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Abstract

Most approaches to model-based diagnosis describe
a diagnosis for a system as a set of failing com-
ponents that explains the symptoms. In order to
characterize the typically very large number of diag-
noses, usually only the minimal such sets of failing
components are represented. This method of char-
acterizing all diagnoses is inadequate in general, in
part because not every superset of the faulty compo-
nents of a diagnosis necessarily provides a diagnosis.
In this paper we analyze the concept of diagnosis in
depth exploiting the notions of implicate/implicant
and prime implicate/implicant., We use these no-
tions to consider two alternative approaches for ad-
dressing the inadequacy of the concept of minimal
diagnosis. First, we propose a new concept, that of
kernel diagnosis, which is free of this problem with
minimal diagnosis. This concept is useful to both
the consistency and abductive views of diagnosis,
Second, we consider restricting the axioms used to
describe the system to ensure that the concept of
minimal diagnosis is adequate.

1 Introduction

The diagnostic task is to determine why a correctly de-
signed system is not functioning as it was intended —
the explanation for the faulty behavior being that the
particular system under consideration is at variance in
some way with its design. One of the main subtasks of
diagnosis is to determine what could be wrong with a
system given the observations that have been made.
Most approaches to model-based diagnosis [6] char-
acterize all the diagnoses for a system as the minimal
sets of failing components which explain the symptoms.
Although this method of characterizing diagnoses is ad-
equate for diagnostic approaches which model only the
correct behavior of components, it does not general-
ize. For example, it does not necessarily extend to ap-
proaches which incorporate models of faulty behavior
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[28] or which incorporate strategies for exonerating com-
ponents [20]. In particular, not every superset of the
faulty components of a diagnosis necessarily provides a
diagnosis. In this paper we analyze the notion of diagno-
sis in depth and consider two approaches for addressing
the inadequacy of minimal diagnoses. First, we consider
an alternative notion, that of kernel diagnosis, which is
free of this problem with minimal diagnosis. Second, we
consider restricting the axioms used to describe the sys-
tem to ensure that the concept of minimal diagnosis is
adequate.

2 Problems with minimal diagnosis

Insofar as possible we follow Reiter’s [23] framework.

Definition 1 A system is a triple (5D,COMPS,0BS)
where:

1. 8D, the system descriptlion, is a set of first-order sen-
tences.

2. COMPS, the system components, is a fintle set of con-
stanis.

3. OBS, a set of ebservations, is a sel of first-order sen-
tences.

Although our framework does not require a distinction
between SD and QBS, we do so because this is the
convention in the diagnosis literature.

Most model-based diagnosis papers [2; 5; 8; 9; 14; 15;
20; 23; 27; 28] define a diagnosis to be a set of failing
components with all other components presumed to be
behaving normally. We represent a diagnosis as a con-
junction which explicitly indicates whether each com-
ponent is normal or abnormal. This representation of
diagnosis captures the same intuitions as the previous
definitions but generalizes more naturally.

The definition of diagnosis is built up from the no-
tion of abnormal. We adopt Reiter’s [23] convention
that AB({e¢) is a literal which holds when component
¢ eCOMPS is abnormal. {Some of the model-based di-
agnosis literature uses ~O K (c) instead of AB{(c) but this
is just a trivial terminological shift and does not affect
the results of this paper.) It is important to note that
we neither define nor place any conditions whatsoever




on how AB is used. Researchers have used varying defi-
nitions of abnormality — each of which corresponds to a
different policy for how AB appears in SD. Qur results
apply regardless of how AB is used. A few of the ways
abnormality is used in current model-based research are:

« In GDE [8], if a component violates its behavioral
model, then it must be abnormal. However, if it ap-
pears to be behaving normally, then it cannot logically
distinguish whether it is abnormal or not. Instead,
GDE uses probabilities to rank diagnoses,

o [21] extends GDE with a non-intermittency axiom
which requires that a component’s outputs are a func-
tion of its inputs even if it is abnormal. One of the
consequences of this axiom is that if a component is
behaving normally for all its inputs, then it cannot be
abnormal.

e In {20] a component is abnormal only if it violates its
behavioral model at the observation time of interest.

» [22] expands the preceeding notion by requiring a com-
ponent to be abnormal only if it violates its behavioral
model at some known chservation time.

Our general diagnosis framework encompasses all these
notions of abnormality. Throughout this paper we use
these differing policies in examples.

Definition 2 Given two sets of components Cp and Cn
define D{Cp,Cn) to be the conjunclion:

[A aBEO| A [ A "*AB(C)}.

et Cp eeCn

A diagnosis is a sentence describing one possible state
of the system, where this state is an assignment of the
status normal or abnormal to each system component.

Definition 3 Let A CCOMPS. A diagnoesis  for
(SD,COMPS,0BS) is D(A,COMPS — A) such that:

SDUOBSU{D(A,COMPS - A)}

s salisfiable,

The following important observation follows directly
from the definition (similar to propesition 3.1 of [23]):

Remark 1 A diagnosis exists for (SD,COMPS,0BS)
FSDUOBS is satisfiable.

Unfortunately, there may be 20COMPSI diagnoses.
Therefore we seek a parsimonious characterization of the
diagnoses of a system.

Definition 4 A diagnosis D(A,COMPS — A) is a
minimal diagnosis iff for no proper subset A of A is
DA, COMPS ~ A’} a diagnosis.

Thus a minimal diagnosis is determined by a minimal
set of components which can be assumed to be fanlty,
while assuming the remaining components are function-
ing normally,

Note that these definitions subsume Reiter’s [23]. Re-
iter’s definition of the concept of diagnosis corresponds

Figure I: Two inverters

I l I,
O
char-diag-inverter

ta our notion of minimal diagnosis. Reiter provides no
definition corresponding to our notion of a diagnosis.
All the results of [23] therefore apply to our concept of
a minimal diagnosis.

The following is an easy consequence of the above def-
initions:
Remark 2 If D(A,COMPS — A) is a diagnosis, then
there is a minimal diagnosis D(AN, COMPS — J') such
that A’ C A.

Many approaches to model-based diagnosis have as-
sumed that the converse holds:

Hypothesis 1 (Minimal Diagnosis Hypoth-
esis) If D(A,COMPS — N} is a minimal diagnosis
and if A CA CCOMPS, then D(A,COMPS~A) is

a diagnosis.

As we see in section 7, the Minimal Diagnosis Hypoth-
esis holds under the assumptions usually made. How-
ever, as we relax these assumptions, for example by al-
lowing fault models or exoneration axioms, the Minimal
Diagnosis Hypothesis fails to hold and we must explore
alternative means for parsimoniously characterizing all
diagnoses.

Remark 3 The Minimal Diagnosis Hypothesis does not
ehways hold: If D(A!,COMPS ~ A') is a minimal di-
agnosis and A’ C A, then D{A, COMPS — A) need not
be a diggnosts.

Thus, not every superset of the faulty components of a
minimal diagnosis need provide a diagnosis. To see why,
consider the following two simple examples. The first
example arises if we presume we know all the possible
ways a component can fail such as in [28].

Example 1 Consider the simple two inverter circuit of
Fig. 1. If we are making observations at different times,
then we must represent this in SD in some way. One
scheme is to introduce observation time ¢ as a parameter.
Thus, a model for an inverter is:

INVERTER{z) —
[ﬂAB(x) — [in(z,t) = 0 = out{z,t) = 1}]
We assume that SD is extended with the appropriate
axioms for binary arithmetic, etc. Suppose the input is

0 and the output is 1: in(l;,Tp) = 0,0ut(lz,To) = 1.
There are three possible diagnoses:

DL}, {L}) : AB(L:) A~AB(L)
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D({12}, {11}) : AB(I1} A~AB(1,)
D({11, 2}, {}) : AB(I1) A AB(L)

These three diagnoses are characterized by the first two
diagnoses, which are minimal. Suppose we know that
the inverters we are using have only two failure modes:
they short their output to their input or their output
becomes stuck at 0. We model this as:
INVERTER(z) N AB{2)} — [SA0(x) V SHORT(x}],
SA0(z) — out(z,t) =0,
- SHORT(z) -+ out(e,t) = in(2,t).

From these models we can infer that it is no longer pos-
sible that both I} and I, are faulted. Intuitively, if Iy is
faulted and producing the observed 1, then it cannot be
stuck at 0, and must have its input shorted to its out-
put. But then [; must be outputting a 1 and there is no
faulty behavior of I; ‘which produces a 1 for an input of
0. Thus, AB{I;) A AB(l3) is no longer a dlagnoms but
the minimal diagnoses remain unchanged, ..

The only way to determine which.of Iy or Iz 18 actu-
ally fa,ulted is to make additional obsea,'vatmns For ex-
whetzher 5 or Ig is faulted Suppose I, is faulted such
that out(I;, Tp) = 0. To identify the actual failure mode
of I} we have to observe out(Il, ) or out(Ig,Tl) given
inf{l;, i) = 1.

This example ‘shows thaﬁ the use of exhaustive fault
models such as in [28] leads to-difficulties with the usual
definition of diagnosis. One way to avoid this difficulty
is not to presume all the faulty behaviors are known
as in [9]. However, if we do not know all the faulty
behaviors, then nothing useful can ever be inferred from
a component belng abnormal which defeats the purpose
of fault modes in the first place (this is addressed in {9]
by introducing probabilities).

Example 2 The usual definition of diagnosis encounters
similar difficulties with the TRIAL framework of [20]. In
this framework a componént is considered faulty if it is
actually manifesting a faulty behavior given the current
set of inputs. If we are only concerned with one set of
inputs, then every component is'modeled with a bicondi:
?:ona! Thus, the inverters of Fig. 1 are mstead described
yi

INVERTER(z) — :
[«»«AB(;&) = [in(z) = 0 = out(z) = '1]].
Suppose the input and output are measured to be 0.

There are only two diagnoses (the second of which is
minimal):

AB(I)) A AB(Iy), =AB(I}) A «ﬂAB{Ig).

It is not possible that one inverter is faulted and the
other not. Each inverter exonerates the other. In terms
of [20], each inverter is an alibi for the other. Thus,
although ~AB(I1} A -AB{I;) is a minimal diagnosis,
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neither ~AB(l} YA AB(l2) nor AB(I} ) A—~AB(l3) are.di-
agnoses. Again, we'see that by including axioms which
restrict faulty behavior in any way, the Minimal Diag-
nosis Hypothesis fails to hold. - -

In the remainder of this paper we explore two ap—.
proaches to address this problem: (1) find an alterna-
tive means to characterize all diagnoses, and (2) restrict
the form of SDUOBS such that the Minimal Diagnosis
Hypothesis holds. We first require some preliminaries.

3 Mlmmal dlagnoses

The mmlma.l dmgnoses are conveniently defined in terms
of the familiar [18] notions of implicates and implicants
(see [17; 24] for similar uses of these notions).

Definition 5 An AB-literal is AB(c) or ~AB(c) for
some ¢ € COMPS.

Definition 6 An"’AB-clause is a d:’sjuﬁciion of AB<
literals containing no complementary pair of AB:literals.
A positive AB-clause: is. an AB-clause all of whose lit..
erals are posilive..

Note that the empty clause is conSldered a posxtzve
AB-clause; - ,

Definition 7 A conflict of (SD COMPS, OBS) i5 an
AB-clause entailed by SD U OBS. A posilive conﬁtct
is a conflict all of whose literals are posilive. .

I $D U OBS is propositional, then a conflict is any
AB-clause which is an implicate of SD U OBS.

The conflicts provide an intermediate step in deter-
mining the diagnoses and are central to many diagnostic
frameworks. The reason for this can be understood in-
tuitively as follows. The dlagnostic task is to determine
malfunctions, and therefore the primary source of diag-
nostic information about a system are the d:screpa,ncles
between expectations and observations: A conflict rep-
resents such a fragment of diagnostic information. - For
example, the conflict AB(A)V.AB(B) rmght. result from
the discrepancy between observing z = 1 while expect-
ing it to be 2, if components A and B were normal. As
a consequence, we infer that at least one of A or B.is
abnormal, i.e., the conflict. AB(A’* v 43(,8\ Movst‘ e
searchers have focussed .only on positive conflicts. (As
rmiost previous. research’has focused on the positive:con-
flicts, they usually represented: conflicts as sets of ‘ab-
normal components.): However, as we.see in Section 4,
the non-positive conflicts are important when 'we modei
faults and do exoneration.

Remark 4 A . didgnosis ezists  for {SD
COMPS,0BS) z_ff i _mpty clause is not a canﬁtci of
(SD,COMPS,08S) :

Theorem 1 Suppose {SD COMPS QOBS) is a sysiem,
I is -#ls: sel of. eonﬁzcts, and A C. COMPS. Then
DA, COMPS A)isa dmgnoszs 3}3‘

U {D(A,COMPS - A)}

is satzsﬁable




Proof, =» Consider a diagnosis D. Since S DUOBSU{D}
is satisfiable, so is TU { D} for any set T of sentences en-
tailed by SDUOBS. Since II consists of clauses entailed
by SD UOBS, U { D} must be satisfiable.

o Conversely, consider a & C COMPS for which
U {D(A, COMPS ~ A)} is satisfiable. Suppose SDu
OBSU{D(A,COM PS~A)} is unsatisfiable. Therefore,

SDUOBS k= =D(A,COMPS — A).

But ~D{A, COM PS— A) is an AB-clause so it must be
in 1, contradicting the fact that ITU {D(A,COMPS
A)} is satisfiable. O
Definition 8 A minimal conflict of (SD,COMPS,0BS)
is o conflict no proper subclause of which is a conflict of
(8D, COMPS, 0B5).

Thus, if $D U GBS is propositional, then a minimal
conflict is any AB-clause which is a prime implicate of

SDUOBS.

Theorem 2 Suppose (SD,COMPS,GBS} is a sysiem,
11 is its set of minimal conflicts, and A C COMPS. Then
DA, COMPS — A) is a diagnosis iff

HU{D(A,COMPS - A)}

15 salisfiable.

Proof. 11 is logically equivalent to the set of conflicts of
(SD,COMPS,0BS). The result now follows from Theo-
reml. O '

Remark 5 If all the minimal conflicts
of (SD,COMPS,OBS) are non-empty and positive, then
D{COMPS, {}) is a diagnosis.

As the minimal conflicts determine the diagnoses, they
play a central role in most diagnostic frameworks.

Example 3 Consider the familiar circuit of Fig. 2. Sup-
pose the component models are:

ADDER(z) —
[~AB(x) — out(z) = inl(z) + in2(z))
MULTIPLIER(z) —
[~AB(z) — out(z) = inl(z) x in2(x)]

As before we assume that SD is extended with the ap-
pmpriate axioms for arithmetic, etc. With the given
inputs, there are two minimal conflicts:

AB{A YV AB(M)V AB(M3)
AB{ANYV AB(M\)V AB(M3) Vv AB(A2),

and four familiar minimal diagnoses:

’D({Al}, {Ag, M1, ﬂr’fg, 4"{3}) s
AB(A§)/\-iAB(AZ}/\—!AB(R'f;)/\"”“’AB(JMQ)A""AB(AJ;{)
D({xM}}, {Al, rﬂig, 1“/[2, M’lfg}) 8
AB(MA~AB( A1) A=AB(Ay) A~ AB(My) A~ AB(Ms)
’D({A”{Qx 5/1-3}) {A}) A?& I)U—;_}) :

AB(QM;}) AAB{M)A—AB(AA -AB{A:) A “!AB(;Wl)

Figure 2: F == AC + BD,G=CE + BD

3 A nl
43
ML o X
nZ
B Multiplicr L lint F
2 np AL 10
L_dmt Adder
2 ¢ M2 o ¥
pormnd i1 2
D Muhiplier L |t G
3 Im2 A2 o= 12
in § Adder
3 E 2 M3 ou v/
Muiplies
chuer-<Hing - paiy how

'D({Ag, ﬂff;g}, {Al, ;M;, Mg}) N
AB{Ay) A AB(M3) A~ AB(A;) A=AB(M YA -AB(Ms).

To prove the next two theorems we need the following
lemma.

Lemma 1 Suppose that I is the sel of minimal conflicts
of {(SD,COMPS,0BS), and that A 15 e minimal set such

that,
nu{ A

CECOMPS~a
is satisfiable. Then D(A,COMPS — A) is a minimal
diagnosis.
Proof. By the minimality of A, we have, for each ¢’ € 4,
that

~AB(c)}

uu{ A ~AB(e)} U {~AB(c)}

cECOMPS-A
is unsatisflable, i.e. for each ¢ € A

nu{ A  -4B(d} EAB()

teCOMPS-A

nu{ A -4B}E /\ ABC)

ceCOMPS-A cEA

80

Moreover, by hypothesis,

nu{ A

cECOMPS-A
is satisfiable. Hence, 1 U {D(A,COMPS — A}} is sat-
isfiable, so by Theorem 2 THA, COM PS— A) is a diag-
nosis. It remains only to show that A is a minimal set
such that D(A, COMPS - A) is a diagnosis. But this
is easy, for if D(A/,COMPS ~ A') were a diagnosis for
a strict subset A’ of A, then

nu{ A -AB()}

ceCOMPS-a!

~AB(c)}
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would be satisfiable, contradicting the hypotheszs of this
lemma. O

Definition 9 A conjunclion.C of literals covers a con-
junction D of literals of evev‘y Iiteml ef O occurs in D,

Definition 10 Suppose T is a se! of propasziwnai Jor-
mulas. A satisfiable conjunction of hilerals = {i.e.,, a
congﬂnciwn containing no pair of complementary liter-
als) is an implicant-of T iff = entails each formala in ¥.
s a prime implicant of & zﬁ' the om’y 1mplzcant of &
covering ¥ is x iself.

Theomm(i (Cbamcienzai:oﬂ of mm:mal diagnoses)
P(A, COMPS — A) is @ minimal- didgnosis of
(SD,COMPS,OBS}: iff AcEA AB(c) is & prime im-
plicant of the- set: af posatwc minimal conflicis of
(5D, C‘OMP.S‘ OBS)

A proof of this theorem is. ngen by Corollary 4.5 of
[23]. The foilowmg is:a du:ecﬁ .proof in the terminology
of this paper... .
Proof, = Suppose II* Is the set of posatwe mmtmai con-
flicts for (SD,CO
A) isa dmgnoszs ;

fk)} is: 3 a-dso satisfiable. ... Since
): contains every possible AB~htera.I

Since H* cont.ams only positive literals, the negative lit-
erals are me]evani;

/\ AB(«:} = I+,

Smce ‘D(A COMP_ —-‘zk) isa minimal diagnosis, no
subset of A:has this' »erty Hence, A, AB(c) is
not only an implic t a pnme 1mphcant of It,

< Suppose H and 11+ are the sets of minimal and
positive minimal conflicts for (SD,COMPS ,OBS), and
that Ajcx | AB(¢).is'4 primeimplicant-of II+.' We prove
that A is a minimal set such that

nu{" A wA3§c}}

ECOMPSE A

is satisfiable. The resuit will tfzen follow from Iemma 1.
Suppose then that F ~ .

nu{ /\ r‘

wAB(c)}
‘cecoMPS_A " :
is unsatxsﬁabie 80 that .
BE - V. 4B
cECOMPSLA -
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which is a positive clause. Because II consists of minimal
conflicts, it follows that some clause of It contains lLit-
erals of VceC’O Mps-.a AB(c). But this cannot be since

Acea AB(c) isa prime 1mphca.nt of I+, Hence

ﬂu{ /\

tECOMPS-A

~AB(9)

is satisfiable. We now prove A is a minimal set with
this property. Every conflict in It has the form
Vcea'ux AB(¢) for some A’ C' A and K'C COMPS =~

Moreover, for each & € A, some such conflict con-
tains DA, COMPS A) else A.cp AB(c) is' not a
prime implicant of II*+: ‘We prove that some conflict in
I* containing P(A; COMPS - A) must have the form
D(A,COMPS — A}V Ve g ABE): For if not, then
every. conflict.in II* which contains. D(A,COMPS —
A) must. have the form D(A,COMPS ~ M)V
D(§,COMPS ~ 6} V...V Viex AB(k), where & € A
and & # 4. . But then Aceanqs3 AB(c) is a smaller
implicant. than /\ge 2 AB(e), yielding a contradiction.
Hence, for each & € A ‘there is a conflict of the
form D(A COMPS — AYV Vi ex AB(k) where K C
COMPS - A. Hence, foreach 5€ A

D(A,COMPS~-Ayv  \/  AB(o)-
' cCECOMPS—-A.
18 a conflict so that,
muf. A wAB(c)}

€ {S}U(COMPS-A)

is unsatisfiable. Smce we have aJready proved Ehat N

ou{: /\ ~AB(¢)}

céSOMPS-

is satisfiable, A m’ht be a, mmlmai set wnth this pro;:-
erty. 0O e

This theorem underlxes many model-based diagnos-
tic algorithms. The. first step,.conflict recognition, finds
positive minimal conflicts, and' the second step, can-
didate: generation, finds prime implicants.  Clearly, if
we were only interested in iinimal dmgnoses ‘then we
would only be interested in'identifying the positive min-
imal conﬁlcts, but, in general, we must consuier the non-
positive minimal’ conﬂlcts as wall. '

We now have the machmery to state precisely when
the minimal diagnoses'characterize all diagnoses.

Theorem 4: The foliawmg are equivalent:

L If DA, COMPS— A') is & minimal dmgnaszs for
($D,COMPS,0BS), then D(A,COMPS— A) is a di-
agnosis for ($D,COMPS, 0BS) for every A such that
COMPS D A DA (ie., every superset of the faulty
components af a minimal dtaynaszs provides a d:agnm
sts ).

2. Al mtmmal cauﬁzcis of (SD COMPS OBS) are. posi-

‘tive.




Proof. 1 = 2. Suppose, for Cp,Cn C COMPS, that
\V AB(e)v \/ =AB(c)

c&Cp cECH
iz a conflict of (S§D, COM PS,0BS). Then

\V 4Boov  \/  -A4B(c)

c&Cp cECOMPS-Cp

is a conflict, so that the negation of this, which is
DP(COMPS~Cp,Cp), is not a diagnosis. We prove that
Veeen AB{c) is a conflict, from which the result follows.
Suppose not. Then SDUOBSU{-~AB(c) | ¢ € A} is sat-
isfiable. Let A D Cp be a maximal subset of COMPS
such that SDUOBSU {-~AB(c) | ¢ € A} is satisfiable.
By lemma 1, D(COMPS — A, A is 2 minimal diagno-
sis. Since A D Cp, then by property 1 of the theorem,
D(COMPS — Cp,Cp) is a diagnosis, contradicting our
previously established resuit.
2 = 1. Suppose D(A',COMPS — A') is a minimal di-
agnosis and COMPS 2 A D A’. By Theorem 2, if I
is the set of minimal conflict of (SD,COMPS, OBS),
then I U {D(A,COMPS — A'}} is satisfiable. Since
for each ¢ € COMPS either AB{c) or —~AB{c) occurs
in D(A,COMPS — A"), this means that every AB-
clause of Il contains a literal of D{A,COMPS ~ AY)
and this literal is positive since the AB-clauses are pos-
itive. Hence, because A D A, each AB-clause of
IT contains a positive literal of D(A,COMPS — A),
so II U {D(A,COMPS ~ A)} is satisfiable, whence
P(A,COMPS ~ A} is a diagnosis, 0O

In Example 1, AB(I}) A—~AB(I2) was a diagnosis, but
AB(I)) A AB(Iy), which has more faulty components,
was not. By Theorem 4 this must arise because one of
the minimal conflicts is not positive. In this example,
the negative clause, =AB(f1) V ~AB(l1), is a minimal
conflict, which follows directly from the fault models of
I; and I,.

4 Partial diagnoses

Suppose we have the following two diagnoses for a three
component system: AB(e1) A AB{ca) A AB(c3) and
AB(e) A AB{c3) A =AB(c3). We can interpret this as
saying that ¢, and ep are faulty, and that ¢a may or may
not be faulty., Thus, the two diagnoses may be repre-
sented more compactly by AB(e:1) A AB(cz). In fact,
we can view this as a ‘partial’ diagnosis in which we
are uncommitted to the status of c3; no matter what
that status is, it leads to a diagnosis. This is the ba-
sis for Poole’s observation [19] that a diagnosis need not
commit to a status for each component whenever that
status is a ‘don’t care’. Accordingly, we introduce the
concept of a partial diagnosis. This concept also has the
nice side effect of providing a convenient representation
characterizing the set of all diagnoses.

Definition 11 4 pariial diagnosis for
(SD,COMPS,0BS) is a satisfiable conjunction P of
AB-literals such that for every satisfiable conjunction ¢

of AB-literals covered by P, SDUOBS U {3} is satisfi-
able.

Notice that as every conjunction covers itself that all
partial diagnoses are satisfiable.
The following is an easy consequence of this definition:

Remark 6 If P is a partial diagnosis of (SD,COMPS,
OBS) and C is the sel of all componenis mentioned in
P, then
PA N Al
e€COMPE-C
is a diagnosis, where each A(c) is AB(c} or ~AB(e).

Thus, a partial diagnosis P represents the set of all di-
agnoses which contain P as a subconjunct. It is natural
then to consider the minimal such P’s, which we call
kernel diagnoses.

Definition 12 A kernel diagnosis is a parfial diagnosis
with the property that the only partial diagnosis which
covers il is iself.

The following easy result provides exactly the character-
izing property we have been looking for:

Theorem 5 (Characlerization of diagnoses)
DA, COMPS ~ A) i3 a diagnosis iff there is a kernel

diagnosis which covers it.

Consider the example of Fig. 1. Without the in-
troduction of fault models there were three diagnoses:
AB(INA=-AB(D), ~AB{I))NAB(L), AB(I))ANAB(I)
which are characterized by the two kernel diagnoses:
AB{I) and AB(I,). With the addition of the fault mod-
els, the kernel diagnoses become: AB(I})A—~AB(Iy) and
~AB(I)) A AB(I).

Partial and kernel diagnoses can be particularly easily
characterized in terms of prime implicants and minimal
conflicts. Recall that a conjunction of literals = contain-
ing no pair of complementary literals is an implicant of
L iff 7 entails each formulain .

Theorem 6 The partial diagnoses of (5D,COMPS,
OBS)} are the implicanis of the minimal conflicts of
{(SD,COMPS,0BS).

Proof. fet H be the set of all conflicts of
(SD,COMPS,0BS). Since H is logically equivalent to the
set of minimal conflicts of {(SD,COMPS,0BS), it is suf-
ficient to prove that the partial diagnoses are the impli-
cants of II. As a further simplification, we appeal to the
following analog of Theorem 2, whose proof is similar:
K is a partial diagnosis iff II U Z is satisfiable for every
satisfiable conjunct I of A B-literals covered by K.

=> Suppose K is a pariial diagnosis. We prove K = 7
for each » € 11, whence K is an implicant of II. Suppose
not. Then K [ 7 for some » € [I, which means that
no literal of 7 occurs in K. Let £ be the set of those
literals of © which are not complements of literals of K.
Consider P = K A A —I. P A7 is unsatisfiable. But
K covers P, contradicting the fact that K is a partial
diagnosis.
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< Suppose that K is an implicant of II: We prove K is
a partial diagnosis. Since K =l foreach 7 € I, C =7
for each satisfiable conjunct C' of AB-literals aovered by
K. Hence HU{C} is satisfiable for any such C so that
K is a partial diagnosis. O

Coroliary 14 Characieﬂzatwn of kemei dmguoses)
The kernel diagnoses of .(5D,COMPS,0BS) are the
prime implicants of the minimal conﬂ:cts of 8D U OBS.

Proof. Let II. be the. set; of minimal conflicts of
(SD,COMPS,0BS). :

= If K is a kernel dlagnosm then by Theorem 6 it is
an implicant of Il We-prove-it'ig pnme If not, then
for some C. distinet. from. K but.covering K, € i: x for
each. 7 € IL Hence, for every satisfiable con_]uﬁct D of
AB-literals covered by C;.D . Thus TTU { D} is sat-
isfiable for each'such D, which means that X is not a
kernel diagnosis, contradmtaon

'E;qant of I. Thén by Theo-
rem § itis % partial ragnosis. “Suppose K is not a kernel
diagnosis. Then there i is a con;unct C covermg K but
distinct. from:

. respcncience between muumai dlagnoses
and. kernei diagnoses, . . -

he :;'»éjii'ri_i'ma_i conflicts. can be com-
,phcai.e algorithm, otherwise more

bee;r) One'wé,ytv ¢
of the minimal conﬁlcts to DNF and sampkfy as follows
(we omit the proef)

1. ‘Multiply’ the: mlmmal conﬁlcts to glve a disjunction
of conjunctions, =

2. Delete any: canjuncmon contammg a compiementary
pair of literals;, st

3. Delete any " conjunctmn covered by some other con-
Junetion. :

4. The remaining cofijunctions are the prime implicants
of the ongmal i1} onﬁ:cts and hence the kernel
diagnoses. "

Example 4a Conﬁder'ExampEe 3. There are two min-
imal conflicts: ' ,

AB(A;) v AB(M;} v AB{Mg)

AB(Ay) V AB(M{) V AB(M;-}) vV AB(AQ)
and four kernel diagnoses:.

' AB(A»_I)'
AB(M;}

AB(MQ) /\ AB(AZ)
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As all minimal conflicts are positive; these diagnoses cor-
respond one-to-one to the familiar minimal diagnoses.
Example 4b Suppose we used slightly different compo-
nent models:

ADDER(z) —
[~AB() = [out(x) = inl(z) + in2(z)]]
MULTIPLIER(z) -
[—:AB(:) [out(z) = inl{z) x in2(z)]].

In this case the minimal g:o:ﬁﬂiéts become:
AB(ﬂl) v AB(M;:) ¥V AB(ﬁfg)
AB(A;) A% AB(AQ) V:AB(ME) v AB(M;;)
AB(A2)V ~AB(M) Vv AB(M3)
AB(43) V AB(M3) V =AB{Mz)
~AB(A2) V AB(M3) vV AB(My),
and the kernel diagnoses become: '
~AB(A2) A AB(My) A=AB(M3) A~AB(My),
AB(As) A AB(M;) N AB(Ms)
AB(Ay) A"-xAB(A_'g) A-AB(Ma) A-AB(Ms)
. AB(A1) A AB(A2) A AB(M3)
AB(M2) AAB(Ms).
Note that because the .positive. minimal conflicts are
unchanged, the set of mm;mai diagncses remaing un-
changed. .. -

In this exa.mple there are only a few more kernel d"l-
agnoses than minimal diagnoses (6 vs. 4). However, one
possible disadvantage of this approach.is that there may
sometimes be exponentially more kernel diagnoses than
diagnoses,

It is interesting to note that.the set of minimal con-
flicts may be redundant. In Example 4b, the ﬁrst and
third minimal conflicts entail the second:

AE(Ax) W AB(Ml) vV AB{M2)
AB(Aa) V ﬁAB(Mg) V AB(M:;)

AB(AY)V AB(Az) V' AB(M;} v AB(M3)

Therefore, the secorid minimal conflict. is xedundant
Such redundancy can only occur if there are non-positive
minimal conflicts. Unforﬁunateiy, these observations do
not seem to be of much practical, use because there is
no easy way to tell whethe: ‘there are enough minimal
conflicts without first ﬁndzng them all. -

Definition 13 A4 set of kernel dzagnases is :rrcdunduni
iff it is a smallest cardinality sel with the property that
every diagnosis is covered by at least one of its elements.

Theorem 7 If all minimal conflicts are posifive there is
exactly one irredundant set-of keme{ daagnoses, namcly
the sel of all kernel diagnoses.




A system can have multiple irredundant sets of kernel
diagnoses.

Example 5 Consider a circuit having three components
A, B, € and the two minimal conflicts:

AB(A)V AB(B) Vv AB(C)
~AB{A) Vv -AB(B)V-AB(C)

These have six prime implicants (i.e., kernel diagnoses).

AB{A) A ~AB(B)

—AB(A) AAB(C)

AB(B) A~AB(C)

—AB(A) A AB(B)

AB(A) A ~AB(C)

~AB(B) A AB(C)
There are two irredundant sets of kernel diagnoses:
{AB(AYA—AB(B), ~AB{A)AAB(C), AB(B)A-AB(C)}

{=AB(AAAB(B), AB(A)A—AB(C), ~AB(B)AAB(C)}.

QOur analysis of kernel diagnoses corresponds to the
classical analysis in switching theory of so-called two-
level minirmization of boolean functions (e.g., the Quine-
McCluskey algorithm [16; 18]). The problem there is to
synthesize a circuit realizing a given function as a dis-
junction of conjunctions of literals in such a way as to
minimize the number of conjunctions and literals. Such
circuits are characterized by irredundant sets of prime
implicants of the given function. In the case of diagno-
sis, the given boolean function is specified by II, the set
of eonflicts of SDUOBS. The kernel diagnoses are the
prime implicants of I, and the minimal sets of kernel
diagnoses sufficient to cover every diagnosis are the irre-
dundant sets of prime implicants of II. It is well known
from switching theory that the minimization problem
is computationally intractable; there may be too many
primme implicants, and even if there aren’t, finding an
irredundant subset of them is NP-hard. Therefore, de-
signers of VL8] cireuits have developed various approx-
imation techniques [1]. Because of the correspondence
w.ith diagnosis, we can expect to profit from these tech-
nigiies.

It can be useful to construct irredundant sets of partial
diagnoses containing non-kernel diagnoses. For example,
for probability calculations it is useful (as far as possibie)
to ensure that no two of the partial diagnoses have a
common superset. The probability calculus of [8; 9; 10;
20] computes the probabilities of outcomes by combining
the probabilities of partial diagnoses. For example, if
some outcome holds in two diagnoses 4 and B then its
probability is:

P(AV B) = P(A) + P(B)— P(AA B)

IfA and B have no common superset, then P(AA B) =
0. This can result in an exponential speed up in the
probability calculations.

5 Prime diagnoses

Raiman [20] proposes a notion of prime diagnosis to
characterize diagnoses. In his TRIAL architecture, com-
ponents are individually incriminated and exonerated.
Therefore, he characterizes the diagnboses of a system in
terms of the diagnoses involving its individual compo-
nents. The following is a generalization of his definition.

Definition 14 Given (5D, COMPS,0BS), a prime di-
agnosis for cc¢COMPS is e minimal diagnosis for
(SD,COMPS,0BS U {AB{c)}).

Prime diagnoses characterize all diagnoses as follows.

Theorem 8 {Raiman) Suppose D{A, COMPS — A)
18 a diagnosis, Then for each c; € A there is a prime
diagnosis D(A&, COMPS — A;) for ¢ such that A =

Us A

Unfortunately, Example 1 shows that not every com-
bination of prime diagnoses leads to a diagnosis. The
prime diagnoses are:

P(L) = {AB(L} A ~AB(L)}
P(ly) = {AB(I,} A-AB(I1)}

However, AB{I;} A AB({I;) is not a diagnosis. Thus,
prime diagnoses are inadequate to characterize diag-
110Se8.

Raiman {20] imphicitly assumes all minimal conflicts
contain at most one negative literal. In this case Raiman
shows that the converse of Theorem 8 holds which makes
prime diagnoses adeguate for characterizing diagnoses.
This useful property holds if SDUOHBS is Horn, but we
do not know of any more general practical condition on
SDUOBS which ensures it.

6 Abductive diagnoses

An alternative to the consistency-based approach is to
define diagnosis in terms of abduction {3; 4; 12; 19]. In
order to do so we must differentiate those observations
which are about inputs from those which are about out-
puts. The intuition is that we sometimes want the di-
agnoses not only to be consistent with the observations,
but to also predict the outputs given the inputs, Using
the logical framework we have Iaid out thus far, it is
straight-forward to develop a characterization of abduc-
tive diagnoses.

in order to define the noticn of abductive diagnosis
we must distinguish between those sentences in OBS
which are about inputs, I, from those which are about
outputs, 0. The terms “imputs”, “outputs” and “di-
agnoses” are here being used generically. Abduction in
general appeals to a built-in asymmetry based in part
on a distinction between cause and effect. In performing
abductive reasoning on causal systems, the observations
to be explained are taken to be effects of causal factors;
these causes are treated as though they are part of §D.
So for circuits, outputs would be the results of mea-
surements, while cireuit inputs, which are the normal
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causes. of the outputs are treated-as though they were
in SD. In a medical setting, the “diagnoses” might be
diseases (measles, malaria), while the “outputs” might
be symptoms (fever, dizziness) and the “inputs” might
be perturbations to the system, such as diet or lab tests.
These observations about abd: “are intended as a
gulde to formulating the contents of "SI, I and OBS
in order to achieve intuitively ‘watisfying résults — but
our framework .and its. crmciumons appiy whatever the
contents of §D, I and-OBS: &

Definition 153 Lei A CCOMPS 035 ru
0. An. abductive a‘mgnosas for SB COMPS OBS} is
h

-‘CGMPS A)}

is satz’sﬁable* and S
SDulIu {'D(Ai COMP.S'?: A} 0.

Deﬁmtmn 16 A partial’ twe d:agnos:s for
(SD,COMPS,0BS) is a satisfiable conjunclion P of
AB-literals such that for;every satisfiable conjunction ¢
of AB-literals covered by P, SD: UIU {(23} 15 satisfiable

Definition 17 4 kern
abductive d:agnosas. tirid
abd‘uciwe d:a O3S

ai)dﬁciwe diagnosis of
2 part:ai d:agnasas of

0% . f abductwe dmgnoses)
bductwe dmynosw iff there

-sei af ﬁrsi order sen-
literals m containing no
aw-implicant of X iff n
sai%sﬁablc conjuuctwn of

thlgg paper we can
‘prime implicants, at

leési: for firiite axiomatizations:

Theorem 9° Sippose: SO L and O are finile sels (so
that we can ireat eachof these us-a:senience consisi-
ing of the conjunction: .of its- elements). A conjunc-
tion K of AB-literals is-a: kernel:abductive diagnosis
of (SD,COM PS, I V.0 iff K" is a’ prime implicant. of
BA{SDATL — 0}, aghere: T s the conjunction:of the
minimel conflicts of (SD COMPS Tuo).

Proof. 4= Consider any sat
literals covered by K. ‘Theé
in which case {¢} k. I’I and

{é}{::.S‘DAI—«»O o (1)

s conjunction ¢ of AB-
E:fﬂf’&,{g}?_/\lmf()}
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By - Theorem: 6;: ¢ is . a . partial diagnosls of
(SD,COMPS,IT U O) and thus {¢} U SD U I is satis-
fiable. Moreover, by (1), {#}USDUI |= Q. Hence,
by definition, K is a partial abductive diagnosis.” We
must prove that K is a kernel abductive diagnosis. To
that end, suppose K’ is a partial abductive diagnosis
of (SD,COMPS, I'U Oy which- covers K. By Remark
7, K'is a paxtlai diagnosis of (SD,COMPS, 11U 0),
whence by Theorem 6, {K’} = II. Moreover, {K'} k=
SD AT O by virtue of being a partial abductive diag-
nosis of (SD, COM PS5, IUQ). Hence; K' is an implicant
of A {SDAI — O}. Since K is a prime implicant of
HA{SDAI— 0}, K'= K. Thus K must be a kernel
abductive diagnosis of (SD COMPS, TU0).

=> We first prove that K is an implicant of HA{SDAI -
0}. Since K is a kernel (and hence partial) abductive
diagnosis, K is a partial diagnosis of (SD,COMPS, TU
0), by Remark 7. By Theorem 6, {K} = II. Moreover,
KUSDUI = O since K is a partial abductive diagnosis.
Hence, {K} |z SDAT — O and {K} }= Il so that K is an
implicant of DA{SDAT — O} Next we show that K is
prime. Suppose K’ is an implicant of NA{SDAL — O}
which covers K, and let ¢ be any satisfiable conjunction
of AB-literals covered by K’. Then ¢ is an iinplicant
of I A{SD A I — O}, ‘Sirice ¢ is animplicant of T1,
by Theorem 6; {¢}USD U I'UO is satisfiable, whence
so also is {¢} U SD U . Moreover; {}JUSDUI 0.
Therefore, K'is a partial abductive diagnosis. Since K’
covers K a.nd K is kernel K= Ii so that K is pnme
0 .

Poole 19] has cieveloped a very partmuiar deﬁmtmn
of “abductive diagnosis” which differs from that of defi-
nition: 15. To prevent confusion we refer to h:s deﬁmt:on
as P-abductive diagnoses:

Definition 19 An * P-abductive d:agnoszs of
(SD,COMPS,I'U O] is ¢ con_juncizon P of AB-literals
stch that: (1) SDUTU P is satisfiable, (2f SDU TU P
= O, and (3) it is not covered by some other P—abductwe
a’mgnoszs -

This. deﬁmt:on is dﬁerent than the three notions we
have just seen. P-abductive diagnoses are not abductive
diagnoses. as. they do not include an AB.literal for every
component, . Althaugh partial dmgnoses do, not. include
an AB-litera] for every component, they are not min-
imal. . Although kernel dxagnoses are minimal, Poole’s
definition does not require. that every other conjunction
of AB—hterais covered by it is also an P-abductive diag-
nosis.

P-abductive dlagnoses do not chara.cter:ze the space of
abduetive diagnoses i\everﬂ}eiess with the definitions
we have developed it is possxbie to state precisely what
P-abductive diagnoses dre in terms of prime implicants.
Theorem 16 A conjunction of AB.literals K- is-an P-
abductive diagnosis of (SD,COMPSIUO) iff K is a
prime implicant of SDUT — O and SDUIU{K} is
satisfiable. ,

Pmaf <« Let K be a: con_junctlon of AB- hterals which
is a prime implicant of SDUT - O and SDUTUK




is satisfiable. Consider any ¢ covered by K. By the
definition of cover, {¢} ESDUI - O. If {¢} = SD U
I — O, then {¢}USDU! k= O by the deduction theorem.
SDUIU{¢} is satisfiable. As K is a prime implicant,
it is not covered by any other conjunction of AB-literals
meeting these two conditions. Thus, K meets the three
conditions for P-abductive diagnosis.

= Let ¢ be a P-abductive diagnosis. By definition
of P-abductive diagnosis we know that SDUTU {¢} is
satisfiable and that SDUTU{¢} = O. By the deduction
theorem, {¢} = SDUT — O. Hence, ¢ is an implicant
of SDUT ~+ O. As the only conjunction of AB-literals
which covers ¢ and meets these conditions is ¢ itself, ¢
is a prime mplicant of SDUJ - O, O

7 Restricting the system description

Our overall objective is to find methods of characterizing
all diagnoses. We saw that minimal diagnoses were in-
adequate for this task in general and we examined kernel
and prime dlagnoses as alternatives. Another approach
is to restrict the form of the system so that the Minimal
Diagnosis Hypothesis holds. We know from Theorem 4
that a necessary and sufficient condition ensuring that
every superset of the faulty components of a minimal
diagnosis provides a diagnosis is that all minimal con-
flicts be positive. Unfortunately, we are not aware of
any simple necessary and sufficient condition on the syn-
tactic form of a system which ensures that all minimal
conflicts are positive. Clearly both OBS and SI) need
to be restricted because definition 1 allows non-positive
AB-clauses to be part of OBS and §D. In this section
we explore some commonly used practical restrictions
on OBS and §D that suffice to ensure that the Mini-
mal Diagnosis Hypothesis holds. In these definitions we
assume that OBS and $D can be expressed as a set of
first-order clauses.

Definition 20 The Ignorance of Abnormal Behavior
(1AB) condition holds for a system (SD,COMPS,QBS)
if in the clausal form of SDUOBS every occurrence of
un AB-predicale is positive.

For example, if all axioms of S in which AP appears
follow the schema:

“ABZYAAA - ANA, SOV -V G,
which is equivalent to the clause,
AB(z)V =A1V - VA, VOV -V Cy,

where the A; and C; are literals not mentioning AB, and
if every AB-literal (if any) in OBS is positive, then IAB
holds. The IAB condition is used in all of the model-
based diagnosis frameworks which rely on knowing only
the correct behavior of components (where the 4; specify
the component type{s) and the C; specify the various
possible normal behavior modes for the component). For
examnple,

~AB(z) ATRANSISTOR(z) —
ON(z)V OF F(z)V SATURATED(z).

Theorem 11 If (SD,COMPS,0BS)} satisfies the IAB
coendition and D(A,COMPS — A) is a diagnosis for
(SD,COMPS,08S5), then D{A',COMPS ~ A') 15 a di-
agnosis for (SD,COMPS,0BS) for every A’ 3 A where
A" C COMPS. In particular, the Minimal Diagnosis
Hypothesis kolds for (5D, COMPS,0BS).

Proof. If AB only appears positively in SDUOBS, then
only positive minimal conflicts are possible. The result
now follows from Theorem 4. 0O

The converse of this thecrem is false. A less restrictive
and more useful definition is:

Definition 21 The Limied Anowledge of Abnormal
Behavior Condition (LKAB) holds for a system
(SD,COMPS,0BS) if for every componentc € COMPS
and any P(Cp,Cn) where ¢ & Cp and ¢ § Cn and
Cp,Cn C COMPS that if SDUOBS U {AB(c)} and
SD U OBSU{D(Cp,Cnr)} are satisfiable, then SD U
OBSU{P{CpU e}, Cn)} is satisfiable.

As shown later in Theorem 12, the LKAB condition
provides a general characterization of a class of systems
for which there is insufficient knowledge of abnormal
behavior to rule out any diagnosis implicating a set of
faulty components given a diagnosis implicating a subset
of them.

Remark 9 If (SD,COMPS, (0BS5S} satisfies the IAB con-
dition, then 1l salisfies the LKAB condition.

Proof. Consider each AB(¢) ¢ € COMPS. If AB occurs
only pesitively in SDUQBS, then AB(c) cannot appear
negatively in any minimal conflict. Thus, SDUOBS U
{AB{c)} is always satisfiable. And, therefore, if SD U
OBS U {D(Cp,Cn)} is satisfiable where ¢ ¢ Cp and
c & Cn, then SDUOBS U {D(Cp,Cn)} U {AB(c}} is
satisfiable. 0O

Theorem 12 If (5D, COMPS, OBS) satisfics the LKAB
condition and D{A, COMPS — A) is a diagnosis for
(SD,COMPS,0BS5), then D{A,COMPS — A') is a di-
agrosis for (SD,COMPS,OBS) for every A’ D A where
A'CCOMPS and for eache € A" SDUOBSU{AB(¢)}
is satisfinble,

Prosf. Consider a diagnosis D{A, COMPS — A) and
each ¢ € COMPS — A for whichc e A SDUQOBS U
{AB{c)} is satisfiable. If D(A,COMPS — A) is a di-
agnosis, then {D(A, COMPS — A)} USD U OBS is
satisfiable by definition of diagnosis. Then, by LKAB
{P(A, COMPS —~ A — {cHYU ABle} U SDUOBS s
satisfiable and hence {D{AU{c}, COMPS -~ A~ {cH}IU
SDUOBS is also. By iterating this process we prove
the theorem. O

Intuitively, this theoremn shows that if a system cbeys
LKAB and no component can be proved correct, then
the Minimal Diagnosis Hypothesis holds for that system.

Sherlock [9] exploits the LKAB condition. In Sher-
lock all axioms in ST} mentioning AB have one of the
following two forms:

—~AB(z) A Alz) — Gi(z) V-V Col)
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AB(::) A Alz)— Fi(z) Vi Fm(x) vU(z) .

where, G (%) describes a posmble normal behavior for
compcnent. z, Fi(z) descnbes a possible faulty behav-
ior for a.component z. U(z) specifies an unknown be-
havior so the only occurrences of the literal I/ (z) are in
clauses of the form, = A{z)V=U(2)V-Gi(z) and ~A(z)V
~U{z) V.~ Fi(z). Furthermore Gi(z), F,(z) U (.1:) on]y
oceur negatively in other clauses -

We show: that by using resolution; a com‘piete mfer-
ence procedure; the LKAB: conditions are met. Consider
every AB(c) ¢ € COMPS. We only need focus on those
. hich follow from the axioms:in-which AR
‘Notice that every. axiom in wh:ch
s negat;vely, U(c) appears pasxtwe}y Con-
other. types of clauses in which U(c)
lause ~A(¢) V ~U{e) V. <F(¢) contains
wo of the htexais of the problematxc

sother However, the probiematlc AB-clause
with wA’(c) V --‘U (c) v -vG’,v('c)- to -produce

te: trhese clauses cannof. resolve a as well.
‘other. poss;bia resolutions and the only
ng AB'in“OBS are atomic, the addi-
never make some D{Cp, C'n) unsatis-
B(c).€ OBS. Thus LKAB holds

”’"ff'ﬁfi.%'ﬁ"ER(a&). ~6(@),

VERTER(z) — Si(z) V S0(z) V U(z).
And some of the r

INVERTER(z}A G(:.) - [JN(m) 0= OUT(z) = 1]
INVERTER(z) A Sl(z) — OUT(z) = 1 _

From a purely logical; Qf vzew these clauses which
mention I (2) conve : ma,tmn, however, in the
Sherlock framework every: behavioral mode is assigned
a probability and U(a) behavioral modes are typically
assigned very small probability.. .
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8 Summary...

The notions of minimal and prime. .diagnosis are inade-
quate to characterizé diagnoses generally, We argue that
the notion of kernel diagnosis which designates some
components as normal, others abnormal, and the ‘re-
mainder as being elther, is' a better way to'character-
ize diagnoses. We avoid significant complexity if kernel
diagnoses contain only positive literals (i.e., all minimal
conflicts are positive). This can be a,chleved by limit-
ing the descnptmn of the system to obey ‘the TAB or
LKAB condition which formalize the’ mt.uztlons underiy~
ing many existing diagnosus systems.

Although there are many algorithms to compute
prime. amphcate/imphcants [13; 17; 26;°29], the task
is NP‘hard and ‘expenence has been that most dlag»
and kernel d:agnﬁses {or prime diagnoses, or minimal
diagnoses)-.-‘ Therefore, the brute-force application of the
techniques suggested by this paper is not.practical...In
practice, some.focussing strategy must be brought. to
bear. One approach is to.exploit hierarchical informa-
tion as in [15]. Another approach:is to focus: the rea-
soning:to-identify the most relevant conflicts in.order to
find the most probable diagnoses [9;.11]. However, both
of these.approaches: require.additional information: the
structural hierarchy and probabilistic information..

The: ecentral contribution of this paper is that it pro-
vides ‘a clear-formal framework for characterizing. the
space of diagnoses which also corrects some of the prob-
lems of [23)... It thus.provides.the specification : for
an ideal diagnostician and -clarifies why systems such
as GDE. [8] work... This. paper establishes. the connec-
tion between diagnosis and. the, notions of: prime impli-
cate/implicant.. The:connection. between prime impli-
cates/implicants and the ATMS [7] has been presented
elsewhere [24; 25]. Thus, we have constructed a.logical
bridge from a formal theory of diagnosis to the ATMS
techmques that many dmgnosxs xmplementatwns use.
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