, and all values are possible. This gives XR,UF = ∅. In
Figure 4c are the results from the diagnosis plotted. The true underlying mode
is marked with a gray bar. Comparing with the diagnosis result using training
data only, we see that the diagnosis performance has improved significantly for
the modes UF and Tim. Also, for the mode uEGR, the diagnosis performance
is slightly improved. However, the mode uEGR is difficult to isolate since its
influence on the observations is very small, see [Molin and Hansen, 2006]. To
summarize the application results, we can see from Figure 4 that the traditional
methods using either response information only or training data only do not per-
form well on the current application. However, by combining both training data
and response information the diagnosis performance is significantly improved.



76 Paper 1. Bayesian Fault Diagnosis...

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

NFNFNF

NFNFNF

wcmpwcmpwcmp

wcmpwcmpwcmp

uEGRuEGRuEGR

uEGRuEGRuEGR

pimpimpim

pimpimpim

TimTimTim

TimTimTim

UFUFUF

UFUFUF

p
(C

J
d
=

c i
|X

J
1
:d
=

x
N
F
,D

)

p
(C

J
d
=

c i
|X

J
1
:d
=

x
w

c
m

p
,D

)

p
(C

J
d
=

c i
|X

J
1
:d
=

x
u
E
G

R
,D

)

p
(C

J
d
=

c i
|X

J
1
:d
=

x
p
im
,D

)

p
(C

J
d
=

c i
|X

J
1
:d
=

x
T
im
,D

)

p
(C

J
d
=

c i
|X

J
1
:d
=

x
U
F
,D

)

(a) Training data
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(b) Response information
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(c) Response information and training data

Figure 4: The average probability assigned to each mode when evaluation data
comes from different modes, using response information and/or training data.
The true underlying mode is marked with gray.
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8 Discussion About Practical Issues

In the Bayesian method for fault diagnosis introduced in Sections 5 and 6, there
are several design choices to be made. In this section we discuss four of them:
the selection of modes, the selection of observations, the discretization of the
observations, and the collection of training data.

8.1 Choice of Modes

To use the proposed diagnosis method, the modes to diagnose must be specified.
A simple, but naive specification of modes is to use one mode for each possible
fault or combination of faults. However, such a specification would potentially
lead to unnecessary detailed diagnosis and, if considering many multiple faults,
an explosion in the number of modes considered. In particular, from (3) it can
be seen that the likelihood must be computed for each mode. Therefore, besides
the practical issue of specifying modes, it is also crucial to keep the number of
modes as small a possible. In this section we go through three ways of lumping
modes together to decrease the computational and storage efforts needed.

First, as suggested for example in [Cordier et al., 2007, Pernestål, 2007], it
might not be necessary to distinguish between some modes. We assume that
the output from the diagnosis is to be used to decide the best action to perform.
If two modes (or faults) always lead to the same action they can be grouped
into one lumped mode. In [Pernestål, 2007] such a lumped mode a is referred to
as a Diagnosed Mode, while in [Cordier et al., 2007] the are called Macrofaults.
Which modes to lump can for example be found by using FMEA/FMECA
analysis [Stamatis, 1995]. The FSM column for the lumped mode is obtained
by, for each observation, taking the intersection of impossible values. How to
define which modes that should be contained in each lumped mode is beyond the
scoop of the present paper. Here we are confident to note that the probabilistic
framework presented in Sections 5 and 6, and all computations are the same
with the modes exchanged to lumped modes and we will simply use the term
“mode” also for lumped modes.

Second, we note that for all modes ci and cj for which

nkci + αkci = nkcj + αkcj (26)

the likelihood is equal. Thus, for all modes that satisfy (26), the computations
need only to be performed once and the result can be reused.

Third, taking this reasoning one step further, we note that modes with equal
FSM columns and equal distribution of training data (e.g. no training data),
can only be distinguished by their prior probabilities. Therefore, such modes
can be grouped into one mode during the computations. When combining more
and more faults in each mode, the columns in the FSM will have more and more
‘·’-entries and thus become more and more equal. Furthermore, there will in
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general be no training data from modes with several multiple faults. Thus,
these modes can only be distinguished by their prior probability. Considering
multiple fault modes, it is likely that several such modes have the same counter
action, and thus they can be lumped into one mode. Thus, the seemingly
large restriction that only predetermined modes can be diagnosed is not really
a restriction in practice.

The number of modes can be also be reduced by considering the physical
or logical structure of the process, and, if possible, divide it into independent
subprocess. Then, one mode variable is used for each subsystem. For example,
in the automotive engine the gas flow subprocess can be considered as indepen-
dent from the fuel injection subprocess. A further approach to keep number of
modes small is to use a hierarchical approach, and first compute the probability
of groups of modes, for example corresponding to sub-processes of the process
under diagnosis. When the probability for one group of modes is sufficiently
large, the probability of the modes in this group can be computed.

8.2 Discretization

Another important design choice that affect the result of the diagnosis method
is the discretization of the observations into a number of bins: how many bins to
use, and where to put the bin edges. The task of discretization is a research area
on its own, and choosing the optimal discretization is beyond the scope of the
current paper. Instead, we give some practical advises concerning discretization.

The question of the number of bins is related to the problem of choosing a
set of residuals to use discussed in Section 8.4 in the sense that a larger number
of bins gives a higher resolution but requires more training data [MacKay, 2003].
Often, the number of bins can be relatively small, since in many situations it
is enough to know the direction of deviation (“positive” or “negative”) or the
magnitude (“small” or “large”) from the nominal value of the observation. Us-
ing the sensor readings instead of monitoring functions would typically require
finer discretization. Where to put the bin edges depends, of course, on how the
data is distributed. One strategy that is used for example in [Nyberg, 2005]
is to place the bin edges such that the probability of false alarm is approxi-
mately zero. Other strategies that might be useful when using histograms to
represent probability distributions as in the current paper is for example Mini-
mum Description Length (MDL) histograms [Kontkanen and Myllymäki, 2007]
or methods based on Maximum Entropy methods [Johansson, 2005].

8.3 Selection of Training Data

The performance of the diagnosis method is dependent on the training data
used to learn its parameters. When learning the parameters in the diagnosis
method, all data available should be used. In the current paper we consider
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both experimental and observational data. While observational data is simply
collected by observing the system, experimental data is obtained by actively
implementing faults before collection of data. Here we have a design choice:
which faults to implement and collect data from?

Ignoring the fact that some faults are not possible to implement, we give
two guidelines. First, data should be collected from modes that are important
to diagnose with high precision. Collecting data from these modes improve
the diagnosis of them. Second, data should be collected from modes that have
similar columns in the FSM. Modes with similar (equal) columns are difficult
(impossible) to distinguish by using the FSM only. In these cases data will help
distinguishing between the faults.

8.4 Selection of Observations

In real applications, at least to our experience, there will sometimes be more
monitors available than can be run. For example, in the diesel engine studied in
the current paper it is possible to automatically generate more than 60 possible
monitoring functions only for one specific subprocess. At least in a structural
sense, these monitors are redundant. The limited computational capacity re-
stricts the number of monitors that can possibly be executed. Furthermore,
since the amount of training data is finite, and in fact often very limited from
fault modes, the diagnosis result may even be better if only a few of the observa-
tions are selected, see e.g. [MacKay, 2003]. Therefore, it is indeed an interesting
question how to choose the best subset of monitors (observations) to use for
diagnosis.

Observation selection (often called feature selection) is a research area on
its own, and finding an set of monitors that guarantees the best possible di-
agnosis performance is beyond the scope of the current paper. However, a
general recommendations is to consider structural diagnosis information about
which observations that possibly can detect certain faults (e.g. FSM knowl-
edge) together with evaluation on data (for example by cross validation and the
performance measures suggested in Section 7.2). A set of observations that pro-
vides full isolability in a structural sense is not necessarily the best when data
is added. Methods for observation selection is further discussed in [Pernestål,
2007, Pernestål et al., 2008].

9 Relation to Previous Works

To improve understanding of the diagnosis method presented here we now
discuss the relations between the current method and previous model-based
methods for fault diagnosis. In the comparison we have chosen the Sherlock
method [de Kleer and Williams, 1992] from the AI community, the method
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based on structured residuals [Gertler, 1998] from the automatic control (FDI)
community, and a general model-based probabilistic method. These methods
are chosen since they are state of the art, and many other fault diagnosis meth-
ods rely on one or several of these three approaches.

9.1 Relation to Sherlock

In the AI field many fault diagnosis methods rely on the computation of sets of
modes that are consistent with the current observations [de Kleer and Williams,
1992, Reiter, 1992]. One of these methods is the Sherlock algorithm presented
in [de Kleer and Williams, 1992]. The Sherlock algorithm also includes parts for
determining the next best observation to perform, but here we consider only the
fault localization part of Sherlock. Sherlock performs probabilistic computations
based on response information only. It is assumed that all observations are
independent, i.e. that p(XJ= xk|C

J= ci, iR) =
∏R

l=1 p(X
J
l = xk[l]|C

J= ci, iR),
and the following probabilities are used:

p(XJ
l = xk[l]|C

J= ci, iR) =







0, if xk[l] is surely

inconsistent with ci

1, if xk[l] is surely

consistent with ci
1
Kl

, otherwise.

(27)

Recall from Section 3.1 that Kl is the number of possible values of Xl. With
“surely inconsistent” we mean that the observation is impossible, i.e. that xk[l] ∈
γlci . With “surely consistent” we mean that γlci = X \ {xk[l]}, i.e. that xk[l]

is the only possible value of XJ
l when the mode is CJ = ci. For the complete

observation vector, (27) gives

p(XJ= xk|C
J= ci, iR) =

{

0, if xk ∈ γci
∏

l∈ICons
ci

1
Kl

, otherwise,
(28)

where ICons
ci

is the set of indices of the observations which are neither surely
consistent nor surely inconsistent with the mode ci.

When there is no training data in the method developed in Section 6, we
obtain the likelihood

p(XJ= xk|C
J= ci, iR) =

{

0, if xk ∈ γci
αkci

Aci

, otherwise.
(29)

With αkci = 1 for xk /∈ γci , αkci = 0 for xk ∈ γci , and when there is no training
data available we have Aci =

∏

l∈ICons
ci

1
Kl

, and the current method becomes the
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same as Sherlock. However, by using our method it is possible to improve the
diagnosis by adding training data.

Another interesting feature with the current method is that it facilitates the
use of knowledge about that some values of the observations are a priori more
probable than other methods. Consider for example a system consisting of elec-
trical circuits. If the system consists mainly of “or”-gates, in the fault free case
an observation vector consisting mostly of 1:s is a priori more probable than an
observation vector consisting mostly of 0:s. The reason is that out of the four
possible inputs to an “or”-gate, (1,1), (1,0), (0,1), (0,0), only the last one gives a
0 as output. In this case, Sherlock would overestimate the likelihood for obser-
vation vectors with a lot of 0:s and underestimate the likelihood for observation
vectors with lot of 1:s in the fault free case, and produce erroneous results. This
effect is noticed [de Kleer, 2006], but no solution to the problem is given. In our
current method it is easily implemented by adjusting the hypothetical samples.

9.2 Relation to Structured Residuals

Structured Residuals is one approach to fault diagnosis that is the basis in
many algorithms in the automatic control community. In structured residuals,
the fault diagnosis rely on an FSM, where each row represents a residual, and
each column represents a fault, [Gertler, 1998, Patton et al., 2000]. In the FSM
a 0 in the jth row and ith column marks that observation j is not sensitive to
mode ci, and a 1 means that it is sensitive [Patton et al., 2000]. Fault diagnosis
is performed by matching the current values of the residuals, i.e. the current
observation vector, with the columns in the FSM.

One problem with fault diagnosis as defined above is that it requires 100%
response of the observations and 0% false alarm, otherwise the diagnosis will
be erroneous. To solve this, some solutions are suggested, for example by com-
puting the (Hamming) distance between the current observation vector and the
columns in the FSM, or by using fuzzy logic [Patton et al., 2000, Korbicz et al.,
2004]. Another approach is to relax the ones in the FSM to mean that the
observation may be respond to that fault as in Structured Hypothesis Testing
(SHT) [Nyberg, 2005]. In the following small example we compare the current
probability based method with the SHT method.

Example 9.3 (Comparison with SHT).

Consider the case with two binary observations, Xj ∈ {0, 1}, j = 1, 2, three
possible faults, and with FSM represented by

c1 c2 c3
X1 X 0 0

X2 X X X

(30)
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where an X in the jth row and the ith column means that observation Xj

may respond in mode ci. Let Xj = 1 mean that observation j has responded,
and that the observation vector (x1, x2) = (0, 1) is obtained. Using the SHT
method, all three faults are presented as possible to be present.
In the current method, the probabilities are computed by using (22). Assuming
that all faults are a priori equally probable we obtain

p(CJ = ci|(X1, X2)
J = (0, 1),D, iR) =

=
1

ρ

n(01)ci + α(01)ci

Nci +Aci

p(CJ = ci|iR),

where ρ =
3∑

i=1

n(01)ci + α(01)ci

Nci +Aci

p(CJ = ci|iR),

where n(01)ci is the number of training samples from mode ci where the obser-
vation vector is Xj = (0, 1) and similar for the hypothetical samples α(01)ci .
If there is no training data available, and all parameters αi are set to be equal,
all three faults are assigned the equal probability and the result from the current
method is the same as from SHT (if SHT is interpreted in probability terms).
On the other hand, if there is training data available, it can be used to improve
the diagnosis in the current method. In particular, note that training data may
make it possible to distinguish between the modes c2 and c3, while these two
fault can never be distinguished by using SHT only.

9.3 Relation to Model-Based Probabilistic Methods

Probabilistic reasoning for fault diagnosis is successfully used in several previous
works. Common in these references are that they aim at computing probabili-
ties for faults by using some kind of probabilistic model, S, that describes the
probabilistic relations between observations and faults. The probabilistic model
is often a Bayesian Network. This probabilistic model may be estimated from
data, as e.g. in [Verron et al., 2007, Pernestål et al., 2006, Pernestål et al., 2008],
or set up using expert knowledge as e.g. in [Schwall and Gerdes, 2002, Lerner
et al., 2000, Narasimhan and Biswas, 2007].

In the current work, no explicit probabilistic model is used. Instead the
probability computations are performed using training data and possibly the re-
sponse information, and we compute the probability p(CJ = ci|X

J = xk,D, iR)

directly. To study the difference between the previous and the present method,
marginalize over all possible probabilistic models,

p(CJ= ci|X
J= xk,D, iR) =

∫

p(CJ= ci|X
J= xk, S = s, iR)f(s|D, iR)ds.
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Here, we have used two assumptions: (1) that when the model is known, D does
not provide any further information about CJ ; and (2) that XJ alone (without
the corresponding CJ) does not provide any information about S.

With the approximation

f(s|D, iR) = δ(s− s0), (31)

where δ(·) is the probability distribution with all probability mass centered in
the point s0, we have that

p(CJ= ci|X
J= xk,D, iR) = p(CJ= ci|X

J= xk, S = s0, iR).

The approximation (31) may be good when there is one model that is far more
probable than the others. However, this is often not the case in fault diagnosis
due to the lack of training data from some modes.

9.4 Relation to Bayesian Networks

A Bayesian network (BN) is a directed acyclic graph representing the joint prob-
ability distribution over a set of variables, see e.g. [Jensen and Nielsen, 2007]
for an extensive description of BNs. In the BN, each node represents a variable,
arcs between nodes represent probabilistic dependencies between nodes (vari-
ables), and each node is equipped with the conditional probability table (CPT)8

for its variable, given its parents. The diagnosis method presented here could
be represented by a BN with one node for the mode and one (multidimensional)
node for the observations X, see Figure 5 (a). The CPT for X is given by (21),
and the probability for the mode is given by (16).

Figure 5: Two BNs that could be used for diagnosis.

It is tempting to let each observation be represented by a single node and
to assume that the nodes are independent, see Figure 5 (b). This structure
of BN is often referred to as a naive Bayes net (NB). In the NB, the CPTs
are significantly smaller than the full CPT used in Figure 5 (a). The CPTs
in the NB are assigned using (14) with a one-dimensional observation XJ =

8For continuous variables the conditional probability density is used.
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XJ
l . One important difference between NB and the current method is that

in the NB it is assumed that observations are independent. This is not true
in the diesel engine application, since there are several unmodeled effects that
affect the observation. The erroneous assumption of independence affects the
diagnosis performance, see e.g. [Pernestål et al., 2006]. There are other possible
structures, such as the Tree Augmented Naive Bayesian network (TAN) which
allows slightly more complicated dependencies than NB, but still may suffer
from to strong independence assumptions.

In [Pernestål et al., 2008] different state-of-the-art methods are applied to
learning BNs for diagnosis, and three main conclusions are presented. First,
most learning algorithms for BNs assumes observational data. In our appli-
cation, data is typically experimental, and this may lead to erroneous BNs.
Second, the lack of data from some (actually most) of the modes is not han-
dled in the state-of-the-art learning algorithms. Third, these state-of-the-art
methods does not take response information into account.

10 Conclusion

A new Bayesian method for fault diagnosis has been proposed. The aim of the
work has been to design a generic fault diagnosis method, applicable to real
world automotive systems. The work has been motivated by the diagnosis of
an automotive diesel engine, and the characteristics of the application has been
carefully studied.

The new method combines training data and process knowledge in terms of
an FSM, and computes the probabilities for faults given all available informa-
tion. The probabilities can then be combined with cost functions in the decision
theoretic framework, to determine the best action to perform to take the process
back to a safe and efficient operating mode.

With carefully chosen design parameters, for example by utilizing lumping
of modes, the proposed method has low complexity.

Appendix

Proof of Lemma 1. Begin with applying the product rule of probabilities,

p(XJ= xk|C
J= ci,D) =

= p(XJ= xk|C
J= ci,X

1:N = x1:N ,C1:N= cIci ) =

=
p(XJ= xk,X

1:N= x1:N |CJ= ci,C
1:N= c1:N )

p(X1:N = x1:N |CJ= ci,C1:N = c1:N )
. (32)
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By using Assumptions 2 and 3 we have that

p(X1:N = x1:N |CJ= ci,C
1:N = c1:N ) =

= p(XIci= xIci |CJ= ci,C
Ici= cIci )× . . .

p(XIc̄i = xIc̄i |CJ= ci,C
Ic̄i= cIc̄i ), (33)

and

p(XJ= xk,X
1:N= x1:N |CJ= ci,C

1:N= c1:N ) =

= p(XJ= xJ ,XIci= xIci |CJ = ci,C
Ici= cIci )× . . .

p(XIc̄i= xIc̄i |CJ= ci,C
Ic̄i= cIc̄i ). (34)

By inserting (33) and (34) in (32), and then applying the product rule of
probabilities we have

p(XJ= xk,X
1:N= x1:N |CJ= ci,C

1:N= c1:N )

p(X1:N= x1:N |CJ= ci,C1:N= c1:N )
=

=
p(XJ= xk,X

Ici= xIci |CJ= ci,C
Ici= cIci )

p(XIci = xIci |CJ = ci,C
Ici= cIci )

× . . .

p(XIc̄i= xIc̄i |CJ= ci,C
Ic̄i= cIci )

p(XIc̄i= xIc̄i |CJ= ci,C
Ic̄i= cIci )

=

=
p(XJ= xk,X

Ici= xIci |CJ= ci,C
Ici= cIci )

p(XIci= xIci |CJ= ci,C
Ici= cIci )

=

= p(XJ= xk|C
J= ci,X

Ici= xIci ,CIci= cIci ).

With the notation Dci = (XIci = xIci ,CIci = cIci ) for the training data from
mode ci. Then we can write

p(XJ= xk|C
J= ci,X

Ici= xIci ,CIci= cIci ) = p(XJ= xk|C
J= ci,Dci)

and the Lemma is proved. �

Proof of Lemma 2. Apply the product rule of probabilities

p(XJ= xk|C
J= ci,Dci ,Θci= θci) =

=
p(XJ= xk,X

Ici= xIci |CJ= ci,C
Ici= cIci ,Θci= θci)

p(XIci= xIci |CJ= ci,C
Ici= cIci ,Θci= θci)

. (35)

By using Assumtpions 2 and 4 we have that

p(XIci= xIci |CJ= ci,C
Ici= cIci ,Θci= θci) =

=
∏

j∈Ici

p(Xj= xj |CIci= cIci ,Θci= θci) (36)
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and

p(XJ= xk,X
Ici= xIci |CJ= ci,C

Ici= cIci ,Θci= θci) =

= p(XJ= xk|C
J= ci,C

Ici= cIci ,Θci= θci)× . . .
∏

j∈Ici

p(Xj= xj |CIci= cIci ,Θci= θci) (37)

By inserting (36) and (37) into (35) we obtain

p(XJ= xk|C
J= ci,Dci ,Θci= θci) = p(XJ= xk|C

J= ci,Θci = θci)

and the lemma is proved. �
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Constraints1
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Abstract

Bayesian inference, or classification, from data is a powerful method for
determining states of process when no detailed physical model of the
process exists. However, the performance of Bayesian inference from
data is dependent on the amount of training data available. In many
real applications the amount of training data is limited, and inference
results become insufficient. Thus it is important to take other kinds
of information into account in the inference as well. In this paper, we
consider a general type of background knowledge that appears in many
real applications, for example medical diagnosis, technical diagnosis,
and econometrics. We show how it can be expressed as constraints on
the likelihoods, and provide detailed description of the computations.
The method is applied to a diagnosis example, where it is clearly shown
how the integration of background knowledge improves diagnosis when
training data is limited.

1This paper has been submitted to International Journal of Approximate Reasoning. An
earlier and shorter version is published as [Pernestål and Nyberg, 2007].
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1 Introduction

We consider Bayesian inference, or classification, from both training data and

background knowledge. The task is to compute the probability

p(C = cl|X = xk,D, i). (1)

for the classes cl, given an observation vector xk, training data D, and back-
ground knowledge i. If there is a large amount of training data available, suffi-
cient classification results can often be obtained from training data only, without
considering the background knowledge explicitly. In this case, methods based
solely on training data can be used [Devroye et al., 1996, Heckerman et al.,
1995, Sivia, 1996, Kontkanen et al., 2001]. However, in many real applications,
for example fault diagnosis of technical processes, the amount of available train-
ing data is limited and the background knowledge i must be considered explicitly
to achieve sufficient classification results. In fault diagnosis applications it is
typically difficult to collect data from faulty situations, since faults are usu-
ally rare. One possibility is to actively implement faults and collect data. Still,
faults may have severe or dangerous consequences which complicate data collec-
tion and limits the amount of training data available. Furthermore, the active
implementation of faults in training data force us to handle experimental train-
ing data, i.e. training data with a different distribution than in the intended
application.

We consider two sources of background knowledge. The first describes re-
lations between likelihoods, i.e. the distributions of elements in the observation
vector under certain assignments of the class variable, and can be found in a
wide range of applications. In the diagnosis application this background knowl-
edge indicates expected behavior of observations under certain faults. The same
kind background knowledge can be found for example in medical and economet-
ric applications [Niculescu et al., 2006, Giffin and Caticha, 2007, Feelders and
van der Gaag, 2005]. The second source of background knowledge is the prior
probability distribution of faults. This distribution is important knowledge,
since the experimental training data does not tell anything about the distribu-
tion of faults.

The main contribution of the paper is a method for doing Bayesian infer-
ence, or classification, under the presence of both training data and background
knowledge. To do this, we show how the background knowledge can be trans-
lated to likelihood constraints in the learning phase. We present the computa-
tions in detail, and also provide numerical methods for solving the integrals that
appear. Finally we present two examples; the first illustrates and compares the
analytical and the numerical solution methods, while the second show how the
inference method can be applied to the task of diagnosis.

Bayesian inference based on training data alone is previously studied in for
example [Devroye et al., 1996, Heckerman et al., 1995, Kontkanen et al., 2001,
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Sivia, 1996]. However, Bayesian inference from both data and prior knowledge
is previously only rarely discussed in literature. In [Feelders and van der Gaag,
2005, Niculescu et al., 2006] similar kinds of background knowledge as in the
current paper are considered. These works focus on methods for modeling
in Bayesian networks, while we focus directly on computing the probabilities,
i.e. on doing inference. Furthermore, the kinds of background knowledge studied
in these previous works are special cases of the more general type of background
knowledge that we handle here. In [Pernestål and Nyberg, 2008] a diagnosis
application is presented in which data and background knowledge are combined
for inference. However, the background knowledge considered in the current
paper is more general.

We begin by introducing notation and motivating the type of background
knowledge we consider in Section 2. Background theory on Bayesian classifica-
tion from data only is summarized in Section 3. We then show how background
knowledge about the process can be expressed as likelihood constraints and ex-
tend the methods to also take these constraints into account in Section 4. We
spend Section 5 on discussing numerical methods for solving the inference prob-
lem, and Section 6 we illustrate the effect of combining data and background
knowledge in Bayesian inference in two examples. Finally, we discuss related
work in Section 7 and conclude in Section 8.

2 Preliminaries

Before going into the computational details for determining the posterior prob-
ability (1) we introduce notation and discuss the kind of background knowledge
considered.

2.1 Notation

We use the notation p(Y = y|Z = z), or simply p(y|z), for both probabilities and
discrete probability distributions. For continuous probability density functions
we write f(y).

The inference problem is the task of determining the state, or rather the
probability distribution of the state, of a process. The state of the process is
described by a discrete scalar class variable C with domain C = {c1, . . . , cL}.
A value cl is referred to as a class. The process is observed by using a vector
X = (X1, . . . , XR). Element Xr in the observation vector has domain Xr =

{xr1, . . . , xrKr
}, and the observation vector X has domain X = X1 × X2 ×

. . .×XR. To denote an assignment of the complete observation vector we write
X = xk, k = 1, . . . ,K, where K =

∏R
r=1 Kr. Each value xk is an R-dimensional

vector, and we write xk = (xk[1], . . . ,xk[R]) to denote the elements explicitly.
With this notation, xk[r] is the value of Xr when X = xk.
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Training data samples di, i = 1, . . . , N consists of simultaneous values of the
class variable C and the observation vector X. A realization of training data is
denoted D.

We assume that the underlying process is such that the observation vectors
are independent given the class. This assumption is called the Markov as-
sumption, and is reasonable (at least approximately) in most real processes. In
particular, in most real processes, data collection can be arranged such that this
assumption is fulfilled. A more detailed discussion can be found in [Pernestål
and Nyberg, 2008].

2.2 Background Knowledge

To motivate the type of background knowledge studied, let us consider the
problem of fault diagnosis of technical processes. In diagnosis, the task is to
compute the probabilities that different fault states (classes) cl are present,
given an observation vector xk from the process. One approach is to apply
traditional data driven methods for Bayesian inference as the ones presented in
e.g. [Devroye et al., 1996, Heckerman et al., 1995, Kontkanen et al., 2001, Sivia,
1996] to compute the probabilities for faults. However, in these methods, it is
crucial that there is training data available from all different faults (classes).
In diagnosis applications there is typically training data from the fault free
case and possibly from a limited set of faults. The reason is that faults often
occur only rarely. One possibility to gain data from faulty cases is to actively
implement faults and collect data. However, this is often an expensive or even
dangerous approach, and therefore data can often only be collected from a
subset of faults. Furthermore, implementing faults gives experimental data,
i.e. the distribution of data in the training set is not the same as the distribution
in the application. Due to the limitation in amount of training data, and the
experimental characteristics of it, the traditional methods are often not sufficient
for diagnosis applications.

On the other hand, there is often background knowledge available. The
background knowledge consists of two parts: knowledge about the distribu-
tion of faults, and knowledge about which faults that may affect the different
observations. In particular, it may be known that the effect on a certain obser-
vation is the same under two different faults. To see this, consider the following
example.

Example 2.4 (Diagnosis).

In a process, there are three redundant sensors measuring the same tempera-
ture, see Figure 1. The sensor signals are denoted

Ti = T + νi, i = 1, 2, 3,

where T is the true temperature and νi is a measurement noise. To monitor the
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Figure 1: A sample process with temperature T measured by sensors giving
temperature signals, Ti, i = 1, 2, 3. The sensor signals are used to form two
residuals, ri, i = 1, 2.

three sensors and detect faults in them two residuals are formed, r1 = T3 − T2

and r2 = T3 − T1. The residuals are discretized and used as observations X1

and X2 respectively.
We consider three classes: faults in sensors 1 and 2, and the fault free case.
Rather than using notation ci, i = 1, 2, 3, we use the more explaining notation
F1, F2, and NF for the three classes. In this example X1 has the same distribu-
tion under the two classes NF and F1, while X2 has the same distribution under
the two classes NF and F2. This information is our background knowledge, and
we denote it i. The background knowledge can be compactly represented by
the structure

NF F1 F2

X1 1 1 2
X2 3 4 3

(2)

In (2) the same number in two different columns means that the observation in
the corresponding row is equally distributed under the two classes represented
by the columns. The distribution of X1 (or X2) given C is unknown, but the
background knowledge states that for some values of C the distribution of X1

(or X2) is the same.

The structure in (2) is an extension of a so called Fault Signature Ma-
trix (FSM) or Fault Information System (FIS), see for example [Daigle et al.,
2006, Korbicz et al., 2004, Pulido et al., 2005, Nyberg, 2002]. Since there are
several slightly different interpretations of FSM/FIS it is difficult describe the
exact relation between the background knowledge used in the current paper
and FSM/FIS. However, the main idea with the FSM/FIS is to represent which
observations that are affected by each faults (and possibly also in what direc-
tion), but no detailed information is given about whether the distribution of the
observations changes. The structure (2) can easily be translated to an FSM by
replacing figures appearing in the NF column with 0 (meaning “not affected”),
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and all other figures with X (meaning “possibly affected”). In the structure (2),
we change figures 1 and 3 to 0, and 2 and 4 to X . This gives the FSM

NF F1 F2

X1 0 0 X
X2 0 X 0

In previous work on diagnosis using the FSM, there are two main approaches.
The first approach is to apply logic based methods as in [de Kleer and Williams,
1992, Reiter, 1992], and the numerous works building on these references. How-
ever, in these approaches, the probabilistic information is not fully utilized, and
diagnosis may be improved. The second approach is to use the FSM to in-
troduce independence relations between observations. As shown in [Pernestål
et al., 2006] this may lead to erroneous diagnosis results since observations
not really are independent, but rather independent sometimes. In the current
work we aim at utilizing all probabilistic information present in the background
knowledge, but avoid introducing erroneous independence assumptions.

The kind of background knowledge as considered in the current work appear
in a wide range of application areas. In [Giffin, 2007] econometric problems
are shown to include similar type of knowledge, but formulated in different
terms to suit the Maximum Entropy methods utilized. In [Feelders and van der
Gaag, 2005] the same type of knowledge arise from medical doctors’ expertise
in diagnosis, and in [Niculescu et al., 2006] are several examples presented.
However, their scope is to represent the information in models while we focus on
computing the probabilities directly from given data and background knowledge.
Furthermore, the method presented here handles even more general kinds of
background knowledge than the previous works. Relations to previous work is
discussed further in Section 7.

Return again to the structure (2). Without knowledge of this structure, we
are forced to learn the distribution of X = (X1, X2) under F1 only from the
(limited) data from that fault case. However, the structure (2) indicates that
observation X1 has the same distribution under the classes NF and F1. This
means that it is possible to reuse data from NF to learn about X1 also under
class F1, and thus data from NF gives information also about the distribution
of X under the class F1. In the following sections we show how this reuse of
data can be done formally.

3 Inference Using Data Only

First, we consider computation of the posterior probabilities p(cl|xk,D) when
no background knowledge is given and computations must rely on training data
only. We use the methods described for example in [Heckerman et al., 1995,
Pernestål and Nyberg, 2008], but in order to be prepared for adding background
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knowledge we rewrite the problem by using the product rule of probabilities to
obtain

p(cl|xk,D) =
p(cl,xk|D)

p(xk|D)
.

The denominator p(xk|D) =
∑L

l=1 p(cl,xk|D) is independent of C and is thus
constant for a given value xk of the observation vector. Thus, given xk, the
posterior probability for the class is proportional to the joint probability of C
and X, i.e.

p(cl|xk,D) ∝ p(cl,xk|D) = p(zlk|D), (3)

where we have introduced the variable Z = (C,X). Let Z take values zlk =

(cl,xk), and have domain Z = C× X. Each value zlk is a vector that can take
M = KL different values. Sometimes it is more convenient to enumerate the
values of Z as z1, . . . , zM . There is a unique transformation from the double
subscript zlk to the single subscript zm. However, the exact representation of
this transformation is not important and will not be discussed explicitly.

The computations of (3) are given in detail in for example [Heckerman et al.,
1995, Pernestål and Nyberg, 2008]. Here we are content to summarize them in
the following theorem.

Theorem 1. Let Z be a discrete variable with 1, . . . ,M possible values. Intro-

duce parameters Θ = (Θ1, . . . ,ΘM )T with values θ = (θ1, . . . , θM )T such that

p(zm|θ) = θm, m = 1, . . . ,M, (4a)

θm > 0 (4b)
M∑

m=1

θm = 1. (4c)

Let fΘ(θ) be Dirichlet distributed2, i.e.

fΘ(θ) =
Γ(

∑M
m=1 αm)

∏M
m=1 Γ(αm)

M∏

m=1

θαm−1
m , αm > 0, (5)

where Γ(·) is the gamma function, and the parameters α = (α1, . . . , αM ) are

given. Let D be a (possibly empty) set independent samples of Z. Let nm

be the count of samples in D where Z = zm, and let N =
∑M

m=1 nm and

A =
∑M

m=1 αm. Then it holds that

p(zm|D) =
nm + αm

N +A
. (6)

2In fact, it can be shown that under regular assumptions, the Dirichlet distribution on Θ

is inevitable [Geiger and Heckerman, 1997]
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Note that there is a relation between the parameters αm in (6) and the prior
probabilities p(cl) for the classes. As noted in the paragraph below equation (3)
there is a unique transformation between the single subscript m and the double
subscript lk. Using the same transformation we can write either αm or αlk. To
avoid clutter we use αlk to express the relation between the parameters and the
prior probabilities for the classes as

p(cl) =
K∑

k=1

p(cl,xk) =
1

A

K∑

k=1

αlk, (7)

meaning that the prior probabilities for the classes are sums of the parameters
αlk (or, equivalently αm).

4 Inference Using Data and Background

Knowledge

Now, assume that in addition to the training data we are also given knowledge
of the type presented in Section 2.2. In this section, we first show how this type
of knowledge is represented as constraints on the parameters Θ. We then derive
expressions for computing the probability for Z given both data and constraints.

4.1 Background Knowledge as Constraints

In Section 2.2 we introduced the type of background knowledge considered in the
paper. Here we will formalize the background knowledge as a random variable.
The background knowledge includes two parts of information:

1. It specifies that the data generating process is such that there are ele-
ments in the observation vector that are equally distributed under differ-
ent classes.

2. It specifies the probability for the classes.

We let the background knowledge be represented by the random variable I

which take value i. Part (i) means that for a given background knowledge i it is
specified exactly under which classes the observations are equally distributed.
This part of the background knowledge is represented by a set E of tuples of
the type

〈r1, r2, k1, k2, l1, l2〉 , (8)

r1, r2 ∈ {1, . . . , R}, k1 ∈ {1, . . . ,Kr1}, k2 ∈ {1, . . . ,Kr2}, l1, l2 ∈ {1, . . . , L}.

The tuple in (8) represents the statement “the parameters Θ are such that the
relation p(xr1k1

|cl1 , θ) = p(xr2k2
|cl2 , θ) holds”.
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Part (ii) of the background information states that “the parameters Θ are
such that

∑

x∈X

p(cl,x|θ) = p(cl|θ) = pcl , (9)

holds”. Part (ii) of the background knowledge is represented by a vector P =

(pc1 , . . . , pcL). In particular, note that part (ii) of the background knowledge
implies that p(cl|D, i) = p(cl|i)

The sample space of the random variable I is thus the set of all possible sets
of tuples 〈E ,P〉3.

From the discussion above it follows that given the background knowledge
it can be stated that constraints of the type

p(xr1k1
|cl1 , θ, i) = p(xr2k2

|cl2 , θ, i) (10)

hold. To simplify the notation in the computations below, we restrict (10) to
the case where r1 = r2 = r, k1 = k2 = k, and l1 = j, l2 = l. Then (10) becomes

p(xrk|cj , θ, i) = p(xrk|cl, θ, i). (11)

Applying the product rule of probabilities on (11) we have

p(cj , xrk|θ, i)

p(cj |θ, i)
= p(xrk|cj , θ, i) = p(xrk|cl, θ, i) =

p(cl, xrk|θ, i)

p(cl|θ, i)
,

where p(cj |θ, i) = pcj and p(cl|θ, i) = pcl according to (9). The prior probabil-
ities can be written pcj = ρjlpcl with a known constant ρjl. Thus, (11) means
that

p(cj , xrk|θ, i) = ρjlp(cl, xrk|θ, i). (12)

To relate the distributions in (12) to distributions of Z, we marginalize over all
possible values of the elements in X except Xr. Let

Xr̄ = (X1, . . . , Xr−1, Xr+1, . . . , XR),

let xr̄ denote an assignment of Xr̄, and let Xr̄ be the domain of Xr̄. Then we
can write

p(cj , Xr = xrk|θ, i) =
∑

xr̄∈Xr̄

p(cj , Xr = xrk,Xr̄ = xr̄|θ, i) =

=
∑

zm∈Zxrk,cj

p(zm|θ, i) =
∑

m

zm∈Zxrk,cj

θm (13)

3The random variable I has a probability distribution p(I = i). Since I always appears on
the right hand side of the |-sign in the probabilities there is no need for expressing p(I = i)
explicitly. However, as a comment, it is indeed possible to talk about the probability that
certain background knowledge is present, since it is related to the structure of the processes.
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where Zxrk,cj = {zm ∈ Z : zm = (cj ,xq),xq[r] = xrk}, i.e. the set of all possible
values zm where C = cj and Xr = xrk, regardless of the values of the other
elements in the observation vector. By using (13) we can write the requirement
(12) in the form

∑

m

zm∈Zxrk,cj

θm = ρjl
∑

m

zm∈Zxrk,cj

θm. (14)

The part of the background knowledge concerning the probabilities, given
by (9) can be expressed as constraints on θ as follows.

pcl =
∑

x∈X

p(cl,x|θ) =
∑

m

zm∈Zcj

θm. (15)

where Zcj = {zm ∈ Z : zm = (cj ,x),x ∈ X}, i.e. the set of all possible values
zm where C = cj regardless of the value of X. We illustrate how the back-
ground knowledge can be expressed as parameter constraints with the following
example.

Example 4.5 (Two Classes).

Consider the case with two classes, C ∈ {c1, c2}, and a one-dimensional obser-
vation X ∈ {x1,x2}. Define θ = (θ1, θ2, θ3, θ4) by

p(c1,x1|θ, i) = θ1, p(c2,x1|θ, i) = θ2,

p(c1,x2|θ, i) = θ3, p(c2,x2|θ, i) = θ4.

Assume that we are given the background knowledge that p(x1|c1, θ) = p(x1|c2, θ)
and that both classes are equally probable, i.e. that pc1 = pc2 = 0.5. Expressed
in terms of the parameters this means that

θ1 = θ2,

θ1 + θ3 = θ2 + θ4 = 0.5.

Constraints of the forms (14) and (15) can be written on the general form

FΘ = G, (16)

where F ∈ R
S×M and G ∈ R

S . Several types of background knowledge, in-
cluding (10), can be represented in the form (16). As will be illustrated in the
example in Section 6.2, this is typical in diagnosis applications. The constraints
we consider here are more general than previous works such as [Boutilier et al.,
1996] and [Jaeger et al., 2005], where constraints on single parameters are stud-
ied. These previous works are special cases of the constraints we study here.
The relation to these previous works is further considered in Section 7.

The number S of rows in F and G, is the number of constraints, including
(10) and (9) Here follows an example of how F and G may look like.
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Example 4.6 (Example 4.5 cont.).

With the parameters in Example 4.5, and with ρ12 = 1, the matrices in (16)
becomes

F =





1 −1 0 0

1 0 1 0

0 1 0 1



 , G =





0

0.5

0.5



 . (17)

Note that the two last rows in F guarantees that our parameters θ sum to 1,
i.e. that constraint(4c) is fulfilled.

4.2 Computing the Probability of Z under constraints

Now, return to the computation of p(zm|D, i). There are M possible values
of Z meaning that there are M parameters Θ = (Θ1, . . . ,ΘM ) needed to de-
scribe the distribution p(Z|D, i). The requirement (16) decreases the degree of
freedom, and the parameters Θ can be expressed by Q = M − S parameters
Φ = (Φ1, . . . ,ΦQ). Use φ = (φ1, . . . , φQ) to denote the values of Φ. There is a
linear transformation

Θ = VΦ+ U (18)

between the Θ and Φ. The transformation matrices will be derived in Sec-
tion 4.3. By know, we simply assume that they exist.

Let ∆Φ be the set of parameters Φ such that their transformation (18) fulfills
(4b). Marginalizing gives

p(zm|D, i) =

∫

∆Φ

p(zm|φ,D, i)f(φ|D, i)dφ. (19)

For the first factor in the integrand we note that when the parameters φ are
known, then Z is independent of D4. Thus, we have

p(zm|φ,D, i) = p(zm|φ, i) = p(zm|θ, i) = θm, (20)

where we have used (16) in the second equality. To determine the second factor
in the integrand of (19), apply Bayes’ theorem to obtain

f(φ|D, i) =
p(D|φ, i)fΦ(φ|i)

∫

∆Φ

p(D|φ, i)fΦ(φ|i)dφ
. (21)

4for details, see [Pernestål and Nyberg, 2008].
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Let training sample number i taken the value zµi
. Then, by using the fact that

training samples are independent, we can rewrite the factor p(D|φ, i) in (21) as

p(D|φ, i) =
N∏

i=1

p(zµi
|φ, i) =

N∏

i=1

p(zµi
|θ, i) = θn1

1 . . . θnM

M , (22)

where nm is the number of samples in training data where Z = zm, and
∑M

i=m nm = N . Let Vm and Um be the m:th rows in V and U respectively.
Then θm = Vmφ+ Um, and (22) becomes

p(D|φ, i) = (V1φ+ U1)
n1 . . . (VMφ+ UM )nM . (23)

For the second factor of (21), the prior probability for Φ we use

fΦ(φ|i) =

{

γfΘ(V φ+ U |i) if V φ+ U > 0,

0, otherwise,
(24)

where fΘ is defined by (5) and the requirement V φ+U > 0 comes from (4b). In
(24), γ is a constant that guarantees that fΦ integrates to one. Intuitively (24)
means that the background knowledge about the constraints simply cut off the
parts of fΘ that is not consistent with i and rescale the distribution in a space
with smaller dimension while the “shape” is the same as before introducing the
constraints.

By using equations (4), (19), (20), (21), (22), and (24) we obtain

p(Z = zm|D, i) =

=

∫

∆Φ

(V1φ+ U1)
n1+α1−1 . . . (Vmφ+ Um)nm+αm . . . (VMφ+ UM )nM+αM−1dφ

∫

∆Φ

(V1φ+ U1)n1+α1−1 . . . (Vmφ+ Um)nm+αm−1 . . . (VMφ+ UM )nM+αM−1dφ
.

(25)

4.3 Parameter Transformation

To solve the integrals in (25) we will now derive the explicit relation between
Θ and Φ, and then also an expression for the region ∆Φ of integration.

First, note that the matrix F ∈ R
S×M has full row rank, otherwise there

would be redundant information about the parameters θ, and rows could be
removed from F . Thus, we can always order the constraints, for example by
multiplying (16) with a permutation matrix, so that F = [FS FM−S ] where
FS ∈ R

S×S has full rank.
The constraints (16) can then be rewritten as

[
I F−1

S FM−S

]
Θ = F−1

S G. (26)

Let Ai:j denote rows i to j in the matrix A. We can then write (26) as

Θ1:S + F−1
S FM−SΘS+1:M = F−1

l G. (27)
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Letting Φ = ΘS+1:M and rearranging the terms of (27) gives

Θ =

[
−F−1

S FM−S

I

]

︸ ︷︷ ︸

V

Φ+

[
F−1
S G

0

]

︸ ︷︷ ︸

U

.

The region ∆Φ of integration is determined by for each Φi, i = 1, . . . , Q one
optimization problem for the lower boundary and one for the upper boundary.
For the lower boundary it is given by

φL
i = minφi (28)

subject to V Φ+ U > 0

φj > φL
j j = 1, . . . , i− 1.

For the upper boundary the optimization problem is given by

φU
i = maxφi (29)

subject to V Φ+ U > 0

φj < φU
j j = 1, . . . , i− 1.

To investigate the computations in detail, consider the following exam-
ple.

Example 4.7 (Example 4.6 cont.).

For Examples 4.5 and 4.6 the matrices F and G are given by (17). This gives
V = [−1 − 1 1 1]T and U = [0.5 0.5 0 0]T , i.e. we have a scalar Φ = Φ1 and the
relations Θ1 = 0.5−Φ1, Θ2 = 0.5−Φ1, Θ3 = Φ1, and Θ4 = Φ1. Solving the
optimization problems (28) and (29) we obtain ΦL

1 = 0 and ΦU
1 = 0.5. Thus,

the integrals in (25) becomes
∫ 0.5

0

(0.5− φ1)
k1(0.5− φ1)

k2φk3
1 φk4

1 dφ1 =

=
1

21+
∑4

i=1 ki

Γ(k1 + k2 + 1)Γ(k3 + k4 + 1)

Γ(2 +
∑4

i=1 ki)
,

where ki = ni +αi− 1 or ki = ni +αi depending on the value of i and whether
we solve the integral in the denominator or numerator of (25).

5 Computing the Integrals

The integrals in (25) are of the type
∫

∆Φ

(V1φ+ U1)
k1 . . . (VMφ+ UM )kMdφ, (30)
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for nonnegative integers km. Although an analytical solution was easily found
in Example 4.7, this is generally not the case. To the authors knowledge, there
is in general no closed form solution to (30). In this section we study how an
approximation method can be used.

5.1 Characteristics of the Integral

Consider the integral (30), and denote the integrand h(φ) =
∏M

m=1(Vmφ +

Um)km . To solve the integral approximately, we use the following proposition.

Proposition 1 (Multivariate Unimodal). Let km > 0 for at least one m, then

the function h(φ) is multivariate unimodal5 inside ∆Φ.

Proof. For km > 0, h is zero at the borders of ∆Φ: either we have φm = 0

or (Viφ+ Ui) = 0. Each factor in the integrand is positive inside ∆Φ, thus the
integrand must have at least one maximum inside the region of integration.

To show that there is only one maximum we study the Hessian of hL(φ) =

log h(φ) inside ∆Φ. Let Vip denote the p:th element in the row vector Vi. The
first and second derivatives of h are then

∂hL

∂φp

=

M∑

i=1

Vipki
Viφ+ Ui

,

∂2hL

∂φp∂φq

= −
M∑

i=1

VipViqki
(Viφ+ Ui)2

,

and the Hessian of hL can be written

H =
[
∇2hL(φ)

]
=

[
∂2hL

∂φp∂φq

]

= −
M∑

i=1

ki
(Viφ+ Ui)2

V T
i Vi. (31)

The Hessian is clearly negative semidefinite. To see that H is also negative
definite, note that for a general vector x we have xTHx = −

∑M
i=1 1/(Viφ +

Ui)
2(x · Vi)

2. Since ∆φ is finite (x · Vi) 6= 0 for at least one i and thus H is
negative definite. �

Now, we use the fact that h(φ) is unimodal and approximate it with another
unimodal function with known integral. The case with km = 0 for all m =

1, . . . ,M corresponds to the case where no training data exists and gives a
constant integrand and solving the integral is trivial.

One way to estimate the integral of a multivariate unimodal function that is
small (zero) at the boundaries of the region of integration, is to approximate the

5For multivariate functions there are several similar definitions of “multivariate unimodal”,
see [Dharmadhikari and Joag-Dev, 2006]. Here, we mean that the function has exactly one
maximum inside the region considered.
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integrand by an unnormalized Gaussian distribution centered at the maximum
value of the integrand. The integration of the unnormalized Gaussian can then
be performed over the whole space, which provides an approximate solution.
This approximation method is referred to as Laplace approximation [MacKay,
2005] or the saddle point approximation [Goutis and Casella, 1999].

Consider the problem of integrating h(φ) over the region ∆Φ. The Laplace
approximation is given by

∫

∆Φ

h(φ)dφ ≈ h(φ∗)

∫

RQ

e−
1
2 (φ−φ∗)T (−H(φ∗))(φ−φ∗)dφ = h(φ∗)

√

(2π)Q

det(−H(φ∗))
,

(32)

where

φ∗ = arg max
φ∈∆Φ

h(φ), (33)

and H(φ∗) is given by (31). When performing the approximation in (32) the
region of integration is changed from ∆ to R

Q, since e−
1
2 (φ−φ∗)T (−H)(φ−φ∗)

is approximately zero outside our region of integration. Without doing the
approximation of the integrand this change of region is not applicable, since
h(φ) is generally not zero (or even small) outside the region of integration.

The Laplace approximation utilizes the fact that the integrand is small on
the boundaries. For the integrand of (30) to be small (zero) at the boundaries,
it is required that km > 0 for all m, i.e. that there is training data available
or that αm > 1. If km = 0 for some m the integrand becomes constant in
some directions. In this case, integration is easily performed along these direc-
tions before the Laplace approximation is applied on the remaining, unimodal
integrand.

The Laplace approximation is widely used in literature. However, to the
authors’ knowledge, there are no general boundaries on the errors in the ap-
proximation. Instead, each problem must be studied and the performance of
the approximation verified, and in Section 6 we study its appropriateness to
integrands of the type h(φ) used in the current paper.

6 Examples

We illustrate the computations of probabilities given data and constraints as
presented in Sections 4 and 5 with two examples. The objective with the first,
relatively small, example is to compare the Laplace approximation with the
analytical solution. In the second, larger example we show how the method can
be applied to a more realistic diagnosis problem.
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6.1 Analytical Solution vs. Laplace Approximation

Consider the case where there are two classes c1 and c2, two binary observations,
X = (X1, X2), Xi ∈ {0, 1}. The background knowledge i states that the two
classes are equally probable, that all αi = 1, and that the parameters Θ are
such that

p(X1 = x1k|θ, c1) = p(X1 = x1k|θ, c2). (34)

Enumerate the values of Z according to

C 1 2 1 2 1 2 1 2
X1 0 0 1 1 0 0 1 1
X2 0 0 0 0 1 1 1 1

z1 z2 z3 z4 z5 z6 z7 z8
Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 Θ7 Θ8

(35)

The background knowledge expressed in the parameters is then

Θ1 +Θ3 = Θ2 +Θ6

Θ3 +Θ7 = Θ4 +Θ8

Θ1 +Θ3 +Θ5 +Θ7 = 0.5

Θ2 +Θ4 +Θ6 +Θ8 = 0.5

The last constraint above is a linear combination of the first three, and can
be removed. Performing the variable transformation we obtain Φ = VΘ + U ,
where

V =















−1 −1 0 0 −1
1 0 −1 0 −1
1 0 0 −1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1















, U =















0.5

0.5

0

0

0

0

0

0















. (36)

The Q = M − S last variables in Θ form the new parameters, i.e.

Φ = (Φ1,Φ2,Φ3,Φ4,Φ5)
T = (Θ4,Θ5,Θ6,Θ7,Θ8)

T .
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To obtain the borders of integration we solve the optimization problems (28)
and (28) for all φi. This gives the borders

0 < φ1 < 0.5,

0 < φ2 < 0.5− φ1 − φ5,

0 < φ3 < 0.5− φ1 − φ5,

0 < φ4 < φ1 + φ5,

0 < φ5 < 0.5− φ1.

The integral (30) becomes
∫

∆Φ

(0.5− φ1 − φ2 − φ5)
k1(0.5− φ1 − φ3 − φ5)

k2 × . . .

(φ1 − φ4 + φ5)
k3φk4

1 φk5
2 φk6

3 φk7
4 φk8

5 dΦ. (37)

Let n = (n1, . . . , n8) be the vector of number of training samples when the
values of Z are enumerated according to (35).

We exemplify the computations by considering the case where the system is
set into class c2 training data is collected. The result is a set of samples where
n4 and n8 are the only nonzero elements in n. To compare the analytical and
approximate solutions, we compute the probability that (C,X1, X2) = (c1, 1, 0).
From (35) we see that this value corresponds to z3 with probability Θ3, which
after the variable transformation is given by φ1 − φ4 + φ5. This gives the
expression

p(C = c1, X1 = 1, X2 = 0|D, i) = p(z3|D, i) =

=

∫

ΩF
(φ1 − φ4 + φ5)φ

n4
1 φn8

5 dφ1 . . . dφ5
∫

ΩF
φn4
1 φn8

5 dφ1 . . . dφ5
, (38)

where the computations can be performed straight-forward.
To apply the Laplace approximation, consider the integrals (38). The in-

tegrand in the numerator is independent of φ2 and φ3, and linear in φ4. The
integrand in the denominator is independent of φ2, φ3, and φ4. Therefore, both
integrands are not unimodal in these directions, and we need to integrate an-
alytically along them before applying the Laplace approximation. After the
analytical integration we obtain

1

2

∫

φ1,φ5>0

0<φ1,φ5<0.5

(φ1 + φ5)
2(0.5− φ1 − φ5)

2φn4
1 φn8

5 dφ1dφ5 (39a)
∫

φ1,φ5>0

0<φ1,φ5<0.5

(φ1 + φ5)(0.5− φ1 − φ5)
2φn4

1 φn8
5 φ1dφ5 (39b)

for the numerator and denominator, respectively. These integrals are solved by
using the Laplace Approximation.
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Table 1: Analytical and Laplace Approximation Solutions of p(z3|D, i) for three
sets of training data.

Data Analytical Solution Laplace Approximation
n4 = 4, n8 = 2 0.188 0.198
n4 = 10, n8 = 5 0.214 0.223
n4 = 40, n8 = 20 0.239 0.242

The results for three different sets of training data are summarized in Table 1.
The error in the Laplace approximation is in most cases less than 5%, and
decreases as the number of training data increases. In Figure 2 the integrand
in (39a) and its Laplace approximation are plotted as functions of φ1 and φ5

when n4 = 10 and n8 = 5. In both plots the other variable is fixed at its value
at φ∗ defined by (33). The true (solid) curve and the approximated (dashed)
curve are similar.

6.2 Diagnosis Example

Now, we apply the method to an extended version of the scenario presented in
Example 2.4, where there are three sensors measuring the same temperature.
The objective now is to detect and localize single and multiple faults in the
sensors. The sensor signals are denoted T1, T2 and T3. We construct three
residuals,

r1 = T3 − T2,

r2 = T3 − T1,

r3 = T2 − T1.

The observations are formed by discretizing the residuals in two bins, i.e. we
form binary observations.

Let NF denote the fault free case, and Fi denote fault in sensor i. Consid-
ering single and double faults, we obtain the structure (40) that represents our
background knowledge.

NF F1 F2 F3 F1&F2 F1&F3 F2&F3

X1 0 0 1 2 1 2 3
X2 4 5 4 6 5 7 6
X3 8 9 10 8 11 9 10

(40)

In this structure, the same number means that the corresponding marginal
distributions are the same, for example that p(x1|C = NF ) = p(x1|C = F1).
With three binary observations and seven classes we have 23 ·7 = 56 parameters
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Figure 2: The integrand (solid) in (39a) and its Laplace approximation (dashed)
as a function of φ1 (top) and φ5 (bottom). In both plots the other variable is
fixed at its values at Φ∗.

in Θ. Structure (40) gives 18 constraints of the type (10), the requirement (4c)
gives one constraint. These 19 constraints are reduced to 16 linearly independent
constraints, which gives 56-16 = 40 φ-parameters. Let all classes be equally
probable. In real diagnosis applications the class representing the fault free
case is of course often much more probable than the faulty classes, but we
use equal probability here to really investigate the effects of the background
knowledge.

To exemplify the method, we use two training data sets: the set D1 with 100
training samples from class NF only, and the set D2 with 50 training samples
each from NF and F1. We generate evaluation data sets with 100 samples from
the classes NF , F1, and F1&F2, and for each data set we compute the average
probability assigned to all classes. If, on the average, high probability is as-
signed to the underlying class, inference is successful. The average probabilities
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assigned to the classes, when training data set D1 is used, is plotted in Figure 3
for evaluation data from NF (top), F1 (middle), and F1&F2 (bottom). The
result for class F1 is poor since the corresponding column in (40) is similar to
the NF column. When data is from F1&F2 instead, the difference to data gen-
erated from NF is larger. Therefore, this class is more easily distinguished. The
result when training set D2 is used is plotted in a similar manner in Figure 4.
Finally, for comparison, we have computed the probabilities for the classes when
training set D1 is used without background knowledge. The result is plotted in
Figure 5.

Comparing Figures 3 and 4 with Figure 5, we first note that if no background
knowledge is used, training data only helps distinguish the class it is generated
from, i.e. NF . Furthermore, it over estimates the probability for NF in the
evaluation sets from the other two classes. Using no background knowledge,
the classification result is strongly biased by the selection of the experimental
training data. By adding background knowledge, more information can be
extracted from training data.

In Figure 3 we see that by using background knowledge, inference perfor-
mance is lost when the underlying class is NF compared to when no background
knowledge is used. This makes sense, since background knowledge says that all
classes are a priori equally likely, and also that elements in the observation vec-
tor have the same distribution as under class NF under other classes. However,
the performance lost when evaluation data is from the same class as training
data is regained under other classes, in particular for the case when F1 is the
underlying class.

In Figure 4 it is shown that using training data from both NF and F1 leads
to that the true underlying class is among the most probable ones for all three
evaluation sets, also for the case F1&F2, from which no training data is available.
By knowledge about the structure (40), training data from NF and F1 can in
fact be reused in learning about all classes except F2&F3. This illustrates the
fact that the proposed method is able to use background knowledge to improve
inference also for classes from which there is no training data.

In the three experiments with results plotted in Figure 3 - Figure 5 we have
used the same number of training data, but we have improved diagnosis results
in two steps. First, by adding the likelihood constraints given by background
knowledge, and second, by collecting data from two classes instead of only one.
Since the method handles experimental data, training data collection can be
performed in a way so that as much information as possible can be gained from
a limited number of samples.
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Figure 3: Average probability assigned to different classes when training set D1

is used. The true underlying class is marked with a white bar.
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Figure 6: A Bayesian network that satisfies the constraint p(x1i|cj) = p(x1i|cl)
for all i, j, l.

7 Related Work

We consider the problem of doing inference about one class variable C, given
observations X = (X1, . . . XR) and constraints of the types (11) and (9). The
constraints of type (11) can be interpreted as different kinds of independence
relations between the class variable and elements in the observation vector. If
the equality (11) holds for all values xik, k = 1, . . . K of Xi and for all values cl,
l = 1, . . . , L of C then Xi and C are independent. In this case it would be pos-
sible to use a Bayesian network (BN) to describe the dependence relations, and
apply traditional learning methods to find the parameters [Heckerman et al.,
1995]. For example, the BN is shown in Figure 6 for a case with two observa-
tions (X1, X2) and one class variable C, and where it is known that X1 and C

are independent. Note, that nothing is known about the dependency relations
between X1 and X2, and therefore there must be an edge between these two
nodes.

If instead the equality (11) holds for all values xik, k = 1, . . . K but only for
a subset of the values of C, the type of dependencies we study are similar to
the context specific independence described in [Boutilier et al., 1996] and can
not be represented straightforward by an ordinary BN. In [Boutilier et al., 1996]
methods are proposed to extend the concept of BN:s to describe context specific
independence.

The two types of independence relations discussed above are special cases of
the constraints handled with the method presented in this paper. In addition it
also handles the case where equality (11) holds for a subset of the values xik and
a subset of the values of C, which is, to the authors knowledge, not previously
considered in literature.

Constrained dependencies similar to the ones studied in the current paper
can also be represented in Probabilistic Decision Graphs (PDG) [Jaeger et al.,
2005, Jaeger, 2004]. In PDG:s the dependence relations between variables must
be tree structured. In [Jaeger et al., 2005] learning PDG:s from data is con-
sidered. In the current work we learn parameters and probability distributions
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from data and background knowledge. No assumption on independence rela-
tions on other variables other than that they should fulfill (16).

In [Giffin and Caticha, 2007] Maximum Entropy methods are proposed for
inference problems with background information similar to ours. However, since
they rely on Maximum Entropy they consider constraints on expected values
rather than on the likelihood as in the current work. In the kind of problems
considered in the current paper, application of the Maximum Entropy methods
tends to give complex computations and integrals that are difficult to solve. By
constraining likelihoods we have in the current paper provided straightforward
computations and efficient approximations when needed.

8 Conclusions

We have derived a new method for Bayesian inference from data and back-
ground knowledge. The type of background knowledge we study is more gen-
eral than the background knowledge considered in previous works. It appears
in many practical applications, such as fault diagnosis of technical processes,
econometrics, and medical diagnosis. Furthermore, the inference method han-
dles experimental training data, which is collected by actively choosing classes
from which data is collected.

The background knowledge can be efficiently represented in two parts: a
vector of prior probabilities for the classes, and a table, in diagnosis called an
FSM. It has been shown how the background knowledge can be translated to
likelihood constraints, and then expressed as constraint on the parameters in
the computations.

The method derived here results in multidimensional integrals to which there
in general are no closed-form solutions. Instead, we have made a detailed de-
scription of how to approximate these integrals. Given constraints expressed by
a vector and an FSM, the approximation method is easy to implement and in-
ference can be made automatically. The computations have been demonstrated
in two examples: a small example investigating the accuracy of the approxi-
mation, and an illustrative fault diagnosis example to illustrate the use of the
method.

The examples, see e.g. Figure 3, indicate that by combining data and back-
ground knowledge, significant improvements in the inference can be made, in
particular when the available amount of training data is limited. Furthermore,
by comparing Figures 3 and 4, we have seen that we can utilize the experimental
data, and collect training data in a way so that as much information as possible
can be gained from a limited number of samples.

One challenge in Bayesian inference is the exponential growth of number of
parameters as problems become larger. In the current work, the background
knowledge reduces the dimensions of matrices and integrals. However, for large
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problems with few constraints, there may still be unfeasibly many parameters,
and our future work consists in investigating effects of scaling. Future work also
includes application of the derived inference method to the diagnosis of a heavy
truck engine, using real data.
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Abstract

In research and industry, decision theoretic troubleshooting of complex
automotive systems has recently gained increased interest. With suit-
able troubleshooting, uptime can be increased and repair times short-
ened. To perform decision theoretic troubleshooting, probability com-
putations are needed. In this work we consider computation of these
probabilities under external interventions, which changes dependency
relations. We apply a non-stationary dynamic Bayesian network (ns-
DBN), where the interventions so called events. The events change
dependency relations, and drive the nsDBN forward. In the paper, we
present how to build models using event driven nsDBN, how to perform
inference, and how to use the method in troubleshooting. Event driven
nsDBN can be used to model any process subject to interventions, and
in particular it opens for solving more general troubleshooting problems
than previously presented in literature.

1This paper has been submitted to International Journal of Approximate Reasoning. It is
partly based on [Pernestål et al., 2009].
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1 Introduction

To fulfill performance, safety, and environmental requirements, technical sys-
tems become increasingly complex and thus more difficult to diagnose and re-
pair. At the same time, there are requirements on improved diagnosis, shortened
repair times, and increased uptime. One of the main approaches to tackle the
challenge of shortening repair times of increasingly complex systems is to ap-
ply decision theoretic troubleshooting, see for example [Breese and Heckerman,
1996, Langseth and Jensen, 2002, Olive et al., 2003, Warnquist and Nyberg,
2008].

We consider a decision-theoretic troubleshooting-system to consist of two
parts: a Planner and a Diagnoser. The Planner searches for the optimal se-
quence of actions to be applied to make the process fault free, relying on proba-
bilities of faults computed by the Diagnoser. For example, the Planner can use
AO∗-search techniques together with heuristics to bound the search space as in
for example [Warnquist and Nyberg, 2008, Heckerman et al., 1995]. The relia-
bility of the troubleshooting strategies determined by the Planner is dependent
on the accuracy of the probabilities computed by the Diagnoser. In the current
work, we focus on the Diagnoser, and its task to compute probabilities of faults
and of new observations conditioned on everything known so far.

During troubleshooting, the system is subject to troubleshooting actions.
Some of these actions, such as repairs, may change dependencies and conditional
probabilities between variables. In this sense, the system is subject to external
interventions. In this work we model the system and the troubleshooting process
by using a non-stationary dynamic Bayesian network (nsDBN), and use this
model to compute relevant probability distributions. In the nsDBN, actions
cause events, which in turn generate new time slices. In this sense, the events
drive the DBN forward.

The term “non-stationary” is used to highlight the fact that in our dynamic
Bayesian network (DBN), the structure of dependencies may differ between
different time slices, depending on the actions performed. Using different de-
pendencies in different time slices is in accordance with the general definition
of DBNs given for example in [Murphy, 2002] and [Neapolitan, 2003], but is
previously only rarely studied in literature [Robinson and Hartemink, 2008].

The main contribution in the paper is the framework for modeling trou-
bleshooting processes by using nsDBNs. This framework makes it possible to
deal with more complex system structures and troubleshooting scenarios than
in previous works on troubleshooting [Breese and Heckerman, 1996, Langseth
and Jensen, 2002, Olive et al., 2003, Warnquist and Nyberg, 2008]. We use
nsDBNs to model the troubleshooting process of a system subject to external
interventions, and show how to define, represent, and perform inference in these
nsDBNs. Both representation and inference is done as compact and storage ef-
ficient as possible.
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In previous works on decision theoretic troubleshooting, limitations and as-
sumptions on the systems to be troubleshooted are applied to simplify the prob-
ability computations. Among the assumptions are single faults [Langseth and
Jensen, 2002, Skaanning et al., 2000], the existence of a “problem defining node”
which can be directly observed to verify whether the system is fault free [Breese
and Heckerman, 1996], or a simple (two-layer) structure of dependencies be-
tween observations and components [Warnquist and Nyberg, 2008]. However,
when working with real technical systems these assumptions generally do not
hold. Systems may have multiple faults when troubleshooting begins, and it is
often impossible, or at least very expensive, to verify that the system is fault
free. Furthermore, the structure of dependencies is often complex. In the pro-
posed method such assumptions are avoided by applying nsDBNs.

We begin with discussing relations to previous works in Section 2, before
presenting the troubleshooting scenario and an example system in Section 3.
In Sections 4 - 6 we define, build and perform inference in the event-driven
nsDBN. Finally, the theory of nsDBN is illustrated in detail on a troubleshooting
example in Section 7, before we conclude in Section 8.

2 Related Work

The use of non-stationary DBN (nsDBN) in modeling for troubleshooting with
interventions is related to two research areas: DBNs in general, and interven-
tions in probability theory and Bayesian networks (BN). In this section we give
a brief discussion of related work in these two areas.

Previous literature on nsDBN is only sparse. The definition of DBN that
we consider, which includes nsDBN, is commonly used in literature, see for
example [Murphy, 2002, Neapolitan, 2003]. However, these authors consider
only stationary DBN in examples and algorithms. In [Robinson and Hartemink,
2008] the concept of nsDBNs is introduced for modeling dynamic processes with
autonomously changing structures, and it is discussed how such models can be
learned from data. In the current paper we also consider nsDBN, but the
structure changes we consider are effects of external interventions, rather than
autonomous changes of the modeled process. Focus in the current paper is on
representing and handling these external interventions and their effects.

As an alternative to nsDBNs, non-stationary Markov chains can be used
to model non-stationary processes, see for example [Elliott et al., 2001] and
[Mamon, 2002] for two financial applications. The main drawback with Markow
chains, in contrast to DBN, is that they do not utilize the known structure of
probabilistic dependencies. This often leads to unnecessary (and unfeasible)
computational burden.

The effects of interventions in BNs in a non-dynamic setting is addressed
for example in [Pearl, 2000], [Spirtes et al., 2001], and [Lauritzen, 1999], where
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causal Bayesian networks are applied. More recently, interventions in DBNs are
studied in [Queen and Albers, 2009]. In all these previous works, interventions
are used to identify causal relations, and the close relation between interventions
and causality is investigated. There are two main differences between these
previous works and the current. The first is the time aspect of the causal
relations. In the previous works, causal relations are instantaneous, meaning
that the effect of an intervention spreads directly through the network. In the
present work on the other hand, dependencies may by caused by causal relations
that has been present previously, but are not present at the time for reasoning.
For example, in a car, a broken gasket may cause oil to leak out during driving.
When the car is parked, there is a dependency between the status of the gasket
and the observation that oil has leaked out. If we observe that there is an oil
leakage, we can draw conclusions about the gasket. However, if we replace the
gasket, there is no longer any dependency between the oil and the gasket until
the car has been operated again. The second difference is that in the previous
works, there can be external actions intervening with the system. These actions
are called interventions, and are modeled as active assignment of values to
variables in the BN, or as changes of the distribution of variables as in [Queen
and Albers, 2009]. In the current work on the other hand, the external actions
can be, as previous, assignments to variables or changes in distributions, but
they can also be changes in the structure of dependencies between variables.

3 The Troubleshooting Scenario

We consider the following scenario: an automotive vehicle, for example a heavy
truck, has entered the workshop. At the workshop, a troubleshooting process
begins. During the troubleshooting process symptoms are observed, components
are repaired, and the system is possibly run to verify the result of repairs.

In this section we introduce a small sample system that will be used to il-
lustrate the concepts in the remainder of the paper. We show how it can be
modeled, and describe the actions that can be applied to it during troubleshoot-
ing.

3.1 The OPG System

Consider a small system consisting of a pipe connected to an oil tank via a
gasket and a smaller pipe, see Figure 1. The oil is pumped through the system
by a pump. We consider the subpart of the system consisting of the pipe, the
oil that flows through it, and the gasket. The other parts are assumed to always
be fault free. During operation, oil is pumped through the pipe and the gasket.
At rest, the system may still be pressurized, but the pump is turned off, so the
pressure will not build up. If the oil is of erroneous type, it may be discolored
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Figure 1: The sample system: oil flows through a pipe that is connected to a
smaller pipe via a gasket.

and/or have wrong viscosity. Wrong viscosity may increase the pressure in the
pipe. Increased pressure in the pipe may cause a leakage, or cause the gasket to
fail which in turn may cause a leakage. A leakage can also be caused by a hole
in the pipe. The system in Figure 1 is a typical subsystem of an automotive
vehicle. We refer to it as the oil-pipe-gasket (OPG) system, and a model of it is
depicted in Figure 2. In the figure, the nodes represent variables in the model
of the system2, and edges represent causal dependencies between the variables.
The model comprise three variables representing components: Oil , denoted O ,
Gasket , denoted G , and Pipe, denoted Pi . Components are marked with gray
circles and have two possible values: “faulty” (F ) or “non-faulty” (NF ). Faulty
oil means that it is worn or of erroneous type, a faulty gasket is broken or out of
place, and faulty pipe means that there is a hole in the pipe. In the example sys-
tem there are two observable symptoms. The observable symptoms are marked
with squares. The observable symptom ObservedOilColor , denoted OOC , can
be either Normal or Green. The observable symptom ObservedLeakage, denoted
OL, has the possible values Present or NotPresent . The three remaining vari-
ables OilColor , (OC ), Pressure, (Pr), and Leakage, (L), are marked with white
circles, and are hidden variables that represent internal states in the system. In
this example they are all binary and their domains are OC ∈ {Normal ,Green},
Pr ∈ {Normal ,High}, and L ∈ {Present ,NotPresent}.

3.2 Variables

When modeling for troubleshooting we use three types of variables: components,
observable symptoms, and internal state variables.

Components. When using the term component we mean both the physical
component and a variable, Ci, representing the fault state of the component. A
component is a part of the system that can be repaired, i.e. to each component
there is a repair action associated, see Section 3.3. The variables Ci are discrete.
They always have the possible value “non-faulty”, NF . In addition, they have
one or several fault states, Fi.

2We will use “nodes” and “variables” interchangeably.



128 Paper 3. Non-stationary DBN...

Figure 2: A model of the OPG system consisting of three components (gray
circles), two observable symptoms (squares), and three internal states (white
circles).
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There are two probability distributions associated to each component vari-
able. The first is the prior distribution for the state of the component given the
operation history H of the system3,

p(Ci|H). (1)

The operation history H represents knowledge about the operation history and
usage of the system. For example, in systems that has been operated a long
time on an exceptionally high load, the prior probability for faults will typically
be higher than for a system operated at normal load. In modern automotive
vehicles, knowledge about the operation history is stored in the on-board control
units. The distribution (1) can for example be learned from fleet operation data,
expert knowledge and experience, or component specifications. However, in the
current work, we ignore the operation history to keep notation free from clutter,
and assume that p(ci|H) = p(ci).

The second distribution related to components is

p(Ci|repair(Ci)), (2)

describing the probability that a repair of component Ci actually resulted in
fault free component. In previous works on decision theoretic troubleshoot-
ing it is often assumed that repairs are always successful [Heckerman et al.,
1995, Langseth and Jensen, 2002, Warnquist et al., 2009], and repairs are thus
modeled by adding evidence to the component variables. In the current work
we assume that components are not directly observable, meaning that evidence
can not be added to them. Repairs that are always successful are modeled by
using the distribution p(Ci = NF |repair(Ci)) = 1 for (2). Of course, in the
computations, this is equivalent to adding evidence to the component variable.

Observable Symptoms. Observable symptoms, or observation variables,
Oi, are discrete or continuous variables representing observations that can be
made of the troubleshooted system. These variables state the only ways through
which the system can be monitored. In the current work we restrict us to
use only discrete observable symptoms. The same theory as described in the
paper applies to the continuous case, but inference techniques become more
complicated

Internal Variables. To model a system with sufficient precision, it may
be necessary to use variables representing internal states of the system. The
internal variables may be discrete or continuous, and can not be directly ob-
served. In Figure 2 we have distinguished between the internal state OC and
the observable symptom OOC . This construction highlights the fact that even
if the system has a specific internal state, it is not necessarily the case that
the true state is observed. For example, although the oil color is green, it may

3We use p(X) to denote the distribution of the variable X, and p(X = x) or p(x) to denote
the probability that X takes the value x.
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be the case that the mechanic observes normal oil color. As for the observ-
ables symptoms, we restrict the current work to only consider discrete internal
variables to keep inference less complicated.

3.3 Troubleshooting Actions

During troubleshooting, there are external interventions with the systems in
terms of troubleshooting actions are applied to the system. These actions are
modeled by changing dependencies between variables, by changing parameters
in probability distributions, or by adding evidence to variables. We consider
three types of troubleshooting actions: repairs of components, observations of
observable symptoms, or operation of the system. In this section we describe the
characteristics of the actions, while they will be formally defined in Section 4.

Repair Actions. A repair action is applied to a component variable, and
the repair of component Ci is denoted repair(Ci). The probability that the
repair is successful is determined by the distribution (2). A repair action typi-
cally remove dependencies related to the repaired component. It also updates
the probability distribution for the repaired component.

Observation Actions. An observation action is applied to an observable
symptom variable, observe(Ok). This action simply means adding evidence to
the observable symptom variable.

Operation Actions. The action to operate the system for a certain time
τ is denoted operate(τ). The operation action affects the complete systems
by introducing dependencies between variables and changing parameters in the
probability distributions.

3.4 Actions, Evidence, and Events

The troubleshooting actions describe the troubleshooting process. An action
results in evidence and/or events. Evidence is an assignment of known values
to a subset of the variables, and it is the observation actions that result in
evidence. An event is a change in the structure of dependencies between the
variables. The repair and operation actions results in events.

4 Dynamic Bayesian Networks

We will now provide the definitions of BN and DBN used in the paper.

4.1 Definitions of BN and DBN

We use the definition of Bayesian networks given in [Jensen and Nielsen, 2007].
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Definition 1 (Bayesian Network). A Bayesian network (BN) is a triple B =

(X, E ,Θ), where X is a set of variables with a finite set of mutually exclusive

states, and E is a set of directed edges between the nodes. The nodes and the

directed edges form a directed acyclic graph Γ. The set Θ are parameters defining

the conditional probabilities P (Xi|pa(Xi)), where pa(Xi) are the parents of Xi

in G.

The BN B represents the joint probability distribution

P (X) =
∏

Xi∈X

P (Xi|pa(Xi)).

A remark on notation: we use the convention that if a BN is denoted with
a sub- and/or superscript, the sets of variables, edges, and parameters are
equipped with the same sub- and/or superscript. For example, B0 has vari-
ables X0, edges E0, and parameters Θ0.

When considering processes that change over time, as in modeling for trou-
bleshooting, one approach is to use a DBN. There are a few slightly different,
but similar, definitions of DBN, see e.g. [Neapolitan, 2003, Russell and Norvig,
2003, Jensen and Nielsen, 2007]. In the current work we take a general view of
DBN, and define it as follows.

Definition 2 (Dynamic Bayesian Network). A dynamic Bayesian network
(DBN) is a BN where the nodes can be partitioned in sets of nodes X0,X1, . . .

such that for an l:th order DBN, each node Xt
i ∈ Xt only have parents in the

sets Xt−m,m = 0, . . . , l.

In particular, we will only use 1:st order DBN, i.e. with l = 1. This simplifies
notation. Extension of expressions and results to l > 1 is straight-forward. In
the DBN, the nodes Xt and the edges in between them form a Bayesian network
Bt. Using the nomenclature from [Jensen and Nielsen, 2007], the BN Bt is called
a “time slice t”. Time slices are connected via temporal links. An example of a
DBN is shown in Figure 3.

In our definition of DBN, it is possible to have different number of nodes in
each time slice. However, in the current paper we restrict us to only consider
DBN with the same number of variables in each time slice, and let each variable
Xt

i represent the evolution of some quantity in the system that is modeled. On
the other hand, note that the structure of dependencies within and between
two time slices may change. We say that the DBN is non-stationary . They
most commonly used definitions of DBN in literature, including several stan-
dard works as for example [Murphy, 2002, Russell and Norvig, 2003, Neapoli-
tan, 2003], allows non-stationary DBNs. However, in examples, applications,
and algorithms in theses references only stationary DBNs are considered. In a
stationary DBN, time slices and temporal links are equal for all t.
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Figure 3: A DBN with three subgraphs (time slices).

Figure 4: (a) A stationary DBN (b) The initial BN B0 and the transition BN
B→ needed to characterize the DBN in (a).

4.2 Characterizing an nsDBN

As described in for example [Murphy, 2002] and [Neapolitan, 2003] a DBN
modeling a stationary process (i.e. a stationary DBN) is fully described by an
initial BN B0 and a transition BN B→, as shown in Figure 4. The initial BN
describes the system at the initial time, while the transition BN describes the
relations between two time slices and within one time slice. In an nsDBN, on the
other hand, the transition BNs can be different at different times, see Figure 3.
We use B→t to denote the transition BN from time t− 1 to t.
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5 Building Non-stationary DBN Driven by

Events

In this section, we make the characterization of nsDBN, and in particular the
initial BN and the nominal transition BN, more concrete. As described in
Section 3.3 is the troubleshooting process described by troubleshooting actions.
In Section 3.4 it was described how these actions may result in events which
change the dependency relations between parts of the system. We model the
troubleshooting process by using an nsDBN, where the events generates new
time slices. We say that the nsDBNs we consider are driven by the events.
In this way, each time slice models the system between two events. Using the
nomenclature by [Robinson and Hartemink, 2008], we call the time interval
between two events an epoch. We assume that the system is stationary in an
epoch, and thus each epoch is represented by one time slice. During an epoch
variables may be observed.

To make the characterization from the previous section more precise we use
the following three information components:

1) An initial BN, B0, modeling the system at the initial time.

2) A nominal transition BN , B→t
nom

, representing the transition BN under
the empty event, i.e. when there are no external interventions.

3) For each event, e, knowledge about how it differs compared to the nominal
transition BN.

5.1 Initial BN

As for the stationary case, the initial BN, B0, models the system at the initial
time. The initial BN can for example be learned from training data and/or by
expert knowledge about the system.

5.2 Nominal Transition BN

The nominal transition BN, B→t
nom

, is the transition BN from t−1 to t obtained
by the empty event, when there are no interventions with the system. The
nominal transition BN is hypothetical, since in practice there is no need to
generate a new time slice when the event is empty. It is used as reference, and
the effects of all other events are defined as differences compared to the nominal
transition BN.

As superscript t indicates, B→t
nom

may be different depending on the structure
of the previous time slice. Thus, it must be defined in relation to the previ-
ous time slice. To construct the nominal transition BN we use the following
classification of edges and variables (nodes).
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Definition 3 (Instant Edge). An edge within a time slice (i.e. in between nodes

in Xt) is instant if it represent a causality relation that is still present after

the empty event, i.e. the event where there are no external interventions. The

change of value of the parent node has instantaneous influence on the child node.

An edge that is not instant is non-instant.

For example, in the OPG-system, erroneous O will affect the internal vari-
able OC instantly, and the edge between the nodes is instant. A non-instant
edge represents a dependency relation that needs operation of the system to
be visible. An example of a non-instant edge in the OPG-system is the one
between O and Pr , since the system need to be operated for the oil to cause
the pressure to rise.

Definition 4 (Persistent Variable). A variable is persistent if its value at time

t is dependent on its value at time t− 1 under the empty event. A variable that

is not persistent is non-persistent.

For example, component variables are typically persistent, since they are
known to be the same if no action is applied. Observed symptoms, on the other
hand, are typically non-persistent. For example, although a leakage is observed
at time t− 1, there is no guarantee that it will be observed at time t as well.

When constructing a (nominal) transition BN is the outgoing interface an
important set of variables. It consists of the set of variables in Xt−1 that have
children in Xt.

I→t = {Xt−1 ∈ Xt−1 : ∃Xt ∈ Xt, (Xt−1, Xt) ∈ E→t}, (3)

The nominal transition BN B0
→t can now be constructed by performing the

following steps.

(a) Copy the variables Xt−1 (not their values) from time slice t− 1 to time
slice t. Label the new variables Xt.

(b) For all instant edges between nodes in Xt−1, add a corresponding edge in
Xt.

(c) For all persistent variables Xt−1
i , add a temporal edge between Xt−1

i and
Xt

i .

(d) The nodes I→t ∪Xt now constitutes the nominal transition BN B→t
nom

.

5.3 Effects of Events

Repair and operation actions result in events, and when an event occurs a new
epoch begins and a time slice should be added to the nsDBN, i.e. a transition
BN should be constructed. Let B→

e be the transition BN caused by event e.
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We define an event e by the differences between B→
e and the nominal transition

BN B→t
nom

. Thus, an event is defined by the sets of edges added to and removed
from B→t

nom
. To complete the definition we also need the CPDs that are different

from Θ→t
nom

. An event is determined by the following three sets.

• The set Ae = {(X,Y ) /∈ E→t
nom
} of edges to be added to B→t

nom
.

• The set Re = {(X,Y ) ∈ E→t
nom
} of edges the be removed from B→t

nom
.

• The set Θe of parameters (or, similarly, CPDs) that are different from the
parameters Θ→t

nom
.

As described in Section 3.3 repair actions remove dependencies, and thus
the set Ae will typically be empty for repairs. Operation actions on the other
hand, add dependencies, and for operations the set Re will be empty. This will
be further exemplified in Section 7. The set Θe includes CPTs for the variables
to which incoming arcs are removed, or to which incoming arcs are added.
Furthermore, Θe may also include CPTs for variables where the dependency
structure is not changed, but where only the strength of the dependency is
changed by the event. As illustrated in Section 7, this is typically the situation
for operation actions.

Remark 1 (Modeling Dynamics). Above, we have assumed that the system
is static during each epoch, and that it is only events that may change the
system. In some situations this assumption is a restriction. For example, in the
OPG system, if there is a hole in the pipe, we might want to model how the
oil flows through this hole, resulting in a continuously decreasing pressure. In
the event-driven nsDBN framework this can be modeled by instead of using a
static BN in each epoch, using an ordinary stationary DBN.

6 Inference in Event Driven non-stationary DBN

Given the initial BN, the nominal transition BN, and the sets Ae, Re, and
Θe defining the events as described in the previous section, a sequence of trou-
bleshooting actions a1:t will completely determine an nsDBN with t time slices,
or epochs. In this section, we will discuss how inference can be performed in
such an nsDBN.

6.1 A Recursive Inference Algorithm

Given the nsDBN characterized as in Section 5, we search probability distribu-
tions of the type

p(Zt|a1:t), (4)
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epoch t-1

et et+1

ytyt-1 yt+1
epoch t epoch t+1

t t+1t-1

Figure 5: Three epochs with observations in the epochs. Evidence yt is added
in the epochs, and events start new epochs.

where Zt ⊆ Xt, and a1:t are all actions performed up to and including time t.
Repair and operating actions are performed at certain times, 1, . . . , t, and, as
described in Section 3 they give rise to events. An event starts a new epoch,
i.e. generates a new time slice. Let et be the event that starts epoch t, and thus
generates time slice t, see Figure 5. With this convention time slice t describes
the system between times t and t+1. The collection of all events from time 1 to
time t are denoted e1:t = (e1, . . . et). Observation actions are performed in the
time interval between two events, i.e. in the epochs. An observation action in
epoch t, i.e. in the time interval between t and 1 + 1, adds evidence to a subset
Yt ⊆ Xt of variables. This means that event et occurs before evidence yt is
collected.

Separating the actions in evidence and events we can rewrite (4) as

p(Zt|y1:t, e1:t), (5)

where y1:t = (y1, . . . ,yt). This distribution can be obtained from p(Xt|y1:t, e1:t)

by marginalization over the variables Z̄t = Xt \ Zt that are in Xt but not in
Zt. Therefore, without loss of generality, we assume that Zt = Xt to simplify
notation.

We now separate the most recent evidence and event, and apply Bayes’ rule
to obtain

p(Xt|y1:t, e1:t) =

= αp(yt|Xt,y1:t−1, e1:t)p(Xt|y1:t−1, e1:t) = notag (6)

= αp(yt|Xt, et)p(X
t|y1:t−1, e1:t), (7)

where α is a normalization constant and we, in the second equality in (7), have
noted that yt is conditionally independent from y1:t−1 and e1:t−1 given Xt.
Since B→t is determined using the methods from Section 5 we have

p(yt|Xt, et) = p(yt|Xt, B→t).

To compute the second distribution of (7), marginalize over the variables in the
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past time slice:

p(Xt|y1:t−1, e1:t) =
∑

xt−1

p(Xt|xt−1,y1:t−1, et, e1:t−1)p(xt−1|y1:t−1, et, e1:t−1).

(8)

In the first probability in this sum use that the variables xt−1 d-separates Xt

from all variables before t − 1, and thus et is enough to define the relations
between Xt−1 and Xt,

p(Xt|xt−1,y1:t−1, et, e1:t−1) = p(Xt|xt−1, et). (9)

In the second probability in the sum in (8), we note that et defines the relations
to the children in time slice t. These children are barren nodes [Jensen and
Nielsen, 2007], i.e. they will never be assigned any values in the distribution we
are to compute, and therefore they will never effect it. This gives

p(xt−1|y1:t−1, et, e1:t−1) = p(xt−1|y1:t−1, e1:t−1). (10)

By using (8), (9), and (10) we can write (7) as

p(Xt|y1:t, e1:t) = αp(yt|Xt, et)
∑

xt−1

p(Xt|xt−1, et)p(xt−1|y1:t−1, e1:t−1).

Furthermore,

p(yt|Xt, et) = p(yt|Xt, B→t),

p(Xt|xt−1, et) = p(Xt|xt−1, B→t),

and the inference problem reduces to computing p(Xt|y1:t, e1:t) from the dis-
tribution p(Xt−1|y1:t−1, e1:t−1). We also note that it is sufficient to have only
one active transition BN at a time.

6.2 Frontier and Interface Algorithms

The algorithm derived above is based on the fact that Xt d-separates the vari-
ables before time slice t from the variables after t. Instead of using Xt as sepa-
rator, a set Ft, called the frontier , can be used, see [Murphy, 2002]. In [Murphy,
2002] Murphy shows that using the frontier reduces the dimension of the prob-
ability computations needed. He also presents two simple rules that guarantee
that the frontier evolve forward.

Another approach is to use the outgoing interface I→t, defined by (3), as
the d-separating set, see [Murphy, 2002]. One main advantage with using the
outgoing interface as the d-separating set in stationary DBN is that it facilitates
efficient construction of a junction tree that can be reused for all time slices.
Unfortunately, in the non-stationary case this advantage is lost.
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7 Application to Troubleshooting

We demonstrate the use of event driven nsDBN in troubleshooting by applying
the method to the OPG system introduced in Section 3. There are two phases:
the preparation phase, where the nsDBN is defined using the methods from
Section 5; and the inference phase, where the troubleshooting is performed.

7.1 Preparation: Building nsDBN for Troubleshooting

In the preparation phase the model of the system and the troubleshooting pro-
cess is build. This is, like most modeling tasks, an artwork and requires knowl-
edge about the system. As an alternative (or complement) to system knowledge,
training data can be used to learn the models. However, for event driven nsDBN
a lot of data is needed since there are several BNs to learn. Furthermore, in
the troubleshooting application, the troubleshooting should function when the
system is newly released at the market - before any training has been collected.

In this section we illustrate how modeling may be done, and structure the
modeling task. The preparation phase consists of three steps:

1) Building the initial BN B0.

2) Building the nominal transition BN B→t
nom

.

3) Defining the events.

1) Initial BN. The troubleshooting process begins with the system’s arrival
at the workshop. At this stage, the system is described by the initial BN B0.
Most often we will assume that the system has been operating during a suffi-
ciently long time for all (non-instant) dependencies to fully establish. In terms
of the operation action this means that before troubleshooting operate(τ0), were
τ0 > T for a sufficiently large constant T , has been applied. The initial BN B0

for th OPG system is shown in Figure 2. The parameters Θ0 are assumed to
be known. They can for example be given by experts or learned from data.

2) Nominal Transition BN. The nominal transition BN model the system
under the empty event, i.e. when the system is at rest at the workshop. To build
the nominal transition BN of the OPG system, we begin with two copies of the
nodes, arranged in two time slices. Now, edges within the a time slice should be
classified as instant or not, and variables as persistent or not. All non-instant
edges should be removed in the second time slice.

When the system is at rest at the workshop, there will be no oil flow so
the oil can not cause a pressure build-up, meaning that the (O ,Pr) edge is
non-instant. Also, the (Pr ,G) edge is non-instant, since we have assumed that
components can not brake during rest at the workshop. All other edges within
the second time slice are instant, and remain the same in the second time slice
as in the first. The classification of all the edges, including short motivations,
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Table 1: Classification of the edges in the OPG system.
Edge Number Type Motivation

(O ,OC ) 9,13 instant
The oil color changes immedi-
ately when the oil is replaced.

(O ,Pr) 8 non-instant
The pressure can only be built-
up during operation.

(OC ,OOC ) 16 instant The oil color is immediately ob-
servable.

(Pr ,G) 10 non-instant
Operation is needed for compo-
nents to change status.

(Pr ,L) 14 instant
There may be pressure in the
pipe also at rest.

(G ,L) 6,15 instant
There is oil in the pipe, both at
rest and during operation.

(Pi ,L) 5,11 instant
There is oil in the pipe, both at
rest and during operation.

(L,OL) 12 instant A leakage is immediately visi-
ble.

is given in Table 1. The numbers in the edge column refers to the numbers in
Figure 6.

To determine the temporal links between the two time slices, the variables
should be classified as persistent or not. For all persistent variables there should
be a temporal link between its copies in the two time slices.

Components will not change spontaneously, and thus they are persistent.
The pressure may is not necessarily the same as in the previous time slice, but
it is dependent on the its previous value. In particular, the pressure can not
increase when the system is at rest at the workshop. Thus the variable Pr is
persistent. The variable OC is also persistent. If the oil has a certain color,
it will have the same color until changed. However, if two mechanics observe
the oil at different times, they do not necessarily do the same observation of
the color. This is modeled by making the variable OOC non-persistent. The
variables L and OL are also non-persistent. In particular, for the variable L it
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Table 2: Classification of the variables in the OPG system.
variable type motivation

O persistent Components do not change spontaneously.

G persistent – ” –

Pi persistent – ” –

OC persistent The oil do not change color spontaneously.

Pr persistent At rest, the pressure is dependent on its previ-
ous value.

L non-persistent
Although there is a hole, it is not necessarily a
leakage.

OOC non-persistent Observed symptoms are independent.

OL non-persistent – ” –

is the case that although there may be a hole in the pipe or a broken gasket,
there will not necessarily be a leakage through it all the time. A summary of the
classification of the variables is presented in 2. The classifications of edges and
variables in Tables 1 and 2 give the nominal transition BN shown in Figure 6.

3) Defining Events. The next step in the preparation phase is to define the
events e by determining the sets Ae, Be, and Θe. For the OPG system, the sets
are listed in Table 3. The numbers in the two middle columns refers to Figure 6.
After operation, non-instant dependencies between components are recovered,
and edges are inserted. As a rule-of-thumb, the edges and dependencies in the
initial BN are recovered after operation. However, this is not always the case,
since the strength of the dependencies may depend on the operation time τ . In
Table 3 we use a subscript τ on the distributions Θe corresponding to the event
operate(τ), to highlight that they are dependent on the operation time.

For the repair actions, Θe consists of the CPDs related to the removed
edges only. For the operation action, Θe consists of both the CPDs related to
the added edges, but there are also new CPDs for the components although the
edges are the same. The reason is that at rest at the workshop, the components
can not suddenly fail (nor suddenly become fault free). For C ∈ {O ,G ,Pi}, we
use the following CPT in the nominal transition BN:

p(Ct|Ct−1) Ct = NF Ct = F

Ct−1 = NF 1 0
Ct−1 = F 0 1
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Figure 6: The nominal transition BN for the OPG example.

During operation, the components may fail, and we apply the CPT:

p(Ct|Ct−1) Ct = NF Ct = F

Ct−1 = NF 1 0.01
Ct−1 = F 0 0.99

In Table 3 we see that repair actions remove edges, while the operating
action add edges. Repeated use of repair events will make the parts of the
system less dependent and isolate components from each other. Operation of
the system recover non-instant edges (dependencies), and makes it possible to
use these dependencies to verify the states of the components. For example, if
the gasket is replaced in the OPG system, it is necessary to operate the system
after the repair to be able to verify the result of the repair. There are also more
intricate situations where non-instant edges may be useful in troubleshooting,
see the following example.

Example 7.8 (Indirect Reasoning).

A system has three components, C1, C2, and C3, where the two first component
are complex and expensive, while the third is cheap and easily replaced. As-
sume that faults in C1 and C2 gives the same symptoms (and observations),
but C1 may cause C3 to fail during operation, while C2 never do. Since
p(C3 = NF |repair(C3)) ≈ 1, we can distinguish between faults in C1 and C2 by
replacing C3, operate the system, and then investigate the status of C3.
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Table 3: List of events in the OPG system.
Event Ae Re Θe Motivation

repair(O) - 2,5 p(O)
The new oil has new oil
color.

repair(G) - 3,4 p(G)

The pressure is reset
when the gasket is re-
placed.

repair(Pi) - 1,4 p(Pi)

The pressure is reset
when the pipe is re-
placed.

operate(τ)
(O ,Pr)

(Pr ,G)
-

pτ (O
t|O t−1)

pτ (Pi
t|Pi t−1)

pτ (G
t|Pr t,Gt−1)

pτ (Pr
t|O t)

Non-instant edges are
recovered.

7.2 Inference: Computing Probabilities

To illustrate inference in event driven nsDBN, we compute the marginal prob-
abilities for faults in the three components in the OPG system during a trou-
bleshooting sequence. We have implemented the event driven nsDBN for the
OPG system in Matlab, using BNT Toolbox by [Murphy, 2001]. The program
takes a sequence of actions as input. It returns the probabilities for the three
faults at given times. We use the following sequence of observations and repairs:

(o1) observe(OL = Present)

(r1) repair(Pi)

(o2) observe(OL = Present)

(r2) repair(G)

(op) operate(τ)

(o3) observe(OL = NotPresent)

This sequence gives four time slices in the nsDBN, shown in Figure 7. In the
figure are observed nodes marked with dotted frames. The probabilities for
faults during the troubleshooting process are given in Table 4.
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The sequence describe the following scenario. Consider a truck is driving on
the road. The driver experiences troubles with the braking system, and decides
to drive to the workshop. At the workshop, a computer aided troubleshooting
system, that computes probabilities of faults, is connected to the truck. When
the truck arrives to the workshop, the system is described by the initial BN, and
is in epoch 0. A leakage is observed. This add evidence to OL0. Given this first
observation, the probabilities for faults are computed. The probability of fault is
largest for the pipe, see Table 4. Thus, the workshop mechanic decides to repair
the pipe, starting epoch 1 in Figure 7. As listed in Table 3, the edges (Pi t−1,Pi t)

and (Pr t−1,Pr t) are removed. After the repair, the leakage is observed to be
still present, and the gasket is now the most probable component to be faulty.
The mechanic replaces the gasket, which begins epoch 2, and then operates
the system. After operation the structure within epoch 3 returns to the initial
structure. In Table 4, we see that during operation the probabilities for faults
increase, but after the final observation, that the leakage is no longer present,
the probabilities decrease again.

In Table 4 we see that the probability for O is almost the same during the
whole troubleshooting. The reason is that at the workshop, the dependency
relations between O and OL are very weak, and only goes through the first
epoch. Furthermore, it can be seen how repair actions remove dependencies,
while the operation action adds dependencies.

In this small troubleshooting example, we have seen how probabilities a
troubleshooting process can be modeled using only the nominal transition BN,
the initial BN, and the three sets defining the events. With this information, any
sequence of actions can easily be applied and probabilities computed. We have
computed probabilities for faults, but probabilities for observations and internal
variables can equally easily be computed. The method can be applied to any
kind of system, and no assumptions on single faults, no special dependency
structure assumptions, nor any function verification node is needed.
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Figure 7: An nsDBN for the three actions repair(Pi), repair(G), and operate(τ).
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Table 4: Probabilities for faults after observations, enumerated as above.
After observation p(O = G|a1:i) p(G = G|a1:i) p(Pi = G|a1:i)

(o1) 0.1523 0.3499 0.5357
(r1) 0.1523 0.3499 0.01
(o2) 0.185 0.8082 0.0238
(r2) 0.185 0.01 0.0238
(op) 0.1858 0.0637 0.0248
(o3) 0.1794 0.0262 0.0102

8 Conclusions

We have considered modeling of troubleshooting processes, and in particular
how to handle external interventions that changes the dependencies between
components in the system under troubleshooting. To model such processes,
we have proposed a new type of Bayesian networks, called event driven non-
stationary dynamic Bayesian networks (nsDBN). An nsDBN is a DBN where
the dependency structure between variables in a time slice changes over time.
The structure changes are caused by events, resulting from external intervention
with the system through actions. We have shown how an event driven nsDBN
can be fully characterized by an initial BN, a nominal transition BN, and the
set of possible events. Each event is compactly defined by three sets.

Throughout the paper we have motivated, and exemplified the event driven
nsDBN on the task of modeling for troubleshooting technical systems. In trou-
bleshooting, the system is subject to observations, and repair and operation
actions. While observation actions generate evidence, repair and operation ac-
tions generate events.

In the paper we have shown how to characterize the nsDBN compactly, and
how this characterization can be used to perform inference during any sequence
of troubleshooting actions. Building nsDBNs, as modeling in general, is an
artwork, but we have provided a structured way of doing this. We have also
illustrated the use of nsDBNs on a small troubleshooting example, where the
steps of both modeling and inference are shown in detail.

With this paper, we have taken a first step towards using event driven ns-
DBN, and in particular towards applying them to troubleshooting. Using ns-
DBNs is efficient, and facilitates modeling of complex structures and processes.
Since the method is new, there are several interesting questions to investigate.
For example, how inference should be made most efficiently, or how dynam-
ics within an epoch can be modeled using stationary DBN. We will turn to
these questions in our future work. The main driving force for developing the
event driven nsDBN presented here is its application to decision theoretic trou-
bleshooting, and by now we are satisfied with noting that with event driven
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nsDBN, we can avoid assumptions, present in previous literature, on single
faults, special structures of dependencies, or the use of function control nodes.
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Abstract

We consider computer assisted troubleshooting of automotive vehicles,
where the objective is to repair the vehicle at as low expected cost
as possible. The work has three main contributions: a troubleshoot-
ing method that applies to troubleshooting in real environments, the
discussion on practical issues in modeling for troubleshooting, and the
efficient probability computations. The work is based on a case study
of an auxiliary braking system of a modern truck. We apply a decision
theoretic approach, consisting of a planner and a diagnoser. Two main
challenges in troubleshooting automotive vehicles are the need for dis-
assembling the vehicle during troubleshooting to access parts to repair,
and the difficulty to verify that the vehicle is fault free. These facts lead
to that probabilities for faults and for future observations must be com-
puted for a system that has been subject to external interventions that
cause changes the dependency structure. The probability computations
are further complicated due to the mixture of instantaneous and non-
instantaneous dependencies. To compute the probabilities, we develop
a method based on an algorithm, updateBN , that updates a static BN
to account for the external interventions.

1This report is also available from Department of Electrical Engineering, Linköping Uni-
versity, S-58183 Linköping. LiTH-ISY-R-2921. It is partly based on [Pernestål et al., 2009]
and [Warnquist et al., 2009].



152 Paper 4. Modeling and Efficient Inference...

1 Introduction

To meet increasing requirements on functionality, safety, and environmental per-
formance, modern automotive vehicles become more and more complex prod-
ucts integrating electronics, mechanics and software. Due to their intricate
architecture and functionality they are often difficult for a workshop mechanic
to troubleshoot. In addition, shortened repair times and increased uptime are
required. To shorten repair times for the increasingly complex automotive sys-
tems, one approach is to provide a computer aided troubleshooting system to
the workshop mechanic. The troubleshooting system should to suggest a se-
quence of actions, including for example repairs and observations, that leads to
a fault free vehicle at lowest expected cost.

One of the main driving factors in the current work is to design a trou-
bleshooting system that is applicable to real automotive vehicles. The work is
inspired by an application study of an auxiliary heavy truck breaking system,
called the retarder. The retarder is a mechatronic system consisting of elec-
tric, mechanic, and hydraulic parts. In the work we discuss practical issues for
modeling for troubleshooting, exemplified by modeling of the retarder.

In the literature, one approach to troubleshooting that has proven to be effi-
cient the decision theoretic, see for example [Sun and Weld, 1993], [Heckerman
et al., 1995], [Langseth and Jensen, 2002], and [Olive et al., 2003]. However, ap-
plication studies in these previous works mainly consists of electronic systems,
such as printers and electronic control units. In comparison with these elec-
tronic applications, the automotive mechatronic system considered here imply
that the solution to the troubleshooting problem needs to take two important
additional issues into account.

First, in automotive mechatronic systems it is often not as straightforward
to determine whether a certain repair has made the system fault free as in the
previous works. In the previous works, it is assumed that after each repair it is
verified whether the system is fault free or not. Such a verification is typically
expensive in automotive mechatronic systems, and therefore we do not presume
it. The consequence is that we need to compute probabilities in a system subject
to external interventions, i.e. after affecting the system with the repairs. Second,
not all parts of the retarder can be reached without first disassembling other
parts of the system. This means that the level of disassembly, and the extra
time required for disassembly and assembly activities, needs to be considered
in the solution.

During troubleshooting the aim is to guide the mechanic by suggesting the
next repair or observation such that the expected repair cost is minimized. For
small systems, the problem could be solved using influence diagrams [Jensen
and Nielsen, 2007, Russell and Norvig, 2003]. For larger systems, such as trou-
bleshooting of the retarder, influence diagrams becomes unfeasibly large and
complex. Instead, we formulate the troubleshooting problem as a probabilistic
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conditional planning problem.

The troubleshooter designed in this paper consists of a diagnoser and an
action planner. The planner finds a conditional plan of actions by solving a
general state space search problem, where a state describes the current knowl-
edge, i.e. the current belief state, of the system. To achieve this plan, the
planner has to consider the costs of actions and the effects they may have on
the system and the of the system. The costs of actions are dependent on the
level of disassembly, and each action may change this level. The planner asks
the diagnoser for the effect that an action may have on the belief state and for
the likelihoods of future action results. We use the heuristic search algorithm
AO* [Nilsson, 1980] to find an optimal plan, i.e. a plan with minimal expected
cost that makes the vehicle fault free. The output from the planner to the
mechanic is the first action of this plan. If the mechanic is busy waiting for a
response, the search time contributes to the total repair cost. Therefore, the
planner can be halted anytime returning a possibly suboptimal choice of action.

The diagnoser supports the planner with computation of probabilities of
faults and of future observations. The main challenge in the probability com-
putations are the external interventions, caused by the troubleshooting activi-
ties. These interventions change the structure of dependencies during the trou-
bleshooting. The probability computations are further complicated by the two
different kinds of dependencies, instant and non-instant, caused by the nature of
the troubleshooting problem. In previous works on troubleshooting, computing
probabilities after external interventions with the system is often avoided, for
example by assuming a function-verifying observation after each repair, see for
example [Langseth and Jensen, 2002]. In [Breese and Heckerman, 1996] inter-
ventions are handled using so called persistence nodes, where mapping nodes
are used to track dependency changes. However, the dependency changes stud-
ied in the current paper are of a different source, and the persistence nodes are
not applicable. Another approach is to utilize event-driven non-stationary dy-
namic Bayesian networks (event-driven nsDBN), see for example and [Pernestål
and Nyberg, 2009]. In the event-driven nsDBN, new time slices are added to a
dynamic Bayesian network (DBN) by events, caused by external interventions.
By allowing different structures in different time slices the nsDBNs provides
a general description of the troubleshooting process, but this generality com-
plicates inference. In the current work, one step further is taken, and a new
method for inference for troubleshooting is developed. We note that the proba-
bility computations in troubleshooting is of a special kind, and show how these
probabilities can be computed by replacing the nsDBN with a static Bayesian
network (BN) that is updated as troubleshooting progress.

To summarize, there are three main contributions in the current work: the
complete troubleshooting strategy, the detailed investigation of practical issues
when modeling and building troubleshooting systems for automotive vehicles,



154 Paper 4. Modeling and Efficient Inference...

and the new algorithm for efficient computation of the probabilities needed for
troubleshooting.

We begin by introducing notation and preliminaries in Section 2, before pre-
senting the retarder and troubleshooting scenario in Section 3. We describe the
planner in Section 4, and in Section 5 we discuss modeling for troubleshooting.
In particular we highlight practical issues when modeling real systems. The
diagnoser is discussed in Section 6, and the BN updating algorithm used in
the diagnoser is presented and proved in Section 7. Finally, we apply the trou-
bleshooting system to the retarder in Section 8, before concluding and providing
an outlook in Section 9.

2 Preliminaries

Before going into the troubleshooting details, we present the notation used,
and give a brief introduction to Bayesian networks (BN) and dynamic Bayesian
networks (DBN).

2.1 Notation

All variables considered in this work are discrete. We use capital letters for
variables and lower case letters for their values, X = x. We use p(X = x) or
p(x) to denote the probability that X = x, while p(X) denotes the probability
distribution of X. Bold face letters denote vectors. Subscripts are used to
denote variable indicies, and superscripts to denote time. For example, xt

i is
the value of the variable Xt

i , with number i at time t.

2.2 Bayesian Networks

A Bayesian network (BN) is a directed acyclic graph representing a factorization
of the joint probability distribution over a set {X1, . . . , Xn} of variables. In the
BN, denoted B, nodes represent variables2 and edges between them represent
dependency relations. We let paB(X), chB(X) , and deB(X) denote the sets
of parents, children, and descendants of variable X in the BN B. Moreover,
we use paB(x) to denote an assignment of values to paB(X), and similarly for
chB(x) and deB(x). Whenever the BN B is clear from the context, we omit
superscript B.

To each variable Xi in B, there is a conditional probability distribution
(CPD) associated, defining the probability distribution p(Xi|paB(Xi)), and B

2we will use the terms “nodes” and “variables” interchangeable
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represent the factorization

p(X1, . . . , Xn) =

n∏

i=1

p(Xi|pa(Xi)). (1)

We use the term evidence to denote assignments of values to variables in the
BN. The BNs considered in this work are causal BNs, meaning that the direction
of the edges represent causal effects. More detailed descriptions on BNs can for
example be found in [Jensen and Nielsen, 2007, Russell and Norvig, 2003].

To model dynamic systems and processes, a dynamic Bayesian network
(DBN) can be used. The DBN consists of time slices, where each time slice
models the system at during certain time interval. Dependencies over time are
represented by edges between the time slices, sometimes called temporal edges.
For references on DBN, see for example [Jensen and Nielsen, 2007, Russell and
Norvig, 2003, Murphy, 2002].

In a BN, two distinct set of nodes A and B are said to be d-separated [Jensen
and Nielsen, 2007] given a third distinct set of nodes U if every path Π between
nodes in A and B satisfies at least one of the following tree conditions: (a) Π

contains a serial connection → U → and U ∈ U , (b) Π contains a diverging
connection ← U → and U ∈ U , or (c) Π contains a converging connection,
→ W ←, such that neither W nor any descendant of W is in U . That A and
B are d-separated by U means that no information can flow from A to B when
all nodes in U are assigned evidence. In probability computations, this means
that A and B are conditionally independent given U .

3 The Troubleshooting Scenario and System

In this section we present the troubleshooting scenario, and give an overview
of the troubleshooting system, but we first present our motivating application:
the retarder.

3.1 Motivating Application - the Retarder

The retarder is an auxiliary hydraulic braking system that allows braking of
the truck without applying the conventional brakes. It consists of a mechanical
system and a hydraulic system, and is controlled by an electronic control unit
(ECU), see Figure 1. The retarder generates breaking torque by letting oil
flow through a rotor driven by the propeller axle causing friction. The kinetic
energy is thereby converted into thermal energy in the oil that is cooled off by
the cooling system of the truck. At full effect and high rpm, the retarder can
generate as much torque as the engine. We have chosen to study the retarder
since it is a representative system of heavy duty trucks, and since it is difficult
to troubleshoot due to its complexity.
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Figure 1: A heavy truck gearbox with an integrated retarder. The retarder is
visible on the bottom right of the gearbox.

3.2 The Troubleshooting Scenario

Imagine a heavy truck, driving along the highway to deliver products to com-
pany. Suddenly, the driver experiences problems with the braking performance,
and decides to take the vehicle to the workshop. At arrival to the workshop,
the driver explains the problem to the mechanic, who plugs in his computer
and reads out further information from the truck. From this information it is
decided that the truck needs to be repaired immediately to avoid serious trou-
ble. The driver must fulfill his transportation assignment, so the repair must
be made as fast and time efficient as possible, and therefore the mechanic uses
the computer aided troubleshooting system.

The troubleshooting system is connected to the truck, and suggests actions
for the mechanic to perform. The mechanic reports the results to the trou-
bleshooting system, and waits for new actions to be computed. This goes on
until the troubleshooting system has declared that the truck can leave the work-
shop.

3.3 The Troubleshooting System

A troubleshooting action is a variable defined by its cost and its effect. The
cost of an action is typically related to the time it takes to perform it and the
resources consumed such as spare parts. Also, the cost depends on whether
certain parts of the vehicle are assembled or not. The level of assembly is
described by the assembly state. For example to replace the oil pressure sensor,
the retarder oil needs to be drained and the oil cooler needs to be removed. The
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Figure 2: Overview of the troubleshooting system.

effect of an action can be to observe a value, perform a repair, test the operation
of the truck, or to change the assembly state. When an action is performed we
get an action result . An action result is a confirmed effect, i.e. the action and
the outcome.

In Figure 2 an overview of the troubleshooting system used in this work is
shown. The troubleshooting system communicates with the mechanic through
action requests and the mechanic returns action results. There is no requirement
that the result matches the request; the mechanic is free to perform activities on
his own choice and report to the troubleshooting system. However, we presume
that the mechanic is honest and only reports action results that actually have
occurred.

As depicted in Figure 2, the troubleshooting system consists of two modules,
a planner and a diagnoser , that communicate through the probabilities. This
architecture divides the troubleshooting system into two parts with different
tasks, and that can be developed independently.

To determine the next action the planner creates a conditional plan of actions
called a troubleshooting strategy . This is done by searching the belief state space,
i.e. the probability distribution

bt = p(Ct|a1:t),

over component states Ct, given the action results, a1:t = 〈a1, . . . , at〉, reach-
able from the current belief state. As shown in Figure 2, the planner utilizes
the diagnoser in two ways: to compute the belief state bt from the previous
belief state bt−1 and the sequence a1:t of action results, and to determine the
probability p(at+1|ct,a1:t) of future actions. In the diagnoser, the probability
computations are divided into two subproblems:

• Model updating: for maintaining a model of the current system, taking
external interventions into account.
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Figure 3: A Bayesian network modelling the retarder.

• Probability computation: for belief state updating and prediction of the
outcomes of future actions.

Troubleshooting is terminated when the probability that the vehicle is fault-
free is above a predefined threshold. Such a state is called a goal state for the
planner.

3.4 Variables

We use a BN to model the system under troubleshooting in the diagnoser. The
BN for the retarder is shown in Figure 3. As seen in the figure, there are three
types of nodes: components, observable symptoms, and internal states. In this
section we describe their characteristics.

Components

We use the term component both for the physical components and for the
variables describing the status of the component. Components are denoted Ci,
i = 1, . . . , N . An assignment Ct = ct to all component variables is called a
diagnosis. Each component Ci has the possible value “No Fault” (NF ). In
addition it has at least one fault state. To simplify the presentation we only
consider one fault state, “Faulty” (F ), for each component in the retarder.

There are two probability distributions related to the components. The
first is the probability of a component being faulty given the operation history
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H, p(Ci|H). The history consists of information about how the vehicle has
been used. For example, if the vehicle has been operated at extremely high
load, its components are more likely to break. To avoid clutter in notation,
we simply assume that p(Ci|H) = p(Ci) in the current work. The second
probability distribution for the components is the probability distribution of
successful repair,

p(Ci|repair(Ci)). (2)

We assume that, during troubleshooting, components can not change state spon-
taneously, i.e. if a component is faulty, it must be repaired in order to become
fault free. The operation time during test drives is assumed to be short enough
for no new faults to appear.

Observable Symptoms

Observable symptoms are represented by variables Oj , j = 1, . . . ,M , and rep-
resent observations that can be made, for example Air leakage at Proportional

valve and Engine warning lamp. Observable symptoms are typically driver’s
observations, observations made in the workshop, Diagnostic Trouble Codes
(DTC) generated in the ECU during driving, or direct observations of compo-
nents. A direct observation is obtained by inspection of a component whether
it is faulty or not.

When an observation action is confirmed, evidence is added to the corre-
sponding observable symptom variable.

Internal States

In addition to the components and the observable symptoms, we use a set of
hidden variables to represent internal states of the retarder. The internal states
are represented by variables Xk, k = 1, . . . , L. For example, in the retarder,
there is an internal state representing the Uncontrollable Braking Moment. This
internal state can be observed by both the mechanic and the driver. In this way
we can model the fact that the result of observing the braking moment level
may give different results for example due to the skill of the observer.

Troubleshooting BN

The three different types of variables presented above can be combined to a BN.
In this work, we consider troubleshooting BNs defined as follows.

Definition 1 (Troubleshooting BN). A Troubleshooting BN consists of compo-

nent variables, observable symptoms, and internal states, connected by directed

edges such that the following rules hold:
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Figure 4: An example of a troubleshooting strategy described as a rooted tree.

• Components can be parents to all kind of variables, but can only be children

of other component variables.

• Observable symptoms can be parents only to other observable symptoms,

but can be children of all types of variables.

• Internal states can be parents to observable symptoms only, and children

to components only.

4 Planner

As described in the previous section, the task of the planner is to generate the
next action request At+1. This is done by evaluating different troubleshooting
strategies and choosing the first action of the strategy with smallest expected
cost. A troubleshooting strategy is a conditional plan which means that, de-
pending on the results of previous actions, the following actions to take may
be different. A troubleshooting strategy π is defined as a tree where each node
is represented by an action A and each outgoing edge from a node represent
an action result a of the corresponding action, see Figure 4. Branching occurs
when an action has multiple possible results. The troubleshooting strategy is
associated to a state st describing the vehicle at the time t when the strategy
begins. This state consists of the assembly state dt, the belief state bt, and
the history of action results a1:t. A troubleshooting strategy π(st) is said to be
complete if the execution of every action on the path from the root node to any
leaf node leads to a goal state, i.e. a fault free vehicle.

4.1 Optimal Expected Cost of Repair

To evaluate complete troubleshooting strategies, the expected cost of repair
(ECR) is computed. The expected cost of repair is the expected cost of reaching
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any leaf node of the troubleshooting strategy. If the first action At+1 of a
troubleshooting strategy π(st) is performed, there will be a certain action result
at+1 with the probability

p(at+1|a1:t) =
∑

ct

p(at+1|ct,a1:t) p(ct|a1:t)
︸ ︷︷ ︸

bt

, (3)

where we have marginalized over the component states ct at time t. The first
probability in the sum above is computed by the diagnoser, and the second
is recognized as the previous belief state. Let the resulting state after action
at+1 be st+1

a , and let the cost of performing At be cost(dt, At). Furthermore,
let π′(st+1

a ) ⊂ π(st) be the troubleshooting strategy rooted in the node that
is connected to by the edge corresponding to the action result a. Then, the
expected cost of repair ECR(π(st)) is

ECR(π(st)) =

=







cost(dt, A) if st is goal state,

cost(dt, A) +
∑

at+1

p(at+1|a1:t)ECR(π′(st+1
a )) otherwise.

For a given initial state st, the optimal troubleshooting strategy π∗(st) is

π∗(st) = argmin
π∈Π(st)

ECR(π(st))

where Π(st) is the set of all possible complete troubleshooting strategies starting
in st. The optimal expected cost of repair ECR∗(st) is the expected cost of repair
of π∗(st). Let ΠAt+1(st) be the subset of Π(st) where At+1 is the first action.
Then

ECR∗(st) = min
π∈Π(st)

ECR(π(st))

= min
At+1

min
π∈ΠA(st)

ECR(π(st))

= min
At+1







cost(dt, A) if st is goal state,

cost(dt, A) +
∑

at+1

p(at+1|a1:t) min
π′∈Π(st+1

a )
ECR(π′(st+1

a )) otherwise.

= min
At+1







cost(dt, A) if st is goal state,

cost(dt, A) +
∑

at+1

p(at+1|a1:t)ECR∗(st+1
a ) otherwise. (4)

4.2 Search Graph

To obtain the optimal troubleshooting strategy and the next action request, the
minimization (4) must be solved. Figure 5 illustrates how the problem is de-
composed in the form of a tree. Solving the minimization in (4) corresponds to
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choosing to follow a single outgoing branch from the boxes in Figure 5. To com-
pute the summation, every outgoing branch from the circles must be evaluated.
This kind of decomposition corresponds to an AND/OR graph. In accordance
with [Nilsson, 1980], the AND/OR graph can be defined as a hypergraph with
nodes that are states interconnected by hyperedges. A hyperedge connects one
state with one or many other successor states. In the AND/OR graph for (4),
each non-goal state has one outgoing hyperedge for each action that connects to
one other state for each action result of that action. A solution to an AND/OR
graph is a subgraph of that graph that contains the start state and, for every
non-goal state in the solution graph, exactly one hyperedge and all of its succes-
sor states. Every solution corresponds to a complete troubleshooting strategy
and the optimal solution is the one that solves (4).

Figure 5: The problem decomposition of the calculation of (4).

Search Algorithm

There are many efficient algorithms to find optimal solutions in AND/OR
graphs and the one used in this work is AO* [Nilsson, 1980], [Martelli and
Montanari, 1978]. AO* is a heuristic search algorithm that finds the optimal
solution to an implicit AND/OR graph Γ specified by a start state and a succes-

sor function. The successor function generates the successors st+1
a of a state st

for every action result at+1 as well as the probability of reaching each successor.
The algorithm is initialized with an explicit AND/OR graph Γ′ that consists of
only the start state. It uses the successor function to expand Γ′ with the succes-
sors of one of the leaf states in the optimal solution of Γ′. After each expansion
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of Γ′, the optimal solution is updated, i.e. the newly expanded state and all
of its ancestors are evaluated using a cost function f . For the troubleshooting
problem this is

f(st) = min
At+1







cost(dt, A) if st is goal state in Γ,

h(st) if st is leaf state in Γ′,

cost(dt, A) +
∑

at+1

p(at+1|a1:t)f(st+1
a ) otherwise,

where h(st) is a heuristic cost function that estimates the optimal expected cost
of repair such that

h(st) ≤ ECR∗(st) for any state st. (5)

The algorithm keeps expanding Γ′ until all leaf states in the optimal solution
to Γ′ are goal states. If (5) holds, then the optimal solution to Γ′ is also the
optimal solution to Γ.

The heuristic that is used in the implementation is derived from a relaxation
of the problem, where we assume that we can observe all components for free.
Then for all possible diagnoses ct, we have to compute the cost of repairing the
faulty components in ct

h(st) =
∑

ct

p(ct|a1:t)
∑

Ct
i=F

cost(dt, repair(Ci)). (6)

where the probability p(ct|a1:t) can be taken directly from the belief state bt.
Finding the optimal solution to conditional planning problems is highly ex-

ponential [Rintanen, 2004]. This means that the time AO* requires to complete
can be very long. If the mechanic is waiting for a response, the computation
time contributes to the cost. Therefore, the search can be aborted prematurely
and the first action of the optimal solution to the current explicit graph Γ′

is returned. This solution does not correspond to a complete troubleshooting
strategy and the decision is therefore not necessarily optimal. However, for ev-
ery additional computational time allowed, the quality of the solution converges
monotonically toward the optimal.

5 Modeling for Troubleshooting

In this section we discuss modeling for troubleshooting. In particular, we discuss
practical issues in modeling for troubleshooting, and we give an introduction to
how event-driven non-stationary nsDBNs, deveolped in [Pernestål and Nyberg,
2009], can be used to handle external interventions during the troubleshooting
process.
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5.1 Practical Issues when Building BN for Troubleshoot-

ing

Building BNs for troubleshooting, as modeling in general, is an artwork that
requires knowledge about the system to model and/or a lot of training data to
learn the model from. Since troubleshooting support is most important when
products are new, before experience is collected at the workshops, it is typically
the case that the troubleshooting system, including the BN, should be available
at the market at the same time as the vehicle is released. At this time, data is
not yet collected, and the model must be learned mainly from expert knowledge.

The BN for the retarder shown in Figure 3 is based on engineers’ expert
knowledge, and consists of 20 component variables, denoted C1 - C20, five in-
ternal state variables, denoted X1 - X5, and 25 observable symptoms, denoted
O1 - O25.

When building the BN we aim at a model that is simple enough to enable
fast computations, but descriptive enough to solve the troubleshooting problem
with sufficiently high precision. There are several design choices, and in this
section we discuss some of the most important ones.

Components. The parts of the troubleshooted systems can be divided
into components in the BN in different ways. The maximum size of components
are sets of parts of the retarder that always are repaired together, also called
minimal repairable unit . Choosing larger components may lead to that more
parts than necessary are replaced during troubleshooting. Choosing smaller sets
of parts of the retarder as components in the BN is possible, but may give worse
performance in the troubleshooting algorithm and gives more parameters that
need to be determined in CPDs.

In this work we choose components to be minimal repairable units. Further-
more, we allow several components to be faulty at the same time.

Driver or Mechanic. Observations concerning the performance of the
vehicle, for example the braking torque, can be obtained by asking the driver
or by letting the mechanic perform a test drive. In general, the answer from the
mechanic is less uncertain but is often obtained at a higher cost since it is more
expensive to let the mechanic perform a test drive than interviewing the driver.
The driver’s answers can only be obtained at the beginning of troubleshooting.
It may be the case that the driver’s answers bias the mechanic. For example, if
the driver complains about uncontrollable braking torque it is reasonable that
the mechanic will be influenced and observe the same symptom with higher
probability. This case is modeled as a dependency between the observation
nodes, see O4 and O5 in Figure 3 for an example.

Perception. In some observations there may be uncertainties. For example
the observation Leakage magnet valve (O15) can be mistaken for Leakage prop.

valve (O16). We model this by using internal state variables that represent the
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true situation, in this case X2 and X3, and from each such internal variable to
both observations.

Effect of External Systems. In the troubleshooting of a certain system,
there are typically adjacent systems that also may affect the observations. One
previously used approach is to assume that surrounding systems are fault free,
see e.g. [Heckerman et al., 1995]. In the current work we take another approach.
We consider two cases: when the troubleshooted system cause faults in an
adjacent systems, and when faults in an adjacent system affects observations in
the troubleshooted system.

In the first case, when the troubleshooted system cause a fault in an adjacent
system, we model the adjacent system as an observation. In Figure 10 we have
for example identified that the states Retarder Oil Level Low (O19) and Oil

Level Low (O20), which can also be observed and thus is modeled as observable
symptoms, that may cause the gearbox to brake. This is modeled through the
observable symptom Gearbox Broken (O21).

An example of the second case, that faults in adjacent systems also can
explain observations in the troubleshooted system, is that leakages outside the
retarder may cause the observation DTC: Unplausible Oil Pressure (O11). We
take care of this external fault by increasing the probability of false alarm for
this DTC. Note this also induces that the requirement on the goal state must
be changed, i.e. at some point we consider the system as fault free although
there may be observations that have alarmed.

Time. There are two aspects of time in troubleshooting. First, “time is
money”, in the sense that there are costs associated with having the truck at
the workshop. To model this, each action has a cost for performing the action.
This cost is taken into account in the planner.

Second, time goes on while troubleshooting, and the system may change
over time. In particular, the system changes with repairs and test operation. In
the current work we consider troubleshooting as a discrete process, where time
steps are taken when repair and operation actions are performed. The time
interval between two such actions may be of different length, and we assume
that the system is static during each interval. This assumption is reasonable,
since the vehicle is at rest at the workshop, and there are basically no dynamics
present.

5.2 Repairs, Operations, and Interventions

Assume that there is a BN modeling the system under troubleshooting. Per-
forming observations simply mean adding evidence to the observed variables in
the BN. Performing a repair of component Ci, means that the repaired compo-
nent is fault free with probability given by (2). However, when performing a
repair there is also an intervention with the system. To illustrate the effect of a
repair, assume for a moment that repairs are always successful. Then, repairing
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a component Ci means that the component is forced to be fault free by inter-
vention, rather than being observed as fault free. Therefore, it is not sufficient
to only add the evidence Ci = NF to the BN [Pearl, 2000]. The consequences of
an external intervention depend on the characteristics of the causal dependen-
cies in the system. In troubleshooting, there are two different kinds of causal
relations: instant and non-instant. For example, if the oil is replaced in the
retarder, this will have an instant effect on the oil color. Non-instant relations,
on the other hand, need operation of the system to be present. One example
is that if a gasket is replaced in the retarder, the retarder must be operated in
order to verify if there is a leakage or not. In this small example it is shown
that operation actions also are external interventions with the systems since an
operation changes the relations between variables.

The nature of interventions and their causal effects is carefully discussed by
Pearl in [Pearl, 2000]. However, the interventions considered in [Pearl, 2000] are
based on that all causal dependencies are instant, i.e. that changing the value
of a variable gives instantaneous effects on its children. In the troubleshooting
application there are both instant and non-instant causal dependencies, and
thus the rules of causality developed in [Pearl, 2000] are not directly applicable.

5.3 Event-Driven Non-stationary DBN

To compute probabilities of faults after external interventions, i.e. after repairs
and operations, a model describing both the system under troubleshooting and
the troubleshooting process itself is needed. One framework for modeling trou-
bleshooting processes is the one based on event-driven non-stationary DBN
(event-driven nsDBN) developed in [Pernestål and Nyberg, 2009]. An nsDBN
is a DBN, where dependencies are allowed to be different in different time slices,
see for example [Robinson and Hartemink, 2008, Pernestål and Nyberg, 2009].
In an event-driven nsDBN, new time slices are generated by external interven-
tions that change the structure of dependencies. Following the nomenclature
in [Pernestål and Nyberg, 2009], such external interventions are called events.
An example of an event-driven nsDBN is shown in Figure 6. A time interval be-
tween two events is called an epoch. As discussed in Section 5.1, we assume that
the system is static between events, meaning that in the nsDBN, each epoch is
modeled by a time slice. In an epoch several observations can be performed.
However, we assume that the same observable symptom can only be observed
once in each epoch. An nsDBN together with a sequence of action results is
called a troubleshooting session.

To get familiar with nsDBNs, study the example in Figure 6. The figure
shows a three-time-slice nsDBN modeling a subsystem of the retarder. In the
figure, subscripts correspond to numbers in Figure 3, and superscripts denote
the corresponding time slice (or, equally, epoch). The nsDBN in Figure 6 has
three time slices. The first models the system at arrival to the workshop. The
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Figure 6: Dependencies in the a subsystem of the retarder at workshop arrival,
at rest at the workshop, and after repairing the oil.

second time slice is started by the “empty event”, i.e. the event where there is no
external intervention with the system. The system is at rest at the workshop,
and no actions have been performed. As described in [Pernestål and Nyberg,
2009], the empty event is merely for theoretical purposes where it is used as
a reference; in practice, there is no need for starting a new epoch after the
empty event, since the system has not changed. The third and final time slice
in Figure 6 is initialized by the event that the oil has been repaired. Using
the nsDBN in Figure 6, reasoning during troubleshooting can proceed in the
following way. In the figure, ignoring the directions of the edges, there is a path
between O1

22 and C1
19 (via O0

22, C
0
20, and C0

19). This means that by observing
whether there is oil on the noise shield, conclusions can be drawn about the
status of the oil. In the third time slice, after repairing the oil, the path from
O2

22 and C2
19 is broken, and the observation whether there is oil on the noise

shield does not contribute in the reasoning about the state of the oil.
In each time slice in an nsDBN, there are two types of edges: instant edges

and non-instant edges. We use the following definition from [Pernestål and
Nyberg, 2009], slightly rewritten to fit into the current framework.

Definition 2 (Instant Edge). An edge in a BN that models a system is instant
if it does not require operation of the system to be present. An edge that not

requires operation to be present is non-instant.
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In Figure 6, the edge between the Oil and Oil Color is instant, while the edge
between Radial Gasket and Oil on Noise Shield is non-instant. Also, the nodes
in an nsDBN can be classified as one of two types: persistent or non-persistent.
Again, we use the definition from [Pernestål and Nyberg, 2009].

Definition 3 (Persistent Variable). A variable in a BN is persistent if its value

in one time slice, generated by the empty event, is dependent on its value in the

previous epoch. A variable that is not persistent is non-persistent.

In Figure 6, the nodes Oil, Radial Gasket, Oil Color, and Oil on Noise Shield

are persistent, while the node Obs. Oil Color is non-persistent. In particular,
for a persistent variable, if there are no external interventions affecting it, there
is an edge between the two copies of the variable in two consecutive time slices.

In [Pernestål and Nyberg, 2009] it is shown that an nsDBN modeling a
troubleshooting process can be characterized by three pieces of information: (i)
an initial BN B0

ns; (ii) the effects of the empty event; and (iii) for each action,
information about the edges added and removed, and the CPDs changed in
relation to the effects of the empty event.

We use the following assumptions on related to the nsDBN.

Assumption 1 (Initial BN). The initial BN B0
ns is a troubleshooting BN as

defined by Definition 1.

Assumption 2 (Persistence). If not affected by external interventions, a per-

sistent variable has the same value in two consecutive epochs.

Assumption 3 (Persistent Components). Components are persistent.

Assumption 4 (Empty Event). The empty event in epoch t generates a new

time slice Bt+1
ns where all nodes and all instant edges are copied from the previous

time slice Bt
ns. Time slice Bt+1

ns is connected to Bt
ns by edges from all persistent

variables in Bt
ns to its copies in Bt+1

ns .

Assumption 5 (Locality of Repair). The event repair(Ci) in epoch t generates

a new time slice Bt+1
ns that is equal to the time slice generated by the empty

event, except that the edge between Ct
i in Bt

ns and Ct+1
i in Bt+1

ns is removed. In

addition, all edges between Ci in Bt+1
ns and all other components in Bt+1

ns are

removed.

Assumption 6 (Operation). The event operate in epoch t generates a new

time slice Bt+1
ns that is equal to the initial time slice B0

ns. Time slice Bt+1
ns is

connected to Bt
ns by edges from each component variable in Bt

ns to its copy in

Bt+1
ns .

One consequence of the assumptions above is that, with only one exception,
no faults are introduced during troubleshooting. The exception is that the
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repair of a component Ci may be unsuccessful, and introduce faults in Ci.
Moreover, Assumption 5 means that repair of a component Ci does not affect
any other components than Ci. Assumption 6 means that operation during
troubleshooting is long enough for all non-instant dependencies to establish.
Furthermore, it means that test operation makes all persistent variables, except
components, independent of their previous values given the current component
states.

6 Diagnoser: Belief State Updating

In this section and the following, we present the computations performed in the
diagnoser. As described in Section 3.3 the computations are divided into two
subproblems. The first subproblem, to maintain a model of the troubleshooted
system, is considered in Section 7, and in this section we concentrate on the
second subproblem: probability computations for belief state updating and for
prediction of future observations.

As described in Section 3.3, there are two cases where the planner requests
probabilities from the diagnoser. The first case is when an action result at is
reported to the planner, and planner requests the diagnoser to compute the
belief state, i.e. the probability distribution

bt = b(ct) = p(ct|a1:t), (7)

for ct = (ct1, . . . , c
t
N ), given a sequence a1:t = 〈a1, . . . , at〉 of action results.

Recall also that the previous belief state is known, although not explicitly writ-
ten in the probabilities. The second case is during planning, and regards the
probability distributions of possible future actions, p(at+1|ct,a1:t), i.e. the first
probability in the sum in (3). Repair and observation actions are requests to the
mechanic to perform an activity, and have only one possible result each, namely
“repair performed” or “operation performed”. These action results are always
obtained with probability one. For observations, on the other hand, there are
several different values on the observed variable. Therefore, the diagnoser needs
to compute the first probabiltiy probability

p(ot+1
j |ct,a1:t). (8)

This probability will be computed in Section 7. The remainder of this section is
devoted to computation of the belief state (7) for observation, repair, and opera-
tion actions. In the diagnoser, there is no need to consider assemble/disassemble
actions since they do not introduce any new faults, and thus do not change the
belief state.
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6.1 Observation Actions

Let at = observe(Oj = oj). By Assumption 2 we have that

p(Ct = c|Ct−1 = c,a1:t) = 1, (9)

and, by using Bayes’ rule, (7) can be written as

p(ct|a1:t) = p(ct|otj ,a
1:t−1) = γp(otj)|c

t−1,a1:t−1) p(ct−1|a1:t−1)
︸ ︷︷ ︸

bt−1

, (10)

where γ is a normalization constant, and we have used (9) to replace ct with
ct−1 in the last equality. In (10), the previous belief state bt−1 is known, so the
resulting probability computation to perform is

p(otj |c
t−1,a1:t−1), (11)

which is of the same form as (8), and will be computed in Section 7.

6.2 Repair Actions

Let at = repair(Ci), let s ∈ {NF , F} and Cī = (C1, . . . , Ci−1, Ci+1, . . . , CN ).
The belief state after repairing Ci at time t is then

b(ct1, . . . , c
t
i−1, s, c

t
i+1, . . . , c

t
N ) =

= p(ctī, C
t
i = s|repair(Ci),a

1:t−1) =

= p(ctī|repair(Ci),a
1:t−1)p(Ct

i = s|repair(Ci),a
1:t−1) =

= p(ctī|a
1:t−1)p(Ct

i = s|repair(Ci)), (12)

where we, in the second equality, have used that the repair makes Ct
ī

and Ct
i

independent. In the last equality of (12) we have used that Ct
ī

is independent
of the repair of Ci, and that, given that it is repaired, Ct

i is independent of
previous events. Marginalizing over Ct−1

i , (12) becomes

p(ct−1
ī
|a1:t−1)p(C

t
i = s|repair(Ci)) =

=
(
p(ct−1

ī
, Ct−1

i = NF |a1:t−1) + p(ct−1
ī

, Ct−1
i = F |a1:t−1)

)
× . . .

p(Ci = s|repair(Ci)) =

=
(
b(. . . , ct−1

i−1,NF , ct−1
i+1, . . .) + b(. . . , ct−1

i−1, F, c
t−1
i+1, . . .)

)
p(Ci = s|repair(Ci)),

(13)

and belief state updating after repair(Ci) is given by (13). Given the previous
belief state bt−1 belief state updating after repair is simply an addition and
a multiplication. In particular, under the assumption that repairs are always
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successful, the updated belief state after a repair action becomes

bt(. . . , ci−1, s, ci+1, . . .) =

=

{

0 if s = F,

bt−1(. . . , ct−1
i−1,NF , ct−1

i+1, . . .) + bt−1(. . . , ct−1
i−1, F, c

t−1
i+1, . . .) if s = NF .

(14)

6.3 Operation Actions

Finally, let at = operate. According to Assumption 6 no new faults appear
during operation, and the belief state updating becomes

b(ct) = p(ct|a1:t−1, operate) = p(ct−1|a1:t−1) = b(ct−1). (15)

7 Diagnoser: BN Updating

In the previous section, it is shown that for repair and operation actions the
belief state is simply updated from the previous belief state according to (13)
and (15). For observation actions, probabilities of the type (11) are needed
to update the belief state. This probability is the same as (8). It can not be
obtained by simple manipulations of the previous belief state only, and needs to
be computed in the diagnoser. One straight-forward approach to compute the
probability (11) is to use an event-driven nsDBN as described in Section 5.3.
The event-driven nsDBN is a general model of the troubleshooting process, but,
due to its generality, probability computations in an event-driven nsDBN may
become time consuming and inefficient. In this section we will take off from the
framework of event-driven nsDBN and develop an algorithm that efficiently up-
dates a static BN instead of unrolling an nsDBN. To apply the nsDBN we begin
with dividing the sequence a1:t of actions into two sequences, one comprising
the events, e1:t, and one comprising the evidence, v1:t. For example,

a1:3 = 〈repair(C1), observe(O2 = o2), operate〉 gives

e1:3 = 〈repair(C1), 0, operate〉,

v1:3 = 〈0, observe(O2 = o2), 0〉.

Above, the figure ‘0’ is used to denote that there is no event or evidence respec-
tively. Let Bns(e

1:t) be the nsDBN generated by the sequence e1:t of events.
The probability (11) can then be written

p(otj |c
t−1,a1:t−1) = p(otj |c

t−1,v1:t−1, Bns(e
1:t−1)). (16)

In the following we will sometimes write Bns instead of Bns(e
1:t−1) if it is clear

from the context which sequence of events that have generated the nsDBN.
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Although the use of nsDBN is straight-forward, it may lead to too complex
computations causing too long waiting times for the mechanic in many trou-
bleshooting applications. As discussed in Section 3.2 the mechanic waits for the
troubleshooting system to suggest new activities, and waiting times of no more
than a few seconds are acceptable. The diagnoser is called several times for
each step meaning that the computation time in the diagnoser has large impact
on the waiting time.

During search in the planner, there are many sequences of actions under
consideration at the same time, and the planner switches back and forth be-
tween these sequences. Each sequence of actions generates an nsDBN. There
are two main alternatives for using nsDBNs for the probability computations.
In the first alternative, no nsDBN is stored. Each time the planner switches
to a new sequence of actions, all time slices of the nsDBN representing this se-
quence are unrolled and the probability computations are performed from start
to the current time. In stationary DBNs the probability computations can be
made efficiently using algorithms presented for example in [Murphy, 2002]. For
nsDBNs, on the other hand, the structure changes lead to that these efficient
methods can not be applied. Instead, basic inference methods such as variable
elimination are applied [Jensen and Nielsen, 2007, Pernestål and Nyberg, 2009].
This may lead to time consuming computations in the nsDBN. The second al-
ternative is, instead of generating a new nsDBN for each action sequence, to
store one nsDBN for each action sequence. The nsDBN can be stored as the
distribution of the variables in time slice t − 1 together with the last two time
slices. When (if) the planner returns to this particular sequence, a new epoch
is added and for example variable elimination can be used to compute the new
probabilities. Since the number of considered action sequences may be large,
this approach may require an unfeasible memory capacity. Furthermore, if K
is the number of nodes, inference is made in a BN with 2K nodes.

Taking another look at (16), we note that instead of using an nsDBN that
can be used to compute arbitrary probabilities, it is sufficient to use a model
that gives the conditional probabilities for the observations only. This opens
the possibility to use a simpler model that is optimized for computation of
the probabilities (16). The strategy here is to use a sequence of static BNs
B0, B1, . . . such that

p(o
(t)
j |c

(t),v1:t, Bns(e
1:t)) = p(Oj = o

(t)
j |C = c(t),v1:t, Bt). (17)

The probability in the right hand side of (17) is computed in the static BN Bt,
and we have introduced the convention that variables in the static BN have no
superscript, but are assumed to belong to the BN that the probability is condi-
tioned on. Moreover, recall that superscript on variables in an nsDBN denote
the time slice they belong to. In (17) we have introduced superscript (t) to
denote the time slice after event et but before next non-empty event. For exam-
ple, let at = repair(Ci), at+1 = observe(Oj = oj), and at+2 = observe(Ol = ol).
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Then, since the observations are not events, we have that

p(at+1|c(t),v1:t, Bns(e
1:t)) = p(o

(t)
j |c

(t),v1:t, Bns(e
1:t)),

p(at+2|c(t),v1:t, Bns(e
1:t)) = p(o

(t)
l |c

(t),v1:t, Bns(e
1:t)).

For each sequence of action results under consideration in the planner, the
belief state is stored, but no BNs are stored. Instead, when the planner switches
to an action sequence a1:t, the BN Bt is generated from this sequence, and
inference about future observations is performed in this BN. It will be shown
that it is sufficient to perform inference in a subpart of Bt, typically consisting
of a number of nodes that is significantly smaller than K.

7.1 BN Updating Example

We now present an algorithm Bt = updateBN (Bt−1, at,bt−1) that recursively
generates the sequence of BNs B0, B1, . . . so that (17) is satisfied. To illustrate
the idea of algorithm updateBN , consider again the example system with the
two components Oil and RadialGasket introduced in Section 5.3. In Section 5.3
the nodes are classified as persistent or not, and the edges within time slices
are classified as instant or not. Figure 7(a) shows an nsDBN modeling a trou-
bleshooting process with two events (external interventions): repair(Oil) and
operate. In the figure, non-instant edges are marked with dotted arrows while
instant edges are solid. Persistent nodes are gray and non-persistent nodes are
white.

The leftmost part of Figure 7(a), the time slice for epoch 0, or simply “time
slice (0)”, models the system when troubleshooting is initialized. In this time
slice, nodes are marked with superscript (0) and is the initial BN, denoted
B0

ns = B
(0)
ns of the nsDBN. Below time slice (0), in Figure 7(b), the corresponding

B0 is shown. Since there has been no external interventions with the system,
B0 is identical to B0

ns.

Updating Example: Repair

Let a1 = e1 = repair(C19), i.e. that the oil is repaired. In the nsDBN in
Figure 7(a) the event initializes epoch 1 and produces a new time slice. The new
time slice is constructed by copying all nodes and instant edges from the previous
time slice. According to Assumption 5 temporal edges are added between all
persistent nodes, except between C

(0)
19 and C

(1)
19 , which represents the oil before

and after the repair. Since all probability queries will be of the type (11), we
study how to compute the probabilities for the observations.
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Figure 7: An nsDBN modeling the example system subject to a troubleshooting
sequence (top), and the corresponding BNs (bottom).
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Consider first the probability of o(1)24 ,

p(o
(1)
24 |c

(1)
19 , c

(1)
20 , repair(C19)) = p(o

(1)
24 |c

(1)
19 , Bns(e

1:1)) =

=
∑

x
(1)
5

p(o
(1)
24 |x

(1)
5 , Bns(e

1:1))p(x
(1)
5 |c

(1)
19 , Bns(e

1:1)). (18)

In the first in equality we have used (16) and that o
(1)
24 is independent of c(1)20

in Bns(e
1:1) and in the last equality we have marginalized over the internal

variable X
(1)
5 . The sum in (18) contains variables in time slice (1) only. Thus,

the computations are independent of the variables in time slice (0).
Consider now the probability of o(1)25 . Since the variables O

(1)
25 and C

(1)
20 are

persistent and connected to their copies in the previous time slice, they have the
same values in the two time slices and can be used interchangeably. By noting
that O

(1)
25 is independent of C(1)

19 , and by marginalizing over C
(0)
19 we obtain

p(o
(1)
25 |c

(1)
19 , c

(1)
20 , repair(C19)) = p(o

(1)
25 |c

(1)
20 , Bns(e

1:1)) = p(o
(0)
25 |c

(0)
20 , Bns(e

1:1)) =

=
∑

c
(0)
19

p(o
(0)
25 |c

(0)
19 , c

(0)
20 , Bns(e

1:1))p(c
(0)
19 |c

(0)
20 , Bns(e

1:1)). (19)

The last probability in the sum in (19) can be written as

p(c
(0)
19 |c

(0)
20 , Bns(e

1:1)) =
p(c

(0)
19 , c

(0)
20 |Bns)

p(c
(0)
20 |Bns(e1:1))

=
p(c

(0)
19 , c

(0)
20 |Bns(e

1:1))
∑

c
(0)
19

p(c
(0)
20 , c

(0)
20 |Bns(e1:1))

. (20)

Here, p(c(0)20 , c
(0)
20 |Bns(e

1:1)) = b0 is known, and will not change. Therefore, we
can update the CPD p(o

(1)
25 |c

(1)
20 , Bns(e

1:1)) by using (19) and (20), and then
forget the previous time slice.

The computations above show that, if the CPD for O
(1)
25 is updated, it is

possible to compute the probabilities

p(o
(1)
24 |c

(1), repair(C19)) and p(o
(1)
25 |c

(1), repair(C19))

using variables in time slice (1) only. This indicates that, beginning with a
BN B0 corresponding to epoch 0, we can apply a sequence of manipulations
on nodes and edges and obtain a new BN B1 that corresponds to epoch 1.
The two BNs B0 and B1 are shown in Figure 7(b) and (c) respectively. These
manipulations are illustrated in Figure 8. They begin with an nsDBN consisting
of the two epochs 0 and 1. First, we merge the nodes with the same values and
remove superscript, i.e. O(0)

25 and O
(1)
25 are merged to O25 and C

(0)
20 and C

(1)
20 are

merged to C20 in Figure 8(b). In (20) it is shown that the probability for C
(0)
19

can be computed from b0. If the variables X
(0)
5 and O

(0)
24 have evidence this

is taken into account in b0, and if they do not have evidence they are barren
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nodes, see for example [Jensen and Nielsen, 2007], and will not contribute in
the probability computations. Thus, X

(0)
5 and O

(0)
24 can be removed. This is

illustrated by crossing over in the nodes in Figure 8(b). Finally, by updating
the CPD for O25 according to (20) we can remove C

(0)
19 and obtain the BN B1

in Figure 8(c).
Finally, we summarize the set of manipulations made on B0 in Figure 7(b)

to obtain B1 in Figure 7(c).

• Set B1 = B0.

• Remove all non-instant edges to and from the repaired component C19.

• Update the CPD for O25 = O
(2)
25 according to (20).

Updating Example: Operation

After repairing the oil, the system is operated, i.e. a2 = e2 = operate. In the
nsDBN in Figure 7(a) the operation causes an event that initiates epoch 2.
According to Assumption 6, all non-instant edges are reinserted and temporal
links between persistent variables, except components, are removed. In Fig-
ure 7(a), the only connection between time slices (1) and (2) are through nodes
c(2) = (c

(2)
19 , c

(2)
20 ), i.e. c(2) d-separates the all other nodes of time slice 2 from the

previous time slices. The probabilities (16) of the observations are conditioned
on c(2), and are thus independent of the previous time slices. Translating this
to one single BN, we obtain B2 in Figure 7(d).

Summarizing the manipulations on B1 to obtain B2 we have

• Set B2 = B1.

• Insert a non-instant edge between C19 and O25.

• Reset the CPD of O24 to p(O24|paB0(O24)).

7.2 BN Updating Algorithm

In the example in the previous section we started with a BN B0, and manipu-
lated this by adding and removing edges and updating CPDs as events occurred.
We obtained the two BNs B1 and B2 that, by construction, satisfies (17). In
this section we generalize the updating rules derived above, and present an al-
gorithm updateBN that generalizes the manipulations to all kinds of sequences
of action results. The algorithm Bt = updateBN (Bt−1, at,bt−1) takes a BN
Bt−1, for which (17) holds, and an action at as input, and delivers a BN Bt

that satisfies (17). The algorithm, defined in Algorithm 1 consists of three cases
depending on whether at is an observation, operation, or repair. We give an
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Figure 8: Merging two epochs in an nsDBN to one BN. The nsDBN is shown in
(a). In (b) nodes with the same value are merged, and the child nodes of C(0)

19

are crossed over since they will not contribute to the probabilities of o(1)25 and
o
(1)
24 conditioned on c(0). The BN in (c) is obtained by updating the CPD for
O25 = O

(2)
25 with the contribution from C

(0)
19 and removing node c

(0)
19 .
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Figure 9: A troubleshooting BN in (a), the repair-influenced BN B(Ci, O1) in
(b), and the repair-influenced BN B(Ci, O2) in (c).

overview of the operation and observation cases, and of the repair case, respec-
tively, in the following two sections . We then present the complete algorithm.
In this section, recall that the BNs we consider are troubleshooting BNs as
described in Section 3.4.

Updating for Observation and Operation

An observation action is not an event. Thus there are no structure changes,
and the algorithm updateBN generates a BN Bt such that Bt = Bt−1.

By Assumption 6, an operation actions basically resets the BN to the initial
BN, so for an operation updateBN gives Bt = B0.

Updating for Repairs

For repair actions, the situation is more involved. To describe the effects, we will
study the effects of repair actions on subparts of the BN, called repair-influenced
BNs, and defined as follows.

Definition 4 (Repair-influenced BN). A Repair-influenced BN in a troubleshoot-

ing BN B for component Ci and observation Oj ∈ deB(Ci) is denoted B(Ci, Oj)

and is the subpart BN consisting of the variables {Oj ,RB(C, Oj), Ci} and the

edges between these variables. The set RB(C, Oj) consists of the variables that

are not d-separated from Oj by C in B.

To exemplify a repair-influenced BN, Figure 9(a) shows a BN, and Fig-
ure 9(b) and (c) show the repair-influenced BNs for B(Ci, O1) and B(Ci, O2)

respectively.
The repair-influenced BNs B(Ci, Oj) can be classified into structure classes,

depending on their structural properties. The elements in a structure class share
structural properties, described in column two in Table 1, but the number of
nodes may be different. For example “Persistent observation with an instant
edge from its parent component” is one structure class. In this work we define
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nine structure classes, each of them corresponding to one row in Table 1. A set
of structure classes is called a family of structure classes and denoted F , and in
particular we let F∗ be the family consisting of the structure classes in Table 1.

We say that a troubleshooting BN B belongs to a family F of structure
classes if every repair-influenced BN in B belongs to a structure class in family
F . We will from now on only consider troubleshooting BNs such that the BN
B0 modeling the system when troubleshooting begins belongs to the family
F∗. This may seem technical and limiting, but since BNs belonging to F∗

capture several kinds of component-observation relations, they are useful in
many troubleshooting applications. In particular, it can be realized that the
BN for the retarder, show with all instant/non-instant edges and persistent/non-
persistent variables in Figure 10 belongs to F∗.

An important property of family F∗ is that its structure classes are con-
structed so that removing edges in a repair-influenced BN that belongs to a
class in F∗ will give a new repair-influenced BN that belongs to one of the nine
classes in F∗.

In Table 1 the effects of repairing Ci for the nine structure classes in F∗

are shown. In column three of Table 1, for each structure class, a typical
repair-influenced BN Bt−1(Ci, Oj) is shown. Assume that (17) holds for this
BN and let at = repair(Ci). Then, as will be verified in the remainder of this
section, equality (17) holds also for the corresponding BN Bt in column four of
Table 1. In particular, if B(t−1:t)

ns is a two-time-slice nsDBN with initial time
slice B

(t−1)
ns = Bt−1 and a second time slice B

(t)
ns generated according to the

assumptions in Section 5.3, the BNs Bt are such that equality

p(o
(t)
j |c

(t), B(t−1:t)
ns ) = p(Oj = o

(t)
j |C = c(t), Bt) (21)

holds.

Table 1: Structure classes in family F∗, and their updates after
at = repair(Ci).

No Property Bt−1 Bt Comment

1
Component without
children.

Ci Ci
No edges to add or re-
move

Continued on next page. . .
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Table 1: Structure Classes of family F∗ – continued from previous page
No Property Bt−1 Bt Comment

2

Non-persistent obser-
vation with instant
edge from parent
component.

Ci

Oj

Ci

Oj

Ct d-separates Ot from
the previous epoch.

3

Non-persistent observa-
tion with non-instant
edges from parent com-
ponent.

Ci

Oj

Ci

Oj

Ct d-separates Ot from
the previous epoch.

4
Persistent observation
with non-instant edges
to parent component.

Ci

Oj

Ci

Oj

CPD

The CPD for O is up-
dated to take the affect
of Ct−1

i into account.

5

Dependent non-
persistent components
with instant edges to
parent component.
Only two observations
are allowed to be
directly connected.

Ci

OmOj

Ci

OmOj

Ct
i d-separates Ot

j and
Ot

m from the previous
epoch.

6

Dependent non-
persistent components
with non-instant edges
to parent components.
Only two observations
are allowed to be
directly connected.

Ci

OmOj

Ci

OmOj

Ct
i d-separates Ot

j and
Ot

m from the previous
epoch.

Continued on next page. . .
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Table 1: Structure Classes of family F∗ – continued from previous page
No Property Bt−1 Bt Comment

7

Dependent observa-
tions, non-persistent
observation with
instant edge and per-
sistent observation
with non-instant edges.
Only two observations
are allowed to be
directly connected.

Ci

OmOj

Ci

OmOj

CPD

The CPD for Oj is up-
dated to take the effects
of Ct−1

i and Ot−1
m into

account.

8

Non-persistent internal
state, instant edge from
the component and to
the observations. More
than two child observa-
tions are allowed.

Ci

Xk

Ot-1
j

Ot-1
m

Ci

Xk

Ot-1
j

Ot-1
m

Ct
i d-separates Ot from

the previous epoch.

9

Non-persistent internal
state, instant edge from
the component and to
the observations. More
than two child observa-
tions are possible, but
each observation is di-
rectly connected to at
most one other observa-
tion.

Ci

Oj

Xk

Om

On

Ci

Oj

Xk

Om

On

Ct
i d-separates Ot from

the previous epoch.

Structure Class 1. The manipulations on Bt−1 to obtain Bt are trivial
for structure class 1, since there is one single component without children. In
this case there are no edges to add or remove.

Structure Classes 2, 3, 5, 6, 8, and 9. For structure classes 2, 3, 5,
6, 8, and 9, the common factor is that Ci has non-persistent descendants only.
This means that, as in the computation of the probability of O(1)

24 in (18), the
observations made after the repair are independent of the previous actions since
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cti after the repair action is given. To obtain Bt from Bt−1, we set Bt := Bt−1.
We then remove all non-instant edges in Bt.

Structure Classes 4 and 7. Structure classes 4 and 7 share the property
that the children of Ci are observable symptoms, and that at least one of them is
persistent. Similarly to the computations for O(1)

25 in (19) and (20), the BN Bt is
obtained from Bt−1 by removing all non-instant edges, and updating the CPD
for the persistent observable symptom variables Oj to take information from
the previous time slice into account. To determine the updated CPD, note that
(17) holds for Bns(e

1:t−1) and Bt−1. Note also that paBt(Oj) = ∅. We search
an updating of the CPD for Oj after the repair such that p(o(t)j |paBt(oj), B

t) =

p(o
(t)
j |B

t) = p(O
(t)
j = oj |a

1:t, Bns(e
1:t)). Consider the last probability in the

equality. Marginalizing over C
(t−1)
i gives

p(o
(t)
j |a

1:t, Bns(e
1:t)) =

=
∑

c
(t−1)
i

p(o
(t)
j |c

(t−1)
i ,a1:t, Bns(e

1:t))p(c
(t−1)
i |a1:t, Bns(e

1:t)) =

=
∑

c
(t−1)
i

p(o
(t)
j |c

(t−1)
i ,a1:t−1, Bns(e

1:t−1))
︸ ︷︷ ︸

(a)

p(c
(t−1)
i |a1:t−1, Bns(e

1:t−1))
︸ ︷︷ ︸

(b)

. (22)

To obtain probability (a) in the sum (22), we have used that O(t) is independent
of the future repair of Ci given C

(t−1)
i . For probability (b) in the sum (22) we

have used that at is an external intervention performed after C
(t−1)
i , which

means that C
(t−1)
i is independent of at. The probability (b) can be recognized

as the previous belief state bt−1, and is known. For the first probability in the
sum we have, by using (16) and then (17), that

p(o
(t)
j |c

(t−1)
i ,a1:t−1) = p(o

(t−1)
j |c

(t−1)
i ,a1:t−1) =

= p(o
(t−1)
j |c

(t−1)
i ,v1:t−1, Bns(e

1:1−t)) = (23)

p(Oj = o
(t−1)
j |Ci = c

(t−1)
i ,v1:t−1, Bt−1), (24)

where we in the last equality have used (17). To summarize, from (22) and
(23) we have that the CPD for Oj is computed using its CPD in Bt−1 and the
previous belief state bt−1.

Updating Algorithm

Pseudo-code for the algorithm updateBN is given in Algorithm 1. For a BN
B0 that belongs to F∗, and given a sequence a1:t of action results, updateBN
generates a sequence B1, . . . , Bt of BNs that each satisfies (17). The algorithm
consists of three cases (if-statements), one for observation actions, one for oper-
ation actions, and one repair actions. Within the if-statement for repair actions,
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the set ConsideredObs is constructed to avoid that the same repair-influenced
BN is considered several times. The following theorem guarantees the properties
of the updating algorithm updateBN defined by Algorithm 1.

Theorem 1 (Algorithm updateBN ). Consider a troubleshooting session de-

scribed by an nsDBN Bns with initial BN B0
ns belonging to F∗ and a sequence

a1:t of action results such that there is at lest one operation action between

two repairs actions. Let B0 = B0
ns and let B1, . . . , Bt be a sequence of BNs

such that Bk = updateBN (Bk−1, ak), k = 1, . . . t, where updateBN is defined by

Algorithm 1. Then, (17) holds for each Bk, k = 0, . . . t.

The theorem is proved in the Appendix. The proof includes many technical
details, and is not necessary for the application of the algorithm.

Algorithm 1 B = updateBN (B−, a)

B := B−

if a = observe(O = o) then

// Nothing to do

else if at = operate then

B := B0

else if a = repair(C) then

ConsideredObs := ∅
for all O ∈ de(C) do

if O /∈ ConsideredObs then

Ω := {O′ : O′ ∈ B(C,O)}
ConsideredObs := ConsideredObs ∪ Ω

Update B(C,O) according to Table 1
end if

end for

end if

8 Modeling Application

The troubleshooting system consisting of a planner and a diagnoser as described
in Sections 4-7 is implemented and applied to the problem of troubleshooting a
heavy truck with a faulty retarder. A BN B0 modeling the retarder at arrival to
the workshop is shown in Figure 10. This model is built from expert knowledge,
and by applying the modeling principles developed in Section 5. The retarder
BN belongs to F∗, so the algorithm updateBN is applicable. In Figure 10,
instant edges are solid, non-instant edges are dotted, persistent nodes are gray,
and non-persistent nodes are white.
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Figure 10: A Bayesian network modeling the retarder.

In the implementation, the size of the belief state with which the planner
is initialized, is limited such that only the 21 most probable diagnoses c of
component statuses are kept. Also, the diagnoser is set to disregard diagnoses
where four or more components are faulty. This is done to keep the size of the
belief state manageable, and it is reasonable because the probability for several
simultaneous faults in the retarder is typically very small compared to having
fewer faults. This method of keeping down the size of the belief state works
for our model of the retarder, but it is not feasible for larger systems. In those
cases methods as the one presented in [Lerner et al., 2000] can be used, where
the diagnoser collapses similar diagnoses into one.

To investigate the relevance of accurate probability computations by the
diagnoser, we introduced noise in the parameters in the BN. Noise is added
using the log-odds normal distribution as described in [Kipersztok and Wang,
2001]. Every parameter θ in the CPDs inB0 receives a new value θ′ which is

θ′ =
1

1 + (θ−1 − 1) · 10−ωσ
, (25)

where ωσ is a random number drawn from a normal distribution with standard
deviation σ. The troubleshooter has only access to this distorted model, while
an undistorted model of the retarder is used to represent the physical system.
In each test case there is a predefined fault. When actions are performed,
the results are drawn randomly in accordance with the undistorted model and
the predefined fault. The troubleshooting process is simulated until the fault
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is repaired and the total cost is measured. To avoid long waiting times, the
planner is aborted after 60 seconds of deliberation. The standard deviation σ

is varied from 0 to 1, and for each level of σ, 25 test cases are run. Figure 11
shows the average discrepancy in the cost for troubleshooting using the noisy
BN and compared to using the nominal BN. Small errors in the parameters does
not effect the result significantly, but for noise with standard deviation above
0.25 the error increases fast. In practice, the result in Figure 11 means that,
since small parameters errors have an (almost) insignificant impact on the ECR
computed, the parameters could be chosen roughly.
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Figure 11: Average error in the expected cost of repair when the parameters in
the BN are distorted.

9 Conclusion and Future Work

9.1 Conclusion

Inspired by a case study of the retarder, an auxiliary heavy truck breaking sys-
tem, a decision theoretic troubleshooting system has been developed. Focus has
been on issues important in real world applications: the need for disassembling
the system during troubleshooting, the problem of verifying that the system is
fault free during the troubleshooting, and the fact that computations for sugges-
tion of new actions should be performed while the mechanic is waiting. These
issues have two main consequences: probabilities must be computed in a system
that is subject to external interventions, and the computations should be fast.

The troubleshooting system developed is based on a decision-theoretic ap-
proach. It consists of a planner that suggests the next troubleshooting action
to the mechanic, and a diagnoser that supports the planner with probabilities
for faults. In the planner, an any-time AO∗ algorithm with heuristics has been
used. In the diagnoser, probabilities are efficiently computed by an algorithm,
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based on a static BN, and consisting of two parts: belief state updating and
model updating.

Driven by the application study of the retarder, we have studied practical
issues of modeling for troubleshooting in detail, and provided guidelines for
building the BN to be used in the diagnoser. In particular, there are two different
types of dependencies that are used in troubleshooting: instant and non-instant
dependencies. To handle this fact, in combination with the need for handling the
external interventions caused by repairs and operations and the need for time
efficient computations, a new algorithm updateBN has been developed. The
algorithm updateBN reduces the external interventions to simple manipulations
on a static BN. The manipulated BN does not model the troubleshooting system
in a general way, but has been proved to compute the probabilities needed in
the diagnoser correctly.

Finally, we have applied the troubleshooting system to the retarder. The
results confirm the suggested modeling approach and that the decision theoretic
troubleshooting approach used is suitable in real-world applications.

9.2 Future Work

There are several interesting open questions for future work regarding the BN
updating algorithm and the diagnoser. Most important, and our next step, is
to perform a thorough validation of the efficiency of the algorithm, and com-
pare the computation time needed when using updateBN with the time needed
when applying event-driven nsDBN. Furthermore, intend to extend the proof
of the algorithm to include sequences of action results, without the assump-
tion that there is a an operation action between two events. We also intend
to extend the family F∗ of structure classes, and in particular to add classes
containing persistent internal variables. We believe that the algorithm have
capacity of handling these situations without major changes, but they should
be theoretically verified.

Considering the complete troubleshooting system, one interesting question
for future work is to investigate the distribution of computation time between
the diagnoser and the planner. Since the mechanic is busy waiting for the next
action to be suggested by the troubleshooting system, the computation time for
each suggestion can be considered as limited. In the diagnoser, computation
time is used to compute accurate probabilities. In the planner computation
time is used in the search for a plan that is as close to the optimal as possible.
Thus, there is a trade-off between accurate probabilities and optimal planning.

Moreover, one challenge is the dimension of the belief state, which increases
exponentially with the number of components. Therefore methods for focus-
ing on the most probable diagnoses in the diagnoser, without risking to loose
diagnoses with small probabilities in the first time steps, are interesting future
work.
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However, as a first step towards troubleshooting with interventions and both
instant and non-instant dependencies, the results presented in this work are
promising, and show that computer aided troubleshooting can be applied to
complex mechatronic systems such as the retarder. We look forward to extend
our algorithm to troubleshoot even larger systems such as complete vehicles.

Appendix

To prove Theorem 1 we begin with Lemma 3, where we consider the special case
where there are observation actions only. In Lemma 4 we extend the results to
include both observations and operations. We then consider the updates gener-
ated by a single repair action in Lemma 5, and conclude by proving Theorem (1)
for a general sequence of action results.

Lemma 3 (Observation Update). Consider a troubleshooting session described

by an nsDBN Bns with initial BN B0
ns and a sequence a1:t of actions results

from observations. Let B0 = B0
ns and let B1, . . . , Bt be a sequence of BNs

such that Bk = updateBN (Bk−1, ak), k = 1, . . . t, where updateBN is defined by

Algorithm 1. Then, (17) holds for each Bk, k = 0, . . . t.

Proof of Lemma 3. Observations only are considered and observations do
not cause events. Thus, Bns(e

1:1) = Bns(〈0〉) = B0
ns = B0. The variables o

(1)
j

and c(1) in Bns correspond to oj and c in B0. This gives:

p(o
(1)
j |c

(1), Bns(e
1:1)) = p(Oj = o

(1)
j |C = c(1), B0), (26)

which verifies equality (17) for B0. Again, since observations do not cause
events, we have Bns(e

1:k) = Bns(〈0, . . . , 0〉) = Bns(〈0〉) = B0
ns, k = 1, . . . t. For

an observation ak, updateBN defined by Algorithm 1 generates a BN Bk =

Bk−1 = . . . = B0, k = 1, . . . t. Thus, (26), and thereby (17), holds for each Bk,
k = 1, . . . t. �

Lemma 4 (Operation Update). Consider a troubleshooting session described by

an nsDBN Bns with initial BN B0
ns and a sequence of a1:t of action results from

observations and operations. Let B0 = B0
ns and let B1, . . . , Bt be a sequence of

BNs such that Bk = updateBN (Bk−1, ak), k = 1, . . . t − 1, where updateBN is

defined by Algorithm 1. Then, (17) holds for each Bk, k = 1, . . . t.

Proof of Lemma 4. Let atp be the first operation action in a1:t and consider
the first subsequence a1:tp . We first verify (17) for an observation atp+1, i.e. for
O

(tp+1)
j = O

(tp)
j made after the first operation action, but before next opera-

tion. By Lemma 3 Btp−1 satisfies (17). Let B
(tp)
ns denote the last time slice of

Bns(e
1:tp). Since B

(tp)
ns is caused by an operation, it is, according to Assump-

tion 6 a copy of the initial BN B0
ns that is connected to the previous time slice
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only through edges between the components. Thus, the observable symptom
variables in B

(tp)
ns are d-separated from the previous time slices by C(tp). For

the static BN Btp generated by updateBN defined by Algorithm 1 we have that
Btp = B0

ns. This gives:

p(o
(tp)
j |c(tp),v1:tp , Bns(e

1:tp)) = p(o
(tp)
j |c(tp), B(tp)

ns ) =

= p(o
(tp)
j |c(tp), B0

ns) = p(Oj = o
(tp)
j |C = c(tp), Btp), (27)

where we, in the last equality, have used that the variables O
(tp)
j and c(tp) in

Bns correspond to Oj and C in Btp . By equation (27) we have that (17) holds
for observations made between the first and the second operation actions.

From the first equality in (27), we have that computations are independent
on the previous actions, before the repair at tp. Thus, (27) holds even for
O

(t)
j , which can have be preceded by a general sequence of observations and

operations. �

Lemma 5 (Single Repair Update). Consider a troubleshooting session described

by an nsDBN Bns with initial BN B0
ns belonging to F∗ and a sequence of a1:t =

〈a1:t−1, at〉 of action results where a1:t−1 consists of observation and operation

actions only and at = repair(Ci). Let B0 = B0
ns and let B1, . . . , Bt be a sequence

of BNs such that Bk = updateBN (Bk−1, ak), k = 1, . . . t − 1, where updateBN

is defined by Algorithm 1. Then, (17) holds for each Bk, k = 0, . . . t.

To prove Lemma 5 we need the following lemma, that concerns the local
properties of repair actions. It says that in a troubleshooting BN, observations
that are not descendants to the repaired component are not affected by the
repair.

Lemma 6 (Locality of repair). Let at = repair(Ci), let {O
(t−1)
j , O

(t)
j } be a

pair of variables representing the same observable symptom before and after the

repair at and such that O
(0)
j /∈ deBns(〈0〉)(C

(0)
i ). Then it holds that

p(O
(t)
j = o|c(t),v1:t, Bns(e

1:t)) = p(O
(t−1)
j = o|c(t−1),v1:t−1, Bns(e

1:t−1)).

(28)

Proof of Lemma 6. By Assumption 5, at = repair(Ci) affects Ci only. Thus,

C
(t)

ī
= C

(t−1)

ī
. (29)

In Bns(e
1:t), the last time slice B

(t)
ns , caused by at = repair(Ci), is the same as

for the empty event but without the edge from C
(t−1)
i to C

(t)
i . This means that

the repair introduces no edges between variables in B
(t)
ns that are not present

in B
(0)
ns = Bns(〈0〉). Thus, O

(0)
j /∈ deBns(〈0〉)(C

(0)
i ) gives that O

(t)
j /∈ de(C

(t)
i )
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and O
(t−1)
j /∈ de(C

(t−1)
i ). Since B0 = B(0) belongs to F∗, we there are at most

two directly dependent observable symptoms, required that they also have the
same ancestors. Thus, there is not path between a variable in {O(t−1)

j , O
(t)
j } to

a variable in {C(t−1)
i , C

(t)
i } that not passes through C

(t−1)

ī
∪C

(t)

ī
. This makes

{O
(t−1)
j , O

(t)
j } d-separated from {C(t−1)

i , C
(t)
i } by C

(t−1)

ī
∪C

(t)

ī
and we have that

p(O
(t)
j = o|c(t),v1:t, Bns(a

1:t)) = p(O
(t)
j = o|c

(t)

ī
,v1:t, Bns(a

1:t)) =

= p(O
(t−1)
j = o|c

(t−1)

ī
,v1:t, Bns(a

1:t)) = p(O
(t−1)
j = o|c(t−1),v1:t−1, Bns(a

1:t−1)),

where we in the second equality have used that, by the construction of the new
time slice, observation O

(t−1)
j has the same relations to c

(t−1)

ī
as O

(t)
j has to

c
(t)

ī
. This proves Lemma 6. �

We are now ready to prove Lemma 5.
Proof of Lemma 5. To prove that (17) holds for an observation O

(t)
j , and

a sequence of actions a1:t where a1:t−1 are observations and operations, and
at = repair(Ci), we consider two cases: Case 1, where O

(t)
j is such that O

(0)
j /∈

deBns(C
(0)
i ); and Case 2, where O

(t)
j is such that O

(0)
j ∈ deBns(C

(0)
i ).

Case 1. For Case 1, (28) holds according to Lemma 6, i.e. the distribu-
tion for O

(t)
j is equal to the distribution for O

(t−1)
j given v1:t = 〈v1:t, 0〉 and

Bns(e
1:t) and Bns(e

1:t−1) respectively. Next, study the updating of Bt−1 to
Bt by updateBN . Since O

(0)
j /∈ deBns(C

(0)
i ) we have that Oj /∈ deB0(Ci), and,

since B0 contains all possible edges, that Oj /∈ deBk(Ci), k = 1, . . . , t. Recall
that the structure of the BNs Bk is such that the direction of all paths is from
components towards observations, possibly passing internal variables, and that
dependent observations have the same ancestors. This means that there is no
repair-influenced BN Bk(Ci, Ol), k = 1, . . . , t such that Oj ∈ Bk(Ci, Ol). In
algorithm updateBN , when at = repair(Ci), there are updating manipulations
only on the repair-influenced BNs Bk(Ci, Ol) for Ci and Ol ∈ deBk(Ci). Thus,

p(oj |c,v
1:t, Bt) = p(oj |c,v

1:t−1, Bt−1) (30)

By Lemmas 3 and 4 we have that (17) holds for O
(t−1)
j . Using this, together

with (28) and (30) we have that

p(o
(t)
j |c

(t),v1:t, Bns(e
1:t)) = p(o

(t−1)
j |c(t−1),v1:t−1, Bns(e

1:t−1)) =

= p(Oj = o
(t−1)
j |c,v1:t−1, Bt−1) = p(Oj = o

(t−1)
j |c,v1:t, Bt), (31)

which proves that (17) holds for O
(t)
j , and that Lemma 5 holds for Case 1.

Case 2. In Case 2 we consider variables O
(0)
j ∈ deBns(C

(0)
i ). Recall that

an observation action atob does not affect the structure of the BN, i.e. we have
that B

(tob)
ns = B

(tob−1)
ns and Btob = Btob−1. An operation action atop results
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in a time slice that is equal to the initial time slice, i.e. B
(top)
ns = B

(0)
ns and

Btop = B0. Thus, after the action sequence a1:t−1, that consists of observations
and operations only, we have B

(t−1)
ns = B

(0)
ns and Bt−1 = B0. Thus, the action

sequence a1:t generates an nsDBN with the two time slices B(t−1)
ns and B

(t)
ns , and

where the structure in the first time slice, B
(t−1)
ns , is equal to the initial BN.

This means that we have that O
(t−1)
j ∈ deBns(C

(t−1)
i ).

The repair-influenced BN B
(t−1)
ns (C

(t−1)
i , O

(t−1)
j ) in time slice B

(t−1)
ns is, by

Definition 4, constructed so that, given C(t−1), the variable O
(t−1)
j in B

(t−1)
ns is

independent of the variables in3 B
(t−1)
ns \B

(t−1)
ns (C

(t−1)
i , O

(t−1)
j ).

Let B̃var be a set of variables such that for each variable

Y (t−1) ∈ B(t−1)
ns (C

(t−1)
i , O

(t−1)
j ),

then, for its corresponding variable in the next time slice we have Y (t) ∈ B̃var .
Let B̃ be the BN consisting of the variables B̃var and their edges in B

(t)
ns .

Since repair actions remove edges, no edges can be added in B
(t)
ns compared to

B
(t−1)
ns . Furthermore, since B

(t−1)
ns (C

(t−1)
i , O

(t−1)
j ) is constructed so that, given

C(t−1), the variable O
(t−1)
j in B

(t−1)
ns is independent of the variables B

(t−1)
ns \

B
(t−1)
ns (C

(t−1)
i , O

(t−1)
j ), then it also holds that O(t)

j in B
(t)
ns is independent of the

variables B(t)
ns \B̃var given C(t). In words, this means that when C(t−1) and C(t)

are given, O(t−1)
j and O

(t)
j are, within their corresponding time slice, dependent

only on variables in B
(t−1)
ns (C

(t−1)
i , O

(t−1)
j ) and B̃, respectively.

Now, we will study how information flows between the two time slices. Recall
that in the troubleshooting BN, the edges between time slices, the so called tem-
poral edges, only connect a variable with its copy in the adjacent time slice. This
means for example that there may be an edge between O

(t−1)
l and O

(t)
l , but not

between O
(t−1)
l and O

(t)
m if l 6= m. Thus, the variables in B

(t−1)
ns (C

(t−1)
i , O

(t−1)
j )

have temporal edges only to variables in B̃.

The reasoning above means that, given C(t) and C(t−1), the variable O
(t)
j

is, in Bns(e
1:t), which consists only of the two time slices B

(t−1)
ns and B

(t)
ns and

the temporal edges between them, dependent only on nodes in the subpart
of Bns(e

1:t) consisting of B
(t−1)
ns (C

(t−1)
i , O

(t−1)
j ), B̃, and the temporal edges

between them. Denote this subpart BN B
(t−1)
ns (C

(t−1)
i , O

(t−1)
j ) → B̃. Since

repairs are local and only affects the repaired component we have that C(t−1)

ī
=

C
(t)

ī
. Then, by using marginalization over C

(t−1)
i , we can write the left hand

3Whenever we us set relations and set operations on BNs, the BNs are considered as sets
of variables.
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side of (17) as

p(o
(t)
j |c

(t),v1:t, Bns(e
1:t)) =

=
∑

c
(t−1)
i

p(o
(t)
j |c

(t), c
(t−1)
i ,v1:t, Bns(e

1:t))
︸ ︷︷ ︸

(a)

p(c
(t−1)
i |c(t),v1:t, Bns(e

1:t))
︸ ︷︷ ︸

(b)

. (32)

For the probability (a) in (32) we have, by the reasoning above, that

p(o
(t)
j |c

(t), c
(t−1)
i ,v1:t, Bns(e

1:t)) = p(o
(t)
j |c

(t), c(t−1),v1:t, Bns(e
1:t)) =

= p(o
(t)
j |c

(t), c(t−1),v1:t, B(t−1)
ns (C

(t−1)
i , O

(t−1)
j )→ B̃) =

= p(o
(t)
j |c

(t), c
(t−1)
i ,v1:t, B(t−1)

ns (C
(t−1)
i , O

(t−1)
j )→ B̃). (33)

The probability (b) in (32) can be computed from the previous belief state as
follows:

p(c
(t−1)
i |c(t),v1:t, Bns(e

1:t)) = p(c
(t−1)
i |c

(t−1)

ī
,v1:t−1, Bns(e

1:t−1)) =

= p(c
(t−1)
i |c

(t−1)

ī
,a1:t−1), (34)

where we in the first equality have used that c
(t−1)

ī
= c

(t)

ī
, that vt = 0 since

at is a repair, and that c
(t−1)
i is independent of the future repair in the trou-

bleshooting BNs considered here. Note that in (34) we can add the subnetwork
B

(t−1)
ns (C

(t−1)
i , O

(t−1)
j ) → B̃ without changing the probabilities. Using this ex-

pansion, and inserting (33) and (34) into (32) gives:

p(o
(t)
j |c

(t),v1:t, Bns(e
1:t)) =

∑

c
(t−1)
i

p(o
(t)
j |c

(t), c
(t−1)
i ,v1:t, B(t−1)

ns (C
(t−1)
i , O

(t−1)
j )→B̃)p(c

(t−1)
i |c

(t−1)

ī
,a1:t−1) =

=
∑

c
(t−1)
i

p(o
(t)
j |a

1:t−1, c(t), c
(t−1)
i ,v1:t, B(t−1)

ns (C
(t−1)
i , O

(t−1)
j )→B̃)× . . .

p(c
(t−1)
i |c

(t−1)

ī
,a1:t−1,v1:t, B(t−1)

ns (C
(t−1)
i , O

(t−1)
j )→B̃)

=
∑

c
(t−1)
i

p(o
(t)
j |a

1:t−1, c(t), c
(t−1)
i ,v1:t, B(t−1)

ns (C
(t−1)
i , O

(t−1)
j )→B̃)× . . .

p(c
(t−1)
i |c(t),a1:t−1,v1:t, B(t−1)

ns (C
(t−1)
i , O

(t−1)
j )→B̃)

= p(o
(t)
j |c

(t),v1:t, B(t−1)
ns (C

(t−1)
i , O

(t−1)
j )→B̃), (35)

where we, in the second equality, have used that in the second factor we can
condition on v1:t, since it is redundant to a1:t−1 and since vt = 0. In the
first factor we can condition on a1:t−1 since all relevant information in that
probability is contained in the two-time slice BN and the evidence given. The
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same reasoning applies when removing a1:t in the last equality. In the second
factor of the third equality of (35), we once again used that c(t−1)

i is independent
on its future value after the repair in the BNs we consider and conditioned on
c
(t−1)

ī
= c

(t)

ī
, together with this last equality, to reinsert c(t).

Since B
(t−1)
ns = B

(0)
ns and Bt−1 = B0, and it is given that B

(0)
ns = B0

ns = B0,
the variables in B

(t−1)
ns (C

(t−1)
i , O

(t−1)
j ) correspond to the variables in the repair-

influenced BN Bt−1(Ci, Oj), and B̃ contains the corresponding variables in Bt.
Since Bt−1 belongs to F∗, the repair-influenced Bt−1(Ci, Oj) belongs to one of
the structure classes in family F∗. The updating rules for the repair-influenced
BNs in F∗ are given in Table 1 and derived in Section 7.2, and, noting that v1:t

is evidence that does not affect the structure of the BNs, we can apply (21) to
obtain

p(o
(t)
j |c

(t),v1:t, B(t−1)
ns (C

(t−1)
i , O

(t−1)
j )→B̃) = p(Oj = o

(t)
j |C = c(t),v1:t, B̃t),

(36)

where B̃t a BN consisting of variables corresponding to those in B̃. By the con-
struction of B̃t, we have that the repair-influenced BN Bt(Ci, Oj) is a subpart
of B̃t. Thus, Oj in Bt is independent of all variables Bt \ B̃t, and we have that
p(Oj = o

(t)
j |C = c(t),v1:t, B̃t) = p(Oj = o

(t)
j |C = c(t),v1:t, Bt), which proves

Lemma 5 for Case 2. �

Finally, we turn to the proof of Theorem 1, where we show that the algo-
rithm updateBN , for a general sequence of action results a1:t gives a sequence
B1, . . . , Bt of BNs that each satisfies (17).

Proof of Theorem 1. From Lemmas 3, 4, and 5 we know that (17) holds for
a sequence B1, . . . , Btp of BNs generated by updateBN and an action sequence
a1:tp , where a1:tp−1 consists of observations and operations only, and atp =

repair(Ci).
Assume that (17) holds for a sequence of BNs B1, . . . , Btq , where atq =

repair(Cl) and where a1:tq−1 is a general sequence of action results, possibly
including repair actions. We shall then prove that (17) holds for Btr where
tr > tq, atq+1:tr−1 consists of observations and operations only, and atr =

repair(Cm).
If atq+1:tr−1 consists of observations only, we have that Bns(e

1:tr−1) =

Bns(e
1:tq ) and that Btr−1 = Btq , so in this case it is clear that (17) holds

for Btr−1. If there is at least one operation action in atq+1:tr−1 we know from
the proof of Lemma 4 that the operation resets the BN. Furthermore, since
there are no repairs in atq+1:tr−1, we have that Bns(e

1:tr−1) = Bns(〈0〉) and
that Btr−1 = B0. Again, it is clear that (17) holds for Btr−1.

Now, consider the last step, i.e. to update Btr−1 to Btr . As in the proof
of Lemma 5 we consider two cases. Case 1, where O

(t)
j is such that O

(0)
j /∈

deBns
(C

(0)
i ); and Case 2, where O

(t)
j is such that O

(0)
j ∈ deBns

(C
(0)
i ).
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Case 1. For this case, the computations are identical with Case 1 in the
proof of Lemma 5.

Case 2. In Case 2 we consider variables O
(0)
j ∈ de

B
(0)
ns

(C
(0)
i ). Let atop

be the last operation action before atr . Then we have tq < top < tr we have
that B

(tr−1)
ns = B

(top)
ns = B

(0)
ns , and the computations in Case 2 in the proof of

Lemma 5 are directly applicable. This ends the proof of Theorem 1. �
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Abstract

Fault isolation is the task of localizing faults in a process, given obser-
vations from it. To do this, a model describing the relations between
faults and observations is needed. In this paper we focus on learning
such models both from training data and from prior knowledge. There
are several challenges in learning for fault isolation. The number of data
and the available computing resources are often limited. Furthermore,
there may be previously unobserved fault patterns. To meet these chal-
lenges we take on a Bayesian approach. We compare five different ap-
proaches to learning for fault isolation, and evaluate their performance
on a real application, namely the diagnosis of an automotive engine.

1This paper has been submitted to Pattern Recognition Letters. It is based on [Pernestål
et al., 2008]
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1 Introduction

We consider fault isolation, i.e. the task of localizing faults that are present in
a process given current observations from the process. To do this, a model of
the relations between observations and faults is needed.

In many traditional methods for fault isolation, the model of the relations is
given by knowledge about the physical behavior of process. It can for example
be represented as a structure, a so called Fault Signature Matrix, describing
which faults that may affect each observation, and possibly also how [Korbicz
et al., 2004, Hamscher et al., 1992, Nyberg, 2005, Pulido et al., 2005]. We call
such knowledge expert knowledge. In many applications there is, in addition to
the expert knowledge, also data available from the process. This data can be
used to learn about the process studied. In the current work we investigate and
compare different methods for learning models of relations between faults and
observations from training data. We also study the possibilities to integrate the
training data with the expert knowledge.

The work is motivated by the problem of fault isolation in an automotive
engine, and a Scania diesel engine is used as source for training and evaluation
data. In engine fault isolation there may be several hundreds of possible faults
and observations. There will typically be unobserved fault patterns, i.e. faults or
combinations of faults from which there is no training data. Furthermore, train-
ing data is typically experimental, meaning that it is obtained by implementing
faults, running the process, and collecting observations.

To meet the challenge of previously unobserved fault patterns we consider a
Bayesian approach to learning for fault isolation. Within the Bayesian frame-
work it is also possible to take other background information and expert knowl-
edge into account, and not rely blindly on the data. We consider five differ-
ent model classes when learning from training data. They are all previously
presented in the literature in different forms. We tailor these methods to in-
corporate the available background information, and to become applicable to
experimental data. The methods we consider are Direct Inference (DI), Logistic
Regression (LogR), Linear Regression (LinR), Naive Bayes (NB) and general
Bayesian Networks (BN).

The main contribution is the investigation of Bayesian learning methods
for fault isolation by comparing models from the five classes mentioned above
together with appropriate methods for learning their parameters. We do the
comparison by application and evaluation of the methods using real-world data.
In order to do the investigation of learning methods, we first discuss the char-
acteristics of the fault isolation problem in terms of probability theory, and
present performance measures that are meaningful for fault isolation. There-
after we show how the five methods can be adopted to the isolation problem.
We apply them to the task of fault isolation in the Scania diesel engine.

Bayesian methods for fault isolation have been previously studied in litera-
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ture. In many of the previous works it is assumed that the model of the rela-
tions between faults and observations is given [Schwall and Gerdes, 2002, Lerner
et al., 2000, Sheppard and Kaufman, 2005], or can be derived from a physical
model without using training data [Narasimhan and Biswas, 2007, Roychoud-
hury et al., 2006], and focus is on inference. In the current work on the other
hand, we consider five different model classes, and focus on learning the models
of the relations, i.e. both structure and parameters.

Previous works on learning models, and in particular parameters in the
models, for fault isolation from data rely on Bayesian methods as in [Weber
et al., 2006], pattern recognition methods described for example in [Bishop,
2005, Devroye et al., 1996], or machine learning methods in [Heckerman et al.,
1995b]. Applications are for example found in [Lee et al., 2007, Sheppard and
Kaufman, 2005]. The methods in these previous works all rely on the fact
that there is sufficient amount of training data available. Unfortunately, this is
rarely the case in fault isolation, where the number of training samples often is
limited, at least for rare and safety critical faults. Furthermore, there are often
fault patterns from which there is no training data. The Bayesian approach to
learning for fault isolation, used in the current paper, provides a sound method
also in the case of missing data, and opens the possibility to take prior knowledge
into account.

In [Pernestål and Nyberg, 2007], the problem of learning with missing fault
patterns is discussed, and in [Pernestål and Nyberg, 2008] training data is com-
bined with fundamental methods for fault isolation described in [de Kleer and
Williams, 1992, Reiter, 1992]. The approach developed in [Pernestål and Ny-
berg, 2008] is referred to as DI in the current work, and compared to the other
four methods for learning.

The paper is structured as follows. We introduce notation, and give a brief
introduction to Bayesian networks in Section 2. We formulate the diagnosis
problem in terms of probabilities in Section 3. Therein we also define relevant
performance measures. In Section 4 we briefly describe the five methods used,
and in particular how they are applied to the diagnosis problem. Then we
perform evaluating experiments and compare the results obtained in Section 5.
Finally, in Section 6 we conclude the paper by summarizing our results and
discussing future work directions.

2 Preliminaries

Before going into the details of each of the learning methods we introduce no-
tation that will be used, and give a brief introduction to Bayesian networks.
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2.1 Notation

The fault isolation problem can be formulated as a filtering problem, where the
task is to determine the fault(s) present in a process, given a set of observa-
tions from the process. Let the faults be represented by the binary variables
Y = (Y1, . . . , YK), where Yk = 1 means that fault k is present, and let the ob-
servations be represented by the variables X = (X1, . . . , XL), where each Xl is
discrete or continuous. Generally, we use upper case letters to denote variables,
and lower case letters to denote their values. Boldface letters denote vectors.

We write p(x) to denote both probability distributions and probability den-
sity functions. The meaning will be clear from the context.

2.2 Fundamentals of Bayesian Networks

Bayesian networks are directed acyclic graphs in which nodes represent ran-
dom variables and arcs represent directed probabilistic dependencies among the
variables. We use the same notation for both nodes and variables, see for exam-
ple [Jensen and Nielsen, 2007]. A Bayesian network encodes the joint probability
distribution over a finite set of variables {W1, . . . ,WM}, and decomposes it into
a sequence of conditional probability distributions, one for each variable.

More specifically, let pa(Wi) denote the parents of Wi, and let pa(Wi) be a
value (configuration) of pa(Wi). Then there is a conditional probability distri-
bution p(wi|pa(wi)) for each variable Wi. Nodes without parents are called root

nodes. The conditional probability of a root node Wi is simply its prior proba-
bility p(wi). The joint probability distribution of the variable set {W1, . . . ,WL}
can be obtained by taking the product of all these conditional probability dis-
tributions:

p(w1, . . . , wM ) =
L∏

i=1

p(wi|pa(wi)). (1)

In Bayesian networks, both the presence of arcs, and their directions, as
well as the absence of arcs encodes knowledge about dependencies and indepen-
dences. In addition to the structure of dependencies characterized by the arcs in
the Bayesian network, it also includes all the distributions p(wi|pa(wi)). When
we discuss learning in Bayesian networks, we mean learning both the structure
and the probability distributions. More details about Bayesian networks can be
found for example in [Jensen and Nielsen, 2007] and [Russell and Norvig, 2003]

3 Bayesian Fault Isolation

We are now ready to formulate the problem of performing fault isolation in a
process in probabilistic terms, and to present relevant performance measures.
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3.1 Problem Formulation

In addition to the current observation X from the process under diagnosis, a
set of training data D is given. Training data consists of samples (yn,xn),
n = 1, . . . , ND, of pairs of fault and observation variables. The training data is
collected by implementing faults in the process, and then collecting observations.
This means that training data is experimental . To evaluate the fault isolation
methods we use an evaluation set E , consisting of NE samples. The evaluation
data is collected by running the process without intervening with it, i.e. without
implementing any faults but rather observing faults as they appear. Thus,
evaluation data is observational .

We assume that the fault isolation algorithm is triggered by a fault detector
telling us that there must be at least one fault present in the process.

The structure of dependencies between the faults and observations has three
basic properties, illustrated in the example Bayesian network of Figure 1. The
first property is that faults are assumed to be a priori independent, i.e. that

p(y) =

K∏

k=1

p(yk|y1, . . . , yk−1) ≈
M∏

k=1

p(yk), (2)

meaning that faults do not cause other faults to occur. Although not necessary
for the methods in the current work, this is a standard assumption in many fault
isolation algorithms [Hamscher et al., 1992], and it simplifies the reasoning in
the following sections.

Second, faults may causally affect one or several of the observation variables
introducing dependencies between faults and variables. A dependency between
fault variable Yk and observation variable Xl means that the fault may be visible
in the observation.

The third property is that an observation variable Xl may be dependent on
other observation variables. Dependencies between observation variables can
arise due to several reasons. For example they can be caused by unobserved
and unmodeled factors, such as the surroundings of the automotive engine, the
behavior of the driver, and the operation point of the engine. These unobserved
factors could be modeled using hidden nodes, but since they are numerous
and their explicit effects are unknown they are here approximated with direct
dependencies between observation variables. This is more carefully discussed
in [Pernestål et al., 2006].

In the current work we take a Bayesian view on fault isolation. The objective
is to find the probability that each fault is present given the current observation,
the training data, and the prior knowledge i, i.e. to compute the probabilities
p(yk|x,D, i), k = 1, . . . ,K. The probability for a fault yk can be found by
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Figure 1: A Bayesian network describing a typical fault isolation problem.

marginalizing over all other faults yk̄ = (y1, . . . , yk−1, yk+1, . . . , yK),

p(yk|x,D, i) =
∑

yk̄

p(yk̄, yk|x,D, i). (3)

Note that (yk̄, yk) = y, and (3) means that we search the conditional distri-
bution p(y|x,D, i). To simplify the notation we will not write out the prior
knowledge i explicitly in the equations.

Computing the conditional distribution p(y|x,D) of y directly from data D
is generally difficult. Instead, we approximate it using a model M(D) learned
from data, i.e.

p(y|x,D) ≈ p(y|x,M(D)) = pM(D)(y|x), (4)

where we have introduced the notation pM(D)(y|x) to denote the distribution
obtained from training data D by using model M and the parameters deter-
mined using the appropriate method. To simplify notation we write pM(y|x)
when there is no risk for confusion which data that is used.

The model M(D) can for example be a Bayesian network or a regression
model. Methods for learning the parameters of different types of models will be
discussed in Section 4.

3.2 Performance Measures

To evaluate the different models to be used in Bayesian fault isolation, we use
two performance measures: the logistic score and the percentage of correct
classification.

The logistic score is a commonly used performance measure [Bishop, 2005,
Mitchell, 1997]. The logistic score is based on a set E of evaluation data and is
given by

µ(E ,M) =
1

NE

NE∑

n=1

log pM(D)(y
n|xn). (5)
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The score µ measures two important properties of the fault isolation system: the
ability to assign large probability mass to faults that are present, as well as the
ability to assign small probability mass to faults that are not present. Further-
more, the log-score is a proper score. A proper score has the characteristic that
it is maximized when the learned probability distribution is equal to the generat-
ing distribution. In fault isolation applications, the conditional probabilities of
faults can be combined with decision theoretic methods to determine the appro-
priate counter-action, see for example [Heckerman et al., 1995a, Langseth and
Jensen, 2002, Pernestål and Nyberg, 2007]. In decision theory, optimal decision
making requires conditional probabilities close to the generating distribution,
and thus proper scores are suitable.

The second performance measure we use, percentage of correct classification,
is not a proper scoring function. However, it is closely related to the 0/1-loss
used for example in pattern classification [Bishop, 2005]. We define

ν(E ,M) =
|C|

NE
, (6)

where C = {n : ynk = 1, k = argmax
k′

pM(D)(yk′ |xn)},

and ynk denotes element k in yn. In words, C is the set of all indicies where the
underlying fault is assigned the largest probability when modelM is used, and
the ν-score is thus the fraction of cases in evaluation data where the underlying
fault is correctly classified. In case of multiple faults present it suffices to assign
highest probability to any of them. The ν-score reflects the performance of the
fault isolation system combined with the simple troubleshooting strategy “check
the most probable fault first”.

4 Modeling Methods

In this section we briefly present the modeling methods used, i.e. the different
models used and methods for determining the parameters therein. We carefully
state all assumptions made, and describe the adjustments of each method to
apply it to the isolation problem. However, we begin by describing two assump-
tions that need to be made for all methods except DI.

4.1 Modeling Assumptions

In all the methods considered in this paper – with the exception of DI – sepa-
rate models are built for each fault, and thus independence between the faults
is assumed. This approach is illustrated in Figure 2. Before any training data
is recorded, this assumption corresponds to (2). Since faults are inflicted in
training data, the data does not include any information about co-occurrence
of the faults, such as how faults affect each other or whether there are unknown
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Figure 2: The principle of approximating one model of all faults with one for
each fault.

effects that cause certain faults to appear at the same time. This fact is partly
handled by building a separate model for each fault. However, building sepa-
rate models, also induce a stronger assumption, namely that the faults remain

independent given the observations:

p(y|x) =
K∏

k=1

p(yk|x, y1, . . . , yk−1) ≈
K∏

k=1

p(yk|x) (7)

By applying Bayes’ rule on the first probability in (7) we have

p(y|x) =
p(x|y)p(y)

p(x)
. (8)

Bayes’ rule on the last probability in (7) gives

K∏

k=1

p(yk|x) =
K∏

k=1

p(x|yk)p(yk)

p(x)
=

p(y)
∏K

k=1 p(x|yk)

p(x)
, (9)

where we have used (2) in the last step. By approximation (7) the expressions
in (8) and (9) are equal. Thus, the approximation (7) is equivalent to

p(x|y1, . . . , yK) ≈
1

p(x)K−1

K∏

k=1

p(x|yk) (10)

In (10) p(x) is a normalization constant, and the equation means that the
observation x is dependent on each fault yk, but this dependency is assumed
to be independent of all other faults yk′ , k′ 6= k. In other words, we assume
no “explaining away” effect [Jensen and Nielsen, 2007]. The explaining away
effect can be understood as follows. Consider Bayesian network with two faults
Y1 and Y2 and two observations, where X1 that is dependent on both faults
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and X2 is dependent on Y2 only. Assume that observation X1 indicates that
there is a fault present (we say that X1 “alarms”). Then both faults Y1 and Y2

are potential explanations. Now, assume that we learn that fault Y2 is present
(for example by observing that X2 alarms), then fault Y2 is likely to be the
explanation of the alarm X1 also. Since X1 is explained by fault Y2, fault Y1

becomes less probable. The presence of Y2 have explained away Y1 through the
observation X1.

The explaining away effect occurs when there are unshielded colliders, i.e. com-
mon children of two or more nodes which are them-self not connected. Looking
at Figure 1 we observe ignoring explaining away is indeed is a strong assump-
tion, since there are several unshielded colliders of the faults. However, since
each fault is allowed to be dependent on all observations, the explaining away
effect will be partially encoded in the direct dependencies between faults and
observations.

Assumption (7) is primarily made for technical reasons, in order to be able
to build separate models for each fault. However, it is often the case (as in
the application in Section 5) that there is training data only from single faults.
Using training data straight-forwardly, this would lead to that we learn a strong
dependence between the faults: if one fault is present, other faults are not. By
approximation (7) this is avoided, and we do not learn these dependencies.

From Section 2 we know that it is assumed that there is at least one fault
present. Recall that

∑

k yk > 0 means that there is at least one fault present,
and, similarly, that

∑

k yk = 0 means that there is no fault present. The knowl-
edge that there is at least one fault present introduce dependencies between the
single fault models in (7), since in general we have

p(y|x,
∑

k

yk) 6=
∏

k

p(yk|x,
∑

k

yk > 0). (11)

To avoid this recoupling between models, we study the probability for the faults
given the knowledge that at least one fault is present i detail. We have

p(y|x,
∑

k

yk > 0,D) =
p(
∑

k yk > 0|y,x,D)p(y|x,D)

p(
∑

k yk > 0|x,D)
=

=

{

0
∑

k yk = 0,
p(y|x,D)

1−p(Y=0|x,D) ,
∑

k yk 6= 0.
(12)

In the current paper we ignore the fact that at least one fault is present during
the learning phase and the single-fault models are trained individually. We then
apply (12) in the evaluation phase.
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Table 1: An example of an FSM
Y1 Y2 Y3

X1 X X 0
X2 X 0 X

4.2 Direct Inference

The first method for fault isolation that we present is Direct Inference (DI).
Similar to several previous fault isolation algorithms, DI relies on prior knowl-
edge about which observations that may be affected by each fault [de Kleer
and Williams, 1992, Reiter, 1992, Korbicz et al., 2004]. Such information is
typically expressed in a so called Fault Signature Matrix (FSM). An example
of an FSM is given in Table 1. In the FSM, a zero in position (l, k) means that
fault Yk can never affect observation Xl, while a X mean that Yk may affect
observation Xl. DI aims at combining the information from the FSM with the
training data available. Assuming that observations are binary and that the
background information i contains the FSM. Then, under certain assumptions
it can be shown [Mitchell, 1997, Pernestål and Nyberg, 2007] that

pDI(D)(y|x, αxy) =

{

0 x ∈ γ
nxy+αxy

Ny+Ay

p(y|i)
π0

otherwise,
(13)

where π0 is a normalization constant, nxy is the count in training data D where
the fault is y and the observation is x, αxy is a parameter describing the prior
belief in the observation x when the fault is y. The parameters α can be seen as
hypothetical samples, which would have been obtained if our prior beliefs were
true. The parameters α are sometimes referred to as Dirichlet parameters, since
a Dirichlet prior is used in the computations. Furthermore, Ny =

∑

x′ nx′y and
Ay =

∑

x′ αx′y. The set γ is determined from the fact that some observations
are impossible according to the FSM as described in [Pernestål and Nyberg,
2008].

The DI method has been developed for sparse sets of training data, partic-
ularly when there is only training data from a subset of the fault patterns to
isolate.

4.3 Bayesian Network Methods

When using Bayesian networks for filtering, the Bayesian network of the joint
distribution p(y,x|θ) is modeled. Here, θ are parameters in the conditional prob-
ability distributions associated with the nodes in the network, see Section 2.2.
From the joint distribution, the conditional distribution for each of the faults
yk can be computed. As described in Section 4, one model for each fault is



4. Modeling Methods 207

Figure 3: Naive Bayes network structure.

built. The models are combined by using (7) and correcting for the knowledge
that there is at least one fault present by using (12). The probability for each
fault is then determined by marginalization. We consider two types of Bayesian
networks: Naive Bayes (NB) and general Bayesian Networks (BN).

Naive Bayes

In a Naive Bayes network it is assumed that the observations are independent
given the fault. This structure is exemplified in Figure 3. We assume this struc-
ture, and learn the parameters in the conditional probabilities using standard
methods described for example in [Heckerman et al., 1995b]. Naive Bayes is one
of the most commonly used methods for Bayesian prediction and often performs
surprisingly well [Devroye et al., 1996, Rish, 2001]. However, if there are strong
dependencies between observations, the independence assumption made may
introduce unnecessary large errors. For example, assume that two observations
are identical. In this case, a better inference result may be obtained ignoring
some of the observations that are strongly dependent. To alleviate this prob-
lem, we apply a variable selection according to an internal leave-one-out scoring
function. This approach was first introduced in [Langley and Sage, 1994], where
it is called selective naive Bayes classifier. Let V = 2X be the set of all subsets of
the observations, let V ∈ V, and let NV be the Naive Bayesian network defined
by V . We then choose the variable set V ∗ according to

V ∗ = argmax
V ∈V

=
1

ND

ND∑

n=1

log pNV (D\{(yn,xn)})(y
n
k |x

n, α),

where α is the Dirichlet hyper-parameter for the NB model, and are tuning
parameters. The probabilities for fault yk is computed by

pNV ∗ (D)(yk|x, α).

General Bayesian Network

A natural extension of the naive Bayes model is to allow a more general struc-
ture for each fault, and learn both structure and conditional probabilities from
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the training data. However, it is known that the faults causally precede the
observations. Therefore we restrict the possible structures to the ones where
the fault node is a root node. This is the only constraint used. One Bayesian
network (BN) was learned for each fault using a BDe score with an equiva-
lent sample size parameter of 1.0 [Heckerman et al., 1995b]. For small systems
(< 30 variables) learning can be performed using the exact algorithm in [Si-
lander and Myllymäki, 2006], while for larger systems approximate methods,
e.g. [Heckerman et al., 1995b, Mitchell, 1997, Russell and Norvig, 2003], can be
used.

Let B denote the Bayesian network learned using the BDe score. Then the
probabilities for fault yk is computed by

pB(D)(yk|x, α), (14)

where α is again the Dirichlet hyper-parameter.

4.4 Regression

Fault isolation is a discriminative task, where we are to predict the fault vector
y given the observations x, i.e. to estimate the conditional probability of y

p(y|x, θ) =
p(y,x|θ)

∑

y p(y,x|θ)
. (15)

It is well known [Ng and Jordan, 2002, Kontkanen et al., 2001, Friedman et al.,
1997] that in such a case it can be of great benefit to employ a discriminative
learning method, that only learns the probabilities asked, instead of wasting
training data to learn the joint data likelihood as in the Bayesian network
methods of Section 4.3. Regression models form a family of such methods, and
here we consider two classes of such: linear and logistic regression models.

In the previous methods, as well as in training data, the variable yk repre-
senting the faults is a discrete variable, but in the computations in the regression
methods, we relax it to be a continuous variable.

Linear Regression

The most straight-forward regression method is linear regression, where each
fault variable is assumed to be a linear combination of the observations plus a
gaussian noise term,

yk = wT
k x+ wk0 + ǫk, ǫk ∼ N(0, σk).

Here wk, wk0, and σk are parameters to be determined. This gives the proba-
bility distribution

pLinR(yk|x) =
1

Z
exp(−

(wT
k x+ wk0 − yk)

2

2σ2
k

),
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where Z is a normalization constant. To determine the parameters we use the
standard methods described for example in [Bishop, 2005]. For example,

w∗ = argmin
w

ND∑

n=1

(wT
k x

n + wk0 − ynk )
2.

When the parameters w∗ are known, the parameters σ and Z can also be
computed [Bishop, 2005].

Logistic Regression

Learning parameters to maximize (15) for a Bayesian network is known to be
equivalent to logistic regression under the condition that no node can be a “bas-
tard”, i.e. a common child of two variables that are not directly interconnected
them selfs. More formal definition and proofs can be found in [Roos et al.,
2005]. In our case, this fact is guaranteed by assumption (7).

To start with, for each fault we learn a logistic regression model correspond-
ing to a discriminative Naive Bayes classifier 2. Let α and β be parameters in
the logistic regression model, and define

pLogR(Yk = 1|x, α, β) =
exp s(x, α, β)

exp s(x, α, β) + exp−s(x, α, β)

where s(x, α, β) = α+
L∑

l=1

xlβl.

When learning the parameters α and β, we use a smoothing term c(α, β) in the
objective function. The smoothing function takes the place of a prior probability
distribution for the parameters. To determine the smoothing term, we normalize
training data such that

∑

n

xn
l = 0 and max

n
|xn

l | = 1

Then, beginning with a uniform prior, c′, we pretend to have seen one vector of
each fault at node Yk and two vectors of each fault with extreme values ±1 at
each node Xl, with all other values unobserved. This amounts to a smoothing
term

c′′ = c′ − 2 log(exp(α) + exp(−α))−

−4
L∑

l=1

log(exp(βl) + exp(−βl)).

2Possible other choices include tree-augmented Naive Bayes (TAN) [Friedman et al., 1997,
Roos et al., 2005, Greiner and Zhou, 2002].
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This smoothing term is problematic since it is flat near zero, leading to that no
parameters will be exactly zero. In logistic regression many small parameters
can make a large difference in the inference result, while they may be weakly
supported. To avoid the flatness around zero log(exp(z)+exp(−z)) was replaced
by |z| to obtain c from c′′. This is a good approximation away from zero, but
forces unsupported parameters to zero, implicitly performing attribute selection.

For fault yk we search parameters that maximize

log pLogR(yk|x, α, β) + c(α, β) =

=

ND∑

n=1

log p(ynk |x
n, α, β)− 2|α| − 4

L∑

l=1

|βl|.

We do this by simple line search, one parameter at a time3.
Finally, we apply also a variant of LogR, which we denote “LogR + weights”,

where training vectors are weighted according to their prior probabilities p(yk).
This is done since the training data and the evaluation data are known to have
different distributions. The idea is to weight the training vectors in the objective
function as to focus the optimization on areas of the data space more likely to
be seen later on. The corresponding objective function for fault Yk becomes

ND∑

n=1

logwkp(y
n
k |x

n, α, β) + c(α, β). (16)

where the weight wk is the prior p(yk) divided by the observed relative frequency
#{n : ynk = yk}/ND.

5 Experiments

To evaluate the different modeling methods for fault isolation, we apply them
to the diagnosis of the gas flow in a 6-cylinder diesel engine in a Scania truck.
In automotive engines, sensor faults are one of the most common faults, and
here we consider five faults that may appear in different sensors. The faults are
listed together with their prior probabilities for single faults in Table 2. Note
that the probabilities in Table 2 do not sum to one, since the probabilities for
multiple faults are not included.

5.1 Experimental Setup

For the gas flow of the diesel engine there is a physical model from which a set
of 29 residuals are automatically generated using structural analysis [Svärd and

3For larger problems faster methods, as for example discussed in [Minka, 2003] could be
more suitable.
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Table 2: The faults considered

Fault description p(yk)

y1 exhaust gas pressure 0.4
y2 intake pressure 0.13
y3 intake air pressure 0.057
y4 EGR vault position 0.13
y5 mass flow 0.057

Nyberg, 2009, Krysander et al., 2008]. The residuals, which are constructed
to be sensitive to subsets of the faults, are used as observations in the fault
isolation.

For training and evaluation data we use measurements from real operation
of the truck, with faults implemented. The training data consists of 100 samples
each from the five single faults. Evaluation data consists of data from the five
single faults, but also of data from two multiple faults y1&y2, and y1&y4. Eval-
uation data is observational, and consists of 1000 samples, distributed roughly
according to the prior probabilities in Table 2.

The data we consider is originally continuous, but generally not Gaussian
distributed. All methods, except the two regression algorithms, take in discrete
data. The data is discretized in two different ways: binary, with thresholds set
such that all fault free data in the training set is contained in the same bin; and
discretized using k-means clustering [Hartigan, 1975] with k = 4. DI is applied
to the discrete data. NB and BN are run both on discrete and binary data.
The regression methods LinR and LogR are applied to the continuous data. To
learn the BN model, we use the exact algorithm in [Silander and Myllymäki,
2006], and in DI, BN, and NB we set the Dirichlet parameters to 1.

As described in Section 4 the NB and DI methods perform best if not all
observations are used. For both DI and NB we perform variable selection such
that an internal logistic score is maximized. For DI, the best result is obtained
by using only six of the observations. In NB between seven and 18 observations
are used for each fault.

5.2 Results

In Table 3 the logistic score (µ) and percentage of correct classification (ν)
are presented for the different methods. In addition we report the number of
parameters used by each predictor. This is relevant, since for on-board fault
isolation the computing and storage capacity is often limited. For comparison we
also report the default which is obtained by simply using the prior probabilities
given in Table 2.
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Table 3: Comparison of the methods

method µ-score ν-score #pars

DI -1.088 0.781 106
NB-bin. -1.340 0.748 293
NB-disc. -1.044 0.843 335
BN-bin. -1.297 0.782 287
BN-disc. -1.398 0.840 1136

LinR -1.839 0.834 150
LogR -1.071 0.829 46

LogR+weights -0.953 0.829 44

default -1.738 0.592 5

Considering the µ-score, we see that among the four best methods in Ta-
ble 3 three are discriminative and learn the conditional distribution instead of
the joint distribution. Furthermore, LogR with training sample weighting per-
forms best on this data in logistic score sense, while using a small number of
parameters. Surprisingly the weighting trick has made quite a difference and
LogR without weights it is outperformed by NB-disc. NB performs better when
it is fed with discretized observations instead of binary, while for BN the effect
is reversed. Clearly the discretized data contains more information, but it seems
that in more complex Bayesian networks the conditional probability tables grow
too large, and there is not enough training data to learn them accurately. In DI
good results are obtained by exploiting prior FSM knowledge in terms of that
some faults never cause an observation to pass certain thresholds.

Measured by the ν-score the relative differences between the methods is
smaller. This score favors the regression models and the Bayesian methods
using discrete data.

To exemplify the results, Table 4 compares the logistic scores of the predic-
tions given for the single faults by DI and LogR+weights. Note that because
of the inequality (11) the columns do not sum to the corresponding entries in
Table 3. Both methods (as all others) have most trouble with isolating faults
y1, y2 and y4, the ones appearing simultaneously in evaluation data, but not
in training data. This gives evidence for explaining away being important in
this problem. Figure 4, in which the probabilities for each fault using LogR +
weights are plotted, shows this in more detail. In the figure, the true fault is
marked with a solid line. Moreover, we have ordered the evaluation data such
that the right-most samples have multiple faults, visualizing that the double
faults are most difficult to predict.
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Table 4: Comparision of DI and LogR on single faults
fault µ DI µ LogR+w

y1 -0.346 -0.385
y2 -0.324 -0.287
y3 -0.087 -0.008
y4 -0.334 -0.294
y5 -0.177 -0.133

6 Conclusions

We have considered the problem of fault isolation in an automotive diesel engine,
and discussed the special characteristics of this problem. There is experimental
training data available which is distributed differently from the observational
data to which the diagnosis algorithm is to be applied. In particular, evaluation
data consists partly of previously unseen fault patterns. In addition there is
prior knowledge available about which faults that may affect each observation,
and also the knowledge that at least one fault is present.

We have studied different Bayesian and regression approaches to combine
this by-nature heterogeneous information into probability distributions for the
faults conditioned on given observations. We have compared the performance
of the methods using real-world data, and have found that on the application
studied the discriminative logistic regression method performs best. Among the
methods that perform well we have also found the naive Bayes classifier and the
direct inference method.

One of the clearest implications of this work is that all methods have dif-
ficulties with handling unobserved fault patterns. Unfortunately, unobserved
patterns are common in fault isolation, so this problem should be tackled in
future work. The four methods where one model is build for each fault, let
the explaining-away effect be present only through observations. However, this
explaining-away effect can possibly be helpful when diagnosing unseen patterns.
DI performs among the best of the methods, despite its few parameters. DI is
also the only method that include background information in the learning phase,
we therefor believe that the it is crucial to utilize background information when-
ever it is available, in particular when there are unseen patterns.
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Figure 4: The predicted probability for the different faults given by LogR+w.
Evaluation data is ordered after their fault patterns. The true fault is marked
with a solid line.
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5
Concluding Remarks

It is a capital mistake to theorize before you have all the evidence. It biases the

judgment.

Sherlock Holmes, 1888. In “A Study in Scarlet”

1 Conclusions

The main objective with this thesis has been to contribute to improved di-
agnosis of automotive vehicles. The work been driven by case studies of real
applications, such as automotive engines and breaking systems. We have stud-
ied both on-board diagnosis, in Paper 1, 2, and 5, and off-board diagnosis for
troubleshooting, in Paper 3 and 4. In the case studies, challenges and problems
have been identified. In both on- and off-board diagnosis, the limited amount of
training data and the uncertainties in models of the system are two of the most
important challenges. To face these challenges we have chosen a probabilistic
approach, and compute the probabilities that faults are present in the system
under diagnosis.

Considering on-board diagnosis, two of the most important issues are to
handle the experimental training data, need for integration of different kinds of
knowledge of the diagnosed system, and the hardware capacity limitations. In
Paper 1 a method for combining expert knowledge in terms of a Fault Signa-
ture Matrix (FSM) with experimental training data has been developed, and
in Paper 2 a method that combine likelihood constraints with data has been

221



222 Chapter 5. Concluding Remarks

developed. Both these methods are generic, and applicable to several different
fields of applications.

In Paper 5 five approaches resulting in eight methods for learning fault
diagnosis and isolation has been compared. The comparison is made with on-
board diagnosis in mind, but they are applicable also to off-board diagnosis. In
the survey, the methods based on logistic regression have proved to have the
best performance, in particular in relation to the small number of parameters
needed.

In off-board diagnosis for troubleshooting, we have identified three main
issues: in models for troubleshooting there are both instant and non-instant
edges, the need for computing probabilities of variables in a system that is sub-
ject to interventions, and the need for time efficient probability computations.
This has led to the development of the framework of event-driven non-stationary
dynamic Bayesian networks (nsDBN) in Paper 3, and its further development
in Paper 4 to the algorithm updateBN that is optimized for probability compu-
tations in troubleshooting. The framework of event-driven nsDBNs is a general
framework for modeling processes with external interventions, and is applicable
not only to troubleshooting.

In Chapter 1 we formulated the problem to be solved in the thesis as five
questions. We are now ready to answer these.

• How do standard methods for learning from data perform in the computa-

tion of (1.1)? For eight methods from five different approaches, including
different types of Bayesian networks and regression, this question is an-
swered in Paper 5. Of course, the results are dependent on the particular
diagnosis situation, but one conclusion can be drawn: it is important that
the method handles experimental data. Furthermore, methods with a
smaller number of parameters perform better than those with more pa-
rameters.

• Which are the main issues regarding the training data available for diag-

nosis? Training data is used in Paper 1, 2, and 5, and in these papers we
have identified two main challenges: (a) the lack of data from faults and
fault combinations that are to be diagnosed, and (b) the fact that data
is experimental. The handle (a), methods for combining data and knowl-
edge are crucial. In particular, in Paper 1 and 2 experiments have shown
that combining both data and expert knowledge improves the inference,
compared to using data alone. The fact (b), that data is experimental,
means that no information about the prior distribution of faults (before
observations are made) can be learned from the data. In all Paper 1,
2, and 5 the experimental training data is handled in different ways, de-
pending on the over-all strategy in each of the papers. However, all three
methods allows for integration of prior probabilities.
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• How should these different kinds of information be integrated in the com-

putations? In Paper 1 and 2, it has been shown that two of the most
common types of expert knowledge in diagnosis, namely in form of an
FSM and in form of relations between conditional distributions of single
observations, appears as different kinds of constraints in the computations.
In particular, the relations between single observations are translated to
likelihood constraints, and it is shown that the likelihood constraints can
be used to represent a broad class of information

• What are the effects of the different kinds of dependencies? In probability
computations for troubleshooting with interventions this has been shown
to be a very important question to get the probabilities right. In Paper 3
and 4, the concepts of instant and non-instant dependencies and persistent
and non-persistent variables are introduced to handle this task.

• How should external interventions be handled in the computation of (1.1)?
In Paper 3 and 4 the event-driven non-stationary nsDBNs and the algo-
rithm updateBN been developed as an answer to this question.

• How to compute the probability (1.1) as efficiently as possible? This ques-
tion is very difficult, or even impossible, to answer, since it depends on
the available information and the requirements on the accuracy of the
computed result. However, in all five papers in the thesis it has been one
main issue to limit computation time and, in particular when considering
on-board diagnosis, to optimize storage requirements.

2 Future Research

In this thesis, steps have been taken towards the use of probabilistic methods
for diagnosis in automotive applications. Although answering several questions,
including the five listed in Section 1, many new have appeared during the work.
In this section we make an outlook on future work and research using a broad
and holistic view. Detailed suggestions on future work are presented in each of
the five appended papers.

Other Background Knowledge. In the thesis, we have considered back-
ground knowledge in terms of a Fault Signature Matrix in Paper 1, and in
terms of likelihood constraints in Paper 2. These two types of background
knowledge are general and can describe many types of expert knowledge. It is
shown in the papers that the same kind of background knowledge appears in
many different areas of applications. A natural next step is to investigate which
other kinds of background knowledge that exist, and how they can be combined
with data in probability computations. Furthermore, to increase the possibility
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of diagnosing and isolating faults, it would be interesting to combine different
kinds of background knowledge with each other.

Finding Dependencies and Numbers. In probabilistic models, both the
structure of dependencies between variables and the underlying conditional
probability distributions need to be determined. Data could be used to learn the
models, but as discussed in the thesis, the amount of data is often limited. In
particular this is true when systems are under development or freshly released to
the market. In addition, engineers that develop an automotive system possess
a large amount of knowledge and intuition about it. To use their knowledge
in the diagnosis, it must be translated to a form that can be used in the prob-
ability computations. To get the most out of the probability computations,
future research concerning the translation of experts’ knowledge to probabil-
ity distributions is interesting. This is particularly important in modeling for
troubleshooting as in Paper 3 and 4.

Fault Tolerant Control. In Paper 4 we have discussed troubleshooting from
a decision-theoretic view-point, and combined probabilities for faults with loss
functions to compute the best action for a workshop mechanic to perform. Sim-
ilarly, for on-board diagnosis, it would be interesting future work to combine
probability computations with loss-functions. Interesting future work would be
to apply this approach also in Fault Tolerant Control (FTC), where the objective
is to control the control-systems in the vehicle to avoid damaging consequences
of faults.

Performance Measures. In order to compare and evaluate diagnosis meth-
ods, performance measures are necessary. In the literature there are several per-
formance measures, such as percentage of correct classification, log-loss-scoring
function, or mean-square error, see for example [Devroye et al., 1996, Gustafs-
son, 2001]. However, these are general performance measures, and not developed
for diagnosis. Is it the case that a fault diagnosis system with good score in
these performance measures performs well in diagnosis? Furthermore, what is a
desired behavior of a fault diagnosis algorithm? The answer depends, of course,
on how the output from the diagnosis system is supposed to be used. Indeed,
the probability for a fault itself is rather uninteresting, as long as no reaction
on the fault is suggested or performed. Therefore, one attractive alternative
is to combine the fault diagnosis algorithm with a loss function and compute
the expected loss, or the risk. For example, in troubleshooting the Expected
Cost of Repair, defined in Paper 4 could be a suitable performance measure.
Future work in this area includes for example finding proper loss functions and
evaluating diagnosis systems to understand which properties that gives high
scores.
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Scaling. In all five appended papers, as in many research areas, the problems
related to scaling of the methods to larger problems are identified as important
and interesting future work. A related question is whether the method can be
applied to subsystems and the results from each subsystem combined, instead
of scaling the methods to larger systems?

Other Data Driven Methods and Training Data. In Papers 1, 2, and 5
we have focused on learning from data, and focused on probabilistic methods
in general and Bayesian methods in particular. In the literature, there are also
other methods for retrieving knowledge from data, such as Support Vector Ma-
chines, Neural Networks, and Nearest Neighbor-methods, see for example [Duda
et al., 2001, Bishop, 2005]. Work has been performed on applying such meth-
ods to the diagnosis task, see for example [Russell et al., 2000, Verron et al.,
2007, Lee et al., 2007]. However, these methods are based on data only, and
expert knowledge of the kinds used in Papers 1 and 2 are not used. Interesting
future work include applying these methods to fault diagnosis, and investigate
how expert knowledge can be integrated in these methods.
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A
Interpretations of Probability

Life’s most important questions are, for the most part, nothing but probability

problems

Laplace, 1814

Computations with probabilities follow well defined rules, such as the Sum
Rule, the Product Rule, and Bayes’ Rule [Blom, 1994, Durrett, 2004, Casella
and Berger, 2001]. However, to use these tools for computing probabilities, it is
necessary to find the numbers on conditional probabilities and prior probabili-
ties. To determine these numbers, it is necessary to know what the “probability”
really is.

A.1 Dealing With Uncertainty

Human life is to a great deal a life lived under uncertainty. Every day we
make decisions under uncertainty, both in professional life and in private. For
example: will the stock market raise or fall today? My car does not start, which
part has caused the failure? Should I bring an umbrella tonight? How much
should I bet on my favorite soccer team in the next game? Should I fold in the
poker game? What conclusions can be drawn from the laboratory experiment?
There is no upper limit on the number of such situations.

The situations listed above are very different in their nature. Sometimes the
probability calculation relies on data, as in laboratory experiments. In other
cases the probability calculations are based on known facts, for example, the
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number of spades in a deck of card is well known and thus the probability of
drawing a spade can be computed. In yet other cases, it seems like probabilities
are more or less based on personal feelings, for example in sports betting.

In each situation, the human brain deals with uncertainty. It considers
the available information, for example: yesterday’s stock market trend or the
observation that the headlights of my car does not light. The brain weighs
factors speaking fore and against an event, and makes decisions (which may be
more or less clever).

In the problem considered in this thesis, diagnosis of automotive vehicles,
we deal with uncertainty in a formal way. Given observations of different kinds
from a system, the aim is to construct an algorithm that, just like the human
brain, considers the available information and evaluates the probabilities that
different faults are present. The available information can for example comprise
data, different kinds of models with unknown model errors, drawings, and func-
tionality specification documents. To be able to transform these fundamentally
different types of information and construct the diagnosis algorithm that com-
putes probabilities for faults, one might ask oneself questions as: What is this
“uncertainty”? What is “probability”? What does the “probability that it will
rain tonight” mean? Is it unique? Can we put a number on it? In reference liter-
ature on probability theory, for example [Blom, 1994, Durrett, 2004, Casella and
Berger, 2001, O’Hagan and Forster, 2004], formulas and tools for manipulating
probabilities are presented, as in the following toy example.

Example A.1.1 (Was it the Sprinkler?).

Sanna wakes up a morning and wants to know whether it has rained during the
night. She knows that the prior probability for rain is p(rain) = 0.3. Moreover,
she knows that, if it has rained, the lawn will be wet, i.e. that p(wet lawn|rain) =
1. She also knows that, if there is no rain, there is a sprinkler that cause the
lawn to be wet with probability p(wet lawn|no rain) = 0.2.
After waking up, Sanna notices that the lawn is wet. She can then compute the
probability that it has rained by using Bayes’ rule and marginalization [Blom,
1994] as follows:

p(rain|wet lawn) =
p(wet lawn|rain)p(rain)

p(wet lawn)
=

=
p(wet lawn|rain)p(rain)

p(wet lawn|rain)p(rain) + p(wet lawn|no rain)p(no rain)
=

=
1 · 0.3

1 · 0.3 + 0.2 · 0.7
= 0.6818 . . .

These computations are perfectly fine as long as the numbers, such as “the
probability for rain is 0.3”, are known. In the example above, the numbers where
simply stated, but how are they found? To assign numbers in the probability
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distributions to use in computations, it is necessary to know what “probability”
means.

A.2 Interpretations of Probability

The discussion about the definition of the word “probability” has been going on
for more than 200 years [Hacking, 1976]. Depending on the background of the
researchers, there were several different interpretations during these years. The
first rigorous description of probability is often considered as the one given by
Pierre-Simon Laplace [Laplace, 1951] in 1814:

The theory of chance consists in reducing all the events of the same

kind to a certain number of cases equally possible, that is to say, to such

as we may be equally undecided about in regard to their existence, and in

determining the number of cases favorable to the event whose probability

is sought. The ratio of this number to that of all the cases possible is

the measure of this probability, which is thus simply a fraction whose

numerator is the number of favorable cases and whose denominator is

the number of all the cases possible.

Since Laplace’s definition the reactions and discussion about the meaning
of the word “probability” has been numerous. No consistent definition of the
word exists, instead interpretations are considered. The clash of opinions was
commented by Savage [Savage, 1954] in 1954:

As to what probability is and how it is connected with statistics, there

has seldom been such complete disagreement and breakdown of commu-

nication since the Tower of Babel.

A.2.1 Bayesians and Frequentists

The discussion about the definition of the word “probability” has been going
on for more than 200 years [Hacking, 1976]. Depending on the background
of the researchers, there where several different interpretations during these
years. Among the different interpretations of probability, there are two main
paths [Hacking, 1976, O’Hagan and Forster, 2004, Jaynes, 2001]: the idea of
probability as a frequency in an ensemble, often called the frequentist view or
frequency-type, on the one hand; and the idea of probability as the degree of

belief in a proposition, often referred to as the Bayesian view or belief-type, on
the other hand. There are several labels on the two interpretations of probabil-
ity, such as subjective/objective, epistemic/aleatory, belief-type/frequence-type,
Number 1/Number 2 [Hacking, 1976].
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In frequentist view, probability is defined by the relative frequency of an
event, and is a property of the object. Consider for example the statement:

This coin is biased towards heads. The probability of getting heads is

about 0.6.

This statement expresses probability in the frequency-type meaning, and is true
depending on “how the world is”. This statement can (at least hypothetically)
be tested by tossing the coin (infinitely) many times. If the relative frequency
for heads is 0.6, the statement is true, if the relative frequency for heads is
something else, the statement is false. In the Bayesian view, probability is the
degree of belief, given some evidence. Consider now this sentence about the
same coin:

Taking all the evidence into consideration, the probability of getting a

head in the next roll is about 0.6.

This statement is true depending on how well evidence supports the particular
probability assignment. The probability is subjective in the sense that it de-
pends on the evidence. This statement can be true, depending on the evidence,
even if the relative frequency turns out to be something else than 0.6.

For a dogmatic frequentist, probabilities exists only when dealing with ex-
periments that are random and well-defined. The probability of random event is
defined as the relative frequency of occurrence of the outcome of the experiment,
when repeating the experiment infinitely many times [Hacking, 1976]. Famous
frequentists are Jerzy Neyman, Egon Pearson, and Ronald Aylmer Fisher.

In the frequentist interpretation, the probability of an event is a property of
the event, and it is well defined only for events that can be repeated infinitely
many times. Thus, questions such as “what is the probability for rain tomor-
row?” are not defined, because there is only one today and one tomorrow, and
it is impossible to construct repeated experiments to investigate the relative
frequency of rainy days the day after today1. However, asking the weather of-
fice the answer would be something like “It is mid december, and it was rain
yesterday. During the last thirty years there has been rain 50% of the days, and
of those days, there has been rain the following day for about 50%”. Thus, in
a frequentistic view, the probability of rain tomorrow is the probability of rain
a “general day in mid December, where it has been rain the day before”, rather
than tomorrow. This is a different interpretation from the Bayesian view.

In the Bayesian view, probabilities can be assigned to any statement, re-
gardless of whether there is any random process involved. The probability of an

1In his book [Jaynes, 2001], Jaynes takes this argument even further and claims that there
are (almost) no experiments that can be controlled so perfectly that it is guaranteed that they
are repetitions of the same event.



A.2. Interpretations of Probability 231

event represents an individuals degree of belief in that event, given all informa-
tion that the individual has at hand. In the Bayesian view, the probability is
a property of the spectator and in particular the information the spectator has
at hand, and not a property of the event. Famous Bayesians are for example
Bruno de Finetti, Frank Ramsey, L. J. Savage, and Edwin T. Jaynes. The dif-
ference between the frequentist and Bayesian view is illustrated in the following
example.

Example A.2.2 (Urn Experiment - Frequentists vs. Bayesians).

Statement S: “There is an urn with equally many white and black balls.” For a
frequentist F1 the probability of drawing a white ball is 0.5, since if balls where
drawn from the urn infinitely many times half of them would be white. For a
Bayesian B1 with information S, the probability of drawing a white ball is 0.5,
since there is no reason for the Bayesian to favor white or black2. For a Bayesian
B2 with information S together with the statement S1: “the black balls where
put into the urn before the white balls”, would have a higher probability for
drawing a white ball than Bayesian B1.

The urn example above illustrates two important things. First, and proven
in [O’Hagan and Forster, 2004], for repeatable and independent random events,
such as drawing a ball from an urns, the Bayesian and frequentist views coinci-
dence. Also, all computational rules of probabilities, such as the product rule,
the sum rule, and Bayes’ rule can be used with both frequentist and Bayesian
definitions of probabilities.

Second, it is clear that for Bayesian B2 with information S1 in addition
to S has another probability for drawing a white ball than Bayesian B1 has.
However, the exact value of the probability for Bayesian B2 is not easily deter-
mined. For a frequentist, the probability of an event is defined as its relative
frequency. It is a property of the object, and is sometimes said to be objective.
For a Bayesian the probability for an event is subjective in the sense that it is
determined by the information the person has at hand. However, as discussed
in the next section, the probability for an event is not arbitrary.

A.2.2 Switching Between Interpretations

These two views, the frequency-type and the (Bayesian) belief-type, are dif-
ferent in a philosophical sense, and a natural question is why the same word,
“probability”, is used for both of them. Hacking [Hacking, 1976] gives one ex-
planation: in daily life, we (humans) switch back and forth between the two
perspectives. Consider the following example.

Example A.2.3 (Switching Between Frequency and Belief).

A truck of model R arrives to a mechanic at a workshop. The mechanic knows
2This is often called the Principle of Indifference.
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that among all model R trucks, one out of ten of the trucks that arrives to the
workshop has fault F present. The mechanic concludes that choosing a random
model R truck of those that has been (or are) at the workshop, the probability
that fault F is found is 0.1. This probability is of frequency-type.
Consider now the particular truck that just arrived to the workshop. What is
the probability that this truck is has fault F? The truck is either faulty of fault
free, so there is no randomness, but still the mechanic would (probably) say
that the probability is 0.1. He reasons as follwos. Out of all model R trucks
that has visited the workshop, fault F was present in 1 out of 10. This truck
is a model R and has arrived to the workshop. Taking those three pieces of
information into account, the probability that this particular truck has fault F

is 0.1.

A.3 The Bayesian View: Probability as an Ex-

tension to Logic

In this section, we follow the reasoning by Jaynes in [Jaynes, 2001], and show
how the belief-type, (or Bayesian) interpretation of probability can be subjective
without beeing arbitrary. To do this, we use the language of logic, and extend
it to also consider uncertain events. For example, assume that it is known that
A ⇒ B, and that we know that the event A is true. We can then draw the
conclusion that also B is true. On the other hand, if B is known to be true we
can not say anything about A with certainty. However, our common sense says
that if B is known to be true, A is more likely to be true.

A.3.1 Consistency and Common Sense

We will now formalize this reasoning, but first we recall the traditional definition
of probability. by Kolmogorovs axioms [Blom, 1994, Jaynes, 2001]:

• For every event A it holds that p(A) ∈ [0, 1].

• For the whole sample space Ω it holds that p(Ω) = 1.

• If A and B are mutually exclusive, it holds that p(A ∪B) = p(A) + p(B)

(“Sum Rule”).

Furthermore, the conditional probability of A given B is defined by

p(A|B) =
p(AB)

p(B)
“Product Rule” .
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Jaynes [Jaynes, 2001], based on Cox [Cox, 1946], takes another approach.
Starting from three fundamental desiderata, including requirements on consis-
tency and common sense, they show that probability must fulfill the sum and
product rules. The three desiderata are:

I Degrees of plausibility are represented by real numbers.

II Qualitative agreement with common sense.

III Consistency:

(a) If a conclusion can be reasoned out in more than one way,
then every possible way must lead to the same result.

(b) All evidence relevant to the question should be taken into
account. Some of the information can not be arbitrary ignored
and the conclusions drawn on what remains.

(c) Equivalent states of knowledges should always be represented
by equivalent plausibility assignments. That is, if in two problems
the state of knowledge is the same, then the same plausibilities
must be assigned in both.

In the desiderata above, uncertainty is expressed in terms of plausibility.
In [Jaynes, 2001] Jaynes states that probability is a monotonic function p of
plausibility. Adding the requirement that probability should be described by a
real number between 0 and 1, and adopting the convention that 1 represents
that an event is true with certainty, and 0 that an event is certainly false,
Jaynes [Jaynes, 2001] shows how the rules for probability computations can be
computed from the three desiderata given above. In particular, this holds for
the sum rule and the product rule.

The results in [Jaynes, 2001] and [Cox, 1946] are criticized and debated
for example in [Halpern, 1999] and [Arnborg and Sjödin, 2000]. However, as
remarked by Arnborg and Sjödin in [Arnborg and Sjödin, 2000], the “authors
advocating standard Bayesianism have not been strengthened or weakened” by
their analysis.

A.3.2 The Statements Behind the |-sign

In the Bayesian view, the probability of an event is determined uniquely by
the information behind the |-sign. In [Jaynes, 2001], Jaynes argues that it
is nonsense to talk about the probability of an event A without expressing
the information i which it is based on. Even if there are no other explicit
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events available, i includes general information, for example about how prior
probabilities are assigned.

A.4 Assigning Numbers

In the discussion above we have seen that there are two main interpretations
of probabilities, the frequentist and the Bayesian view, and as discussed in
Chapter 3 we switch between these interpretations in ever-day life. We have
discussed that also when the relative frequency, i.e. the probability according to
the frequentist view, is not defined or relevant, we can use the Bayesian, belief-
type, view. However, in the Bayesian case, there is still one main challenge left:
How to assign numbers to the probabilities?

In order to obtain a non-arbitrary theory for probabilities, we need objective
ways for determining the numbers. There are two cases to consider: (i) assigning
probability distribution for a variable X, given a certain state of knowledge i∗;
and (b) assigning probabilities of an event A given a certain state of knowledge
i∗.

The “state of knowledge” may be a defined background knowledge, for ex-
ample “I rolled this dice yesterday, and it showed five eyes” if A is the event “roll
the dice and obtain six eyes”. However, i∗ often represent the “prior knowledge”
about A (or X). In many situations, the prior knowledge is used to express ig-
norance, i.e. “knowing nothing”. In this case, the prior probability distribution,
the probability distribution conditioned on i∗ only, should be non-informative.

In the following sections we present four commonly used approaches for
assigning prior probability distributions, followed by a method for assigning
probabilities. Methods for assigning priors is further discussed for example
in [O’Hagan and Forster, 2004].

A.4.1 Principle of Indifference

Suppose that there are n > 1 possible events, the principle of indifference then
says that if there is no reason for favoring any of the events over the others,
each event should be assigned probability 1/n (see [Jaynes, 2001, O’Hagan and
Forster, 2004]). The Principle of Indifference is sometimes called the Principle

of Insufficient Reason.

A.4.2 Jeffreys Prior

Jeffreys Prior for a real-valued variable X is given by p(x) = 1/x. It is an
improper prior, i.e. it does not integrate to one. However, since prior proba-
bility distributions are always used together with likelihoods p(x|y) to obtain
a posterior probability p(y|x) ∝ p(x|y)p(x), they can be safely used [O’Hagan
and Forster, 2004].
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Jeffreys prior has two interesting properties. First, it is invariant to scaling
of x, and, second, it is uniform in the logarithm of x. With Jeffreys prior,
the probability of obtaining a number in the interval [1, 10] is equal to the
probability of obtaining a number in the interval [10, 100].

A.4.3 Maximum Entropy

A more general approach to assigning prior probabilities, is to use the concept
of entropy [Jaynes, 2001],

Hp(x) = −
∑

i

p(xi|i
∗) log p(xi|i

∗), (1)

where the sum is replaced by an integral sign in the continuous case. The idea
is to use the distribution p∗ that is consistent with the available information i∗

and that maximizes Hp.

A.4.4 Reference Priors

A method, related to the maximum entropy method, for assigning priors is
the concept of reference priors introduced by Bernardo in [Bernardo, 1979].
Bernardo considers the problem of probability updating, i.e the computation of
the probability of x after learning y, given by

p(x|y, i∗) =∝ p(y|x, i∗)p(x|i∗). (2)

The likelihood p(y|x, i∗) in the equation above is assumed to be known, and
p(x|i∗) is the prior to be assigned.

The reference prior is the “least informative” prior in the sense that as much
as possible is learned about X through the likelihood. This means that the
difference in information (or knowledge) about X in the posterior distribution
p(x|y, i∗) relative to the prior p(x|i∗) is maximized. The reference prior is ob-
tained by maximizing the expected Kullback-Leibler divergence of the posterior
distribution relative to the prior. Technically, the reference prior is defined in
the asymptotic limit, i.e., the limit of the priors obtained by maximizing the
expected Kullback-Leibler divergence to the posterior as the number of data
points goes to infinity.

A.4.5 Betting Game

On possibility for assigning probabilities to events that are not possible to repeat
several times is to use a betting exercise as described in [Jensen and Nielsen,
2007, Jeffrey, 2004]. For example, what is the probability that there will be
snow in Linköping on December 18 2010? Anna, based on her background and
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experience, estimate the probability to pA. Bill, with other background knowl-
edge and other experience, may estimate the probability to another value, say
pB . In this sense, the probability for snow in Linköping 2010 is subjective. One
way to assign numbers to the subjective probabilities is the following. Assume
that there is a ticket that is worth AC100 each if there is snow in Linköping on
December 2010. Anna thinks that AC10 is the right price for this ticket, and
thus pA = 0.1. Bill, on the other hand, may think that AC1 is just the right
price, and thus pB = 0.01. Betting games as the one described above are used
to predict markets for commercial means [Hanson, 2007].
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