
DIAGNOSING MULTIPLE FAULTS1

Johan de Kleer and Brian C. Williams
Xerox Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto CA 94304 USA

Abstract

Diagnostic tasks require determining the differ-
ences between a model of an artifact and the ar-
tifact itself. The differences between the mani-
fested behavior of the artifact and the predicted
behavior of the model guide the search for the
differences between the artifact and its model.
The diagnostic procedure presented in this pa-
per is model-based, inferring the behavior of
the composite device from knowledge of the
structure and function of the individual compo-
nents comprising the device. The system (GDE
— General Diagnostic Engine) has been imple-
mented and tested on many examples in the
domain of troubleshooting digital circuits.

This research makes several novel contribu-
tions: First, the system diagnoses failures due
to multiple faults. Second, failure candidates
are represented and manipulated in terms of
minimal sets of violated assumptions, resulting
in an efficient diagnostic procedure. Third, the
diagnostic procedure is incremental, exploit-
ing the iterative nature of diagnosis. Fourth,
a clear separation is drawn between diagnosis
and behavior prediction, resulting in a domain
(and inference procedure) independent diag-
nostic procedure. Fifth, GDE combines model-
based prediction with sequential diagnosis to
propose measurements to localize the faults.
The normally required conditional probabilities
are computed from the structure of the device
and models of its components. This capabil-
ity results from a novel way of incorporating
probabilities and information theory into the
context mechanism provided by Assumption-
Based Truth Maintenance.

1This paper is a correction (as of October 24, 2006) of
one which first appeared in the journal, Artificial Intelligence
32(1987) 97–130.

Figure 1: Model-Artifact difference.

1 Introduction

Engineers and scientists constantly strive to understand
the differences between physical systems and their mod-
els. Engineers troubleshoot mechanical systems or elec-
trical circuits to find broken parts. Scientists succes-
sively refine a model based on empirical data during the
process of theory formation. Many everyday common-
sense reasoning tasks involve finding the difference be-
tween models and reality.

Diagnostic reasoning requires a means of assigning
credit or blame to parts of the model based on observed
behavioral discrepancies. If the task is troubleshooting,
then the model is presumed to be correct and all model-
artifact differences indicate part malfunctions. If the
task is theory formation, then the artifact is presumed
to be correct and all model-artifact differences indicate
required changes in the model (Figure 1).

Usually the evidence does not admit a unique model-
artifact difference. Thus, the diagnostic task requires
two phases. The first, mentioned above, identifies the
set of possible model-artifact differences. The second
proposes evidence-gathering tests to refine the set of pos-
sible model-artifact differences until they accurately re-
flect the actual differences.

This view of diagnosis is very general, encompassing
troubleshooting mechanical devices and analog and digi-
tal circuits, debugging programs, and modeling physical
or biological systems. Our approach to diagnosis is also
independent of the inference strategy employed to derive
predictions from observations.

Earlier work (see Section 6) on model-based diagnosis
concentrated on determining a single faulty component
that explains all the symptoms. This paper extends that

research by diagnosing systems with multiple failed com-
ponents, and by proposing a sequence of measurements
which efficiently localize the failing components.

When one entertains the possibility of multiple faults,
the space of potential candidates grows exponentially
with the number of faults under consideration. This
work is aimed specifically at developing an efficient gen-
eral method, referred to as the General Diagnostic En-
gine (GDE), for diagnosing failures due to any number
of simultaneous faults. To achieve the needed efficiency,
GDE exploits the features of Assumption-Based Truth
Maintenance (ATMS) [8]. This is the topic of the first
half of the paper.

Usually, additional measurements are necessary to iso-
late the set of components which are actually faulted.
The best next measurement is the one which will, on
average, lead to the discovery of the faulted set of com-
ponents in a minimum number of measurements. Unlike
other probabilistic techniques which require a vast num-
ber of conditional probabilities, GDE need only be pro-
vided with the a priori probabilities of individual com-
ponent failure. Using an ATMS, this probabilistic infor-
mation is incorporated into GDE such that it is straight-
forward to compute the conditional probabilities of the
candidates, as well as the probabilities of the possible
outcomes of measurements, based on the faulty device’s
model. This combination of probabilistic inference and
Assumption-Based Truth Maintenance enables GDE to
apply a minimum entropy method [1] to determine what
measurement to make next: the best measurement is the
one which minimizes the expected entropy of candidate
probabilities resulting from the measurement. Some-
what surprisingly, the expected entropy of a measure-
ment can be computed directly from the current prob-
abilities of the differing outcomes of the measurement.
This is the topic of the second half of the paper.

1.1 Troubleshooting circuits
For troubleshooting circuits, the diagnostic task is to
determine why a correctly designed piece of equipment
is not functioning as it was intended; the explanation
for the faulty behavior being that the particular piece
of equipment under consideration is at variance in some
way with its design (e.g., a set of components is not
working correctly or a set of connections is broken). To
troubleshoot a system, a sequence of measurements must
be proposed, executed and then analyzed to localize this
point of variance, or fault. The task for the diagnosti-
cian is to use the results of measurements to identify the
cause of the variance when possible, and otherwise to de-
termine which additional measurements must be taken.

For example, consider the circuit in Figure 2, con-
sisting of three multipliers, M1, M2, and M3, and two
adders, A1 and A2. The inputs are A = 3, B = 2,
C = 2, D = 3, and E = 3, and the outputs are mea-
sured showing that F = 10 and G = 12.2 From these

2This circuit is also used by both [6] and [15] in explaining
their systems.

Figure 2: A familiar circuit.

A

B

C

D

E

X

Y

Z

F
10

G
12

A1

A2

M1

M2

M3

3

2

3

3

2

measurements it is possible to deduce that at least one
of the following sets of components is faulty (each set
is referred to as a candidate and is designated by [...]):
[A1], [M1], [A2,M2], or [M2,M3]. Furthermore, measur-
ing X is likely to produce the most useful information in
further isolating the faults. Intuitively, X is optimal be-
cause it is the only measurement that can differentiate
between the two highly probable singleton candidates:
[A1] and [M1].

Next the value of X is measured and the result is used
to reduce the size of the candidate set. The candidate
generation-measurement process continues until a single
high probability candidate remains.

1.2 Some basic presuppositions

Although GDE considers multiple faults and probabilis-
tic information, it shares many of the basic presupposi-
tions of other model-based research. We presume that
the act of taking a measurement (i.e., making an obser-
vation) has no affect on the faulty device. We presume
that once a quantity is measured to be a certain value,
that the quantity remains at that value. This is equiva-
lent to assuming that no component’s (correct or faulty)
functioning depends on the passage of time. For exam-
ple, this rules out flip-flops as well as intermittent com-
ponents which spontaneously change their behavior. We
presume that if a component is faulty, the distribution
of input-output values becomes random (i.e., contains no
information). We do not presume that if a component is
faulty, that it must be exhibiting this faulty behavior —
it may exhibit faulty behavior on some other set of in-
puts. These presuppositions suggest future directions for
research, and we are extending GDE in these directions.

2 A Theory of Diagnosis

The remainder of this paper presents a general, domain-
independent, diagnostic engine (GDE) which, when cou-
pled with a predictive inference component provides a
powerful diagnostic procedure for dealing with multiple
faults. In addition the approach is demonstrated in the

domain of digital electronics, using propagation as the
predictive inference engine.

2.1 Model-artifact differences
The model of the artifact describes the physical structure
of the device in terms of its constituents. Each type of
constituent obeys certain behavioral rules. For example,
a simple electrical circuit consists of wires, resistors and
so forth, where wires obey Kirchoff’s Current Law, resis-
tors obey Ohm’s Law, and so on. In diagnosis, it is given
that the behavior of the artifact differs from its model.
It is then the task of the diagnostician to determine what
these differences are.

The model for the artifact is a description of its phys-
ical structure, plus models for each of its constituents.
A constituent is a very general concept, including com-
ponents, processes and even steps in a logical inference.
In addition, each constituent has associated with it a set
of one or more possible model-artifact differences which
establishes the grain size of the diagnosis.

Diagnosis takes (1) the physical structure, (2) models
for each constituent, (3) a set of possible model-artifact
differences and (4) a set of measurements, and produces
a set of candidates, each of which is a set of differences
which explains the observations.

Our diagnostic approach is based on characterizing
model-artifact differences as assumption violations. A
constituent is guaranteed to behave according to its
model only if none of its associated differences are mani-
fested, i.e., all the constituent’s assumptions hold. If any
of these assumptions are false, then the artifact deviates
from its model, thus, the model may no longer apply.
An important ramification of this approach ([4; 6; 10;
15; 32]) is that we need only specify correct models for
constituents — explicit fault models are not needed.

Reasoning about model-artifact differences in terms
of assumption violations is very general. For example,
in electronics an assumption might be the correct func-
tioning of each component and the absence of any short
circuits; in a scientific domain a faulty hypothesis; in a
commonsense domain an assumption such as persistence,
defaults or Occam’s Razor.

2.2 Detection of symptoms
We presume (as is usually the case) that the model-
artifact differences are not directly observable.3 In-
stead, all assumption violations must be inferred indi-
rectly from behavioral observations. In Section 2.7 we
present a general inference architecture for this purpose,
but for the moment we presume an inference procedure
which makes behavioral predictions from observations
and assumptions without being concerned about the pro-
cedure’s details.

Intuitively, a symptom is any difference between a pre-
diction made by the inference procedure and an obser-

3In practice the diagnostician can sometimes directly ob-
serve a malfunctioning component by looking for a crack or
burn mark.

vation. Consider our example circuit. Given the in-
puts, A = 3, B = 2, C = 2, D = 3, and E = 3,
by simple calculation (i.e., the inference procedure),
F = X + Y = A × C + B × D = 12. However, F
is measured to be 10. Thus “F is observed to be 10,
not 12” is a symptom. More generally, a symptom is
any inconsistency detected by the inference procedure,
and may occur between two predictions (inferred from
distinct measurements) as well as a measurement and a
prediction (inferred from some other measurements).

2.3 Conflicts
The diagnostic procedure is guided by the symptoms.
Each symptom tells us about one or more assumptions
that are possibly violated (e.g., components that may
be faulty). Intuitively, a conflict is a set of assump-
tions which support a symptom, and thus leads to an
inconsistency. In this electronics example, a conflict is a
set of components which cannot all be functioning cor-
rectly. Consider the example symptom “F is observed
to be 10, not 12.” The prediction that F = 12 depends
on the correct operation of A1, M1, and M2, i.e., if A1,
M1, and M2 were correctly functioning, then F = 12.
Since F is not 12, at least one of A1, M1, and M2

is faulted. Thus the set 〈A1, M1,M2〉 is a conflict for
the symptom (conflicts are indicated by 〈...〉). Because
the inference is monotonic with the set of assumptions,
the set 〈A1, A2, M1,M2, 〉, and any other superset of
〈A1, M1,M2〉 are conflicts as well; however, no subsets of
〈A1, M1,M2〉 are necessarily conflicts since all the com-
ponents in the conflict were needed to predict the value
at F .

A measurement might agree with one prediction and
yet disagree with another, resulting in a symptom. For
example, starting with the inputs B = 2, C = 2, D = 3,
and E = 3, and assuming A2, M2, and M3 are correctly
functioning we calculate G to be 12. However, starting
with the observation F = 10, the inputs A = 3, C = 2,
and E = 3, and assuming that A1, A2, M1, and M3,
(i.e., ignoring M2) are correctly functioning we calculate
G = 10. Thus, when G is measured to be 12, even
though it agrees with the first prediction, it still produces
a conflict based on the second: 〈A1, A2,M1,M3〉.

For complex domains any single symptom can give rise
to a large set of conflicts, including the set of all com-
ponents in the circuit. To reduce the combinatorics of
diagnosis it is essential that the set of conflicts be repre-
sented and manipulated concisely. If a set of components
is a conflict, then every superset of that set must also be
a conflict. Thus the set of conflicts can be represented
concisely by only identifying the minimal conflicts, where
a conflict is minimal if it has no proper subset which is
also a conflict. This observation is central to the perfor-
mance of our diagnostic procedure. The goal of conflict
recognition is to identify the complete set of minimal
conflicts.4

4Representing the conflict space in terms of minimal con-
flicts is analogous to the idea of version spaces for represent-

2.4 Candidates

A candidate is a particular hypothesis for how the actual
artifact differs from the model. For example “A2 and
M2 are broken” is a candidate for the two symptoms
observed for our example circuit. Ultimately, the goal of
diagnosis is to identify, and refine, the set of candidates
consistent with the observations thus far.

A candidate is represented by a set of assumptions (in-
dicated by [...]). The assumptions explicitly mentioned
are false, while the ones not mentioned are true. A can-
didate which explains the current set of symptoms is a
set of assumptions such that if every assumption fails
to hold, then every known symptom is explained. Thus
each set representing a candidate must have a non-empty
intersection with every conflict.

For electronics, a candidate is a set of failed compo-
nents, where any components not mentioned are guaran-
teed to be working. Before any measurements have been
taken we know nothing about the circuit. The candidate
space is the set of candidates consistent with the observa-
tions. The size of the initial candidate space grows expo-
nentially with the number of components. Any compo-
nent could be working or faulty, thus the candidate space
for Figure 2 initially consists of 25 = 32 candidates.

It is essential that candidates be represented concisely
as well. Notice that, like conflicts, candidates have the
property that any superset of a possible candidate for a
set of symptoms must be a possible candidate as well.
Thus the candidate space can be represented by the
minimal candidates. Representing and manipulating the
candidate space in terms of minimal candidates is cru-
cial to our diagnostic approach. Although the candidate
space grows exponentially with the number of poten-
tially faulted components, it is usually the case that the
symptoms can be explained by relatively few minimal
candidates.

The goal of candidate generation is to identify the com-
plete set of minimal candidates. The space of candidates
can be visualized in terms of a subset-superset lattice
(Figure 3). The minimal candidates then define a bound-
ary such that everything from the boundary up is a valid
candidate, while everything below is not.

Given no measurements every component might be
working correctly, thus the single minimal candidate is
the empty set, [], which is the root of the lattice at the
bottom of Figure 3.

To summarize, the set of candidates is constructed
in two stages: conflict recognition and candidate gener-
ation. Conflict recognition uses the observations made
along with a model of the device to construct a complete
set of minimal conflicts. Next, candidate generation uses
the set of minimal conflicts to construct a complete set of
minimal candidates. Candidate generation is the topic
of the next section, while conflict recognition is discussed
in Section 2.6.

ing plausible hypotheses in single concept learning [22].

2.5 Candidate generation
Diagnosis is an incremental process; as the diagnostician
takes measurements he continually refines the candidate
space and then uses this to guide further measurements.
Within a single diagnostic session the total set of candi-
dates must decrease monotonically. This corresponds to
having the minimal candidates move monotonically up
through the candidate superset lattice towards the can-
didate containing all components. Similarly, the total
set of conflicts must increase monotonically. This corre-
sponds to having the minimal conflicts move monoton-
ically down through a conflict superset lattice towards
the conflict represented by the empty set. Candidates
are generated incrementally, using the new minimal con-
flict(s) and the old minimal candidate(s) to generate the
new minimal candidate(s).

The set of minimal candidates is incrementally mod-
ified as follows. Whenever a new conflict is discovered,
any previous minimal candidate which does not explain
the new conflict is replaced by one or more superset can-
didates which are minimal based on this new informa-
tion. This is accomplished by replacing the old minimal
candidate with a set of tentative new minimal candi-
dates each of which contains the old candidate plus one
assumption from the new conflict. Any tentative new
candidate which is subsumed or duplicated by another
is eliminated; the remaining candidates are added to the
set of new minimal candidates.

Consider our example. Initially there are no conflicts,
thus the minimal candidate [] (i.e., everything working)
explains all observations. We have already seen that the
single symptom “F = 10 not 12” produces one conflict
〈A1, M1,M2〉. This rules out the single minimal can-
didate []. Thus, its immediate supersets containing one
assumption of the conflict [A1], [M1] and [M2] are consid-
ered. None of these are duplicated or subsumed as there
were no other old minimal candidates. The new minimal
candidates are [A1], [M1], and [M2]. This situation is de-
picted with the lattice in Figure 4. All candidates above
the line labeled by the conflict “C1: 〈A1,M1,M2〉” are
valid candidates.

The second conflict (inferred from observation G =
12), 〈A1, A2,M1,M3〉, only eliminates minimal candi-
date [M2]; the unaffected minimal candidates [M1], and
[A1] remain. However, to complete the set of mini-
mal candidates we must consider the immediate super-
sets of [M2] which cover the new conflict: [A1,M2],
[A2,M2], [M1,M2], and [M2,M3]. Each of these can-
didates explains the new conflict, however, [A1,M2] and
[M1,M2] are supersets of the minimal candidates [A1]
and [M1], respectively. Thus the new minimal candi-
dates are [A2,M2], and [M2,M3], resulting in the min-
imal candidate set: [A1], [M1], [A2, M2], and [M2, M3].
The line labeled by conflict “C2: 〈A1, A2,M1,M3〉” in
Figure 4 shows the candidates eliminated by the obser-
vation G = 12 alone, and the line labeled “C1 & C2”
shows the candidates eliminated as a result of both mea-
surements (F = 10 and G = 12). The minimal candidate
which split the lattice into valid and eliminated candi-

Figure 3: Initial candidate space for the circuit example.

dates are circled.
Candidate generation has several interesting proper-

ties. First, the set of minimal candidates may increase
or decrease in size as a result of a measurement; how-
ever, a candidate, once eliminated can never reappear.
As measurements accumulate, eliminated minimal can-
didates are replaced by larger candidates. Second, if
an assumption appears in every minimal candidate (and
thus every candidate), then that assumption is neces-
sarily false (i.e., that component is necessarily faulted).
Third, the presupposition that there is only a single fault
(exploited in all previous model-based troubleshooting
strategies), is equivalent to assuming all candidates are
singletons. In this case, the set of candidates can be
obtained by intersecting all the conflicts.

2.6 Conflict recognition strategy
The remaining task involves incrementally constructing
the conflicts used by candidate generation. In this sec-
tion we first present a simple model of conflict recogni-
tion. This approach is then refined into a more efficient
strategy.

A conflict can be identified by selecting a set of as-
sumptions, referred to as an environment, and testing
whether or not they are inconsistent with the obser-
vations.5 If they are, then the inconsistent environ-

5An environment should not be confused with a candi-
date or conflict. An environment is a set of assumptions
all of which are assumed to be true (e.g., the environment
{M1, M2} indicates that M1 and M2 are assumed to be work-
ing correctly), a candidate is a set of assumptions all of which
are assumed to be false (e.g., the candidate [M1, M2] indicates
that M1 and M2 are not functioning correctly). A conflict is

ment is a conflict. This requires an inference strategy
C(OBS,ENV) which, given the set of observations OBS
made thus far and the environment ENV, determines
whether the combination is consistent. In our example,
after measuring F = 10, and before measuring G = 12,
C({F = 10}, {A1,M1, M2}) (leaving off the inputs) is
false indicating the conflict 〈A1,M1,M2〉. This approach
is refined as follows:

Refinement 1: Exploiting minimality. To identify the
set of minimal inconsistent environments (and thus the
minimal conflicts), we begin our search at the empty en-
vironment, moving up along its parents. This is similar
to the search pattern used during candidate generation.
At each environment we apply C(OBS,ENV) to deter-
mine whether or not ENV is a conflict. Before a new
environment is explored, all other environments which
are a subset of the new environment must be explored
first. If the environment is inconsistent then it is a min-
imal conflict and its supersets are not explored. If an
environment has already been explored or is a superset
of a conflict then C is not run on the environment and
its supersets are not explored.

We presume the inference strategy operates entirely by
inferring hypothetical predictions (e.g., values for vari-
ables in environments given the observations made). Let
P(OBS,ENV) be all behavioral predictions which follow
from the observations OBS given the assumptions ENV.

a set of assumptions, at least one of which is false (e.g., the
conflict 〈M1, M2〉 indicates that M1 or M2 is faulted). Intu-
itively an environment is the set of assumptions that define
a “context” in a deductive inference engine, in this case the
engine is used for prediction and the assumptions are about
the lack of particular model-artifact differences.

Figure 4: Candidate space after measurements.

For example, P({A = 3, B = 2, C = 2, D = 3}, {A1, M1,
M2}) produces {A = 3, B = 2, C = 2, D = 3, X =
6, Y = 6, F = 12}.

C can now be implemented in terms of P. If P com-
putes two distinct values for a quantity (or more simply
both x and ¬x), then a symptom is manifested and ENV
is a conflict.

Refinement 2: Monotonicity of measurements. If in-
put values are kept constant, measurements are cu-
mulative and our knowledge of the circuit’s struc-
ture grows monotonically. Given a new measure-
ment M , P(OBS∪{M}, ENV) is always a superset of
P(OBS,ENV). Thus if we cache the values of every P,
when a new measurement is made we need only infer the
incremental addition to the set of predictions.

Refinement 3: Monotonicity for assumptions. Analo-
gous to refinement 2, the set of predictions grows mono-
tonically with the environment. If a set of predic-
tions follows from an environment, then the addition of
any assumption to that environment only expands this
set. Therefore P(OBS,ENV) contains P(OBS,E) for ev-
ery subset E of ENV. This makes the computation of
P(OBS,ENV) very simple if all its subsets have already
been analyzed.

Refinement 4: Redundant inferences. P must be run
on a large number of (overlapping) environments. Thus
the same rule will be executed over and over again on the
same facts. All of this overlap can be avoided by utilizing
ideas of Truth Maintenance such that every inference
is recorded as a dependency and no inference is ever
performed twice [14].

Refinement 5: Exploiting the sparseness of the search
space. The four refinements allow the strategy to ig-
nore (i.e., to the extent of not even generating its name)
any environment which doesn’t contain some interesting
inferences absent in every one of its subsets. If every
environment contained a new unique inference, then we
would still be faced computationally with an exponen-
tial in the number of potential model-artifact differences.
However, in practice, as the components are weakly con-
nected, the inference rules are weakly connected. There-
fore, it is more efficient to associate environments with
rules than vice versa. Our strategy depends on this em-
pirical property. For example, in electronics the only
assumption sets of interest are sets of components which
are connected and whose signals interact — typically
circuits are explicitly designed so that component inter-
actions are limited.

2.7 Inference procedure architecture
To completely exploit the ideas discussed in the pre-
ceding section we need to modify and augment the im-
plementation of P. We presume that P meets (or can
be modified to) the two basic criteria for utilizing truth
maintenance: (1) A dependency (i.e., justification) can
be constructed for each inference, and (2) belief or dis-
belief in a datum is completely determined by these de-
pendencies. In addition, we presume that, during pro-
cessing, whenever more than one inference is simultane-
ously permissible, that the actual order in which these
inferences are performed is irrelevant and that this or-
der can be externally controlled (i.e., by our architec-

ture). Finally, we presume that the inference procedure
is monotonic. Most AI inference procedures meet these
four general criteria. For example, many expert rule-
based systems, constraint propagation, demon invoca-
tion, taxonomic reasoning, qualitative simulations, nat-
ural deduction systems, and many forms of resolution
theorem-proving fit this general framework.

We associate with every prediction, V , the set of
environments, ENVS(V), from which it follows (i.e.,
ENVS(V) ≡ {env|V ∈ P(OBS, env)}). We call this
set the supporting environments of the prediction. Ex-
ploiting the monotonicity property, it is only necessary
to represent the minimal (under subset) supporting en-
vironments.

Consider our example after the measurements F = 10
and G = 12. In this case we can calculate Y = 6 in two
ways. First, Y = B×D = 6 assuming M2 is functioning
correctly. Thus, one of its supporting environments is
{M2}. Second, Y = G − Z = G − (C × E) = 6 assum-
ing A2 and M3 are working. Therefore the supporting
environments of Y = 6 are {{M2}{A2,M3}}. Any set of
assumptions used to derive Y = 6 is a superset of one of
these two.

By exploiting dependencies no inference is ever done
twice. If the supporting environments of a prediction
change, then the supporting environments of its conse-
quents are updated automatically by tracing the depen-
dencies created when the rule was first run. This achieves
the consequences of a deduction without rerunning the
rule.

We control the inference process such that whenever
more than one rule is runnable, the one producing a
prediction in the smaller supporting environment is per-
formed first. A simple agenda mechanism suffices for
this. Whenever a symptom is recognized, the environ-
ment is marked a conflict and all rule execution stops
on that environment. Using this control scheme predic-
tions are always deduced in their minimal environment,
achieving the desired property that only minimal con-
flicts (i.e., inconsistent environments) are generated.

In this architecture P can be incomplete (in practice
it usually is). The only consequence of incompleteness is
that fewer conflicts will be detected and thus fewer can-
didates will be eliminated than the ideal — no candidate
will be mistakenly eliminated.

3 Circuit Diagnosis

Thus far we have described a very general diagnostic
strategy for handling multiple faults, whose application
to a specific domain depends only on the selection of the
function P. In this section, we demonstrate the power of
this approach, by applying it to the problem of circuit
diagnosis.

For our example we make a number of simplifying pre-
suppositions. First, we assume that the model of a cir-
cuit is described in terms of a circuit topology plus a be-
havioral description of each of its components. Second,
that the only type of model-artifact difference considered

is whether or not a particular component is working cor-
rectly. Finally, all observations are made in terms of
measurements at a component’s terminals.

Measurements are expensive, thus not every value at
every terminal is known. Instead, some values must
be inferred from other values and the component mod-
els. Intuitively, symptoms are recognized by propagat-
ing out locally through components from the measure-
ment points, using the component models to deduce new
values. The application of each model is based on the
assumption that its corresponding component is work-
ing correctly. If two values are deduced for the same
quantity in different ways, then a coincidence has oc-
curred. If the two values differ then the coincidence is
a symptom. The conflict then consists of every compo-
nent propagated through from the measurement points
to the point of coincidence (i.e., the symptom implies
that at least one of the components used to deduce the
two values is inconsistent). Note however, if the two co-
inciding values are the same, then it is not necessarily
the case that the components involved in the predictions
are functioning correctly. Instead, it may be that the
symptom simply does not manifest itself at that point.
Also, it might be that one of these components is faulty,
but does not manifest its fault, given the current set of
inputs. (For example, an inverter with an output stuck
at one will not manifest a symptom given an input of
zero.) Thus if the coinciding values are in agreement
then no information is gained.

3.1 Constraint propagation
Constraint propagation [36; 37] operates on cells, values,
and constraints. Cells represent state variables such as
voltages, logic levels, or fluid flows. A constraint stipu-
lates a condition that the cells must satisfy. For exam-
ple, Ohm’s Law, v = iR, is represented as a constraint
among the three cells v, i, and R. Given a set of initial
values, constraint propagation assigns each cell a value
that satisfies the constraints. The basic inference step is
to find a constraint that allows it to determine a value
for a previously unknown cell. For example, if it has
discovered values v = 2 and i = 1, then it uses the
constraint v = iR to calculate the value R = 2. In ad-
dition, the propagator records R’s dependency on v, i
and the constraint v = iR. The newly recorded value
may cause other constraints to trigger and more values
to be deduced. Thus, constraints may be viewed as a
set of conduits along which values can be propagated
out locally from the inputs to other cells in the system.
The recorded dependencies trace out a particular path
through the constraints that the inputs have taken. A
symptom is manifested when two different values are de-
duced for the same cell (i.e., a logical inconsistency is
identified). In this event dependencies are used to con-
struct the conflict.

Sometimes the constraint propagation process termi-
nates leaving some constraints unused and some cells
unassigned. This usually arises as a consequence of in-
sufficient information about device inputs. However, this

can also arise as the consequence of logical incomplete-
ness in the propagator.

In the circuit domain, the behavior of each component
is modeled as a set of constraints. For example, in ana-
lyzing analog circuits the cells represent circuit voltages
and currents, the values are numbers, and the constraints
are mathematical equations. In digital circuits, the cells
represent logic levels, the values are 0 and 1, and the
constraints are boolean equations.

Consider the constraint model for the circuit of Fig-
ure 2. There are ten cells: A, B, C, D, E, X, Y , Z, F ,
and G, five of which are provided the observed values:
A = 3, B = 2, C = 2, D = 3 and E = 3. There are three
multipliers and two adders each of which is modeled by
a single constraint: M1 : X = A× C, M2 : Y = B ×D,
M3 : Z = C ×E, A1 : F = X + Y , and A2 : G = Y + Z.
The following is a list of deductions and dependencies
that the constraint propagator generates (a dependency
is indicated by (component : antecedents)):

X = 6 (M1 : A = 3, C = 2)

Y = 6 (M2 : B = 2, D = 3)

Z = 6 (M3 : C = 2, E = 3)

F = 12 (A1 : X = 6, Y = 6)

G = 12 (A2 : Y = 6, Z = 6)

A symptom is indicated when two values are determined
for the same cell (e.g., measuring F to be 10 not 12).
Each symptom leads to new conflict(s) (e.g., in this ex-
ample the symptom indicates a conflict 〈A1,M1,M2〉).

This approach has some important properties. First,
it is not necessary for the starting points of these paths
to be inputs or outputs of the circuit. A path may be-
gin at any point in the circuit where a measurement has
been taken. Second, it is not necessary to make any as-
sumptions about the direction that signals flow through
components. In most digital circuits a signal can only
flow from inputs to outputs. For example, a subtrac-
tor cannot be constructed by simply reversing an input
and the output of an adder since it violates the direc-
tionality of signal flow. However, the directionality of
a component’s signal flow is irrelevant to our diagnos-
tic technique; a component places a constraint between
the values of its terminals which can be used in any way
desired. To detect discrepancies, information can flow
along a path through a component in any direction. For
example, although the subtractor does not function in
reverse, when we observe its outputs we can infer what
its inputs must have been.

3.2 Generalized constraint propagation
Each step of constraint propagation takes a set of an-
tecedent values and computes a consequent. We have
built a constraint propagator within our inference archi-
tecture which explores minimal environments first. This
guides each step during propagation in an efficient man-
ner to incrementally construct minimal conflicts and can-
didates for multiple faults.

Consider our example. We ensure that propagations
in subset environments are performed first, thereby guar-
anteeing that the resulting supporting environments and
conflicts are minimal. We use [[x, e1, e2, ...]] to represent
the assertion x with its associated supporting environ-
ments. Before any measurements or propagations take
place, given only the inputs, the data base consists of:
[[A = 3, {}]], [[B = 2, {}]], [[C = 2, {}]], [[D = 3, {}]],
and [[E = 3, {}]]. Observe that when propagating values
through a component, the assumption for that compo-
nent is added to the dependency, and thus to the sup-
porting environment(s) of the propagated value. Propa-
gating A and C through M1 we obtain: [[X = 6, {M1}]].
The remaining propagations produce: [[Y = 6, {M2}]],
[[Z = 6, {M3}]], [[F = 12, {A1,M1, M2}]], and [[G =
12, {A2,M2, M3}]].

Suppose we measure F to be 10. This adds [[F =
10, {}]] to the data base. Analysis proceeds as follows
(starting with the smaller environments first): [[X =
4, {A1,M2}]], and [[Y = 4, {A1,M1}]]. Now the symptom
between [[F = 10, {}]] and [[F = 12, {A1,M1,M2}]] is rec-
ognized indicating a new minimal conflict: 〈A1,M1,M2〉.
Thus the inference architecture prevents further prop-
agation in the environment {A1,M1,M2} and its su-
persets. The propagation goes one more step: [[G =
10, {A1, A2,M1,M3}]]. There are no more inferences to
be made.

Next, suppose we measure G to be 12. Propagation
gives: [[Z = 6, {A2,M2}]], [[Y = 6, {A2, M3}]], [[Z =
8, {A1, A2,M1}]], and [[X = 4, {A1, A2,M3}]]. The symp-
tom “G = 12 not 10” produces the conflict 〈A1, A2,M1,
M3〉. The final data-base state is shown below.6

[[F = 12, {A1,M1,M2}]]
[[A = 3, {}]]
[[B = 2, {}]]
[[C = 2, {}]]
[[D = 3, {}]]
[[E = 3, {}]]
[[F = 10, {}]]
[[G = 12, {}]]
[[X = 4, {A1,M2}{A1, A2,M3}]]
[[6, {M1}]]
[[Y = 4, {A1,M1}]]
[[6, {M2}{A2,M3}]]
[[Z = 8, {A1, A2,M1}]]
[[6, {M3}{A2,M2}]]

This results in two minimal conflicts:

〈A1,M1,M2〉
〈A1, A2,M1,M3〉

The algorithm discussed in Section 2.5 uses the two
minimal conflicts to incrementally construct the set of
minimal candidates. Given new measurements the prop-
agation/candidate generation cycle continues until the
candidate space has been sufficiently constrained.

6The justifications are not shown but are the same as those
in Section 3.1.

4 Sequential Diagnosis
In order to reduce the set of remaining candidates the di-
agnostician must perform measurements [17] which dif-
ferentiate among the remaining candidates. This sec-
tion presents a method for choosing a next measurement
which best distinguishes the candidates, i.e., that mea-
surement which will, on average, lead to the discovery
of the actual candidate in a minimum number of subse-
quent measurements.

4.1 Possible measurements
The conflict recognition strategy (via
P(OBS,ENV)) identifies all predictions for each
environment. The results of this analysis provides the
basis for a differential diagnosis procedure, allowing
GDE to identify possible measurements and their
consequences.

Consider how measuring quantity xi could reduce the
candidate space. GDE’s data base explicitly represents
xi’s values and their supporting environments:

[[xi = vik, eik1, ..., eikm]].
If xi is measured to be vik, then the supporting environ-
ments of any value distinct from the measurement are
necessarily conflicts. If vik is not equal to any of xi’s
predicted values, then every supporting environment for
each predicted value of xi is a conflict. Given GDE’s
data base, it is simple to identify useful measurements,
their possible outcomes, and the conflicts resulting from
each outcome. Furthermore, the resulting reduction of
the candidate space is easily computed for each outcome.

Consider the example of the previous section. X = 4
in environments {A1,M2} and {A1, A2,M3}, while X =
6 in environment {M1}. Measuring X has three possi-
ble outcomes: (1) X = 4 in which case 〈M1〉 is a con-
flict and the new minimal candidate is [M1], (2) X = 6
in which case 〈A1,M2〉 and 〈A1, A2,M3〉 are conflicts
and the new minimal candidates are [A1], [M2,M3] and
[A2,M2], or (3) X 6= 4 and X 6= 6 in which case 〈M1〉,
〈A1,M2〉 and 〈A1, A2,M3〉 are conflicts and [A1,M1],
[M1,M2,M3] and [A2, M1,M2] are minimal candidates.

The minimal candidates are a computational conve-
nience for representing the entire candidate set. For pre-
sentation purposes, in the following we dispense with the
idea of minimal candidates and consider all candidates.

The diagnostic process described in the subsequent
sections depends critically on manipulating three sets:
(1) Rik is the set of (called remaining) candidates that
would remain if xi were measured to be vik, (2) Sik is the
set of (called selected) candidates in which xi must be
vik (equivalently, the candidates necessarily eliminated
if xi is measured not to be vik), and (3) Ui is the set of
(called uncommitted) candidates which do not predict
a value for xi (equivalently, the candidates which would
not be eliminated independent of the value measured for
xi). The set Rik is covered by the sets Sik and Ui:

Rik = Sik ∪ Ui,

Sik ∩ Ui = φ.

4.2 Lookahead vs. myopic strategies
Section 4.1 describes how to evaluate the consequences
of a hypothetical measurement on the set of candidates.
By cascading this procedure, we could evaluate the con-
sequences of any sequence of measurements to determine
the optimal next measurement (i.e., the one which is ex-
pected to isolate the actual candidate in the shortest
sequence of measurement). This can be implemented as
a classic decision tree analysis, but the computational
cost of this analysis is prohibitive. Instead we use a one-
step lookahead strategy based on Shannon entropy [2; 23;
29]. Given a particular stage in the diagnostic process
we analyze the consequences of each single measurement
to determine which one to perform next. To accom-
plish this we need an evaluation function to determine
for each possible outcome of a measurement how difficult
it is (i.e., how many additional measurements are nec-
essary) to identify the actual candidate. From decision
and information theory we know that a very good cost
function is the entropy (H) of the probabilities of the
remaining candidates:

H = −
∑

pilog pi,

where pi is the probability that candidate Ci is the actual
candidate given the hypothesized measurement outcome.

Entropy has several important properties (see a ref-
erence on information theory [33] for a more rigorous
account). If every remaining candidate is equally likely,
we have little information to provide discrimination —
H is at a maximum. As one candidate becomes much
more likely than the rest H approaches a minimum. H
estimates the expected cost of identifying the actual can-
didate as follows. The cost of locating a candidate of
probability pi is proportional to log 1

pi
(cf. binary search

through 1/pi objects). The expected cost of identifying
the actual candidate is thus proportional to the sum of
the product of the probability of each candidate being
the actual candidate and the cost of identifying that can-
didate, i.e.,

∑
pilog

1
pi

= −∑
pilog pi. Unlikely candi-

dates, although expensive to find, occur infrequently so
they contribute little to the cost: pi log 1

pi
approaches

0 as pi approaches 0. Conversely, likely candidates, al-
though they occur frequently, are easy to find so con-
tribute little to the cost: pi log 1

pi
approaches 0 as pi

approaches 1. Locating candidates in between these two
extremes is more costly because they occur with signifi-
cant frequency and the cost of finding them is significant.

4.3 Minimum entropy
Under the assumption that every measurement is of
equal cost, the objective of diagnosis is to identify the ac-
tual candidate in a minimum number of measurements.
This section shows how the entropy cost function pre-
sented in the previous section is utilized to choose the
best next measurement. As the diagnosis process is se-
quential, these formulas describe the changes in quanti-
ties as a consequence of making a single measurement.

The best measurement is the one which minimizes
the expected entropy of candidate probabilities resulting
from the measurement. The bulk of this section shows
that after substantial algebra and an additional assump-
tion about faulty behavior that the best measurement is
the one which minimizes:

m∑

k=1

p(xi = vik)log p(xi = vik) + p(Ui)log m,

where m is the number of possible values for xi and,

p(Sik) =
∑

Cj∈Sik

pj ,

p(Ui) =
∑

Cj∈Ui

pj ,

p(xi = vik) = p(Sik) +
p(Ui)

m
,

vi1, ..., vim are all possible values7 for xi and p(xi = vik)
is the estimated probability that xi will be measured to
vik. Note that this formula8 can be evaluated directly
from the current candidate probabilities.

The equation for p(xi = vik) is derived as follows.
If every candidate predicts a value for xi, then p(xi =
vik) is the combined probabilities of all the candidates
predicting xi = vik. To the extent that Ui is not empty,
the probability p(xi = vik) can only be approximated
with error εik:

p(xi = vik) = p(Sik) + εik, 0 < εik < p(Ui),
m∑

k=1

εik = p(Ui).

At any stage of the diagnostic process only some (say the
first n of the m possible) of the vik are actually predicted
(i.e., those with non-empty Sik) for xi. If a candidate
does not predict a value for a particular xi, we assume
each possible vik is equally likely9:

εik =
p(Ui)

m
.

7These results can be generalized to account for an infinite
number of possible values since, although a quantity may take
on an infinite number of possible values, only a finite number
of these will be predicted as the consequences of other quan-
tities measured. Furthermore, the entropy resulting from the
measurement of a value not predicted is independent of that
value. Thus, the system never has to deal with more than a
finite set of expected entropies.

8If all components fail with equal small probability this
equation can be greatly simplified [11].

9We could assume that if a component were faulted (i.e.,
a member of the actual candidate), then its current observed
inputs and outputs would be inconsistent with its model. Un-
der such an assumption, the distribution would be skewed
away from those vik predicted from the set of assumptions of
the candidate (i.e., viewing a candidate as an environment).
We do not make this assumption because a component may
appear to be functioning correctly, but actually be faulted
producing incorrect outputs for a different set of inputs.

So,

p(xi = vik) = p(Sik) +
p(Ui)

m
.

Notice that for unpredicted values Sik is empty, so
p(Sik) = 0 and p(xi = vik) = p(Ui)

m .
Assuming that the process of taking a measurement

doesn’t influence the value measured, the expected en-
tropy He(xi) after measuring quantity xi is given by:

He(xi) =
m∑

k=1

p(xi = vik)H(xi = vik).

H(xi = vik) is determined from the candidate proba-
bilities resulting from the hypothesized result xi = vik.
When xi is measured to be vik, the probabilities of the
candidates shift. Some candidates will be eliminated, re-
ducing their posterior probability to zero. The remaining
candidates Rik shift their probabilities according to (see
Section 4.4):

p′l =
pl

p(xi = vik)
, l ∈ Sik,

p′l =
pl/m

p(xi = vik)
, l ∈ Ui,

where pl is the current probability of Cl and p′l is the hy-
pothesized probability. Substituting the candidate prob-
abilities into the entropy equation we obtain:

H(xi = vik) = −
∑

l∈Rik

p′l log p′l

= −
∑

l∈Sik

pl

p(xi =vik)
log

pl

p(xi =vik)

−
∑

l∈Ui

pl

mp(xi =vik)
log

pl

mp(xi =vik)

Substituting this into the expected entropy equation we
obtain:

He(xi) = −
m∑

k=1

∑

l∈Sik

pllog
pl

p(xi = vik)

−
m∑

k=1

∑

l∈Ui

pl

m
log

pl

mp(xi = vik)
.

Expanding the logarithms:

He(xi) = −
m∑

k=1

∑

l∈Sik

pllog pl

+
m∑

k=1

∑

l∈Sik

pllog p(xi = vik)

−
m∑

k=1

∑

l∈Ui

pl

m
log pl +

m∑

k=1

∑

l∈Ui

pl

m
log m

+
m∑

k=1

∑

l∈Ui

pl

m
log p(xi = vik).

The first and third terms are simply the current entropy
H and is necessarily constant over all xi:

He(xi) = H +
m∑

k=1

∑

l∈Sik

pllog p(xi = vik)

+
m∑

k=1

∑

l∈Ui

pl

m
log m

+
m∑

k=1

∑

l∈Ui

pl

m
log p(xi = vik).

Simplifying sums we obtain:

He(xi) = H +
m∑

k=1

p(Sik)log p(xi = vik)

+ p(Ui)log m

+
m∑

k=1

p(Ui)
m

log p(xi = vik).

As p(xi = vik) = p(Sik) + p(Ui)
m :

He(xi) =

H +
m∑

k=1

p(xi =vik)log p(xi =vik) + p(Ui)log m.

Thus, the expected entropy can be calculated given
the current candidate probability distribution — there is
no necessity to explicitly construct the possible posterior
probability distributions and compute their entropies.
To (usually) obtain positive costs, GDE adds one to the
entropy equation. Thus, the best measurement is the
one which minimizes:

$(xi) =
m∑

k=1

p(xi =vik)log p(xi =vik) + p(Ui)log m + 1.

The choice of base for the logarithm does not affect
the relative order of costs. Purely for convenience GDE
uses base e (this corresponds to measurements, on aver-
age, having e known outcomes). This cost indicates the
quality of a hypothesized measurement. The cost is the
expected increase in total (i.e., in the entire diagnostic
session) number of measurements that need to be made
to identify the candidate after making the measurement
presuming that measurements have e (admittedly impos-
sible) outcomes. A cost of 1 indicates no information at
all is gained because the measurement does not change
the entropy. If all measurements had e outcomes, then
a cost of 0 would be ideal. However, as the number of
outcomes can vary the best cost is 1−log m. Thus, costs
can be negative.

4.4 Independence of faults
The initial probabilities of candidates are computed
from the initial probabilities of component failure (ob-
tained from their manufacturer or by observation). We

make the assumption that components fail indepen-
dently. (This approach could be extended to dependent
faults except that voluminous data is required.) The
initial probability that a particular candidate Ci is the
actual candidate Ca is given by:

pi =
∏

c∈Ci

p(c ∈ Ca)
∏

c 6∈Ci

(1− p(c ∈ Ca)).

4.5 The conditional probability of a
candidate

Given measurement outcome xi = vik, the probability of
a candidate is computed via Bayes Rule (see Section 6.6):

p(Cl|xi = vik) =
p(xi = vik|Cl)p(Cl)

p(xi = vik)
There are three cases for evaluating p(xi = vik|Cl). If Cl

predicts xi = wik where wik 6= vik then, the conditional
probability is 0:

p(xi = vik|Cl) = 0 if Cl 6∈ Rik.

If wik = vik, then the conditional probability is 1:

p(xi = vik|Cl) = 1 if Cl ∈ Sik.

In the third case Cl predicts no value for xi. We assume
that every possible value for xi (there are m of them) is
equally likely:

p(xi = vik|Cl) =
1
m

if Cl ∈ Ui.

Substituting these probabilities into Bayes Rule we ob-
tain:

P (Cl|xi = vik) = 0 if Cl 6∈ Rik,

P (Cl|xi = vik) =
p(Cl)

p(xi = vik)
if Cl ∈ Sik,

P (Cl|xi = vik) =
p(Cl)/m

p(xi = vik)
if Cl ∈ Ui,

where

p(xi = vik) = p(Sik) +
p(Ui)

m
.

The estimate p(xi = vik|Cl) = 1/m is suspect and
introduces various computational complexities. Fortu-
nately, Ui contains primarily low probability candidates
and thus any error tends to be minor. On average, the
candidates in Ui are non-minimal (because minimal can-
didates tend to assign values to most of the device’s
variables) and as non-minimal candidates have lower
probability than minimal candidates, the candidates in
Ui have relatively lower probability. In practice, using
P (xi = vik|Cl) = 1 for Cl ∈ Rik greatly simplifies the
computations and rarely affects the number of measure-
ments required.

4.6 Examples
This section presents a series of example to illustrate
some of the intuitions behind our technique.

Figure 5: Cascaded inverters

Table 1: Expected costs for cascaded inverters after mea-
surements (with p = .01)

a=1 a=1,e=0 a=1,e=1
a 1 1 1
b .98 .45 .999
c .96 .31 .998
d .94 .44 .999
e .93 1 1

Cascaded inverters: a = 1
Consider circuit of Figure 5. Assume the initial prob-
ability of component failure is .01 and input a = 1 is
given. As initially no symptom has been detected, on
average little is gained by making any measurement—all
costs are nearly 1. Compare the advantages and dis-
advantages of measuring b or e. If the value measured
differs from the value predicted, then measuring closer
to the input (or any previously measured value) pro-
duces a smaller conflict, and thus more information. For
example, if we measure b to be 1, then we learn that
A must be faulted, whereas measuring e = 0 tells us
only that some component is faulty. On the other hand,
measuring further away from the input is more likely to
produce a discrepant value. That is, as there are a large
number of intervening components, it is more likely that
one will be faulted and thus produce an incorrect value.
These two effects tend to cancel each other, however,
the probability of finding a particular value outweighs
the expected cost of isolating the candidate from a set.
In terms of entropy, every possible outcome contributes
pilog

1
pi

but pi dominates log 1
pi

. In general for any cas-
caded sequence of components for which only the input is
known, the best next measurement is the output of the
sequence. These expected costs are enumerated under
column headed a = 1 of Table 1.

Cascaded inverters: a = 1, e = 0
Suppose e is measured to be 0, violating the prediction
and thus telling us that at least one of the components
is faulted. The best next measurement is the one that is
equidistant from the previous two measurements, c (see
column a = 1, e = 0 of Table 1.

Cascaded inverters: a = 1, e = 1
Suppose that instead of measuring e to be 0 it was mea-
sured 1 as predicted. The circuit must have a relatively
unlikely double fault (if it has any fault at all) where one
fault shadows the effect of the other. Nevertheless the

Table 2: Expected costs for cascaded inverters after mea-
surements (with p(B,C, D) = .01, p(A) = .025)

a=1,e=1
a 1
b .33
c .36
d .53
e 1

Table 3: Expected costs for Figure 2 after measurements.

initial F=10 G=12 X=6 Y=4
F .88 1 1 1 1
G .88 .28 1 1 1
X .95 .34 .28 1 1
Y .95 .34 .94 .90 1
Z .95 95 .97 .94 .141

best measurement to identify a possible double fault is
still c (see column a = 1, e = 1 of Table 1).

Cascaded inverters: a = 1, e = 1, p(A) = .025
If we are given that the first inverter A is more likely
to be faulted, then the best measurement point is no
longer equidistant from the previous observations. The
advantage of measuring b first instead of c is that we
might identify that inverter A is faulted immediately. As
A is far more likely to be faulted, it is better to measure
b first (see Table 2).

Diagnosing a fault
Consider the circuit of Figure 2. Suppose that M2 is
faulted exhibiting behavior Y = B × C − 2 and A2 is
faulted with behavior G = Y ×Z +2. The inputs are the
same as earlier. The following illustrates GDE’s strategy
to localize this fault. Note that this is an unusual fault
in that the effect of the two faults cancel, producing the
value predicted for G. Thus, several measurements are
necessary to identify the fault. We assume that compo-
nent’s fail with initial probability .01 and that m = 16).

Initially the most probable candidate is [], p([] =
Ca) = .951. The expected cost associated with each hy-
pothetical measurement is given in the second column
of Table 3. All the costs are nearly one, indicating that
little is to be gained by any of the measurements, this
is because on average components are not faulted, and
there is yet no evidence that anything is malfunctioning.
Not surprisingly, F and G as well as X, Y , Z are treated
symmetrically. F and G have slightly lower cost because
their predicted values depend on three components func-
tioning correctly, while X, Y , and Z depend on two (i.e.,
F and G are more likely to have discrepant values).

Suppose F is measured with result F = 10. The most
probable candidates are now [A1], [M1], and [M2], all
having probability .323. The expected costs are given by
the third column of Table 3. G, X and Y are all good

measurements because each one differentiates among
the high-probability single-fault candidates. Each high-
probability candidate predicts Z = 6 so measuring Z
provides little new information. G is a slightly better
point to measure because the candidates are more bal-
anced between G’s two predicted outcomes. (the best
measurement is one whose predicted outcomes all have
equal probability and which cover all the candidates).

Next, suppose G is measured with result G = 12. The
most probable candidates are now [A1] and [M1] both
with probability 0.478. The expected costs are given by
the fourth column of Table 3. At this point X is the best
measurement because it splits the two high-probability
candidates.

Next, suppose X is measured with result X = 6.
This results in a single high-probability candidate [A1]
with probability .942. The next seven most likely candi-
dates are: [A1M3], [A1M2], [A1M1], [A1A2], [A2M2],and
[M2M3], all with probability 0.00951. The expected
costs are given by the fifth column of Table 3.

Next, suppose Y is measured with result Y = 4. M2

is now necessarily faulted and at least one other fault
exists. The expected costs are given by column Y = 4
of Table 3.

Finally, suppose Z is measured with result Z =
6. There are six remaining candidates: [A2M2]
with probability 0.970, [A2M1M2], [A1A2M2], [A2

M2M3], with probabilities 0.0098, [A1A2M1M2],
[A1A2M2M3], [A2M1M2M3], with probabilities 0.0001,
and [A1A2M1M2M3] with probability 0.000001. Com-
ponents M2 and A2 are necessarily faulted, and A1, M1,
and M3 are possibly faulted, each with probability .01.
No measurement points remain in the circuit, so no fur-
ther information can be obtained.

4.7 Logical incompleteness
In practice, for diverse reasons, the underlying inference
process is usually incomplete. One of the consequences
of this incompleteness is that it becomes more difficult
to evaluate the results of hypothetical measurements —
the Ui are larger than ideal. As any incompleteness de-
grades GDE’s performance, it is instructive to examine
the sources and types of this incompleteness.

An often avoidable form of incompleteness occurs
when the conflict recognition strategy misses some con-
flicts. This was discussed earlier. Here we assume the
conflict recognition strategy is complete. Ui will be
larger than ideal only if the prediction process is in-
complete. This incompleteness manifests itself in two
ways. First, an incomplete inference process may result
in missing predicted values and missing supporting envi-
ronments. As a consequence, the hypothesized conflicts
resulting from measuring a quantity will be incomplete.
For example, consider an inverter which is incompletely
modeled by a rule which predicts its output from its in-
put, but not its input from its output. Even though the
inverter’s output is measured to be one, the prediction
that its input is zero is not made. Thus, GDE does not
consider measuring its input. A second source of incom-

pleteness is inherent in the xi = vik representation —
there may be many additional properties that could be
inferred about xi, but as there is no way to represent
them they cannot be used by our strategy. For example,
it cannot represent x 6= 1. Thus, although x 6= 1 might
be derivable from an environment, GDE cannot foresee
the resulting conflict when considering, say, x = 2.

Assuming the basic conflict recognition strategy is
complete, both these sources of incompleteness can be
avoided at prohibitive computational costs. The first
source of incompleteness can be avoided with a complete
inference process. The second source of incompleteness
can be avoided with a more general representation10.

5 Pragmatics

5.1 Most probable candidates

Computing all candidates is computationally pro-
hibitive. In practice it is only necessary to compute
the more probable candidates11. There is no way to
tell whether a single candidate actually has a high prob-
ability without knowing the overall normalization fac-
tor. This suggests using a best-first search of the lat-
tice to find candidates in decreasing probability order.
This search is arbitrarily stopped for candidates below
some threshold fraction (e.g., 1

10 of the highest probabil-
ity candidate). Although the most probable candidate is
a minimal candidate, the remaining minimal candidates
need not be very probable.

5.2 When to stop making measurements

If there are many points in a device that could be mea-
sured, then choosing the best point to measure can be
computationally expensive. A heuristic is to make the
first reasonable measurement whose cost is computed to
be less than 1 − log .5 = .7 as this measurement on
average, splits the candidate space in half.

The point at which measurement should stop depends
greatly on the seriousness of a misdiagnosis as well as
on the a priori probabilities of component failure. When
a candidate is found whose probability approaches some
threshold (e.g., .9), diagnosis can stop. If the cost of mis-
diagnosis is high, then the threshold should be increased.

6 Comparison to Other Work

6.1 Circuit diagnosis based on structure
and behavior

Work in the AI community on model-based hardware di-
agnosis has grown out of a desire to move away from the
domain and device specific fault models used in tradi-

10Assuming the number of possible values for quantities
are finite, GDE could hypothesize each possible measurement
outcome, run its complete inference procedure and precisely
compute the Rik from which the Sik could then be computed.

11These issues are addressed in far more depth in [12].

tional circuit diagnosis.12 Instead, during candidate gen-
eration the model-based approach reasons from a small
set of component behavior models plus the structure of
the device. The requirement for device specific fault
models is eliminated by basing the diagnostic approach
solely on the knowledge that, if a component’s behavior
is inconsistent with its model, then it must be faulty.
This results in a domain independent diagnostic tech-
nique. A number of systems have followed this approach
for diagnosing both analog (e.g., LOCAL [10] and SO-
PHIE [4]) and digital circuits (e.g., HT [6] and DART
[15]).

Our work naturally extends this approach along a
number of dimensions. First, unlike earlier approaches,
our work is aimed specifically at coping with the prob-
lem of diagnosing multiple faults. Earlier work focused
primarily on the case where all symptoms could be ex-
plained by a single component being faulty. As Davis
points out, the obvious extension to his work to handle
multiple faults results in an algorithm which is exponen-
tial in the number of potential faults. As our approach
represents the candidate space implicitly in terms of the
minimal candidates, we need only be concerned with the
growth of this smaller set. Typically the size of each
minimal candidate is relatively small (i.e., the symptom
can usually be explained by one, two or three compo-
nents being simultaneously faulty), thus in practice our
approach tends to grow with the square or cube of the
number of potential faults.

Second, our approach to diagnosis is inference proce-
dure independent, as well as domain independent. LO-
CAL, SOPHIE, and Davis’ system all represent circuit
knowledge as constraints and then use some form of con-
straint propagation to infer circuit quantities and their
dependencies. The motivation behind this approach is
that constraints naturally reflect the local interaction of
behavior in the real world. These are similar (although
not identical) to the constraint propagation technique
used to demonstrate GDE in this paper.

On the other hand, DART expresses circuit knowl-
edge as logical propositions and uses an inference system
based on resolution residue to infer circuit properties.
This same general inference procedure allows DART to
deduce which components are suspect and how to change
circuit inputs to reduce the suspect set to a singleton.
Such a resolution-based inference strategy can be incor-
porated into the candidate generation and conflict recog-
nition portion of GDE by recording, for each resolution
step, the dependence of the resolvent on the formulas
used to perform the resolution. Then, as in the case
for constraint propagation, GDE can guide the inference
process in identifying minimal candidates first.

Resolution is highlighted as having an advantage over
constraint propagation in that it is logically complete
with respect to a first order theory, where most con-

12See Davis [6], sections 5.1., 12.1. and 13 for a discussion of
traditional circuit diagnosis and the advantages of the model-
based approach. Also see [19].

straint propagators are not. However, this can be mis-
leading. A significant computational cost is incurred us-
ing a logically complete inference strategy, such as reso-
lution. Yet a logically complete inference strategy does
not guarantee that the set of predictions will also be
complete. For example in an analog domain, produc-
ing exact predictions often involves solving systems of
higher order non-linear differential equations. As this
type of equation is not generally solvable with known
techniques, completeness in the predictor is currently be-
yond our reach. In practice propagation of constraints
(without symbolic algebra) provides a good compromise
between completeness and computational expense.

Third, our approach is incremental. This is crucial as
diagnosis is an iterative process of making observations,
refining hypotheses, and then using this new knowledge
to guide further observations.

Finally, our approach is unique in that it combines
model-based reasoning with probabilistic information in
a sequential probing strategy. SOPHIE also proposes
measurements to localize the failing component, but is
based on an ad-hoc half-split method. Its design is based
on the presupposition that the circuit contains a single
fault. Thus, candidate generation is trivial (set intersec-
tion), and identifying good measurements is easy.

Possible extensions
Representing and manipulating candidates in terms of
minimal candidates gives us a significant computational
advantage over previous approaches; however, even this
representation can grow exponentially in the worst case.
To effectively cope with very large devices, additional
techniques must be incorporated.

One approach involves grouping components into
larger modules and modifying the candidate generation
strategy to deal with hierarchical decompositions. Al-
though we have not implemented this, the strategies pro-
posed by Davis and Genesereth, as they are model-based,
apply. Their basic idea is to troubleshoot at the most
abstract level in the hierarchy first and only analyze the
contents of a module when there is reasonable evidence
to suspect it. If there is no conflict involving the module,
then there is no reason to suspect it.

Complexity is directly related to the number of hypo-
thetical faults entertained. Thus another approach, pro-
posed by Davis, involves enumerating and layering cate-
gories of failures based on their likelihood. Troubleshoot-
ing begins by considering faults in the most likely cate-
gory first, moving to less likely categories if these fail to
explain the symptoms. GDE uses a variation on this ap-
proach whereby candidates can be enumerated based on
their likelihood. However, no theory has been developed
about failure categories.

LOCAL and SOPHIE also address a number of issues
which GDE does not. LOCAL and SOPHIE use corrob-
orations as well as conflicts to eliminate candidates. To
take advantage of corroborations, SOPHIE includes an
exhaustive set of fault modes for each component. As a
consequence, SOPHIE can identify a component as be-

ing unfaulted by determining that it is not operating in
any of its fault modes (i.e., none of the components fault
modes can explain the failure, and we know all the com-
ponent’s modes of failure, so the component must be
working). Thus, SOPHIE reduces the candidate space
from both sides: conflicts eliminate candidates that do
not explain a conflict, and corroborations eliminate can-
didates which include known working components.

In addition, SOPHIE and LOCAL dealt with the prob-
lem of imprecise models and values as well. This makes
constraint propagation very difficult because it is hard to
tell whether two differing values corroborate or conflict
within the precision of the analysis.

GDE proposes optimal measurements given a fixed set
of inputs. Both Shirley’s system [34] and DART gener-
ate test vectors to localize circuit faults. This approach
is useful in cases where it is both difficult to make in-
ternal measurements, and easy to change circuit inputs.
Both approaches produce tests which are likely to give
useful information; however, no serious attempt is made
at selecting the optimal tests. A fairly simple extension
can be made to our cost function to account for tests, by
taking into consideration, for example the cost of modi-
fying the inputs.

In Shirley’s approach, each test isolates a single po-
tentially faulted component by using known good com-
ponents to guide the input signals to the faulty compo-
nent and the output of that component to a point which
can be measured. However, it is not always possible to
route the test signals such that all other suspects are
avoided. Using the information constructed by GDE,
this approach can be modified, so that tests are con-
structed first for components which are most likely to be
faulted, while propagating the signal along a path with
the lowest probability of having a faulty component.

6.2 Counterfactuals

Ginsberg [16] points out how David Lewis’ possible world
semantics could be applied to diagnosis. Each compo-
nent is modeled by a counterfactual, a statement such
as “if p, then q,” where p is expected to be false. Thus
A1 is modeled by the counterfactual “if A1 fails, then
F = X + Y need not hold.” Counterfactuals are evalu-
ated by considering a “possible world” that is as similar
as possible to the real world as possible where p is true.
The counterfactual is true if q holds in such a possible
world. In this framework the most similar worlds (i.e.,
those closest to the one in which the circuit function cor-
rectly) correspond directly to our minimal candidates.
A most similar world is one in which as few of the p’s
(e.g.,“A1 fails”) as possible become true. Thus, in this
instance Ginsberg uses counterfactuals for hypotheticals.

Ginsberg’s approaches handles multiple faults, but he
does not discuss measurement strategies or probabilities.
Both could be integrated into his approach.

6.3 Reiter

Reiter13 [32] has been independently exploring many of
the ideas incorporated in GDE. His theory of diagnosis
provides a formal account of our “intuitive” techniques
for conflict recognition and candidate generation. How-
ever, his theory does not include a theory of measure-
ments nor how to exploit probabilistic information.

Reiter’s theory uses McCarthy’s [21] AB predicate.
Reiter writes ¬AB(A1) (i.e., adder A1 is not ABnor-
mal) while we write A1 (i.e., the assumption that adder
A1 is working correctly). Under this mapping, Reiter’s
definition of diagnosis is equivalent to our definition of
minimal candidate, and his definition of conflict set is
equivalent to our definition of conflict.

Reiter proposes (unimplemented) a diagnostic algo-
rithm based on his theory. This architecture is quite
different from GDE’s. The theorem prover of his ar-
chitecture corresponds roughly to our inference engine.
While GDE’s procedure first computes all minimal con-
flicts resulting from a new measurement before updating
candidate space, Reiter’s algorithm intermingles conflict
recognition with candidate generation to guide the the-
orem proving to “prevent the computation of inessen-
tial variants of refutations, without imposing any con-
straints on the nature of the underlying theorem prov-
ing system.” Given GDE’s inference architecture (and
the necessity to choose the best next measurement),
GDE avoids almost all these inessential variants and also
avoids much of the computation Reiter’s architecture de-
mands.

6.4 SNePS

SNePS [20] incorporates a belief revision system SNeBR
which reasons about the consistency of hypotheses. This
belief revision system has been [7] applied to fault de-
tection in circuits. Some of the basic concepts used in
the SNePS approach are similar to those used in GDE
— both use an assumption-based belief revision system
(see [9] for a comparison). As described in [7] SNePS
is weaker than either GDE or Reiter’s approach. In
GDE’s terminology, SNePS operates in a single environ-
ment, detecting symptoms (and hence conflicts) for only
those variables about which a user query is made. The
system provides no mechanisms to detect all symptoms
(and thus all conflicts), to identify candidates, to pro-
pose measurements, or to exploit probabilistic informa-
tion. However, there seems no reason, in principle, that
the methods of GDE cannot be incorporated into their
system.

6.5 IN-ATE and FIS

IN-ATE [5] and FIS [27] are expert system shells specif-
ically designed for fault diagnosis. Although neither is
purely model-based (i.e., not purely within the structure-
function paradigm), they are the only other electronic

13These results are generalized in [13].

diagnosis systems we are aware of that propose measure-
ments, and thus it is instructive to compare them with
GDE.

IN-ATE incorporates two formal criteria to determine
the best next measurement: minimum entropy (as in
GDE), and gamma miniaverage heuristic search [35]. We
chose minimum entropy (as FIS does) in GDE because
it was the best evaluation function which is efficiently
computable (i.e., it is based on one-step lookahead).
The gamma miniaverage heuristic search is a multi-step
lookahead procedure and hence computationally expen-
sive to apply. Nevertheless, there is no reason, in princi-
ple, it could not be incorporated into GDE.

Unlike GDE, IN-ATE and FIS can exploit a variety
of kinds of knowledge (e.g., fault trees, expert-supplied
rules, hierarchy) in the diagnostic process. However,
viewed from the pure model-based approach, they are
limited in predictive power and as a consequence can
only estimate the probabilities for their predictions.

As IN-ATE is not model-based, it does not construct
explicit value predictions as does GDE. Instead, it pre-
dicts whether a particular measurement outcome will be
“good” or “bad.” (This, in itself, presents difficulties
because a measurement being “good” or “bad” is rela-
tive to the observations being compared to. However,
IN-ATE takes “good” and “bad” as absolute.) These
predictions are computed by analyzing expert-supplied
empirical associations based on “good” and “bad.” IN-
ATE incorporates a heuristic rule generator which ex-
ploits connectivity information, but it, at a minimum,
must be provided with the definitions of “good” and
“bad” for the test points. In this approach, the num-
ber of test points is limited to those explicitly mentioned
in rules (or for which “good” and “bad” are externally
defined). With this limited set of test points full search
(i.e., gamma miniaverage search) becomes plausible. FIS
exploits more model knowledge, propagating qualitative
values such as {hi,ok,lo} through the circuit topology
via expert-supplied causal rules. The propagated values
are always relative to fixed expert-supplied values. Thus
neither FIS nor IN-ATE can analyze hypothetical faults.

All three systems must compute probabilities for their
predictions. GDE directly computes the probability of
the predictions from the probabilities of the candidates
involved. IN-ATE has a much more difficult time deter-
mining good/bad probabilities because it cannot deter-
mine the candidate space and their associated probabil-
ities. Instead it uses the expert-supplied rules to prop-
agate probabilities (much like MYCIN) and Dempster-
Shafer to combine the resulting evidence. FIS’ definition
of candidate probability is similar to GDE’s, however, as
it cannot perform hypothetical reasoning it can only es-
timate the probabilities of its predictions.

6.6 Medical diagnosis
There has been extensive research on the diagnostic task
in the medical decision making community. Although
most of this research is not model-based, its concern with
identifying the diseases causing symptoms and subse-

quently proposing information-gathering queries is anal-
ogous to ours.

Like Gorry and Barnett [17] GDE solves a sequential
diagnostic task. The fundamental equation (Bayes Rule)
(formula (2) of [38]) states that the posterior probability
of hypothesis Hi being the true state HT given evidence
Qi is:

p(Hj |Qi) =
p(Qi|Hj)p(Hj)∑n

k=1 p(Qi|Hk)p(Hk)
,

where p(Qi|Hj) is the conditional probability of evidence
Qi while p(Hj) is the a priori probability of Hj . Given
these probabilities it is possible to determine the poste-
rior probability distribution, and, in addition, to deter-
mine the hypothetical probability distribution resulting
from proposed tests. Thus, this provides complete infor-
mation to evaluate the expected gain of a test [17] and
to select the best test to make next.

The practical obstacle to employing Bayes rule is the
unavailability of the conditional probabilities. These
probabilities are both hard to estimate and extremely
numerous. For even small numbers of possible symp-
toms and diseases the number of probabilities required is
extremely large (given just 10 hypotheses and 5 possible
binary tests, 2420 conditional probabilities are required
[38]).

The engineering domain differs from the medical do-
main in that very accurate models exist based on the
structure of the (faulty) system. Thus, exploiting model-
based reasoning, GDE computes these conditional prob-
abilities directly rather than depending on empirical re-
sults. Another advantage of the model-based approach
for engineering is that the potential tests are computed
in the course of the analysis instead of having them sup-
plied a priori.

Early research [17] presumed that the patient had only
one disease. This is analogous to the single-fault assump-
tion in circuit diagnosis. More recent research allows
for multiple simultaneous diseases. Bayes rule can also
be applied to this multimembership classification prob-
lem [2; 3] but the number of conditional probabilities
required becomes exponentially larger than the single-
disease case (which already is a large number). Again,
GDE computes these conditional probabilities by model-
based reasoning.

The concept of set covering used in [24; 25; 26; 28;
30; 31] is similar to the candidate generation phase of
our diagnostic approach. The irredundant set cover of
the General Set Covering theory (GSC) of Reggia cor-
responds directly to our notion of minimal candidates.
The primary difference is that we consider, in theory,
every possible cover to be an explanation for the symp-
toms while GSC considers only the minimal candidates
as explanations. Although GSC incorporates a crude
heuristic strategy for proposing new measurements, as
the conditional probabilities are available to GDE, the
preferred approach, minimum entropy, can be applied.

7 ACKNOWLEDGMENTS

Daniel G. Bobrow, Randy Davis, Kenneth Forbus,
Matthew Ginsberg, Frank Halasz, Walter Hamscher,
Tad Hogg, Ramesh Patil, Leah Ruby, Olivier Raiman,
Mark Shirley and Jeff Van Baalen, provided useful in-
sights. We especially thank Ray Reiter for his clear
perspective and many productive interactions. Lenore
Johnson and Denise Pawson helped edit drafts and pre-
pare figures.

References
[1] Ben-Bassat, M., Myopic policies in sequential clas-

sification, IEEE Transactions on computers C-27
(1978) 170–178.

[2] Ben-Bassat, M., Multimembership and multiper-
spective classification: introduction, applications,
and a Bayesian model, IEEE Transactions on Sys-
tem, Man and Cybernetics, 6 (1980) 331–336.

[3] Ben-Bassat, Moshe, R.W Carlson, V.K. Puri,
Mark D. Davenport, J.A. Schriver, Mohamed Latif,
Ronald Smith, Larry D. Portigal, Edward H. Lip-
nick, and Max Harry Weil, Pattern-based interac-
tive diagnosis of multiple disorders: The MEDAS
system, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2 (1980) 148-160.

[4] Brown, J.S., Burton, R. R. and de Kleer, J., Peda-
gogical, natural language and knowledge engineer-
ing techniques in SOPHIE I, II and III, in: D. Slee-
man and J.S. Brown (Eds.), Intelligent Tutoring
Systems, (Academic Press, New York, 1982) 227–
282. An expansion of the relevant sections of this pa-
per appears in these readings under the title, Model-
based diagnosis in SOPHIE III.

[5] Cantone, R.R., Lander, W.B., Marrone, M.P., and
Gaynor, M.W., IN-ATE: Fault diagnosis as expert
system guided search, in: L. Bolc and M.J. Coombs
(Eds.), (Springer-Verlag, New York, 1986).

[6] Davis, R., Diagnostic Reasoning based on structure
and behavior, Artificial Intelligence 24 (1984) 347–
410. This paper appears in these readings.

[7] Campbell, S.S., and Shapiro, S.C., Using belief re-
vision to detect faults in circuits, SNeRG Techni-
cal Note No. 15, Department of Computer Science,
SUNY at Buffalo, 1986.

[8] de Kleer, J., An assumption-based truth mainte-
nance system, Artificial Intelligence 28 (1986) 127–
162. Also in Readings in NonMonotonic Reason-
ing, edited by Matthew L. Ginsberg, (Morgan Kauf-
mann, 1987), 280–297.

[9] de Kleer, J., Problem solving with the ATMS, Ar-
tificial Intelligence 28 (1986) 197–224.

[10] de Kleer, J., Local methods of localizing faults
in electronic circuits, Artificial Intelligence Labora-
tory, AIM-394, Cambridge: M.I.T., 1976. Sections
of this paper appear in these readings in a paper

with the title, Model-based diagnosis in SOPHIE
III.

[11] de Kleer, J., Using crude probability estimates to
guide diagnosis, Artificial Intelligence 45 (1990)
381–391. This paper appears in these readings.

[12] de Kleer, J. and Williams, B.C., Diagnosis with be-
havioral modes, in: Proceedings IJCAI-89, Detroit,
MI (1989) 104–109. A version of this paper appears
in these readings.

[13] de Kleer, J., Mackworth A., and Reiter R., Char-
acterizing Diagnoses and Systems, Artificial Intelli-
gence 56 (1992). This paper appears in these read-
ings.

[14] Doyle, J., A truth maintenance system, Artificial
Intelligence 12 (1979) 231–272.

[15] Genesereth, M.R., The use of design descriptions
in automated diagnosis, Artificial Intelligence 24
(1984) 411–436. This paper appears in these read-
ings.

[16] Ginsberg, M.L., Counterfactuals, in Proceedings of
the Ninth International Joint Conference on Artifi-
cial Intelligence, Los Angeles, CA (1985) 107–110.

[17] Gorry, G.A., and Barnett, G.O., Experience with
a model of sequential diagnosis, Computers and
Biomedical Research 1 (1968) 490–507.

[18] Hamscher, W., and Davis, R., Diagnosing circuits
with state: an inherently underconstrained prob-
lem, in: Proceedings of the National Conference on
Artificial Intelligence, Austin, TX (August, 1984)
142–147. This paper appears in these readings.

[19] Davis, R., and Hamscher, W., Model-based reason-
ing: Troubleshooting, in Exploring artificial intelli-
gence, edited by H.E. Shrobe and the American As-
sociation for Artificial Intelligence, (Morgan Kauf-
mann, 1988), 297–346. This paper appears in these
readings.

[20] Martins, J.P. and S.C. Shapiro, Reasoning in mul-
tiple belief spaces, Proceedings of the International
Joint Conference on Artificial Intelligence, 1983.

[21] McCarthy, J., Applications of circumscription to
formalizing commonsense knowledge, Artificial In-
telligence 28 (1986) 89-116.

[22] Mitchell, T., Version spaces: An approach to
concept learning, Computer Science Department,
STAN-CS-78-711, Palo Alto: Standford University,
1978.

[23] Pearl, J., Entropy, information and rational deci-
sions, Policy analysis and information systems, 3
(1979) 93–109.

[24] Peng, Y.P. and Reggia, J.A., Plausibility of di-
agnostic hypotheses: The nature of simplicity, in:
Proceedings AAAI-86, Philadelphia, PA (August,
1986), 140–145.

[25] Peng, Y.P. and Reggia, J.A., A probabilistic causal
model for diagnostic problem-solving; part one: In-
tegrating symbolic causal inference with numeric
probabilistic inference, Department of Computer
Science, University of Maryland, 1986.

[26] Peng, Y.P. and Reggia, J.A., A probabilistic causal
model for diagnostic problem-solving; part two: Di-
agnostic strategy, Department of Computer Science,
University of Maryland, 1986.

[27] Pipitone, F., The FIS electronics troubleshooting
system, IEEE Computer 19, (July 1986) 68–75.

[28] Pople, H., The formation of composite hypotheses
in diagnostic problem solving: an exercise in syn-
thetic reasoning, Proceedings of the Fifth Interna-
tional Joint Conference on Artificial Intelligence,
Pittspurgh, PA (August, 1977), 1030–1037.

[29] Quinlan, J.R., Learning efficient classification pro-
cedures and their application to chess end games, in:
Machine Learning, edited by R.S. Michalski, J.G.
Carbonell and T.M. Mitchell, (Tioga, Palo Alto,
CA, 1983), 463–482.

[30] J.A. Reggia, and Nau, D.S., An abductive non-
monotonic logic, Workshop on non-monotonic rea-
soning, (October, 1984).

[31] J.A. Reggia, Nau, D.S., and Wang, P.Y., Diagnos-
tic expert systems based on a set covering model,
International Journal of Man-Machine Studies 19
(1983) 437–460.

[32] Reiter, R., A theory of diagnosis from first princi-
ples, Artificial Intelligence 32 (1987) 97–130. This
paper appears in these readings.

[33] Shannon, C.E., A mathematical theory of commu-
nication, Bell System Technical Journal 27 (1948)
379–623.

[34] Shirley, M.H. and Davis R., Generating Distinguish-
ing Tests Based on Hierarchical Models and Symp-
tom Information, Proceedings IEEE International
Conference on Computer Design, Oct. 1983.

[35] Slagle, J.R., and Lee, R.C.T, Application of game
tree searching techniques to sequential pattern
recognition, Communications of the ACM 14 (1971)
103–110.

[36] Steele, G.L., The definition and implementation of
a computer programming language based on con-
straints, AI Technical Report 595, MIT, Cambridge,
MA, 1979.

[37] Sussman, G.J. and Steele, G.L., CONSTRAINTS:
A language for expressing almost-hierarchical de-
scriptions, Artificial Intelligence 14 (1980) 1–39.

[38] Szolovits, P. and Pauker, S.G., Categorical and
probabilistic reasoning in medical diagnosis, Arti-
ficial Intelligence 11 (1978) 115–144.

[39] Williams, B.C., Doing time: Putting qualita-
tive reasoning on firmer ground, Proceedings of

the National Conference on Artificial Intelligence,
Philadelphia, PA, (August, 1986), 105–112.

