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ABSTRACT

Diagnostictasks require determiningthe differencesbetweena modelof an artifact and the artifact
itself. The differencesbetweenthemanifestedbehaviorof the artifact and the predictedbehaviorof
the model guide the searchfor the differencesbetweenthe artifact and its model. The diagnostic
procedurepresentedin this paper is model-based,inferring the behaviorof the compositedevice
from knowledgeof the structureandfunction of the individual componentscomprisingthe device.
The system(GDE—generaldiagnosticengine)has beenimplementedand testedon manyexamples
in the domain of troubleshootingdigital circuits.

This researchmakesseveral novel contributions: First, the systemdiagnosesfailures due to
multiplefaults. Second,failure candidatesare representedand manipulatedin termsofminimal sets
of violated assumptions,resulting in an efficient diagnostic procedure. Third, the diagnostic
procedureis incremental,exploiting the iterative nature of diagnosis.Fourth, a clear separationis
drawn betweendiagnosisand behaviorprediction, resulting in a domain (and inferenceprocedure)
independentdiagnosticprocedure. Fifth, GDE combinesmodel-basedprediction with sequential
diagnosis to propose measurementsto localize the faults. The normally required conditional
probabilities are computedfrom the structure of the device and models of its components.This
capability resultsfrom a novel way of incorporatingprobabilities and information theory into the
contextmechanismprovidedby assumption-basedtruth maintenance.

1. Introduction

Engineersand scientists constantly strive to understandthe differencesbe-
tweenphysical systemsand their models. Engineerstroubleshootmechanical
systemsor electricalcircuits to find brokenparts.Scientistssuccessivelyrefine a
model basedon empirical dataduring the processof theory formation. Many
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everydaycommon-sensereasoningtasksinvolve finding thedifferencebetween
modelsand reality.

Diagnosticreasoningrequiresa meansof assigningcredit or blameto parts
of the model based on observedbehavioral discrepancies.If the task is
troubleshooting,then the model is presumedto be correct and all model-
artifactdifferencesindicate part malfunctions. If the task is theory formation,
then the artifact is presumedto be correct and all model-artifactdifferences
indicate requiredchangesin the model (Fig. 1).

Usually the evidence does not admit a unique model-artifact difference.
Thus, the diagnostictask requirestwo phases.The first, mentionedabove,
identifies the set of possiblemodel-artifactdifferences.The secondproposes
evidence-gatheringteststo refine theset of possiblemodel-artifactdifferences
until they accuratelyreflect the actual differences.

This view of diagnosis is very general,.encompassingtroubleshooting
mechanicaldevicesand analogand digital circuits, debuggingprograms,and
modeling physical or biological systems. Our approachto diagnosis is also
independentof the inference strategy employedto derive predictionsfrom
observations.

Earlier researchwork (seeSection6) on model-baseddiagnosisconcentrated
on determininga single faulty componentthat explainsall thesymptoms.This
paperextendsthat researchby diagnosingsystemswith multiple failed compo-
nents,andby proposinga sequenceof measurementswhich efficiently localize
the failing components.

When oneentertainsthe possibility of multiple faults, thespaceof potential
candidatesgrowsexponentiallywith thenumberof faults underconsideration.
This work is aimed specifically at developing an efficient general method,
referredto as the generaldiagnosticengine(GDE), for diagnosingfailuresdue
to any numberof simultaneousfaults. To achievethe neededefficiency, GDE

exploits the featuresof assumption-basedtruth maintenance(ATMS) [8]. This is
the topic of the first half of the paper.

Usually, additionalmeasurementsare necessaryto isolatethesetof compo-
nentswhich areactually faulted. The bestnext measurementis the onewhich
will, on average,lead to the discoveryof the faulted set of componentsin a
minimum number of measurements.Unlike other probabilistic techniques
which require a vast numberof conditional probabilities, GDE need only be
provided with the a priori probabilitiesof individual componentfailure. Using
an ATMS, thisprobabilisticinformationcanbe incorporatedinto GDE suchthat it
is straightforwardto computetheconditionalprobabilitiesof thecandidates,as
well as the probabilitiesof the possibleoutcomesof measurements,basedon
the faulty device’s model. This combination of probabilistic inference and
assumption-basedtruth maintenanceenablesGDE to apply a minimum entropy
method [1] to determinewhat measurementto make next: the bestmeasure-
ment is the one which minimizes the expectedentropy of candidateprob-
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FIG. 1. Model-artifactdifference.

abilities resultingfrom themeasurement.This is the topic of thesecondhalf of
the paper.

1.1. Troubleshooting circuits

For troubleshootingcircuits, thediagnostictaskis to determinewhy acorrectly
designed piece of equipment is not functioning as it was intended; the
explanationfor the faulty behaviorbeingthattheparticularpieceof equipment
underconsiderationis at variance in someway with its design (e.g., a set of
componentsis not working correctly or a set of connectionsis broken). To
troubleshoota system,a sequenceof measurementsmust be proposed,exe-
cutedandthenanalyzedto localize this point of variance,or fault. The taskfor
the diagnosticianis to usethe resultsof measurementsto identify thecauseof
the variance when possible, and otherwise to determinewhich additional
measurementsmust be taken.

For example,considerthe circuit in Fig. 2, consistingof threemultipliers,
M1, M2, and M3, and two adders,A1 and A2. The inputs areA = 3, B = 2,
C = 2, D = 3, and E 3, and the outputs are measuredshowing that F = 10
andG = 12.1 From thesemeasurementsit is possibleto deducethat at leastone
of the following sets of componentsis faulty (each set is referred to as a
candidateand is designatedby [.]): [A1], [M1], [A2, M,], or [M2, M1].
Furthermore,measuringX is likely to producethe most useful information in
further isolating the faults. Intuitively, X is optimal becauseit is the only
measurementthat can differentiate between two highly probable singleton
candidates:[A1] and [MI].

Next the value of X is measuredand the result is usedto reducethe size of
the candidateset. The candidategeneration-measurementprocesscontinues
until a single high-probability candidateremains.

‘This circuit is also used by both [5] and [12] in explaining their systems.
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FIG. 2. A familiar circuit.

1.2. Somebasic presuppositions

Although GDE considersmultiple faults andprobabilisticinformation, it shares
manyof the basicpresuppositionsof othermodel-basedresearch.We presume
that the act of taking a measurement(i.e., making an observation)has no
affect on the faulty device. We presumethat once a quantityis measuredto be
a certain value, that the quantity remainsat the value. This is equivalentto
assumingthat no component’s(correct or faulty) functioningdependson the
passageof time. For example,this rules out flip-flops as well as intermittent
componentswhich spontaneouslychangetheir behavior.We presumethat if a
componentis faulty, the distribution of input-output valuesbecomesrandom
(i.e., contains no information). We do not presumethat if a component is
faulty, that it must be exhibiting this faulty behavior—it may exhibit faulty
behavior on some other set of inputs. Thesepresuppositionssuggestfuture
directionsfor research,andwe areextendingGDE in thesedirections.

2. A Theory of Diagnosis

The remainderof this paperpresentsa general,domain-independent,diagnos-
tic engine(GDE) which, when coupledwith a predictive inferencecomponent
provides a powerful diagnosticprocedurefor dealing with multiple faults. In
addition the approachis demonstratedin the domain of digital electronics,
using propagationasthe predictive inferenceengine.
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2.1. Model-artifact differences

The modelof the artifactdescribesthe physicalstructureof the devicein terms
of its constituents.Eachtype of constituentobeyscertainbehavioralrules. For
example,a simple electrical circuit consistsof wires, resistorsand so forth,
wherewires obey Kirchhoff’s CurrentLaw, resistorsobey Ohm’s Law, and so
on. In diagnosis, it is given that the behaviorof the artifact differs from its
model. It is then the task of the diagnostician to determine what these
differencesare.

The model for the artifact is a description of its physical structure, plus
models for eachof its constituents.A constituentis a very general concept,
including components,processesand even steps in a logical inference. In
addition, eachconstituenthasassociatedwith it a set of one or morepossible
model-artifactdifferenceswhich establishesthe grain size of the diagnosis.

Diagnosistakes(1) the physicalstructure,(2) modelsfor eachconstituent,
(3) a setof possiblemodel-artifactdifferences,and (4) a set of measurements,
and producesa set of candidates,eachof which is a set of differenceswhich
explainsthe observations.

Our diagnosticapproachis basedon characterizingmodel-artifactdifferences
as assumptionviolations.A constituentis guaranteedto behaveaccordingto its
model only if none of its associateddifferencesare manifested,i.e., all the
constituent’sassumptionshold. If any of theseassumptionsare false, thenthe
artifact deviates from its model, thus, the model may no longer apply. An
important ramification of this approach[4,5,10,12,29] is that we need only
specify correct modelsfor constituents—explicitfault models are not needed.

Reasoningaboutmodel-artifactdifferencesin termsof assumptionviolations
is very general.For example,in electronicsan assumptionmight be the correct
functioning of eachcomponentand the absenceof any short circuits; in a
scientificdomaina faulty hypothesis;in a commonsensedomainan assumption
suchas persistence,defaultsor Occam’srazor.

2.2. Detectionof symptoms

We presume(asis usually the case)that the model-artifactdifferencesarenot
directly observable.2Instead, all assumptionviolations must be inferred in-
directly from behavioral observations.In Section 2.7 we presenta general
inference architecturefor this purpose,but for the moment we presumean
inferenceprocedurewhich makesbehavioralpredictionsfrom observationsand
assumptionswithout beingconcernedabout the procedure’sdetails.

Intuitively, a symptomis any difference betweena prediction madeby the
inferenceprocedureandan observation.Considerour examplecircuit. Given

21n practicethe diagnosticiancan sometimesdirectly observea malfunctioningcomponentby
looking for a crack or burn mark.
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the inputs, A = 3, B = 2, C = 2, D = 3, andE = 3, by simplecalculation(i.e.,
the inference procedure),F = X X V= A X C + B X D = 12. However, F is
measuredto be 10. Thus “F is observedto be 10, not 12” is a symptom.More
generally,a symptomis any inconsistencydetectedby the inferenceprocedure
andmay occurbetweentwo predictions(inferred from distinct measurements)
aswell as a measurementanda prediction(inferredfrom someothermeasure-
ments).

2.3. Conflicts

The diagnosticprocedureis guided by the symptoms.Each symptomtells us
aboutoneor moreassumptionsthatarepossiblyviolated(e.g.,componentthat
may be faulty). Intuitively, a conflict is a set of assumptionswhich supporta
symptom, and thus leads to an inconsistency.In this electronicsexample,a
conflict is a set of componentswhich cannot all be functioning correctly.
Consider the example symptom “F is observedto be 10, not 12.” The
predictionthat F = 12 dependson the correct operationof A1, M1, and M2,
i.e., if A1, M1, and M, werecorrectly functioning, thenF = 12. SinceF is not
12, at leastone of A1, M1, and M, is faulted. Thus theset (At, M1, M2~is a
conflict for the symptom (conflicts are indicatedby (~)). Becausethe infer-
enceis monotonicwith thesetof assumptions,the set (A1, A2, M1, M,), and
any other supersetof (A ~, M1, M2) areconflicts aswell; however,no subsets
of (A ~ M1, M2) are necessarilyconflicts since all the componentsin the
conflict were neededto predict the value at F.

A measurementmight agree with one prediction and yet disagree with
another,resulting in a symptom.For example,startingwith the inputsB = 2,
C = 2, D = 3, andE = 3, andassumingA-,, M2, andM3 arecorrectly function-
ing we calculateG to be 12. However,startingwith theobservationF = 10, the
inputsA = 3, C = 2, and E = 3, andassumingthat A1, A2, M1, and M3, (i.e.,
ignoring M.,) are correctly functioning we calculate G = 10. Thus, when G is
measuredto be 12, even though it agreeswith the first prediction, it still
producesa conflict basedon the second:(A ~, ~, M~,M3).

For complex domains any single symptom can give rise to a large set of
conflicts, including the set of all componentsin the circuit. To reduce the
combinatoricsof diagnosisit is essentialthat thesetof conflicts be represented
and manipulatedconcisely. If a set of componentsis a conflict, then every
supersetof that set must also be a conflict. Thus the set of conflicts can be
representedconciselyby only identifying the minimal conflicts, whereaconflict
is minimal if it has no propersubsetwhich is alsoaconflict. This observationis
central to the performanceof our diagnosticprocedure.The goal of conflict
recognition is to identify the completesetof minimal conflicts.3

3Representingthe conflict spacein termsof minimal conflicts is analogousto the idea of version
spacesfor representingplausiblehypothesesin singleconcept learning [19].
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2.4. Candidates

A candidate is a particularhypothesisfor how the actual artifactdiffers from
the model. For example “A, and M, are broken” is a candidatefor the two
symptomsobservedfor our examplecircuit. Ultimately, the goal of diagnosisis
to identify, and refine, the set of candidatesconsistentwith the observations
thus far.

A candidateis representedby a set of assumptions(indicatedby [.]). The
assumptionsexplicitly mentionedarefalse, while the onesnot mentionedare
true. A candidatewhich explains the current set of symptomsis a set of
assumptionssuch that if every assumptionfails to hold, then every known
symptom is explained.Thus eachset representinga candidatemust have a
nonemptyintersectionwith every conflict.

For electronics, a candidate is a set of failed components,where any
componentsnot mentionedare guaranteedto be working. Before any mea-
surementshavebeentaken we know nothingabou.tthe circuit. The candidate
spaceis theset of candidatesconsistentwith the observations.The size of the
initial candidatespacegrows exponentiallywith the numberof components.
Any componentcould be working or faulty, thusthecandidatespacefor Fig. 2
initially consistsof 2~= 32 candidates.

It is essentialthat candidatesbe representedconciselyas well. Notice that,
like conflicts, candidateshave the property that any supersetof a possible
candidatefor a setof symptomsmust be a possiblecandidateaswell. Thus the
candidatespacecan be representedby the minimal candidates.Representing
and manipulatingthecandidatespacein termsof minimal candidatesis crucial
to our diagnosticapproach.Although thecandidatespacegrowsexponentially
with the numberof potentiallyfaulted components,it is usually thecasethat
thesymptomscan be explainedby relatively few minimal candidates.

The goal of candidategeneration is to identify the completeset of minimal
candidates.The spaceof candidatescan be visualized in terms of a subset-
supersetlattice (Fig. 3). The minimal candidatesthendefine a boundarysuch
that everything from the boundaryup is a valid candidate,while everything
below is not.

Given no measurementsevery componentmight be working correctly, thus
the single minimal candidateis the empty set, [ ], which is the root of the
lattice at the bottom of Fig. 3.

To summarize,the set of candidatesis constructedin two stages:conflict
recognitionand candidategeneration.Conflict recognition usesthe observa-
tions made along with a model of the device to constructa completeset of
minimal conflicts. Next, candidategenerationusesthesetof minimal conflicts
to constructa completeset of minimal candidates.Candidategenerationis the
topic of thenext section,while conflict recognitionis discussedin Section2.6.
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FIG. 3. Initial candidatespace for the circuit example.

2.5. Candidate generation

Diagnosisis an incrementalprocess;asthe diagnosticiantakesmeasurements
he continually refines the candidatespaceandthen usesthis to guide further
measurements.Within a single diagnosticsessionthe total set of candidates
must decreasemonotonically. This correspondsto having the minimal candi-
datesmove monotonicallyup through the candidatesupersetlattice towards
the candidatecontainingall components.Similarly, the total set of conflicts
must increasemonotonically.This correspondsto having theminimal conflicts
move monotonically down through a conflict supersetlattice towards the
conflict representedby theemptyset. Candidatesaregeneratedincrementally,
using the new minimal conflict(s) andtheold minimal candidate(s)to generate
the new minimal candidate(s).

The set of minimal candidates is incrementally modified as follows.
Whenevera new minimal conflict is discovered,any previousminimal candi-
date which doesnot explain the new conflict is replacedby one or more
supersetcandidateswhich are minimal basedon this new information. This is
accomplishedby replacing the old minimal candidatewith a set of new
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tentativeminimal candidateseachof which containstheold candidateplus one
assumptionfrom the new conflict. Any tentative new candidatewhich is
subsumedor duplicatedby anotheris eliminated;the remainingcandidatesare
addedto the setof new minimal candidates.

Considerour example. initially there are no conflicts, thus the minimal
candidate[ ] (i.e., everythingis working) explainsall observations.We have
already seenthat the single symptom “F = 10 not 12” producesone conflict
(A1, M1, M2). This rules out the single minimal candidate[ ]. Thus, its
immediatesupersetscontainingoneassumptionof the conflict [A1], [M1J, and
[M,] are considered.None of theseare duplicatedor subsumedas therewere
no otherold minimal candidates.The new minimal candidatesare [A1], [M1],
and [M,]. This situation is depicted with the lattice in Fig. 4. All candidates
above the line labeled by the conflict “Cl: (A1, M1, M2)” are valid candi-
dates.

The secondconflict (inferredfrom observationG = 12), (A ~,A.,, M1, M3),
only eliminates minimal candidate[M2]; the unaffectedminimal candidates

(Al.A2,Ml,M2,M3]

(Al ,Ml .M2,M3] [A2,Ml ,M2.M3] (Al .Ai.Ml.M2( (Al ,A2,Ml ,Mu( (Al .A2.MLM3(
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FIG. 4. Candidatespaceafter measurements.
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[M1], and [A ~1remain. However, to completethe set of minimal candidates
we must consider the immediate supersetsof [M,] which cover the new
conflict: [A1, M,], [A,, M,], [M(, M,], and [M2, M3]. Each of thesecandi-
datesexplainsthenew conflict, however, [A1, M7] and [M1, M,] aresupersets
of the minimal candidates[A1] and [M1j, respectively.Thus thenew minimal
candidatesare [A,, M1], and [M,, M3}, resultingin theminimal candidateset:
[A1], [M1], [A,, M,], and [M2, M3]. The line labeled by conflict “C2:
(A1, A,, M1, M3)” in Fig. 4 showsthecandidateseliminatedby theobserva-
tion G = 12 alone, and the line labeled “Cl & C2” shows the candidates
eliminatedasa resultof both measurements(F = 10 andG = 12). The minimal
candidatewhich split the lattice into valid and eliminated candidatesare
circled.

Candidategenerationhas several interestingproperties.First, the set of
minimal candidatesmay increaseor decreasein size asa result of a measure-
ment;however,a candidate,onceeliminatedcanneverreappear.As measure-
mentsaccumulateeliminatedminimal candidatesarereplacedby largercandi-
dates.Second,if an assumptionappearsin every minimal candidate(and thus
every candidate),then that assumptionis necessarilyfalse. Third, the presup-
positionthat thereis only a single fault (exploitedin all previousmodel-based
troubleshooting strategies), is equivalent to assuming all candidatesare
singletons.In this case,the set of candidatescan be obtainedby intersecting
all theconflicts.

2.6. Conflict recognition strategy

The remainingtask involves incrementallyconstructingthe conflicts usedby
candidategeneration.In this sectionwe first presenta simplemodelof conflict
recognition.This approachis then refinedinto an efficient strategy.

A conflict can be identified by selectinga setof assumptions,referredto as
an environment,and testing if they are inconsistentwith the observations.4If
they are, then the inconsistentenvironmentis a conflict. This requiresan
inferencestrategyC(oBs,ENV) which given the set of observationsOBS made
thus far, and the environmentENV, determineswhether the combination is
consistent. In our example, after measuringF = 10, and before measuring
G = 12, C({F= 10), (A1, M1, M2}) (leaving off the inputs) is false indicating
the conflict (A 1’ M1, M2). This approachis refined asfollows:

Refinement1: Exploitingminimality. To identify thesetof minimal inconsis-
tent environments(and thusthe minimal conflicts), we beginour searchat the

4An environmentshouldnot be confusedwith a candidateor conflict. An environmentis a set of
assumptionsall of which are assumedto be true (e.g., M~and M, are assumedto be working
correctly), a candidate is a set of assumptionsall of which are assumedto be false (e.g..
componentsM1 and M, are not functioning correctly). A conflict is a set of assumptions,at least
oneof which is false.Intuitively an environmentis the set of assumptionsthat definea “contextS’ in
a deductiveinferenceengine,in thiscasethe engineis usedfor predictionandthe assumptionsare
aboutthe lack of particular model-artifactdifferences.
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emptyenvironment,moving up along its parents.This is similar to the search
pattern used during candidategeneration. At each environmentwe apply
C(oBs, ENv) to determinewhether or not ENV is a conflict. Before a new
environmentis explored,all otherenvironmentswhich area subsetof thenew
environmentmust be exploredfirst. If the environmentis inconsistent,then it
is a minimal conflict andits supersetsare not explored.If an environmenthas
alreadybeen exploredor is a supersetof a conflict, then C is not run on the
environmentand its supersetsare not explored.

We presumethe inferencestrategyoperatesentirely by inferring hypotheti-
cal predictions(e.g., valuesfor variablesin environmentsgiven the observa-
tions made).Let P(oBs,ENv) be all behavioralpredictionswhich follow from
theobservationsOBS given the assumptionsENV. For example,P({A = 3, B =

2, C=2, D=3}, {A1, M1, M2}) produces{A=3, B=2, C=2, D=3,X=6,
Y=6, F=12}.

C can now be implementedin termsof P. If P computestwo distinct values
for a quantity(or moresimply both x and ix), thena symptomis manifested
and ENV is a conflict.

Refinement2: Monotonicity of measurements.If input values are kept
constant,measurementsare cumulative and our knowledgeof the circuit’s
structuregrows monotonically. Given a new measurementM, P(oBsU {M},
ENV) is alwaysa supersetof P(oBs,ENv). Thusif we cachethevaluesof everyP,
when a new measurementis madewe needonly infer the incrementaladdition
to the set of predictions.

Refinement3: Monotonicity for assumptions.Analogousto Refinement2,
the set of predictionsgrows monotonically with the environment.If a set of
predictionsfollows from theenvironment,then the additionof any assumption
to that environmentonly expands this set. Therefore P(oBs,ENv) contains
P(oBs,E) for every subset E of ENV. This makes the computation of
P(oBs,ENV) very simple if all its subsetshavealreadybeenanalyzed.

Refinement4: Redundantinferences.P must be run on a large numberof
(overlapping)environments.Thus, the samerule will be executedover and
over again on the samefacts. All of this overlapcan be avoidedby utilizing
ideas of truth maintenancesuchthat everyinferenceis recordedas a depen-
dency andno inferenceis ever performedtwice [11].

Refinement5: Exploiting the sparsenessof the search space. The four
refinementsallow the strategy to ignore (i.e., to the extent of not even
generatingits name)any environmentwhich doesn’tcontainsomeinteresting
inferencesabsentin everyoneof its subsets.If everyenvironmentcontaineda
new unique inference,then we would still be faced computationallywith an
exponentialin thenumberof potentialmodel-artifactdifferences.However,in
practice, as the componentsare weakly connected,the inferencerules are
weakly connected.Therefore,it is more efficient to associateenvironments
with rules than vice versa. Our strategydependson this empirical property.
For example,in electronicsthe only assumptionsetsof interestwill be setsof
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componentswhich areconnectedandwhosesignalsinteract—typicallycircuits
are explicitly designedso that componentinteractionsare limited.

2.7. Inference procedure architecture

To completelyexploit the ideasdiscussedin the precedingsectionwe needto
modify and augmentthe implementationof P. We presumethat P meets(or
can be modified to) the two basiccriteriafor utilizing truth maintenance:(1) a
dependency(i.e., justification) can be constructedfor eachinference,and(2)
belief or disbeliefin a datumis completelydeterminedby thesedependencies.
In addition, we presumethat, during processing,whenevermore than one
inference is simultaneouslypermissible, that the actual order in which these
inferencesare performed is irrelevant and that this order can be externally
controlled (i.e., by our architecture).Finally, we presumethat the inference
procedureis monotonic.MostAl inferenceproceduresmeetthesefour general
criteria. For example,manyexpertrule-basedsystems,constraintpropagation,
demon invocation, taxonomicreasoning,qualitative simulations, natural de-
duction systems,andmanyforms of resolutiontheoremproving fit this general
framework.

We associatewith every prediction, V, the set of environments,ENvs(V),
from which it follows (i.e., ENvS(V) {env V E P(oBs,env)}). We call this set
the supporting environmentsof the prediction. Exploiting the monotonicity
property, it is only necessaryto representtheminimal (undersubset)support-
ing environments.

Considerour example after the measurementsF = 10 and G = 12. In this
case we can calculate X = 6 in two different ways. First, V = B x D = 6
assumingM2 is functioning correctly. Thus, one of its supportingenviron-
ments is {M,}. Second,Y=G—Z=G—(CxE)=6 assumingA, and M3
are working. Therefore the supporting environments of V= 6 are
{{M~}{A~,M3}}. Any set of assumptionsusedto derive Y= 6 is a supersetof
oneof thesetwo.

By exploitingdependenciesno inferenceis everdonetwice. If thesupporting
environmentsof prediction change,then the supportingenvironmentsof its
consequentsare updatedautomatically by tracing the dependenciescreated
when the rule was first run. This achievesthe consequenceof a deduction
without rerunningthe rule.

We control the inferenceprocesssuchthat whenevermore than onerule is
runnable, the one producinga predictionin the smaller supportingenviron-
ment is performed first. A simple agenda mechanism suffices for this.
Whenevera symptomis recognized,theenvironmentis markeda conflict and
all rule execution stops on that environment. Using this control scheme
predictions are always deducedin their minimal environment,achievingthe
desiredproperty that only minimal conflicts (i.e., inconsistentenvironments)
aregenerated.
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In this architectureP can be incomplete(in practice it usually is). The only
consequenceof incompletenessis that fewer conflicts will be detectedandthus
fewer candidateswill be eliminated than the ideal—no candidatewill be
mistakenlyeliminated.

3. Circuit Diagnosis

Thus far we have describeda very generaldiagnosticstrategy for handling
multiple faults, whose application to a specific domain dependsonly on the
selectionof the function P. In this section,we demonstratethe power of this
approach,by applying it to the problem of circuit diagnosis.

For our examplewe makea numberof simplifying presuppositions.First, we
assumethat the model of a circuit is describedin termsof a circuit topology
plus a behavioraldescriptionof eachof its components.Second,that the only
type of model-artifact differenceconsideredis whetheror not a particular
componentis working correctly. Finally, all observationsaremadein termsof
measurementsat a component’sterminals.

Measurementsare expensive, thus not every value at every terminal is
known. Instead,some values must be inferred from other values and the
componentmodels. Intuitively, symptomsare recognizedby propagatingout
locally through componentsfrom the measurementpoints, using the compo-
nentmodelsto deducenew values.The applicationof eachmodelis basedon
the assumptionthat its correspondingcomponentis working correctly. If two
valuesarededucedfor thesamequantityin differentways, thena coincidence
hasoccurred.If the two valuesdiffer then thecoincidenceis a symptom.The
conflict then consistsof every componentpropagatedthrough from the mea-
surementpoints to the point of coincidence(i.e., thesymptomimplies that at
leastone of the componentsusedto deducethe two values is inconsistent).
Note however, if the two coinciding values are the same, then it is not
necessarilythe case that the componentsinvolved in the predictions are
functioning correctly. Instead,it may be that the symptom simply does not
manifestitself at that point. Also, it might be that oneof thesecomponentsis
faulty, but doesnot manifest its fault, given the current set of inputs. (For
example,an inverterwith an outputstuck at one will not manifesta symptom
given an input of zero.)Thus if the coincidingvaluesarein agreementthenno
information is gained.

3.1. Constraint propagation

Constraintpropagation[33, 34] operateson cells, values,andconstraints.Cells
representstate variables such as voltages, logic levels, or fluid flows. A
constraintstipulatesa condition that thecells mustsatisfy.For example,Ohm’s
law, v = iR, is representedas a constraintamongthe threecells v, i, andR.



110 J. DE KLEER AND B.C. WILLIAMS

Given a set of initial values, constraintpropagationassignseachcell a value
that satisfies the constraints. The basic inference step is to find a constraint that
allows it to determine a value for a previously unknown cell. For example, if it
has discovered values v = 2 and i = 1, then it usesthe constraint v = iR to
calculatethe value R = 2. In addition, the propagatorrecordsR’s dependency
on v, i and the constraintv = iR. The newly recordedvalue may causeother
constraintsto trigger andmorevaluesto bededuced.Thus,constraintsmay be
viewed as a set of conduitsalongwhich valuescan be propagatedout locally
from the inputsto other cells in the system.The recordeddependenciestrace
out a particularpath through the constraintsthat the inputs have taken. A
symptomis manifestedwhen two different valuesarededucedfor thesamecell
(i.e., a logical inconsistencyis identified). In this eventdependenciesare used
to constructthe conflict.

Sometimesthe constraintpropagationprocessterminatesleaving somecon-
straintsunusedandsomecellsunassigned.This usuallyarisesasaconsequence
of insufficient information aboutdeviceinputs. However,this can alsoariseas
theconsequenceof logical incompletenessin the propagator.

In thecircuit domain,thebehaviorof eachcomponentis modeledasa setof
constraints.For example,in analyzinganalogcircuits the cells representcircuit
voltagesandcurrents,the valuesarenumbers,andtheconstraintsaremathe-
matical equations.In digital circuits, the cells representlogic levels,thevalues
are0 and 1, andthe constraintsare Booleanequations.

Considerthe constraintmodel for the circuit of Fig. 2. Thereare ten cells:
A, B, C, D, E, X, V. Z, F, and G, five of which areprovided the observed
values:A = 3, B = 2, C = 2, D = 3, andE = 3. Thereare threemultipliers and
two adderseachof which is modeledby a single constraint:M1 : X = A x C,
M2:Y=BxD, M3:ZCXE,A1:F—X+Y, andA2:G=Y+Z. The
following is a list of deductionsand dependenciesthat the constraintprop-
agatorgenerates(a dependencyis indicated by (component:antecedents)):

X=6 (M1:A=3,C=2),

Y=6 (M,:B=2,D=3),

Z=6 (M3:C=2,E=3),

F=12 (A1:X=6,Y=6),

G=12 (A-,:Y=6,Z=6).

A symptom is indicated when two values are determinedfor the samecell
(e.g., measuring F to be 10 not 12). Each symptom leads to new conflict(s)
(e.g., in this example the symptom indicates a conflict (A1, M1, M,)).

This approach has some important properties. First, it is not necessary for
the starting points of these paths to be inputs or outputs of the circuit. A path
may begin at any point in the circuit where a measurement has been taken.



DIAGNOSING MULTIPLE FAULTS 111

Second, it is not necessary to make any assumptions about the direction that
signals flow through components. In most digital circuits a signal can only flow
from inputs to outputs. For example, a subtractor cannot be constructed by
simply reversing an input and the output of an adder since it violates the
directionality of signal flow. However, the directionality of a component’s
signal flow is irrelevant to our diagnostic technique;a componentplacesa
constraintbetweenthe valuesof its terminalswhich can be usedin any way
desired.To detectdiscrepancies,informationcan flow alonga path through a
component in any direction. For example, although the subtractor does not
function in reverse, when we observe its outputs we can infer what its inputs
must have been.

3.2. GeneraLized constraint propagation

Each step of constraint propagation takes a set of antecedent values and
computes a consequent. We have built a constraint propagator within our
inference architecture which explores minimal environments first. This guides
each step during propagation in an efficient manner to incrementally construct
minimal conflicts and candidates for multiple faults.

Consider our example. Weensure that propagations in subset environments
are performed first, therebyguaranteeingthat theresultingsupportingenviron-
ments and conflicts are minimal. We use ~x,e1, e2, . . .]~to representthe
assertionx with its associatedsupportingenvironments.Before any measure-
mentsor propagationstakeplace,given only the inputs, the databaseconsists
of: ~A = 3, { }~,~B = 2, { }1I~ ~C= 2, { }~,~D = 3, { }~,and ~E = 3, { }~.
Observethat when propagatingvaluesthrough a component,the assumption
for that componentis addedto the dependency,and thus to the supporting
environment(s)of the propagatedvalue. PropagatingA and C through M1 we
obtain: ~X = 6, {M1}11. The remaining propagationsproduce: IIY = 6, {M,}1l,
~Z=6,{M3}~,~F= 12, {A1, M1, M.,}~,and ~G= 12, {A,, M2, M3}]l.

Suppose we measure F to be 10. This adds ~F= 10, { }]I to the database.
Analysis proceedsas follows (starting with the smallerenvironmentsfirst):
~X=4, (A1, M2}~,and IIY=4, {A1, M1}~.Now the symptom between~F=
10, { }]I and ~F= 12, (A1, M1, M2}~is recognizedindicating a new minimal
conflict: (A1, M(, M,). Thus the inferencearchitecturepreventsfurtherprop-
agationin the environment(A1, M1, M2} and its supersets.The propagation
goesone more step: ~G= 10, {A1, A.,, M1, M3}E. There are no more infer-
encesto be made.

Next, suppose we measure G to be 12. Propagation gives: ~Z= 6,
{A,, M7}~, ~Y_—6,{A,, M3}~, ftZ=8, {A1, A,, M1}1j, and ~X=4,
(A1, A,, M3}]~. The symptom “G = 12 not 10” produces the conflict
(A1, A,, M1, M3). The final databasestateis shownbelow.~

5The justificationsare not shownbut are the sameas those in Section 3.1.
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ftA=3,{ }~,
~B=2,{ }L
~C=2,{ }fl,
~D=3,{ }]1~
~E=3,{ }]1~
~F=10,{ H~
ftG=12,{ }~, (1)
~X=4, (A1, M,} (A1, A,, M3}J~
~X=6, {M1}fl,
~Y=4, {A~, M1}fl,
ftV = 6, {M2} {A,, M3}fl
~Z= 8, {A1, A,, M1H,

6, {M3} {A,, M,}fl.

This results in two minimal conflicts:

(A1, M1, M,), (A1, A,, M1, M3).

The algorithm discussedin Section2.5 usesthe two minimal conflicts to
incrementallyconstructthe set of minimal candidates.Given new measure-
ments the propagation/candidategenerationcycle continuesuntil the candi-
datespacehas beensufficiently constrained.

4. Sequential Diagnosis

In order to reduce the set of remaining candidates the diagnostician must
perform measurements[14] which differentiateamong the remainingcandi-
dates.This sectionpresentsa methodfor choosinga next measurementwhich
bestdistinguishesthe candidates,i.e., that measurementwhich will, on aver-
age, lead to the discoveryof the actual candidatein a minimum numberof
subsequent measurements.

4.1. Possible measurements

The conflict recognition strategy(via P(0BS,ENV)) identifies all predictions for
each environment. The results of this analysis provides the basis for a
differential diagnosisprocedure,allowing ODE to identify possiblemeasure-
mentsand their consequences.

Consider how measuring quantity x, could reduce the candidate space. GDE’s

database(e.g., (1)) explicitly representsx,’s values and their supporting
environments:

E[x~= Vik, e~kI,. . . , eikrnlj
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If x1 is measured to be V,k, then the supporting environments of any value
distinct from the measurement are necessarily conflicts. If V,k is not equal to
any of x,’s predicted values, then every supportingenvironment for each
predictedvalue of x1 is a conflict. Given GDE’s database, it is simple to identify
usefulmeasurements,their possibleoutcomes,andthe conflicts resultingfrom
eachoutcome.Furthermore,the resulting reductionof the candidatespaceis
easily computedfor eachoutcome.

Consider the example of the previous section. X = 4 in environments
(A1, M,} and {A1, A,, M3}, while X=6 in environment {M1). Measuring X
hasthreepossibleoutcomes:(1) X = 4 in which case(M1) is aconflict andthe
new minimal candidate is [M1], (2) X= 6 in which case (A1, M,) and
(A 1’ A2, M3) are conflicts and thenew minimal candidatesare [A ~ [M,, M3]
and [A,, M,], or (3) X~4and X~6in which case (M1), (A1, M,) and
(A1, A2, M3) are conflicts and [A1, M1], [M1, M2, M3], and [A,, M1, M,] are
minimal candidates.

The minimal candidatesare a computationalconveniencefor representing
the entire candidate set. For presentation purposes, in the following we
dispensewith the idea of minimal candidatesandconsiderall candidates.

Thediagnosticprocessdescribedin thesubsequentsectionsdependscritical-
ly on manipulatingthreesets: (1) RIk is thesetof (calledremaining)candidates
that would remain if x1 were measuredto be 1~

ik~(2) S,k is the set of (called
selected) candidatesin which x~must be Vik (equivalently, the candidates
necessarilyeliminatedif x, is measurednot to be vlk), and (3) U, is theset of
(called uncommitted)candidateswhich do not predict a value for x, (equival-
ently, the candidateswhich would not be eliminatedindependentof thevalue
measuredfor x1). This set R~kis coveredby thesetsSIk and U1:

R~k=S1kUUt, SlkflUl=~.

4.2. Lookahead versus myopic strategies

Section 4.1 describes how to evaluate the consequences of a hypothetical
measurement.By cascading this procedure, we could evaluate the con-
sequences of any sequence of measurements to determine the optimal next
measurement(i.e., theonewhich is expectedto eliminatethecandidatesin the
shortest sequenceof measurement).This can be implementedas a classic
decisiontree analysis,but thecomputationalcostof this analysisis prohibitive.
Instead we use a one-step lookahead strategy based on Shannon entropy
[1,20,26]. Given a particular stagein the diagnosticprocesswe analyzethe
consequencesof eachsingle measurementto determinewhich oneto perform
next. To accomplishthis we needan evaluationfunction to determinefor each
possible outcome of a measurementhow difficult it is (i.e., how many
additional measurements are necessary) to identify the actual candidate. From
decisionand information theory we know that a very good costfunction is the
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entropy (H) of the candidate probabilities:

H=—~p1logp1,

wherep, is the probability that candidateC, is the actual candidategiven the
hypothesizedmeasurementoutcome.

Entropy has severalimportant properties(see a referenceon information
theory [30] for a more rigorous account).If everycandidateis equally likely,
we have little information to provide discrimination—His at a maximum. As
one candidatebecomesmuch more likely than the rest H approachesa
minimum. H estimatesthe expectedcost of identifying the actualcandidateas
follows. The cost of locating a candidateof probability p, is proportional to
log p~(cf. binary searchthroughp~’objects).The expectedcostof identify-
ing the actual candidateis thus proportionalto thesum of theproductof the
probability of each candidatebeing the actual candidateand the cost of
identifying that candidatei.e., ~ p, log p~= —E p, log p,. Unlikely candi-
dates,althoughexpensiveto find, occurinfrequentlyso they contributelittle to
the cost: p1 log p~ approaches 0 as p, approaches0. Conversely, likely
candidates,althoughthey occurfrequently,areeasyto find so contributelittle
to thecost:p, log p~1approaches0 asp, approaches1. Locating candidatesin
betweenthesetwo extremesis more costly becausethey occurwith significant
frequencyandthe cost of finding them is significant.

4.3. Minimum entropy

Undertheassumptionthat everymeasurementis of equalcost, theobjectiveof
diagnosisis to identify the actualcandidatein a minimum numberof measure-
ments. This sectionshows how the entropy cost function presentedin the
previous section is utilized to choose the best next measurement.As the
diagnosisprocessis sequential,theseformulas describethe changesin quan-
tities as a consequenceof making a single measurement.

The bestmeasurementis the onewhich minimizes the expectedentropyof
candidateprobabilities resulting from the measurement.Assuming that the
processof taking a measurementdoesn’t influence the value measured,the
expectedentropyHe(xi) after measuringquantityx, is given by:

He(xi) = p(x~ = vlk)H(xI = V~k).

Where v,1, . . . ~Virfl are all possible values6for x1, and H(x, = vlk) is the
6Theseresultsare easily generalizedto accountfor an infinite numberof possiblevaluessince,

although a quantity may take on an infinite numberof possiblevalues,only a finite numberof
thesewill be predictedas the consequencesof other quantitiesmeasured.Further the entropy
resulting from the measurementof a value not predicted is independentof that value. Thus the
systemneverhas to deal with more than a finite set of expectedentropies.



DIAGNOSING MULTIPLE FAULTS 115

entropyresultingif x, is measuredto be VIk. H(x, = VIk) can becomputedfrom
the information available.

At eachstep, we computeH(x1 = ulk) by determiningthe new candidate
probabilities,p from the currentprobabilitiesp1 and the hypothesizedresult
x, = V

1
k. The initial probabilitiesarecomputedfrom empirical data(seeSection

4.4). When x, is measured to be VIk, the probabilitiesof the candidatesshift.
Some candidateswill be eliminated, reducing their posterior probability to
zero. The remainingcandidatesR~kshift their probabilities according to (see
Section4.5):

p1 , lES~k,
p(x1 = V~k)

Pi p1/m , 1EU,.

P(XlV~k)

If everycandidatepredicts a value for x~,then p(x, = vlk) is the combined
probabilitiesof all the candidatespredictingx1 = V~k.To the extent that LI, is
not empty, theprobability p(x, = v~k) canonly be approximatedwith error

p(x1 = V~k)= P(51k) + Elk, 0< 8
1k <p(U~),

E~ p(U~)

where,

P(5lk) ~ p1. p(U1) ~ p1.
CJESZk C

1
EU~

At any stageof the diagnosticprocessonly some (say the first n of the m
possible) of the Ulk are actually predicted (i.e., those with nonempty S~k)for x,.
If a candidatedoesnot predict a value for a particularx~,we assumeeach
possibleV~kis equally likely7:

Elk = p(U1)/m.
So,

p(x, = U~k)= p(S,k) + p(U1)/m

Notice that for unpredictedvaluesS1k is empty, so p(x, = v,k) = p(L11) /m.

7We could assumethat if a componentwere faulted (i.e., a memberof the actualcandidate),
then its current observedinputsand outputswould be inconsistentwith its model. Undersuchan
assumption,the distribution would be skewedaway from those V,k predicted from the set of
assumptionsof the candidate(i.e., viewing a candidateasan environment).We do notmake this
assumptionbecausea componentmay appearto be functioning correctly, but actually be faulted
producingincorrectoutputs for a different set of inputs.



116 J. DE KLEER AND B.C. WILLIAMS

The expectedentropycan be computedfrom predictedquantities:

He(Xi) = ~ (p(x1= VIk) + Elk)H(xl = vlk) + E
k=( k=n+1

where H~is the expectedentropy if x. is measuredto have an unpredicted
value (i.e., all but the candidatesU, are eliminated):

H~=—~ plogp.
C

1
E U,

H~.and Elk are independentof the unpredictedvalue measured,thus
rewriting we obtain:

He(Xi) = (p(x~ = VIk) + elk)H(xI = V~k)+ (m—n) p(U1)H~..

Substitutingand simplifying gives:

He(xi) = H + Z~~He(xj).

Where H is the currententropy,and IXHe(xi) is:

np(U,) p(U1)
L1 p(x, = V,k) log p(x, = v.k) + p(U,) log p(LJ,) — log
k=1 m m

The expectedentropycan be calculatedfrom thecurrentcandidateprobability
distribution—thereis no necessityto explicitly constructthepossibleposterior
probability distributions and compute their entropies. Thus the best, on
average,measurementis the onethat minimizes~H~(x1).

The choiceof basefor the logarithm doesnot affect the relative order of
costs. Purely for convenienceGDE computes base e (this correspondsto
measurements,on average,having e known outcomes).To obtain a positive
cost, GDE adds one to this equation. This cost indicates the quality of a
hypothesizedmeasurement.The cost is theexpectedincreasein total (i.e., in
the entirediagnosticsession)numberof measurementsthat needto bemadeto
identify thecandidateafter makingthemeasurement.A costof 1 indicatesthat
no information at all is obtained.A cost of 0 is ideal as it indicatesperfect
information gain.

4.4. Independenceof faults

The initial probabilities of candidatesare computed from the initial prob-
abilities of componentfailure (obtainedfrom their manufactureror by observa-
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tion). We make the assumption that components fail independently. (This
approach could be extended to dependent faults except that voluminous data is
required.) The initial probability that a particular candidate C~is the actual
candidate Ca is given by:

p~=U p(cECa) II (l~p(cECa)).
cEC, c~C,

4.5. The conditional probability of a candidate

Given measurementoutcomex1 = V,k, the probability of a candidateis com-
putedvia Bayes’ rule (seeSection6.6.):

p(x~= Vlk~Cl)p(Cl)
p(Cjx1 = ulk) = p(x, = V,k)

Wherep1 = p(C) wherep = p(C1~x1= V,k). There arethreecasesfor evaluat-
ing p(x, = VIkIC,). If C1 predictsx. = W,k where W,k ~ V,k, then theconditional
probability is 0:

p(x1 = V~kICl)= 0, if CI~’Rlk.

If 14
1k = Vik, then the conditional probability is 1:

p(x, = VIk~CI)= 1 , if C1 E S,k

In the third case,C1 predictsno value for x.. We assumethat everypossible
value for x, (there are m of them) is equally likely:

p(xl=V,klC,)=1/m, ifC1EU1.

Substitutingtheseprobabilitiesinto Bayes’ rule we obtain:

0, ifCl~’Rlk,

p(C,)
if CIESk,

P(C1(x, = VIk) = p(x, = ulk)

p(C,)7m
ifC1EU,,

p(x = Vlk)

where
p(x, = V.k) =p(Slk) +p(LJ,)/m
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The estimatep(x, = Vik C1) = i/rn is suspectandintroducesvariouscompu-
tational complexities.Fortunately,U, containsprimarily low probability candi-
datesand thusany error tendsto be minor. On average,thecandidatesin U.
are nonminimal (becauseminimal candidatestend to assignvaluesto most of
the device’s variables)and as nonminimal candidateshave lower probability
than minimal candidates,thecandidatesin LI, haverelatively lower probability.
In practice,using P(x, = Vik C1) = 1 for C1 E R.k greatlysimplifies thecomputa-
tions and rarely affects the numberof measurementsrequired.

4.6. Examples

This section presents a series of examples to illustrate some of the intuitions

behind our technique.

4.6.1. Cascaded inverters: a = 1

Considercircuit of Fig. 5. Assumethe initial probability of componentfailure
is 0.01 and input a = 1 is given. As initially no symptomhas beendetectedon
average,little is gained by making any measurement—allcosts are nearly 1.
Comparethe advantagesand disadvantagesof measuringb or e. If the value
measureddiffers from the value predicted,thenmeasuringcloser to the input
(or any previously measuredvalue) producesas a smaller conflict, and thus
more information.For example,if we measureb to be 1, thenwe learnthat A
must be faulted, where measuringe = 0 tell us only that somecomponentis
faulty. On the other hand, measuringfurther away from the input is more
likely to produce a discrepant value. That is, as there is a large number of
intervening components, it is more likely that one will be faulted and thus
produce an incorrect value. These two effects tend to cancel each other,
however, the probability of finding a particular value outweighs the expected
cost of isolating the candidate from a set. In terms of entropy, every possible
outcome contributes p, log p~ but p, dominates log pa’. In general for any
cascaded sequence of components for which only the input is known, the best
next measurement is the output of the sequence. This is illustrated in Table 1.

4.6.2. Cascaded inverters: a = 1, e = 0

Supposee is measuredto be 0, violating thepredictionandthustelling us that
at least one of the components is faulted. The best next measurement is the
one that is equidistantfrom the previoustwo measurements,c (Table 2).

Fig. 5. Cascadedinverters.
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TABLE 1. Expected TABLE 2. Expected TABLE 3. Expected
costs after a = 1 with costs after a = 1, e = costs after a = 1, e =

p = 0.01 0 with p = 0.01 1 with p = 0.01

a I
b 0.98
c 0.96
d 0.94
e 0.93

a 1
b 0.45
c 0.31
d 0.44
e I

a 1
b 0.999
C 0.999
d 0.999
e 1

4.6.3. Cascadedinverters: a = 1, e = 1

Suppose that instead of measuring e to be 0 it was measured 1 as predicted.
The circuit must have a relatively unlikely double fault (if it has any fault at all)
where one fault shadows the effect of the other. Nevertheless the best
measurementto identify a possibledouble fault is still c (Table 3).

4.6.4. Cascaded inverters: a = 1, e = 0, p(a) = 0.025

If we are given that the first inverter A is more likely to be faulted, then the
bestmeasurementpoint is no longer equidistantfrom the previousobserva-
tions. The advantage of measuring b first insteadof c is that we might identify
that inverter A is faulted immediately.As A is far morelikely to be faulted, it
is better to measureb first (Table 4).

4.6.5. Diagnosinga fault

Consider the circuit of Fig. 2. Suppose that M, is faulted exhibiting behavior
V = B x C —2 andA2 is faulted with behaviorG = V x Z + 2. The inputsare
the same as earlier. The following illustrates GDE’s strategy to localize this
fault. Note that this is an unusual fault in that the effect of the two faults
cancel,producingthe value predictedfor G. Thus, severalmeasurementsare
necessaryto identify the fault. We assumethat componentsfail with initial
probability 0.01 andthat rn = 16.

Initially the most probablecandidateis [], p([ ] = Ca) = 0.951. The expec-
ted cost associatedwith eachhypotheticalmeasurementis shownin Table 5.
All the costs are nearlyone, indicating that little is to be gainedby any of the
measurements,this is becauseon averagecomponentsare not faulted, and
there is yet no evidencethat anything is malfunctioning.Not surprisingly, F
and G as well as X, V, Z are treatedsymmetrically.F and G have slightly
lower cost becausetheir predictedvaluesdependon threecomponentsfunc-
tioning correctly, while X, V, and Z dependon two (i.e., F and G aremore
likely to have discrepantvalues).

SupposeF is measuredwith result F = 10 (Table 6). The most probable
candidatesare now [A1], [M1], and [M2], all having probability 0.323. G, X
and Y are all good measurementsbecauseeachone differentiatesamongthe
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TABLE 4. Expected
costs after a = 1, e =

0 with p(a) = 0.025

a 1
b 0.33
C 0.36
d 0.53
e 1

high-probability single-fault candidates. Each high-probability candidate pre-
dicts Z = 6 so measuringZ provides little new information. G is a slightly
betterpoint to measurebecausethecandidatesaremorebalancedbetweenG’s
two predictedoutcomes(the best measurementis one whosepredictedout-
comesall haveequal probability andwhich cover all the candidates).

Next, supposeG is measuredwith result G = 12 (Table 7). The most
probablecandidatesare now [A ~]and [M1] both with probability 0.478. At
this point X is thebestmeasurementbecauseit splits thetwo high-probability
candidates.

Next, supposeX is measuredwith result X = 6 (Table8). This resultsin a
single high-probability candidate[A1] with probability 0.942. The next seven
most likely candidatesare: [A1, M3J, [A1, M2], [A1, M1}, [A1, A2], [A2, M,],
and [M.,, M3], all with probability 0.00951.

Next, supposeY is measuredwith result V = 4. M2 is now necessarilyfaulted
and at least one other fault exists. The costs are now as shown in Table 9.

Finally, supposeZ is measuredwith result Z = 6. There are six remaining
candidates: [A2, M2] with probability 0.970, [A2, M1, M1], [A1, A,, M,},
[A2, M2, M3], with probabilities0.0098, [A ~,A2, M1, M2], [A ~,A.,, M2, ~ 1’
[A2, M1, M2, M3], with probabilities 0.0001, and [A1, A2, M1, M2, M3] with
probability 0.000001.ComponentsM2 andA2 are necessarilyfaulted, andA1,
M1, andM3 are possibly faulted,eachwith probability 0.01. No measurement
pointsremain in the circuit, so no further informationcan be obtained.

TABLE 7. Costsafter TABLE 8. Costs after
F=l0, G=12 F=10, G=12, and

F 1
G 1
x 0.28
Y 0.94
z 0.97

TABLE 9. Costs after
F=10, G=12, X=

X=6 6,andV=4

F 1
G 1
X 1
Y 0.90
z 0.94

F 1
G 1
X 1
1’ 1
z 0.141

TABLE 5. Initial ex- TABLE 6. Costsafter
pectedcosts F = 10

F 0.88
G 0.88
X 0.95
Y 0.95
Z 0.95

F 1
G 0.28
X 0.34
Y 0.34
Z 0.95
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4.7. Logical incompleteness

In practice, for diverse reasons,the underlying inferenceprocessis usually
incomplete.One of theconsequencesof this incompletenessis that it becomes
moredifficult to evaluatethe resultsof hypotheticalmeasurements—theLI, are
larger than ideal. As any incompletenessdegradesODE’S performance,it is
instructiveto examinethe sourcesand types of this incompleteness.

An often avoidableform of incompletenessoccurswhen theconflict recogni-
tion strategymissessomeconflicts. This was discussedearlier. Herewe assume
the conflict recognitionstrategyis complete.U, will be larger than ideal only if
the prediction processis incomplete. This incompletenessmanifestsitself in
two ways. First, an incompleteinferenceprocessmay result in missingpredic-
ted values and missing supporting environments. As a consequence,the
hypothesizedconflicts resulting from measuringa quantitywill be incomplete.
For example, consider an inverter which is incompletelymodeledby a rule
whichpredicts its outputfrom its input, but not its input from its output. Even
thoughthe inverter’soutput is measuredto beone, thepredictionthatits input
is zero is not made.Thus,ODE doesnotconsidermeasuringits input. A second
sourceof incompletenessis inherentin the x, = Vik representation—theremay
be many additionalpropertiesthat could be inferred aboutx,, but asthereis
no way to representthemthey cannotbe usedby our strategy.For example,it
cannot representx ~ 1. Thus, although x ~ 1 might be derivable from an
environment,ODE cannotforeseetheresulting conflict when considering,say,
x2.

Assuming the basic conflict recognition strategy is complete, both these
sourcesof incompletenesscan be avoided at prohibitive computationalcosts.
The first sourceof incompletenesscan be avoidedwith a completeinference
process.The secondsourceof incompletenesscan be avoidedwith a more
generalrepresentation.8

5. Pragmatics

5.1. Most probable candidates

Computingall candidatesis computationallyprohibitive. In practice it is only
necessaryto computethe more probablecandidates.There is no way to tell
whethera single candidateactually hasa high probability without knowing the
overall normalizationfactor. This suggestsusing abest-firstsearchof the lattice
to find candidatesin increasingorder of probability. This searchis arbitrarily

8Assumingthe numberof possiblevaluesfor quantitiesare finite, GDE could hypothesizeeach
possiblemeasurementoutcome,run its completeinferenceprocedureandpreciselycomputethe
R~kfrom which the S,k could then be computed.
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stoppedfor candidatesbelow somethresholdfraction (e.g., ~ of the highest
probability candidate).Although the most probable candidateis a minimal
candidate,the remainingminimal candidatesneednot be very probable.

5.2. When to stop making measurements

If thereare manypoints in a devicethat could be measuredchoosingthebest
point to measurecan be computationallyexpensive.A heuristicis to makethe
first reasonablemeasurementwhose cost is computed to be less than 1 —

log 0.5 = 0.7 asthis measurementon average,splits thecandidatespacein half.
The point at which measurementshould stop dependsgreatly on the

seriousnessof a misdiagnosisas well as on the a priori probabilities of
componentfailure. When a candidateis found whoseprobability approaches
some threshold(e.g., 0.9), diagnosiscan stop. If the cost of misdiagnosisis
high, then the thresholdshouldbe increased.

6. Comparison to Other Work

6.1. Circuit diagnosisbased on structure and behavior

Work in the Al communityon model-basedhardwarediagnosishasgrown out
of a desire to move away from the domain and devicespecific fault models
usedin traditional circuit diagnosis.9Instead,duringcandidategenerationthe
model-basedapproachreasonsfrom a small setof componentbehaviormodels
plus the structure of the device. The requirementfor device specific fault
models is eliminatedby basing the diagnosticapproachsolely on the know-
ledge that, if a component’sbehavior is inconsistentwith its model, then it
must be faulty. This resultsin a domain independentdiagnostictechnique.A
numberof systemshave followed this approachfor diagnosingboth analog
(e.g., LOCAL [10] andsOPHIE [4]) anddigital circuits (e.g., HT [5] andDART [12]).

Our work naturally extendsthis approachalong a numberof dimensions.
First, unlike earlierapproaches,our work is aimedspecifically at copingwith
the problem of diagnosingmultiple faults. Earlier work focusedprimarily on
the casewhereall symptomscould be explainedby a single componentbeing
faulty. As Davis points out, the obvious extensionto his work to handle
multiple faults resultsin an algorithm which is exponentialin the numberof
potential faults. As our approachrepresentsthe candidatespaceimplicitly in
termsof theminimal candidates,we needonly be concernedwith the growth
of this smaller set. Typically the size of eachminimal candidateis relatively
small (i.e., the symptom can usually be explained by one, two or three

9SeeDavis’ [5], Sections5.1., 12.1. and13 for a discussionof traditionalcircuit diagnosisand the
advantagesof the model-basedapproach.Also see[161.
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componentsbeingsimultaneouslyfaulty), thusin practiceour approachtends
to grow with the squareor cubeof the numberof potential faults.

Second,our approachto diagnosisis inferenceprocedureindependent,as
well as domain independent.LOCAL, SOPHIE, and Davis’ system all represent
circuit knowledgeasconstraintsandthenusesomeform of constraintpropaga-
tion to infer circuit quantitiesand their dependencies.The motivation behind
this approach is that constraints naturally reflect the local interaction of
behavior in the real world. Theseare similar (althoughnot identical) to the
constraintpropagationtechniqueusedto demonstrateODE in this paper.

On the other hand, DART expressescircuit knowledgeas logical propositions
and uses an inference system based on resolution residue to infer circuit
properties.This samegeneralinferenceprocedureallowsDART to deducewhich
componentsaresuspectandhow to changecircuit inputsto reducethesuspect
set to a singleton.Such a resolution-basedinferencestrategycan be incorpo-
ratedinto the candidategenerationandconflict recognitionportion of ODE by
recording, for eachresolution step, the dependenceof the resolvent on the
formulas used to perform the resolution. Then, as in the casefor constraint
propagation, ODE can guide the inference processin identifying minimal
candidatesfirst.

Resolutionis highlightedashavinganadvantageoverconstraintpropagation
in that it is logically completewith respectto afirst-order theory, wheremost
constraintpropagatorsarenot. However,this can be misleading.A significant
computationalcost is incurred using a logically completeinferencestrategy,
such as resolution. Yet a logically complete inference strategy does not
guaranteethat the set of predictionswill alsobe complete.For examplein an
analogdomain,producingexact predictionsoften involves solving systemsof
higher-ordernonlinear differential equations.As this type of equationis not
generally solvable with known techniques,completenessin the predictor is
currently beyond our reach. In practice propagationof constraints(without
symbolic algebra) provides a good compromisebetween completenessand
computationalexpense.

Third, our approachis incremental.This is crucialasdiagnosisis an iterative
processof making observations,refining hypotheses,andthen using this new
knowledgeto guide further observations.

Finally, our approachis unique in that it combinesmodel-basedreasoning
with probabilistic information in a sequentialprobing strategy. SOPHIE also
proposesmeasurementsto localize the failing component,but is basedon an
ad hoc half-split method. Its design is basedon the presuppositionthat the
circuit containsasingle fault. Thus, candidategenerationis trivial (setintersec-
tion), and identifying good measurementsis easy.

6.1.1. Possibleextensions

Representingandmanipulatingcandidatesin termsof minimal candidatesgives
us a significantcomputationaladvantageover previousapproaches;however,
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eventhis representationcan grow exponentiallyin theworstcase.To effective-
ly cope with very large devices,additional techniquesmust be incorporated.

One approachinvolves groupingcomponentsinto largermodulesandmod-
ifying the candidategenerationstrategyto deal with hierarchicaldecomposi-
tions. Although we have not implementedthis, the strategiesproposedby
Davis and Genesereth,as they are model-based,apply. Their basic idea is to
troubleshootat the most abstractlevel in the hierarchyfirst and only analyze
the contentsof a module when there is reasonableevidenceto suspectit. If
thereis no conflict involving themodule, then thereis no reasonto suspectit.

Complexity is directly related to the numberof hypothetical faults enter-
tained. Thus anotherapproach,proposedby Davis, involves enumeratingand
layering categoriesof failures based on their likelihood. Troubleshooting
beginsby consideringfaults in the most likely categoryfirst, moving to less
likely categoriesif thesefail to explain the symptoms.ODE usesa variation on
this approachwhereby candidatescan be enumeratedbasedon their likeli-
hood. However,no theoryhas beendevelopedaboutfailure categories.

LOCAL andSOPHIE alsoaddressanumberof issueswhich ODE doesnot. LOCAL

and SOPHIE usecorroborationsaswell asconflicts to eliminate candidates.To
take advantageof corroborations,SOPHIE includes an exhaustiveset of fault
modesfor eachcomponent.As a consequence,SOPHIE can identify a compo-
nentasbeingunfaultedby determiningthatit is not operatingin any of its fault
modes(i.e., noneof thecomponentsfault modescan explain the failure, and
we know all the component’smodesof failure, so the componentmust be
working). Thus, SOPHIE reducesthe candidatespacefrom both sides: conflicts
eliminate candidatesthat do not explain a conflict, and corroborationselimi-
natecandidateswhich include known working components.

In addition, SOPHIE and LOCAL dealt with the problem of imprecisemodels
andvaluesaswell. This makesconstraintpropagationvery difficult becauseit
is hard to tell whethertwo differing valuescorroborateor conflict within the
precisionof the analysis.

ODE proposesoptimal measurementsgiven a fixed set of inputs. Both
Shirley’s system [31] and DART generatetest vectorsto localize circuit faults.
This approachis useful in caseswhere it is both difficult to make internal
measurements,and easyto changecircuit inputs. Both approachesproduce
testswhicharelikely to give useful information;however,no seriousattemptis
madeat selectingtheoptimal tests.A fairly simpleextensioncan be madeto
our costfunction to accountfor tests,by takinginto consideration,for example
the costof modifying the inputs.

In Shirley’s approach,eachtest isolatesa single potentially faulted compo-
nent by using known good componentsto guide the input signals to the faulty
component and the output of that component to a point which can be
measured.However,it is not alwayspossibleto routethe test signalssuchthat
all othersuspectsareavoided.Using the informationconstructedby ODE, this
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approachcan be modified, so that testsare constructedfirst for components
which are most likely to be faulted, while propagatingthe signal alonga path
with the lowest probability of having a faulty component.

6.2. Counterfactuals

Ginsberg[13] points out how David Lewis’ possibleworld semanticscould be
applied to diagnosis. Each component is modeled by a counterfactual,a
statementsuch as “if p. then q,” wherep is expectedto be false. Thus A I is
modeledby the counterfactual“if A1 fails, then F = X + Y need not hold.”
Counterfactualsare evaluatedby consideringa “possible world” that is as
similar aspossibleto the real world wherep is true. The counterfactualis true
if q holds in sucha possibleworld. In this framework themost similar worlds
(i.e., those closestto the one in which the circuit functions correctly) corre-
sponddirectly to our minimal candidates.A most similar world is onein which
as few of the p’s (e.g., “A1 fails”) as possible becometrue. Thus, in this
instanceGinsbergusescounterfactualsfor hypotheticals.

Ginsberg’s approacheshandlesmultiple faults, but he does not discuss
measurementstrategiesor probabilities. Both could be integratedinto his
approach.

6.3. Reiter

Reiter [29] has been independently exploring many of the ideas incorporated in
ODE. His theory of diagnosis provides a formal account of our “intuitive”
techniquesfor conflict recognition and candidategeneration. However, his
theory doesnot include a theory of measurementsnor how to exploit prob-
abilistic information.

Reiter’s theory usesMcCarthy’s [18] AB predicate.Reiter writes 1AB(A ~)
(i.e., adderA1 is not ABnormal), while we write A1 (i.e., the assumptionthat
adderA1 is working correctly). Under this mapping, Reiter’s definition of
diagnosisis equivalentto our definition of minimal candidate,and his defini-
tion of conflict set is equivalentto our definition of conflict.

Reiter proposes (unimplemented)a diagnostic algorithm based on his
theory. This architectureis quite different from ODE’s. The theoremprover of
his architecture correspondsroughly to our inference engine. While ODE’S

procedurefirst computesall minimal conflicts resulting from a new measure-
ment before updating the candidatespace,Reiter’s algorithm intermingles
conflict recognitionwith candidategenerationto guidethe theoremproving to
“preventthe computationof inessentialvariantsof refutations,without impos-
ing any constraintson the natureof the underlyingtheoremproving system.”
Given ODE’S inferencearchitecture(and the necessityto choosethe bestnext
measurement),ODE avoidsalmostall theseinessentialvariantsandalso avoids
much of the computationReiter’s architecturedemands.
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6.4. sNeps

SNePS[17] incorporatesa belief revisionsystemSN~BRwhich reasonsaboutthe
consistencyof hypotheses.This belief revision systemhas been[6] applied to
fault detection in circuits. Some of the basic conceptsused in the SN~PS

approachare similar to those used in ODE—both use an assumption-based
belief revision system (see[9] for a comparison).As describedin [6] SNePS is
weaker than either ODE or Reiter’s approach.In GDE’s terminology, s~e~s
operatesin a single environment,detectingsymptoms(and henceconflicts) for
only thosevariablesaboutwhich a userquery is made.The systemprovidesno
mechanismsto detectall symptoms(and thus all conflicts), to identify candi-
dates, to propose measurements,or to exploit probabilistic information.
However,thereseemsno reason,in principle that themethodsof ODE cannot
be incorporatedinto their system.

6.5. IN-ATE and FIS

IN-ATE [7] and FIS [24] are expert systemshells specifically designedfor fault
diagnosis.Although neither is purely model-based(i.e., not purely within the
structure-function paradigm), they are the only other electronic diagnosis
systemswe are awareof that proposemeasurements,and thusit is instructive
to compare them with GDE.

IN-ATE incorporatestwo formal criteria to determinethebestnext measure-
ment: minimum entropy (as in ODE) and gammaminiaverageheuristicsearch
[32]. Wechose minimum entropy (as FIS does) in GDE because it was the best
evaluation function which is efficiently computable (i.e., it is based on one-Step
lookahead). The gammaminiaverage heuristic search is a multi-step lookahead
procedure and hence computationally expensive to apply. Nevertheless, there
is no reason,in principle, it could not be incorporatedinto GDE.

Unlike GDE, IN-ATE and FIS can exploit a variety of kinds of knowledge (e.g.,
fault trees,expert-suppliedrules, hierarchy) in the diagnostic process. How-
ever, viewedfrom thepure model-basedapproach,they arelimited in predic-
tive power and as a consequencecan only estimatethe probabilities for their
predictions.

As IN-ATE is not model-based,it doesnot constructexplicit value predictions
as does GDE. Instead, it predicts whether a particular measurement outcome
will be “good” or “bad.” (This, in itself, presentsdifficulties because a
measurement,being “good” or “bad” is relative to the observationsbeing
compared to. However, IN-ATE takes “good” and “bad” as absolute.)These
predictionsare computedby analyzingexpert-suppliedempirical associations
basedon “good” and “bad.” IN-ATE incorporatesa heuristic rule generator
which exploits connectivity information, but it, at a minimum, must be
provided with the definitions of “good” and “bad” for the test points. In this
approach,the numberof test points is limited to thoseexplicitly mentionedin
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rules (or for which “good” and“bad” areexternallydefined).With this limited
Set of test points full search (i.e., gamma miniaveragesearch) becomes
plausible. FIS exploits more model knowledge, propagatingqualitative values
such as {hi, ok, lo} through the circuit topology via expert-suppliedcausal
rules. The propagated values are always relative to fixed expert-supplied
values. Thus neither FIS nor IN-ATE can analyzehypotheticalfaults.

All three systems must compute probabilities for their predictions. ODE

directly computesthe probability of the predictionsfrom the probabilitiesof
the candidatesinvolved. IN-ATE has a much more difficult time determining
good/badprobabilities becauseit cannotdeterminethe candidatespaceand
their associatedprobabilities. Instead it uses the expert-suppliedrules to
propagateprobabilities (much like MYCIN) and Dempster—Shaferto combine
the resulting evidence.FIS’ definition of candidateprobability is similar to
ODE’S, however, as it cannot perform hypothetical reasoning it can only
estimatethe probabilitiesof its predictions.

6.6. Medical diagnosis

There has been extensive researchon the diagnostic task in the medical
decision making community. Although most of this researchis not model-
based,its concern with identifying the diseases causing symptoms and sub-
sequentlyproposing information-gatheringqueriesis analogousto ours.

Like Gorry and Barnett [14] GDE solves a sequentialdiagnostictask. The
fundamentalequation (Bayes’ rule) [35, formula (2)] statesthat the posterior
probability of hypothesisH, being the true state HT given evidenceQ, is:

p(Q,JH1)p(H1)
p(H~,JQ1)’

k

wherep(Q1IH~,.) is theconditionalprobability of evidenceQ, while p(H
1

) is the
a priori probability of H1. Given theseprobabilities it is possible to determine
the posterior probability distribution, and, in addition, to determine the
hypotheticalprobability distribution resulting from proposedtests.Thus, this
provides complete information to evaluatethe expectedgain of a test [14] and
to select the best test to makenext.

The practical obstacle to employing Bayes’ rule is the unavailability of the
conditional probabilities. These probabilities are both hard to estimate and
extremely numerous. For even small numbersof possible symptoms and
diseasesthe numberof probabilities requiredis extremelylarge (given just 10
hypothesesand 5 possible binary tests, 2420 conditional probabilities are
required[35]).

The engineering domain differs from the medical domain in that very
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accuratemodels exist basedon the structure of the (faulty) system. Thus,
exploiting model-basedreasoning, ODE computes these conditional prob-
abilities directly rather than dependingon empirical results. Another advan-
tageof themodel-basedapproachfor engineeringis that thepotentialtestsare
computedin thecourseof the analysisinsteadof havingthem supplieda priori.

Early research[14] presumedthat the patienthad only one disease.This is
analogousto the single-fault assumptionin circuit diagnosis. More recent
researchallows for multiple simultaneousdiseases.Bayes’ rule can also be
appliedto this multimembershipclassificationproblem[2, 3] but thenumberof
conditionalprobabilitiesrequiredbecomesexponentiallylarger than the single-
diseasecase(which already is a large number). Again, ODE computesthese
conditional probabilitiesby model-basedreasoning.

The conceptof set covering used in [21, 22, 23, 25, 27, 28] is similar to the
candidategenerationphaseof our diagnostic approach. The irredundant set
coverof thegeneralsetcoveringtheory (osC)of Reggiacorrespondsdirectly to
our notion of minimal candidates.The primary differenceis that we consider,
in theory, every possiblecover to be an explanationfor the symptomswhile
OSC considers only the minimal candidatesas explanations.Although osc
incorporatesacrudeheuristicstrategyfor proposingnewmeasurements,as the
conditional probabilities are available to ODE, the preferred approach,
minimum entropy,can be applied.
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