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ABSTRACT

Diagnostic tasks require determining the differences between a model of an artifact and the artifact
itself. The differences between the manifested behavior of the artifact and the predicted behavior of
the model guide the search for the differences between the artifact and its model. The diagnostic
procedure presented in this paper is model-based, inferring the behavior of the composite device
from knowledge of the structure and function of the individual components comprising the device.
The system (GDE-—general diagnostic engine) has been implemented and tested on many examples
in the domain of troubleshooting digital circuits.

This research makes several novel contributions: First, the system diagnoses failures due to
multiple faults. Second, failure candidates are represented and manipulated in terms of minimal sets
of violated assumptions, resulting in an efficient diagnostic procedure. Third, the diagnostic
procedure is incremental, exploiting the iterative nature of diagnosis. Fourth, a clear separation is
drawn between diagnosis and behavior prediction, resulting in a domain (and inference procedure)
independent diagnostic procedure. Fifth, GDE combines model-based prediction with sequential
diagnosis to propose measurements to localize the faults. The normally required conditional
probabilities are computed from the structure of the device and models of its components. This
capability results from a novel way of incorporating probabilities and information theory into the
context mechanism provided by assumption-based truth maintenance.

1. Introduction

Engineers and scientists constantly strive to understand the differences be-
tween physical systems and their models. Engineers troubleshoot mechanical
systems or electrical circuits to find broken parts. Scientists successively refine a
model based on empirical data during the process of theory formation. Many
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everyday common-sense reasoning tasks involve finding the difference between
models and reality.

Diagnostic reasoning requires a means of assigning credit or blame to parts
of the model based on observed behavioral discrepancies. If the task is
troubleshooting, then the model is presumed to be correct and all model-
artifact differences indicate part malfunctions. If the task is theory formation,
then the artifact is presumed to be correct and all model-artifact differences
indicate required changes in the model (Fig. 1).

Usually the evidence does not admit a unique model-artifact difference.
Thus, the diagnostic task requires two phases. The first, mentioned above,
identifies the set of possible model-artifact differences. The second proposes
evidence-gathering tests to refine the set of possible model-artifact differences
until they accurately reflect the actual differences.

This view of diagnosis is very general,. encompassing troubleshooting
mechanical devices and analog and digital circuits, debugging programs, and
modeling physical or biological systems. Our approach to diagnosis is also
independent of the inference strategy employed to derive predictions from
observations.

Earlier research work (see Section 6) on model-based diagnosis concentrated
on determining a single faulty component that explains all the symptoms. This
paper extends that research by diagnosing systems with multiple failed compo-
nents, and by proposing a sequence of measurements which efficiently localize
the failing components.

When one entertains the possibility of multiple faults, the space of potential
candidates grows exponentially with the number of faults under consideration.
This work is aimed specifically at developing an efficient general method,
referred to as the general diagnostic engine (GDE), for diagnosing failures due
to any number of simultaneous faults. To achieve the needed efficiency, GDE
exploits the features of assumption-based truth maintenance (at™s) [8]. This is
the topic of the first half of the paper.

Usually, additional measurements are necessary to isolate the set of compo-
nents which are actually faulted. The best next measurement is the one which
will, on average, lead to the discovery of the faulted set of components in a
minimum number of measurements. Unlike other probabilistic techniques
which require a vast number of conditional probabilities, GDE need only be
provided with the a priori probabilities of individual component failure. Using
an ATMS, this probabilistic information can be incorporated into GDE such that it
is straightforward to compute the conditional probabilities of the candidates, as
well as the probabilities of the possible outcomes of measurements, based on
the faulty device’s model. This combination of probabilistic inference and
assumption-based truth maintenance enables GDE to apply a minimum entropy
method [1] to determine what measurement to make next: the best measure-
ment is the one which minimizes the expected entropy of candidate prob-
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STRUCTURAL
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BEHAVIOR > DISCREPANCY < BEHAVIOR

FiGg. 1. Model-artifact difference.

abilities resulting from the measurement. This is the topic of the second half of
the paper. ‘

1.1. Troubleshooting circuits

For troubleshooting circuits, the diagnostic task is to determine why a correctly
designed piece of equipment is not functioning as it was intended; the
explanation for the faulty behavior being that the particular piece of equipment
under consideration is at variance in some way with its design (e.g., a set of
components is not working correctly or a set of connections is broken). To
troubleshoot a system, a sequence of measurements must be proposed, exe-
cuted and then analyzed to localize this point of variance, or fault. The task for
the diagnostician is to use the results of measurements to identify the cause of
the variance when possible, and otherwise to determine which additional
measurements must be taken.

For example, consider the circuit in Fig. 2, consisting of three multipliers,
M,, M,, and M,, and two adders, A, and A,. The inputs are A =3, B =2,
C=2, D=3, and E =3, and the outputs are measured showing that F =10
and G = 12.! From these measurements it is possible to deduce that at least one
of the following sets of components is faulty (each set is referred to as a
candidate and is designated by [-]): [A,], [M,], [4,, M,], or [M,, M.].
Furthermore, measuring X is likely to produce the most useful information in
further isolating the faults. Intuitively, X i1s optimal because it is the only
measurement that can differentiate between two highly probable singleton
candidates: [A,] and [M,].

Next the value of X is measured and the result is used to reduce the size of
the candidate set. The candidate generation-measurement process continues
until a single high-probability candidate remains.

'This circuit is also used by both [5] and [12] in explaining their systems.
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Fic. 2. A familiar circuit.

1.2. Some basic presuppositions

Although GDE considers multiple faults and probabilistic information, it shares
many of the basic presuppositions of other model-based research. We presume
that the act of taking a measurement (i.e., making an observation) has no
affect on the faulty device. We presume that once a quantity is measured to be
a certain value, that the quantity remains at the value. This is equivalent to
assuming that no component’s (correct or faulty) functioning depends on the
passage of time. For example, this rules out flip-flops as well as intermittent
components which spontaneously change their behavior. We presume that if a
component is faulty, the distribution of input-output values becomes random
(i.e., contains no information). We do not presume that if a component is
faulty, that it must be exhibiting this faulty behavior—it may exhibit faulty
behavior on some other set of inputs. These presuppositions suggest future
directions for research, and we are extending GDE in these directions.

2. A Theory of Diagnosis

The remainder of this paper presents a general, domain-independent, diagnos-
tic engine (GDE) which, when coupled with a predictive inference component
provides a powerful diagnostic procedure for dealing with multiple faults. In
addition the approach is demonstrated in the domain of digital electronics,
using propagation as the predictive inference engine.
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2.1. Model-artifact differences

The model of the artifact describes the physical structure of the device in terms
of its constituents. Each type of constituent obeys certain behavioral rules. For
example, a simple electrical circuit consists of wires, resistors and so forth,
where wires obey Kirchhoff’s Current Law, resistors obey Ohm’s Law, and so
on. In diagnosis, it is given that the behavior of the artifact differs from its
model. It is then the task of the diagnostician to determine what these
differences are.

The model for the artifact is a description of its physical structure, plus
models for each of its constituents. A constituent is a very general concept,
including components, processes and even steps in a logical inference. In
addition, each constituent has associated with it a set of one or more possible
model-artifact differences which establishes the grain size of the diagnosis.

Diagnosis takes (1) the physical structure, (2) models for each constituent,
(3) a set of possible model-artifact differences, and (4) a set of measurements,
and produces a set of candidates, each of which is a set of differences which
explains the observations.

Our diagnostic approach is based on characterizing model-artifact differences
as assumption violations. A constituent is guaranteed to behave according to its
model only if none of its associated differences are manifested, i.e., all the
constituent’s assumptions hold. If any of these assumptions are false, then the
artifact deviates from its model, thus, the model may no longer apply. An
important ramification of this approach [4,5,10,12,29] is that we need only
specify correct models for constituents—explicit fault models are not needed.

Reasoning about model-artifact differences in terms of assumption violations
is very general. For example, in electronics an assumption might be the correct
functioning of each component and the absence of any short circuits; in a
scientific domain a faulty hypothesis; in a commonsense domain an assumption
such as persistence, defaults or Occam’s razor.

2.2. Detection of symptoms

We presume (as is usually the case) that the model-artifact differences are not
directly observable.” Instead, all assumption violations must be inferred in-
directly from behavioral observations. In Section 2.7 we present a general
inference architecture for this purpose, but for the moment we presume an
inference procedure which makes behavioral predictions from observations and
assumptions without being concerned about the procedure’s details.
Intuitively, a symptom is any difference between a prediction made by the
inference procedure and an observation. Consider our example circuit. Given

’In practice the diagnostician can sometimes directly observe a malfunctioning component by
looking for a crack or burn mark. :
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the inputs, A=3, B=2, C=2, D=3, and E =3, by simple calculation (i.e.,
the inference procedure), F=XXY=AXC+ Bx D =12. However, F is
measured to be 10. Thus “F is observed to be 10, not 12 is a symptom. More
generally, a symptom is any inconsistency detected by the inference procedure
and may occur between two predictions (inferred from distinct measurements)
as well as a measurement and a prediction (inferred from some other measure-
ments).

2.3. Conflicts

The diagnostic procedure is guided by the symptoms. Each symptom tells us
about one or more assumptions that are possibly violated (e.g., component that
may be faulty). Intuitively, a conflict is a set of assumptions which support a
symptom, and thus leads to an inconsistency. In this electronics example, a
conflict is a set of components which cannot all be functioning correctly.
Consider the example symptom ‘“F is observed to be 10, not 12.” The
prediction that F' =12 depends on the correct operation of A, M,, and M,,
ie.,if A;, M,, and M, were correctly functioning, then F = 12. Since F is not
12, at least one of A, M,, and M, is faulted. Thus the set (A,, M,, M,) is a
conflict for the symptom (conflicts are indicated by (- )). Because the infer-
ence is monotonic with the set of assumptions, the set (A, A,, M,, M,), and
any other superset of (A,, M,, M,) are conflicts as well; however, no subsets
of (A,, M,, M,) are necessarily conflicts since all the components in the
conflict were needed to predict the value at F.

A measurement might agree with one prediction and yet disagree with
another, resulting in a symptom. For example, starting with the inputs B =2,
C=2, D=3, and E =3, and assuming A,, M,, and M, are correctly function-
ing we calculate G to be 12. However, starting with the observation F = 10, the
inputs A =3, C=2, and E =3, and assuming that A, A,, M|, and M,, (i.e.,
ignoring M,) are correctly functioning we calculate G =10. Thus, when G is
measured to be 12, even though it agrees with the first prediction, it still
produces a conflict based on the second: (A, A,, M|, M;).

For complex domains any single symptom can give rise to a large set of
conflicts, including the set of all components in the: circuit. To reduce the
combinatorics of diagnosis it is essential that the set of conflicts be represented
and manipulated concisely. If a set of components is a conflict, then every
superset of that set must also be a conflict. Thus the set of conflicts can be
represented concisely by only identifying the minimal conflicts, where a conflict
is minimal if it has no proper subset which is also a conflict. This observation is
central to the performance of our diagnostic procedure. The goal of conflict
recognition is to identify the complete set of minimal conflicts.’

’Representing the conflict space in terms of minimal conflicts is analogous to the idea of version
spaces for representing plausible hypotheses in single concept learning [19].
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2.4. Candidates

A candidate is a particular hypothesis for how the actual artifact differs from
the model. For example “A, and M, are broken” is a candidate for the two
symptoms observed for our example circuit. Ultimately, the goal of diagnosis is
to identify, and refine, the set of candidates consistent with the observations
thus far.

A candidate is represented by a set of assumptions (indicated by [-]). The
assumptions explicitly mentioned are false, while the ones not mentioned are
true. A candidate which explains the current set of symptoms is a set of
assumptions such that if every assumption fails to hold, then every known
symptom is explained. Thus each set representing a candidate must have a
nonempty intersection with every conflict.

For electronics, a candidate is a set of failed components, where any
components not mentioned are guaranteed to be working. Before any mea-
surements have been taken we know nothing about the circuit. The candidate
space is the set of candidates consistent with the observations. The size of the
initial candidate space grows exponentially with the number of components.
Any component could be working or faulty, thus the candidate space for Fig. 2
initially consists of 2° = 32 candidates.

It is essential that candidates be represented concisely as well. Notice that,
like conflicts, candidates have the property that any superset of a possible
candidate for a set of symptoms must be a possible candidate as well. Thus the
candidate space can be represented by the minimal candidates. Representing
and manipulating the candidate space in terms of minimal candidates is crucial
to our diagnostic approach. Although the candidate space grows exponentially
with the number of potentially faulted components, it is usually the case that
the symptoms can be explained by relatively few minimal candidates.

The goal of candidate generation is to identify the complete set of minimal
candidates. The space of candidates can be visualized in terms of a subset-
superset lattice (Fig. 3). The minimal candidates then define a boundary such
that everything from the boundary up is a valid candidate, while everything
below is not. _

Given no measurements every component might be working correctly, thus
the single minimal candidate is the empty set, [ ], which is the root of the
lattice at the bottom of Fig. 3.

To summarize, the set of candidates is constructed in two stages: conflict
recognition and candidate generation. Conflict recognition uses the observa-
tions made along with a model of the device to construct a complete set of
minimal conflicts. Next, candidate generation uses the set of minimal conflicts
to construct a complete set of minimal candidates. Candidate generation is the
topic of the next section, while conflict recognition is discussed in Section 2.6.
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Fic. 3. Initial candidate space for the circuit example.

2.5. Candidate generation

Diagnosis is an incremental process; as the diagnostician takes measurements
he continually refines the candidate space and then uses this to guide further
measurements. Within a single diagnostic session the total set of candidates
must decrease monotonically. This corresponds to having the minimal candi-
dates move monotonically up through the candidate superset lattice towards
the candidate containing all components. Similarly, the total set of conflicts
must increase monotonically. This corresponds to having the minimal conflicts
move monotonically down through a conflict superset lattice towards the
conflict represented by the empty set. Candidates are generated incrementally,
using the new minimal conflict(s) and the old minimal candidate(s) to generate
the new minimal candidate(s).

The set of minimal candidates is incrementally modified as follows.
Whenever a new minimal conflict is discovered, any previous minimal candi-
date which does not explain the new conflict is replaced by one or more
superset candidates which are minimal based on this new information. This is
accomplished by replacing the old minimal candidate with a set of new
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tentative minimal candidates each of which contains the old candidate plus one
assumption from the new conflict. Any tentative new candidate which is
subsumed or duplicated by another is eliminated; the remaining candidates are
added to the set of new minimal candidates.

Consider our example. Initially there are no conflicts, thus the minimal
candidate | ] (i.e., everything is working) explains all observations. We have
already seen that the single symptom “F = 10 not 12” produces one conflict
(A,, M, M,). This rules out the single minimal candidate [ ]. Thus, its
immediate supersets containing one assumption of the conflict {A ], [M,], and
[M,] are considered. None of these are duplicated or subsumed as there were
no other old minimal candidates. The new minimal candidates are [A,], [M,],
and [M,]. This situation is depicted with the lattice in Fig. 4. All candidates
above the line labeled by the conflict “C1: (A, M,, M,)” are valid candi-
dates.

The second conflict (inferred from observation G = 12), (A, A,, M,, M,),
only eliminates minimal candidate [M,]; the unaffected minimal candidates

. [A1.A2,M1,M2,M3]
{A1,M1,M2,M3] [A2,M1,.M2,M3) {A1,A2, M1, M2} {A1,A2,M1,M3] {A1,A2,M2,M3]

A e~ A

[IM1,M2,M3]  [AT,MI,M2]  [A2M1,M2]  [ALM1M3]  [A2MIM3] [ALM2M3] [AL,A2M1]  [A2M2.M3]  [A1,A2M2]  [A1A2M3]

c1&QC2

C1: <A1,M1,M2> {]

C2: <A1,A2ZMIM3>

Fic. 4. Candidate space after measurements.
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[M,], and [A,] remain. However, to complete the set of minimal candidates
we must consider the immediate supersets of [M,] which cover the new
conflict: [A,, M,], [A,. M,], [M,, M,], and [M,, M,]. Each of these candi-
dates explains the new conflict, however, [A,, M,]| and [M,, M,] are supersets
of the minimal candidates [A,] and [M,], respectively. Thus the new minimal
candidates are [A,, M,], and [M,, M,], resulting in the minimal candidate set:
[4,], [M,], [A,, M,], and [M,, M,]. The line labeled by conflict “C2:
(A,, A,, M,, M;)” in Fig. 4 shows the candidates eliminated by the observa-
tion G =12 alone, and the line labeled “Cl & C2” shows the candidates
eliminated as a result of both measurements (F = 10 and G = 12). The minimal
candidate which split the lattice into valid and eliminated candidates are
circled. »

Candidate generation has several interesting properties. First, the set of
minimal candidates may increase or decrease in size as a result of a measure-
ment; however, a candidate, once eliminated can never reappear. As measure-
ments accumulate eliminated minimal candidates are replaced by larger candi-
dates. Second, if an assumption appears in every minimal candidate (and thus
every candidate), then that assumption is necessarily false. Third, the presup-
position that there is only a single fault (exploited in all previous model-based
troubleshooting strategies), is equivalent to assuming all candidates are
singletons. In this case, the set of candidates can be obtained by intersecting

all the conflicts.

2.6. Conflict recognition strategy

The remaining task involves incrementally constructing the conflicts used by
candidate generation. In this section we first present a simple model of conflict
recognition. This approach is then refined into an efficient strategy.

A conflict can be identified by selecting a set of assumptions, referred to as
an environment, and testing if they are inconsistent with the observations.® If
they are, then the inconsistent environment is a conflict. This requires an
inference strategy C(oBs, ENV) which given the set of observations oBs made
thus far, and the environment ENv, determines whether the combination is
consistent. In our example, after measuring F =10, and before measuring
G=12, C{F=10}, {A,, M, M,}) (leaving off the inputs) is false indicating
the conflict ( A,, M,, M,). This approach is refined as follows:

Refinement 1: Exploiting minimality. To identify the set of minimal inconsis-
tent environments (and thus the minimal conflicts), we begin our search at the

‘An environment should not be confused with a candidate or conflict. An environment is a set of
assumptions all of which are assumed to be true (e.g., M, and M, are assumed to be working
correctly), a candidate is a set of assumptions all of which are assumed to be false (e.g.,
components M, and M, are not functioning correctly). A conflict is a set of assumptions, at least
one of which is false. Intuitively an environment is the set of assumptions that define a *‘context’ in
a deductive inference engine, in this case the engine is used for prediction and the assumptions are
about the lack of particular model-artifact differences.
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empty environment, moving up along its parents. This is similar to the search
pattern used during candidate generation. At each environment we apply
C(oBs, ENV) to determine whether or not ENv is a conflict. Before a new
environment is explored, all other environments which are a subset of the new
environment must be explored first. If the environment is inconsistent, then it
is a minimal conflict and its supersets are not explored. If an environment has
already been explored or is a superset of a conflict, then C is not run on the
environment and its supersets are not explored.

We presume the inference strategy operates entirely by inferring hypotheti-
cal predictions (e.g., values for variables in environments given the observa-
tions made). Let P(oBs, ENV) be all behavioral predictions which follow from
the observations oBs given the assumptions Env. For example, P({A =3, B=
2,C=2,D=3}, {A,,M,, M,}) produces {A=3,B=2,C=2,D=3,X=6,
Y=6, F=12}.

C can now be implemented in terms of P. If P computes two distinct values
for a quantity (or more simply both x and —1x), then a symptom is manifested
and ENv is a conflict.

Refinement 2: Monotonicity of measurements. If input values are kept
constant, measurements are cumulative and our knowledge of the circuit’s
structure grows monotonically. Given a new measurement M, P(oBsU {M},
ENV) is always a superset of P(0BS, ENV). Thus if we cache the values of every P,
when a new measurement is made we need only infer the incremental addition
to the set of predictions.

Refinement 3: Monotonicity for assumptions. Analogous to Refinement 2,
the set of predictions grows monotonically with the environment. If a set of
predictions follows from the environment, then the addition of any assumption
to that environment only expands this set. Therefore P(oBs, ENV) contains
P(oBs, E) for every subset E of ENv. This makes the computation of
P(oBs, ENV) very simple if all its subsets have already been analyzed.

Refinement 4: Redundant inferences. P must be run on a large number of
(overlapping) environments. Thus, the same rule will be executed over and
over again on the same facts. All of this overlap can be avoided by utilizing
ideas of truth maintenance such that every inference is recorded as a depen-
dency and no inference is ever performed twice [11].

Refinement 5: Exploiting the sparseness of the search space. The four
refinements allow the strategy to ignore (i.e., to the extent of not even
generating its name) any environment which doesn’t contain some interesting
inferences absent in every one of its subsets. If every environment contained a
new unique inference, then we would still be faced computationally with an
exponential in the number of potential model-artifact differences. However, in
practice, as the components are weakly connected, the inference rules are
weakly connected. Therefore, it is more efficient to associate environments
with rules than vice versa. Our strategy depends on this empirical property.
For example, in electronics the only assumption sets of interest will be sets of
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components which are connected and whose signals interact—typically circuits
are explicitly designed so that component interactions are limited.

2.7. Inference procedure architecture

To completely exploit the ideas discussed in the preceding section we need to
modify and augment the implementation of P. We presume that P meets (or
can be modified to) the two basic criteria for utilizing truth maintenance: (1) a
dependency (i.e., justification) can be constructed for each inference, and (2)
belief or disbelief in a datum is completely determined by these dependencies.
In addition, we presume that, during processing, whenever more than one
inference is simultaneously permissible, that the actual order in which these
inferences are performed is irrelevant and that this order can be externally
controlled (i.e., by our architecture). Finally, we presume that the inference
procedure is monotonic. Most Al inference procedures meet these four general
criteria. For example, many expert rule-based systems, constraint propagation,
demon invocation, taxonomic reasoning, qualitative simulations, natural de-
duction systems, and many forms of resolution theorem proving fit this general
framework.

We associate with every prediction, V, the set of environments, ENvs(V),
from which it follows (i.e., ENvs(V) = {env | V € P(oBs, env)}). We call this set
the supporting environments of the prediction. Exploiting the monotonicity
property, it is only necessary to represent the minimal (under subset) support-
ing environments.

Consider our example after the measurements F =10 and G =12. In this
case we can calculate X =6 in two different ways. First, Y=B X D =6
assuming M, is functioning correctly. Thus, one of its supporting environ-
ments is {M,}. Second, Y=G—Z=G —(C X E)=06 assuming A, and M,
are working. Therefore the supporting environments of Y =6 are
{{M,}{A,, M;}}. Any set of assumptions used to derive Y = 6 is a superset of
one of these two.

By exploiting dependencies no inference is ever done twice. If the supporting
environments of prediction change, then the supporting environments of its
consequents are updated automatically by tracing the dependencies created
when the rule was first run. This achieves the consequence of a deduction
without rerunning the rule.

We control the inference process such that whenever more than one rule is
runnable, the one producing a prediction in the smaller supporting environ-
ment is performed first. A simple agenda mechanism suffices for this.
Whenever a symptom is recognized, the environment is marked a conflict and
all rule execution stops on that environment. Using this control scheme
predictions are always deduced in their minimal environment, achieving the
desired property that only minimal conflicts (i.e., inconsistent environments)
are generated.
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In this architecture P can be incomplete (in practice it usually is). The only
consequence of incompleteness is that fewer conflicts will be detected and thus
fewer candidates will be eliminated than the ideal—no candidate will be
mistakenly eliminated.

3. Circuit Diagnosis

Thus far we have described a very general diagnostic strategy for handling
multiple faults, whose application to a specific domain depends only on the
selection of the function P. In this section, we demonstrate the power of this
approach, by applying it to the problem of circuit diagnosis.

For our example we make a number of simplifying presuppositions. First, we
assume that the model of a circuit is described in terms of a circuit topology
plus a behavioral description of each of its components. Second, that the only
type of model-artifact difference considered is whether or not a particular
component is working correctly. Finally, all observations are made in terms of
measurements at a component’s terminals.

Measurements are expensive, thus not every value at every terminal is
known. Instead, some values must be inferred from other values and the
component models. Intuitively, symptoms are recognized by propagating out
locally through components from the measurement points, using the compo-
nent models to deduce new values. The application of each model is based on
the assumption that its corresponding component is working correctly. If two
values are deduced for the same quantity in different ways, then a coincidence
has occurred. If the two values differ then the coincidence is a symptom. The
conflict then consists of every component propagated through from the mea-
surement points to the point of coincidence (i.e., the symptom implies that at
least one of the components used to deduce the two values is inconsistent).
Note however, if the two coinciding values are the same, then it is not
necessarily the case that the components involved in the predictions are
functioning correctly. Instead, it may be that the symptom simply does not
manifest itself at that point. Also, it might be that one of these components is
faulty, but does not manifest its fault, given the current set of inputs. (For
example, an inverter with an output stuck at one will not manifest a symptom
given an input of zero.) Thus if the coinciding values are in agreement then no
information is gained.

3.1. Constraint propagation

Constraint propagation [33, 34] operates on cells, values, and constraints. Cells
represent state variables such as voltages, logic levels, or fluid flows. A
constraint stipulates a condition that the cells must satisfy. For example, Ohm’s
law, v = iR, is represented as a constraint among the three cells v, i, and R.
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Given a set of initial values, constraint propagation assigns each cell a value
that satisfies the constraints. The basic inference step is to find a constraint that
allows it to determine a value for a previously unknown cell. For example, if it
has discovered values v =2 and i =1, then it uses the constraint v = iR to
calculate the value R =2. In addition, the propagator records R’s dependency
on v, i and the constraint v = [R. The newly recorded value may cause other
constraints to trigger and more values to be deduced. Thus, constraints may be
viewed as a set of conduits along which values can be propagated out locally
from the inputs to other cells in the system. The recorded dependencies trace
out a particular path through the constraints that the inputs have taken. A
symptom is manifested when two different values are deduced for the same cell
(i.e., a logical inconsistency is identified). In this event dependencies are used
to construct the conflict.

Sometimes the constraint propagation process terminates leaving some con-
straints unused and some cells unassigned. This usually arises as a consequence
of insufficient information about device inputs. However, this can also arise as
the consequence of logical incompleteness in the propagator.

In the circuit domain, the behavior of each component is modeled as a set of
constraints. For example, in analyzing analog circuits the cells represent circuit
voltages and currents, the values are numbers, and the constraints are mathe-
matical equations. In digital circuits, the cells represent logic levels, the values
are 0 and 1, and the constraints are Boolean equations.

Consider the constraint model for the circuit of Fig. 2. There are ten cells:
A, B,C,D,E XY, Z F, and G, five of which are provided the observed
values: A=3, B=2, C=2, D=3, and E = 3. There are three multipliers and
two adders each of which is modeled by a single constraint: M, : X = A X C,
M, Y=BXD, M;:Z=CXE, A|:F=X+Y,and A,: G=Y + Z. The
following is a list of deductions and dependencies that the constraint prop-
agator generates (a dependency is indicated by (component : antecedents)):

X=6 (M;: A=3,C=2),
Y=6 (M,: B=2,D=3),
Z=6 M;:C=2,E=3),
F=12 (A;:X=6,Y=6),
G=12 (A,:Y=6,2=6).
A symptom is indicated when two values are determined for the same cell
(e.g., measuring F to be 10 not 12). Each symptom leads to new conflict(s)
(e.g., in this example the symptom indicates a conflict (A,, M,, M,)).
This approach has some important properties. First, it is not necessary for

the starting points of these paths to be inputs or outputs of the circuit. A path
may begin at any point in the circuit where a measurement has been taken.
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Second, it is not necessary to make any assumptions about the direction that
signals flow through components. In most digital circuits a signal can only flow
from inputs to outputs. For example, a subtractor cannot be constructed by
simply reversing an input and the output of an adder since it violates the
directionality of signal flow. However, the directionality of a component’s
signal flow is irrelevant to our diagnostic technique; a component places a
constraint between the values of its terminals which can be used in any way
desired. To detect discrepancies, information can flow along a path through a
component in any direction. For example, although the subtractor does not
function in reverse, when we observe its outputs we can infer what its inputs
must have been.

3.2. Generalized constraint propagation

Each step of constraint propagation takes a set of antecedent values and
computes a consequent. We have built a constraint propagator within our
inference architecture which explores minimal environments first. This guides
each step during propagation in an efficient manner to incrementally construct
minimal conflicts and candidates for multiple faults.

Consider our example. We ensure that propagations in subset environments
are performed first, thereby guaranteeing that the resulting supporting environ-
ments and conflicts are minimal. We use [x,e,,e,,...] to represent the
assertion x with its associated supporting environments. Before any measure-
ments or propagations take place, given only the inputs, the database consists
of: [A=3,{}], [B=2,{}], [C=2,{}], [D=3,{}], and [E=3,{ }].
Observe that when propagating values through a component, the assumption
for that component is added to the dependency, and thus to the supporting
environment(s) of the propagated value. Propagating A and C through M, we
obtain: [X =6, {M,}]. The remaining propagations produce: [Y =6, {M,}],
ﬂZ = 6’ {M3}H’ [[F: 12’ {Al’ MU MZ}H’ and HG = 12’ {AZ’ MZ? M3}B

Suppose we measure F to be 10. This adds [F =10, { }] to the database.
Analysis proceeds as follows (starting with the smaller environments first):
[X=4,{A,, M,}], and [Y=4,{A,, M;}]. Now the symptom between [F =
10,{ }] and [F=12,{A,, M,, M,}] is recognized indicating a new minimal
conflict: (A,, M,, M,). Thus the inference architecture prevents further prop-
agation in the environment { A, M,, M,} and its supersets. The propagation
goes one more step: [G =10,{A,, A,, M,, M,}]. There are no more infer-
ences to be made.

Next, suppose we measure G to be 12. Propagation gives: [Z =6,
{AZ’MZ}H’ HY:6’{A2’M3}E’ [[Z=8,{A1,A2,M1}B, and HX:4’
{A,, A,, M;}]. The symptom “G =12 not 10” produces the conflict
(A, A,, M,, M,). The final database state is shown below.’

*The justifications are not shown but are the same as those in Section 3.1.
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[Z=8,{A,, A,, M }],
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This results in two minimal conflicts:
<A1’M1’M2>’ <A1’A2’M1’M3>'

The algorithm discussed in Section 2.5 uses the two minimal conflicts to
incrementally construct the set of minimal candidates. Given new measure-
ments the propagation/candidate generation cycle continues until the candi-
date space has been sufficiently constrained.

4. Sequential Diagnosis

In order to reduce the set of remaining candidates the diagnostician must
perform measurements [14] which differentiate among the remaining candi-
dates. This section presents a method for choosing a next measurement which
best distinguishes the candidates, i.e., that measurement which will, on aver-
age, lead to the discovery of the actual candidate in a minimum number of
subsequent measurements.

4.1. Possible measurements

The conflict recognition strategy (via P(oBs, ENV)) identifies all predictions for
each environment. The results of this analysis provides the basis for a
differential diagnosis procedure, allowing GDE to identify possible measure-
ments and their consequences.

Consider how measuring quantity x, could reduce the candidate space. GDE's
database (e.g., (1)) explicitly represents x,’s values and their supporting
environments:

ﬁxi T Vi Cikrs - - - 5 eikm]] .
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If x, is measured to be v, , then the supporting environments of any value
distinct from the measurement are necessarily conflicts. If v, is not equal to
any of x/’s predicted values, then every supporting environment for each
predicted value of x, is a conflict. Given GDE’s database, it is simple to identify
useful measurements, their possible outcomes, and the conflicts resulting from
each outcome. Furthermore, the resulting reduction of the candidate space is
easily computed for each outcome.

Consider the example of the previous section. X =4 in environments
{A,,M,} and {A,, A,, M;}, while X =6 in environment {M,}. Measuring X
has three possible outcomes: (1) X =4 in which case (M, ) is a conflict and the
new minimal candidate is [M,], (2) X =6 in which case (A,, M,) and
(A, A,, M,) are conflicts and the new minimal candidates are [A ], [M,, M,]
and [A,, M,], or (3) X#4 and X #6 in which case (M,), (A,, M,) and
(A,, A,, M;) are conflicts and [A |, M,], [M,, M,, M,], and [A,, M,, M,] are
minimal candidates.

The minimal candidates are a computational convenience for representing
the entire candidate set. For presentation purposes, in the following we
dispense with the idea of minimal candidates and consider all candidates.

The diagnostic process described in the subsequent sections depends critical-
ly on manipulating three sets: (1) R,, is the set of (called remaining) candidates
that would remain if x, were measured to be v, , (2) S, is the set of (called
selected) candidates in which x, must be v, (equivalently, the candidates
necessarily eliminated if x, is measured not to be v, ), and (3) U, is the set of
(called uncommitted) candidates which do not predict a value for x; (equival-
ently, the candidates which would not be eliminated independent of the value
measured for x,). This set R, is covered by the sets S, and U;:

R, =S,UU,, Sx.NU=¢ .

3

4.2. Lookahead versus myopic strategies

Section 4.1 describes how to evaluate the consequences of a hypothetical
measurement. By cascading this procedure, we could evaluate the con-
sequences of any sequence of measurements to determine the optimal next
measurement (i.e., the one which is expected to eliminate the candidates in the
shortest sequence of measurement). This can be implemented as a classic
decision tree analysis, but the computational cost of this analysis is prohibitive.
Instead we use a one-step lookahead strategy based on Shannon entropy
[1,20,26]. Given a particular stage in the diagnostic process we analyze the
consequences of each single measurement to determine which one to perform
next. To accomplish this we need an evaluation function to determine for each
possible outcome of a measurement how difficult it is (i.e., how many
additional measurements are necessary) to identify the actual candidate. From
decision and information theory we know that a very good cost function is the
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entropy (H) of the candidate probabilities:

Hz"z p;log p;,

where p, is the probability that candidate C, is the actual candidate given the
hypothesized measurement outcome.

Entropy has several important properties (see a reference on information
theory [30] for a more rigorous account). If every candidate is equally likely,
we have little information to provide discrimination—H is at a maximum. As
one candidate becomes much more likely than the rest H approaches a
minimum. H estimates the expected cost of identifying the actual candidate as
follows. The cost of locating a candidate of probability p, is proportional to
log p; ' (cf. binary search through p; ' objects). The expected cost of identify-
ing the actual candidate is thus proportional to the sum of the product of the
probability of each candidate being the actual candidate and the cost of
identifying that candidate i.e., T p,log p; ' = —X p,log p,. Unlikely candi-
dates, although expensive to find, occur infrequently so they contribute little to
the cost: p,log p;' approaches 0 as p, approaches 0. Conversely, likely
candidates, although they occur frequently, are easy to find so contribute little
to the cost: p, log p; ' approaches 0 as p, approaches 1. Locating candidates in
between these two extremes is more costly because they occur with significant
frequency and the cost of finding them is significant.

4.3. Minimum entropy

Under the assumption that every measurement is of equal cost, the objective of
diagnosis is to identify the actual candidate in a minimum number of measure-
ments. This section shows how the entropy cost function presented in the
previous section is utilized to choose the best next measurement. As the
diagnosis process is sequential, these formulas describe the changes in quan-
tities as a consequence of making a single measurement.

The best measurement is the one which minimizes the expected entropy of
candidate probabilities resulting from the measurement. Assuming that the
process of taking a measurement doesn’t influence the value measured, the
expected entropy H,(x,;) after measuring quantity x, is given by:

H.(x;)= k§=:1 plx; = v, )H(x; =v;,).

Where v,,,...,v,, are all possible values® for x,, and H(x,=v,) is the

°These results are easily generalized to account for an infinite number of possible values since,
although a quantity may take on an infinite number of possible values, only a finite number of
these will be predicted as the consequences of other quantities measured. Further the entropy
resulting from the measurement of a value not predicted is independent of that value. Thus the
system never has to deal with more than a finite set of expected entropies.
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entropy resulting if x, is measured to be v,,. H(x; =v,,) can be computed from
the information available.

At each step, we compute H(x, =v, ) by determining the new candidate
probabilities, p, from the current probabilities p, and the hypothesized result
x; = v,,.. The initial probabilities are computed from empirical data (see Section
4.4). When x, is measured to be v,,, the probabilities of the candidates shift.
Some candidates will be eliminated, reducing their posterior probability to
zero. The remaining candidates R, shift their probabilities according to (see
Section 4.5):

P
—_, eSS, ,
px; =v,) ,
p=
/
pm leU. .

p(x; = vy)’ I

If every candidate predicts a value for x,, then p(x;, = v, ) is the combined
probabilities of all the candidates predicting x, = v,,. To the extent that U, is
not empty, the probability p(x; = v, ) can only be approximated with error ¢, :

plx,=v,)=p(S,)+ &, 0<e¢,<pU),
kgl gx = p(U,),

where,

p(Sy) = 2 Dj p(U)= Z pP;-
CESy ey,

At any stage of the diagnostic process only some (say the first n of the m
possible) of the v, are actually predicted (i.e., those with nonempty S,,) for x,.
If a candidate does not predict a value for a particular x,, we assume each
possible v,, is equally likely:

g = p(U;)Im.
So,
plx;,=v,)=p(S,)+pU)/m.

Notice that for unpredicted values S, is empty, so p(x, = v, )= p(U,)/m.

"We could assume that if a component were faulted (i.e., a member of the actual candidate),
then its current observed inputs and outputs would be inconsistent with its model. Under such an
assumption, the distribution would be skewed away from those v, predicted from the set of
assumptions of the candidate (i.e., viewing a candidate as an environment). We do not make this
assumption because a component may appear to be functioning correctly, but actually be faulted
producing incorrect outputs for a different set of inputs.
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The expected entropy can be computed from predicted quantities:

Hx) = 2 (ple,=v,) + e)H(s = 0,0+ 2

k=n+1

where H, is the expected entropy if x; is measured to have an unpredicted
value (i.e., all but the candidates U, are eliminated):

H,=- 2 p;logp,.

' ey,

H, and ¢, are independent of the unpredicted value measured, thus
rewriting we obtain:

H) = 3 (p(x= v+ i) Hex, = v,) + S pu) .

Substituting and simplifying gives:
H.(x;)=H+AH.(x,;) .

Where H is the current entropy, and AH, (x;) is:

2 p(x; = vy) log p(x; = v,) + p(U,) log p(U,) = np,(nU’) log p(,:') :
k=1

The expected entropy can be calculated from the current candidate probability
distribution—there is no necessity to explicitly construct the possible posterior
probability distributions and compute their entropies. Thus the best, on -
average, measurement is the one that minimizes AH,(x,).

The choice of base for the logarithm does not affect the relative order of
costs. Purely for convenience GDE computes base e (this corresponds to
measurements, on average, having e known outcomes). To obtain a positive
cost, GDE adds one to this equation. This cost indicates the quality of a
hypothesized measurement. The cost is the expected increase in total (i.e., in
the entire diagnostic session) number of measurements that need to be made to
identify the candidate after making the measurement. A cost of 1 indicates that
no information at all is obtained. A cost of 0 is ideal as it indicates perfect
information gain.

4.4. Independence of faults

The initial probabilities of candidates are computed from the initial prob-
abilities of component failure (obtained from their manufacturer or by observa-
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tion). We make the assumption that components fail independently. (This
approach could be extended to dependent faults except that voluminous data is
required.) The initial probability that a particular candidate C, is the actual
candidate C, is given by:

p.i=11 pcec,) 1;} (1-p(cEC,).

cEC

4.5. The conditional probability of a candidate

Given measurement outcome x; = v, the probability of a candidate is com-
puted via Bayes’ rule (see Section 6.6.):

_ _ plx; = U1k|C1)P(C1)
p(Cllxi - Uik) - .U(x,' — Uik) :

Where p, = p(C) where p; = p(C/|x,=v,,). There are three cases for evaluat-
ing p(x, = v, |C)). If C, predicts x, = w,, where w, # v, then the conditional
probability is 0:

plx,=v,|C)=0, if C,ZR, .
If w, = v, then the conditional probability is 1:

plx; = Uik|C[) =1, ifCES,.

In the third case, C, predicts no value for x,. We assume that every possible
value for x, (there are m of them) is equally likely:

plx,=v,|C)=1/m, ifC,EU,.
Substituting these probabilities into Bayes’ rule we obtain:

(0, if C,R,,

p(C)

—, i C,ES,,
P(Clixizvik): p(x;=v,) : g

p(C)im
\p(x; = vy)

, ifCeu,,

where
plx;=v,)=p(S,)+pllU)/Im.
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The estimate p(x; = v, |C,) = 1/m is suspect and introduces various compu-
tational complexities. Fortunately, U, contains primarily low probability candi-
dates and thus any error tends to be minor. On average, the candidates in U,
are nonminimal (because minimal candidates tend to assign values to most of
the device’s variables) and as nonminimal candidates have lower probability
than minimal candidates, the candidates in U, have relatively lower probability.
In practice, using P(x, = v,|C,) = 1 for C, € R, greatly simplifies the computa-
tions and rarely affects the number of measurements required.

4.6. Examples

This section presents a series of examples to illustrate some of the intuitions
behind our technique.

4.6.1. Cascaded inverters: a =1

Consider circuit of Fig. 5. Assume the initial probability of component failure
is 0.01 and input a =1 is given. As initially no symptom has been detected on
average, little is gained by making any measurement—all costs are nearly 1.
Compare the advantages and disadvantages of measuring b or e. If the value
measured differs from the value predicted, then measuring closer to the input
(or any previously measured value) produces as a smaller conflict, and thus
more information. For example, if we measure b to be 1, then we learn that A
must be faulted, where measuring e =0 tell us only that some component is
faulty. On the other hand, measuring further away from the input is more
likely to produce a discrepant value. That is, as there is a large number of
intervening components, it is more likely that one will be faulted and thus
produce an incorrect value. These two effects tend to cancel each other,
however, the probability of finding a particular value outweighs the expected
cost of isolating the candidate from a set. In terms of entropy, every possible
outcome contributes p, log p;' but p, dominates log p;'. In general for any
cascaded sequence of components for which only the input is known, the best
next measurement is the output of the sequence. This is illustrated in Table 1.

4.6.2. Cascaded inverters: a=1,e=0

Suppose e is measured to be 0, violating the prediction and thus telling us that
at least one of the components is faulted. The best next measurement is the
one that is equidistant from the previous two measurements, ¢ (Table 2).

Fig. 5. Cascaded inverters.
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TaBLe 1. Expected TasLE 2. Expected TaBLE 3. Expected
costs after a =1 with costs aftera=1, e= costs after a=1, e=
p =0.01 0 with p =0.01 1 with p =0.01

a 1 a 1 a 1

b 0.98 b 0.45 b 0.999

c 0.96 c 0.31 c 0.999

d 0.94 d 0.44 d 0.999

e 0.93 e 1 e 1

4.6.3. Cascaded inverters: a=1, e =1

Suppose that instead of measuring e to be 0 it was measured 1 as predicted.
The circuit must have a relatively unlikely double fault (if it has any fault at all)
where one fault shadows the effect of the other. Nevertheless the best
measurement to identify a possible double fault is still ¢ (Table 3).

4.6.4. Cascaded inverters: a=1, e =0, p(a) =0.025

If we are given that the first inverter A is more likely to be faulted, then the
best measurement point is no longer equidistant from the previous observa-
tions. The advantage of measuring b first instead of c is that we might identify
that inverter A is faulted immediately. As A is far more likely to be faulted, it
is better to measure b first (Table 4).

4.6.5. Diagnosing a fault

Consider the circuit of Fig. 2. Suppose that M, is faulted exhibiting behavior
Y=BX C-2and A, is faulted with behavior G =Y X Z + 2. The inputs are
the same as earlier. The following illustrates GDE’s strategy to localize this
fault. Note that this is an unusual fault in that the effect of the two faults
cancel, producing the value predicted for G. Thus, several measurements are
necessary to identify the fault. We assume that components fail with initial
probability 0.01 and that m = 16.

Initially the most probable candidate is [ ], p([ ] = C,) =0.951. The expec-
ted cost associated with each hypothetical measurement is shown in Table 5.
All the costs are nearly one, indicating that little is to be gained by any of the
measurements, this is because on average components are not faulted, and
there is yet no evidence that anything is malfunctioning. Not surprisingly, F
and G as well as X, Y, Z are treated symmetrically. F and G have slightly
lower cost because their predicted values depend on three components func-
tioning correctly, while X, Y, and Z depend on two (i.e., F and G are more
likely to have dlscrepant values).

Suppose F is measured with result F =10 (Table 6). The most probable
candidates are now [A,], [M,], and [M,], all having probability 0.323. G, X
and Y are all good measurements because each one differentiates among the
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TaBLE 4. Expected TABLE 5. Initial ex- TABLE 6. Costs after
costs after a=1, e = pected costs F=10

0 with p(a) =0.025 F 0.88 F 1

4 1 G 0.88 G 0.28

b 0.33 X 0.95 X 0.34

c 0.36 Y 0.95 Y 0.34

d 0.53 Z 0.95 z 093

e 1

high-probability single-fault candidates. Each high-probability candidate pre-
dicts Z =6 so measuring Z provides little new information. G is a slightly
better point to measure because the candidates are more balanced between G’s
two predicted outcomes (the best measurement is one whose predicted out-
comes all have equal probability and which cover all the candidates).

Next, suppose G is measured with result G =12 (Table 7). The most
probable candidates are now [A,] and [M,] both with probability 0.478. At
this point X is the best measurement because it splits the two high-probability
candidates.

Next, suppose X is measured with result X =6 (Table 8). This results in a
single high-probability candidate [A,] with probability 0.942. The next seven
most likely candidates are: [A,, M,], [A,, M,], [A,, M\], [A,, A,], [4,, M,],
and [M,, M,], all with probability 0.00951.

Next, suppose Y is measured with result Y = 4. M, is now necessarily faulted
and at least one other fault exists. The costs are now as shown in Table 9.

Finally, suppose Z is measured with result Z =6. There are six remaining
candidates: [A,, M,] with probability 0.970, [A,, M,, M,], [A,, A,, M,],
[A,, M,, M,], with probabilities 0.0098, [A, A,, M,, M,], [A,, A,, M,, M,],
[A,, M,, M,, M,], with probabilities 0.0001, and [A,, A,, M,, M,, M,] with
probability 0.000001. Components M, and A, are necessarily faulted, and A,
M,, and M, are possibly faulted, each with probability 0.01. No measurement
points remain in the circuit, so no further information can be obtained.

TABLE 7. Costs after TaBLE 8. Costs after TaBLE 9. Costs after
F=10, G=12 F=10, G=12, and F=10, G=12, X =
F I X=6 6,and Y=4
G 1 F 1 F 1
X 0.28 G 1 G 1
Y 0.94 X 1 X 1
Z 0.97 Y 0.90 Y 1
z 0.94 V4 0.141
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4.7. Logical incompleteness

In practice, for diverse reasons, the underlying inference process is usually
incomplete. One of the consequences of this incompleteness is that it becomes
more difficult to evaluate the results of hypothetical measurements—the U, are
larger than ideal. As any incompleteness degrades GDE’s performance, it is
instructive to examine the sources and types of this incompleteness.

An often avoidable form of incompleteness occurs when the conflict recogni-
tion strategy misses some conflicts. This was discussed earlier. Here we assume
the conflict recognition strategy is complete. U, will be larger than ideal only if
the prediction process is incomplete. This incompleteness manifests itself in
two ways. First, an incomplete inference process may result in missing predic-
ted values and missing supporting environments. As a consequence, the
hypothesized conflicts resulting from measuring a quantity will be incomplete.
For example, consider an inverter which is incompletely modeled by a rule
which predicts its output from its input, but not its input from its output. Even
though the inverter’s output is measured to be one, the prediction that its input
is zero is not made. Thus, GDE does not consider measuring its input. A second
source of incompleteness is inherent in the x, = v;, representation—there may
be many additional properties that could be inferred about x;, but as there is
no way to represent them they cannot be used by our strategy. For example, it
cannot represent x 1. Thus, although x 71 might be derivable from an
environment, GDE cannot foresee the resulting conflict when considering, say,
x=72.

Assuming the basic conflict recognition strategy is complete, both these
sources of incompleteness can be avoided at prohibitive computational costs.
The first source of incompleteness can be avoided with a complete inference
process. The second source of incompleteness can be avoided with a more
general representation.8

5. Pragmatics

5.1. Most probable candidates

Computing all candidates is computationally prohibitive. In practice it is only
necessary to compute the more probable candidates. There is no way to tell
whether a single candidate actually has a high probability without knowing the
overall normalization factor. This suggests using a best-first search of the lattice
to find candidates in increasing order of probability. This search is arbitrarily

*Assuming the number of possible values for quantities are finite, GDE could hypothesize each
possible measurement outcome, run its complete inference procedure and precisely compute the
R,, from which the §, could then be computed.
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stopped for candidates below some threshold fraction (e.g., 1; of the highest
probability candidate). Although the most probable candidate is a minimal
candidate, the remaining minimal candidates need not be very probable.

5.2. When to stop making measurements

If there are many points in a device that could be measured choosing the best
point to measure can be computationally expensive. A heuristic is to make the
first reasonable measurement whose cost is computed to be less than 1-—
log 0.5 =0.7 as this measurement on average, splits the candidate space in half.

The point at which measurement should stop depends greatly on the
seriousness of a misdiagnosis as well as on the a priori probabilities of
component failure. When a candidate is found whose probability approaches
some threshold (e.g., 0.9), diagnosis can stop. If the cost of misdiagnosis is
high, then the threshold should be increased.

6. Comparison to Other Work

6.1. Circuit diagnosis based on structuré and behavior

Work in the AI community on model-based hardware diagnosis has grown out
of a desire to move away from the domain and device specific fault models
used in traditional circuit diagnosis.” Instead, during candidate generation the
model-based approach reasons from a small set of component behavior models
plus the structure of the device. The requirement for device specific fault
models is eliminated by basing the diagnostic approach solely on the know-
ledge that, if a component’s behavior is inconsistent with its model, then it
must be faulty. This results in a domain independent diagnostic technique. A
number of systems have followed this approach for diagnosing both analog
(e.g., LocaL [10] and sopHIE [4]) and digital circuits (e.g., HT [5] and DART [12]).

Our work naturally extends this approach along a number of dimensions.
First, unlike earlier approaches, our work is aimed specifically at coping with
the problem of diagnosing multiple faults. Earlier work focused primarily on
the case where all symptoms could be explained by a single component being
faulty. As Davis points out, the obvious extension to his work to handle
multiple faults results in an algorithm which is exponential in the number of
potential faults. As our approach represents the candidate space implicitly in
terms of the minimal candidates, we need only be concerned with the growth
of this smaller set. Typically the size of each minimal candidate is relatively
small (i.e., the symptom can usually be explained by one, two or three

°See Davis’ [5], Sections 5.1., 12.1. and 13 for a discussion of traditional circuit diagnosis and the
advantages of the model-based approach. Also see [16].
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components being simultaneously faulty), thus in practice our approach tends
to grow with the square or cube of the number of potential faults.

Second, our approach to diagnosis is inference procedure independent, as
well as domain independent. LocAL, sopHIE, and Davis’ system all represent
circuit knowledge as constraints and then use some form of constraint propaga-
tion to infer circuit quantities and their dependencies. The motivation behind
this approach is that constraints naturally reflect the local interaction of
behavior in the real world. These are similar (although not identical) to the
constraint propagation technique used to demonstrate GDE in this paper.

On the other hand, pART expresses circuit knowledge as logical propositions
and uses an inference system based on resolution residue to infer circuit
properties. This same general inference procedure allows DART to deduce which
components are suspect and how to change circuit inputs to reduce the suspect
set to a singleton. Such a resolution-based inference strategy can be incorpo-
rated into the candidate generation and conflict recognition portion of GDE by
recording, for each resolution step, the dependence of the resolvent on the
formulas used to perform the resolution. Then, as in the case for constraint
propagation, GDE can guide the inference process in identifying minimal
candidates first.

Resolution is highlighted as having an advantage over constraint propagation
in that it is logically complete with respect to a first-order theory, where most
constraint propagators are not. However, this can be misleading. A significant
computational cost is incurred using a logically complete inference strategy,
such as resolution. Yet a logically complete inference strategy does not
guarantee that the set of predictions will also be complete. For example in an
analog domain, producing exact predictions often involves solving systems of
higher-order nonlinear differential equations. As this type of equation is not
generally solvable with known techniques, completeness in the predictor is
currently beyond our reach. In practice propagation of constraints (without
symbolic algebra) provides a good compromise between completeness and
computational expense.

Third, our approach is incremental. This is crucial as diagnosis is an iterative
process of making observations, refining hypotheses, and then using this new
knowledge to guide further observations.

Finally, our approach is unique in that it combines model-based reasoning
with probabilistic information in a sequential probing strategy. SOPHIE also
proposes measurements to localize the failing component, but is based on an
ad hoc half-split method. Its design is based on the presupposition that the
circuit contains a single fault. Thus, candidate generation is trivial (set intersec-
tion), and identifying good measurements is easy.

6.1.1. Possible extensions

Representing and manipulating candidates in terms of minimal candidates gives
us a significant computational advantage over previous approaches; however,
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even this representation can grow exponentially in the worst case. To effective-
ly cope with very large devices, additional techniques must be incorporated.

One approach involves grouping components into larger modules and mod-
ifying the candidate generation strategy to deal with hierarchical decomposi-
tions. Although we have not implemented this, the strategies proposed by
Davis and Genesereth, as they are model-based, apply. Their basic idea is to
troubleshoot at the most abstract level in the hierarchy first and only analyze
the contents of a module when there is reasonable evidence to suspect it. If
there is no conflict involving the module, then there is no reason to suspect it.

Complexity is directly related to the number of hypothetical faults enter-
tained. Thus another approach, proposed by Davis, involves enumerating and
layering categories of failures based on their likelihood. Troubleshooting
begins by considering faults in the most likely category first, moving to less
likely categories if these fail to explain the symptoms. GDE uses a variation on
this approach whereby candidates can be enumerated based on their likeli-
hood. However, no theory has been developed about failure categories.

LOCAL and SOPHIE also address a number of issues which GDE does not. LocAL
and sopHIE use corroborations as well as conflicts to eliminate candidates. To
take advantage of corroborations, SOPHIE includes an exhaustive set of fault
modes for each component. As a consequence, SOPHIE can identify a compo-
nent as being unfaulted by determining that it is not operating in any of its fault
modes (i.e., none of the components fault modes can explain the failure, and
we know all the component’s modes of failure, so the component must be
working). Thus, sopHIE reduces the candidate space from both sides: conflicts
eliminate candidates that do not explain a conflict, and corroborations elimi-
nate candidates which include known working components.

In addition, sopPHIE and rocaL dealt with the problem of imprecise models
and values as well. This makes constraint propagation very difficult because it
is hard to tell whether two differing values corroborate or conflict within the
precision of the analysis.

GDE proposes optimal measurements given a fixed set of inputs. Both
Shirley’s system [31] and DART generate test vectors to localize circuit faults.
This approach is useful in cases where it is both difficult to make internal
measurements, and easy to change circuit inputs. Both approaches produce
tests which are likely to give useful information; however, no serious attempt is
made at selecting the optimal tests. A fairly simple extension can be made to
our cost function to account for tests, by taking into consideration, for example
the cost of modifying the inputs.

In Shirley’s approach, each test isolates a single potentially faulted compo-
nent by using known good components to guide the input signals to the faulty
component and the output of that component to a point which can be
measured. However, it is not always possible to route the test signals such that
all other suspects are avoided. Using the information constructed by GDE, this
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approach can be modified, so that tests are constructed first for components
which are most likely to be faulted, while propagating the signal along a path
with the lowest probability of having a faulty component.

6.2. Counterfactuals

Ginsberg [13] points out how David Lewis’ possible world semantics could be
applied to diagnosis. Each component is modeled by a counterfactual, a
statement such as “if p, then g,” where p is expected to be false. Thus A, is
modeled by the counterfactual ““if A, fails, then F= X + Y need not hold.”
Counterfactuals are evaluated by considering a ‘““‘possible world” that is as
similar as possible to the real world where p is true. The counterfactual is true
if g holds in such a possible world. In this framework the most similar worlds
(i.e., those closest to the one in which the circuit functions correctly) corre-
spond directly to our minimal candidates. A most similar world is one in which
as few of the p’s (e.g., “A, fails”) as possible become true. Thus, in this
instance Ginsberg uses counterfactuals for hypotheticals.

Ginsberg’s approaches handles multiple faults, but he does not discuss
measurement strategies or probabilities. Both could be integrated into his
approach.

6.3. Reiter

Reiter [29] has been independently exploring many of the ideas incorporated in
GDE. His theory of diagnosis provides a formal account of our “intuitive”
techniques for conflict recognition and candidate generation. However, his
theory does not include a theory of measurements nor how to exploit prob-
abilistic information. -

Reiter’s theory uses McCarthy’s [18] aB predicate. Reiter writes —1AB(A ;)
(i.e., adder A, is not aBnormal), while we write A, (i.e., the assumption that
adder A, is working correctly). Under this mapping, Reiter’s definition of
diagnosis is equivalent to our definition of minimal candidate, and his defini-
tion of conflict set is equivalent to our definition of conflict.

Reiter proposes (unimplemented) a diagnostic algorithm based on his
theory. This architecture is quite different from GDE’s. The theorem prover of
his architecture corresponds roughly to our inference engine. While GDE’s
procedure first computes all minimal conflicts resulting from a new measure-
ment before updating the candidate space, Reiter’s algorithm intermingles
conflict recognition with candidate generation to guide the theorem proving to
“prevent the computation of inessential variants of refutations, without impos-
ing any constraints on the nature of the underlying theorem proving system.”
Given GDE’s inference architecture (and the necessity to choose the best next
measurement), GDE avoids almost all these inessential variants and also avoids
much of the computation Reiter’s architecture demands.
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6.4. sners

sNeps [17] incorporates a belief revision system sNeBR which reasons about the
consistency of hypotheses. This belief revision system has been [6] applied to
fault detection in circuits. Some of the basic concepts used in the sNeps
approach are similar to those used in GDE—both use an assumption-based
belief revision system (see [9] for a comparison). As described in [6] sNeps is
weaker than either GDE or Reiter’s approach. In GDE’s terminology, sNeps
operates in a single environment, detecting symptoms (and hence conflicts) for
only those variables about which a user query is made. The system provides no
mechanisms to detect all symptoms (and thus all conflicts), to identify candi-
dates, to propose measurements, or to exploit probabilistic information.
However, there seems no reason, in principle that the methods of GDE cannot
be incorporated into their system.

6.5. IN-ATE and FIS

IN-ATE [7] and F1s [24] are expert system shells specifically designed for fault
diagnosis. Although neither is purely model-based (i.e., not purely within the
structure-function paradigm), they are the only other electronic diagnosis
systems we are aware of that propose measurements, and thus it is instructive
to compare them with GDE.

IN-ATE incorporates two formal criteria to determine the best next measure-
ment: minimum entropy (as in GDE) and gamma miniaverage heuristic search
[32]. We chose minimum entropy (as Fis does) in GDE because it was the best
evaluation function which is efficiently computable (i.e., it is based on one-step
lookahead). The gamma miniaverage heuristic search is a multi-step lookahead
procedure and hence computationally expensive to apply. Nevertheless, there
is no reason, in principle, it could not be incorporated into GDE.

Unlike GDE, IN-ATE and Fis can exploit a variety of kinds of knowledge (e.g.,
fault trees, expert-supplied rules, hierarchy) in the diagnostic process. How-
ever, viewed from the pure model-based approach, they are limited in predic-
tive power and as a consequence can only estimate the probabilities for their
predictions.

As IN-ATE is not model-based, it does not construct explicit value predictions
as does GDE. Instead, it predicts whether a particular measurement outcome
will be “good” or “bad.” (This, in itself, presents difficulties because a
measurement, being ‘“good” or ‘“bad” is relative to the observations being
compared to. However, IN-ATE takes “good” and “‘bad” as absolute.) These
predictions are computed by analyzing expert-supplied empirical associations
based on ‘“good” and ‘‘bad.” IN-ATE incorporates a heuristic rule generator
which exploits connectivity information, but it, at a minimum, must be
provided with the definitions of “‘good” and ‘“‘bad” for the test points. In this
approach, the number of test points is limited to those explicitly mentioned in
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rules (or for which “‘good” and ‘“‘bad” are externally defined). With this limited
set of test points full search (i.e., gamma miniaverage search) becomes
plausible. r1s exploits more model knowledge, propagating qualitative values
such as {hi, ok, lo} through the circuit topology via expert-supplied causal
rules. The propagated values are always relative to fixed expert-supplied
values. Thus neither FIS nor IN-ATE can analyze hypothetical faults.

All three systems must compute probabilities for their predictions. GDE
directly computes the probability of the predictions from the probabilities of
the candidates involved. IN-ATE has a much more difficult time determining
good/bad probabilities because it cannot determine the candidate space and
their associated probabilities. Instead it uses the expert-supplied rules to
propagate probabilities (much like MyciN) and Dempster—Shafer to combine
the resulting evidence. F1s’ definition of candidate probability is similar to
GDE’s, however, as it cannot perform hypothetical reasoning it can only
estimate the probabilities of its predictions.

6.6. Medical diagnosis

There has been extensive research on the diagnostic task in the medical
decision making community. Although most of this research is not model-
based, its concern with identifying the diseases causing symptoms and sub-
sequently proposing information-gathering queries is analogous to ours.

Like Gorry and Barnett [14] GDE solves a sequential diagnostic task. The
fundamental equation (Bayes’ rule) [35, formula (2)] states that the posterior
probability of hypothesis H, being the true state H, given evidence Q, is:

|0y - PLQIHIPE)

Z p(Q.|H,)p(H,)

where p(Q;|H,) is the conditional probability of evidence Q, while p(H,) is the
a priori probability of H;. Given these probabilities it is possible to determine
the posterior probability distribution, and, in addition, to determine the
hypothetical probability distribution resulting from proposed tests. Thus, this
provides complete information to evaluate the expected gain of a test [14] and
to select the best test to make next.

The practical obstacle to employing Bayes’ rule is the unavailability of the
conditional probabilities. These probabilities are both hard to estimate and
extremely numerous. For even small numbers of possible symptoms and
diseases the number of probabilities required is extremely large (given just 10
hypotheses and 5 possible binary tests, 2420 conditional probabilities are
required [35]).

The engineering domain differs from the medical domain in that very
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accurate models exist based on the structure of the (faulty) system. Thus,
exploiting model-based reasoning, GDE computes these conditional prob-
abilities directly rather than depending on empirical results. Another advan-
tage of the model-based approach for engineering is that the potential tests are
computed in the course of the analysis instead of having them supplied a priori.

Early research [14] presumed that the patient had only one disease. This is
analogous to the single-fault assumption in circuit diagnosis. More recent
research allows for multiple simultaneous diseases. Bayes’ rule can also be
applied to this multimembership classification problem [2, 3] but the number of
conditional probabilities required becomes exponentially larger than the single-
disease case (which already is a large number). Again, GDE computes these
conditional probabilities by model-based reasoning.

The concept of set covering used in [21, 22,23, 25,27, 28] is similar to the
candidate generation phase of our diagnostic approach. The irredundant set
cover of the general set covering theory (Gsc) of Reggia corresponds directly to
our notion of minimal candidates. The primary difference is that we consider,
in theory, every possible cover to be an explanation for the symptoms while
Gsc considers only the minimal candidates as explanations. Although Gsc
incorporates a crude heuristic strategy for proposing new measurements, as the
conditional probabilities are available to GDE, the preferred approach,
minimum entropy, can be applied.
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