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A Generalized Minimal Hitting-Set Algorithm
to Handle Diagnosis with Behavioral Modes

Mattias Nyberg

Abstract—To handle diagnosis with behavioral modes, a new diagnoses, and none of the algorithms in [1], [2], or [5] are
generalized minimal hitting set algorithm is presented. The key applicable. However, [8] introducé®rnelsas a generalization
properties in comparison with the original minimal hitting-set of kernel diagnoses to more than two behavioral modes.

algorithm given by (deKleer and Williams, 1987) are that it .
can handle more than two modes per component and also non- For the case of more than two behavioral modes and non-

positive conflicts. The algorithm computes a logical formula that POSitive Qonf!iCtS, the prgsent paper proposes a new logical
characterizes all diagnoses. Instead of minimal diagnoses, orcharacterization of all diagnoses. Conflicts and diagnoses

kernel diagnoses, some specific conjunctions in the logical formula gre represented by logical formulas, and instead of minimal
are used to characterize the diagnoses. These conjunctions &e iagnoses, kernel diagnoses, and kernels, we use moreagjener
generalization of both minimal and kernel diagnoses. From the . - o .
logical formulas, it is also easy to derive the set of preferred conjun_ctlons of a specific form. In the Spec_lal case of two
diagnoses. One usage of the algorithm is fault isolation in the Pehavioral modes per component, these conjunctions become
sense of FDI. The algorithm is experimentally shown to provide equivalent to kernel diagnoses, and in the case of onlyipesit
significantly better performance compared to the fault isolation conflicts, they become equivalent to minimal diagnoses.
approach structured residuals which is commonly used in FDI. The main contribution is a neweneralized hitting set al-
Index Terms—fault diagnosis, fault isolation, FDI. gorithm computing the here proposed logical characterization.
The minimal hitting set algorithm given in [2] is shown to
be a special case of this new generalized algorithm. Note tha
even though the papers [6], [7], and [8] consider more than
Within the field of fault diagnosis, it has often been assume@o behavioral modes per component, they are not concerned
that each component has only two possible behavioral modgsth the characterization of and in particular the comgatat
e.g. see [1] and [2]. For this case, and given a set of confligt a characterization of all diagnoses.
sets, it is well known that a minimal hitting set corresponds Under the assumption of only two behavioral modes per
to a minimal diagnosis [] Algorithms for computing all component, the minimal diagnoses can be argued to be the
minimal hitting sets have been presented in [1] and [2lost desired diagnoses. This has been called the parsimony
Improvements have later been given in e.g. [3] and [4].  principle, e.g. see [1]. In the generalized case of more than
In [1] and [2] it is assumed that a conflict can only implywo behavioral modes, the minimal diagnoses are no longer
that some component is faulty. This is callegasitive conflict necessarily the most desired diagnoses. Instead the doncep
[5]. If all conflicts are positive, it is also well known thatof preferred diagnosesias been introduced in [9]. In this
the set of all minimal diagnoses characterizes all diaghoggaper we will show how to obtain these preferred diagnoses
[2]. The case of all conflicts being positive will occur if,rfo by means of the above mentioned logical formulas and the
example, the faulty modes of the components have no fapliw generalized minimal hitting set algorithm.
models. However, if there are fault models, it is possible to The here proposed generalized minimal hitting set algarith
have non-positive conflicts. can be used in a traditional diagnosis problem formulation,
If there is a desire to compute something that characterizgs in [1] or [2], where a model and a set of observations
all diagnoses when there are non-positive conflicts, thegmn are utilized to compute conflicts by the technique of “local
of minimal hitting sets and the algorithms in [1] and [2] capropagation”. Another usage is in the case of precompiled
not be used. To solve this, an alternative characterizéigsed potential conflicts [10]. This usage corresponds to thetfaul
on so calleckernel diagnosewas proposed in [5], where alsoisolation problem as defined within the control community
an algorithm to compute the kernel diagnoses was given. Thgually referred to as FDI), e.g. see [11], [12], [13], [1dihd
kernel diagnoses characterize all diagnoses even in tieeofas[15]. Precompiled potential conflicts are a common solution
non-positive conflicts. embedded control systems where memory and computational
It has been noted in several papers that more than two plisritations make it impossible to implement a full diagriost
sible behavioral modes are useful when designing diagnostiference engine that works directly on a model of the system
systems, see e.g. [6] and [7]. For this case, neither minintction VIII of the paper contains an example of such an
diagnoses or kernel diagnoses can be used to charactdrizeagplication: on-board diagnosis of the electrical drivar the
fuel injection system of an automotive engine. The usage of
Mattias Nyberg is with the Department of Electrical EngiegrLinkoping  the a|gorithm is demonstrated, as well as a short performanc
University, Linkdping, Sweden, email: matny@isy.liu.se . . .
1Reiter used the word diagnosis for what in this paper is dafignimal COMparison with an alternative approach from the area of FDI
diagnosis. In the context of precompiled potential conflicts, and foe th

I. INTRODUCTION



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: PART A 2

evaluation of real world performance, the algorithm ha® als Algorithm 1:
been tested in a fleet of real vehicles with promising results input : a set of minimal diagnose&, and a new

The paper is organized as follows. In Section Il, the minimal conflict setC
hitting set algorithm from [2] is restated as a reference. In gutput: the updated set of minimal diagnos®s
Section I, the logical framework is presented. Then the A ,, .= A

new generalized minimal hitting set algorithm is given i, A, =0
Section IV. Sections V and VI discuss the relation to minima forall §, € A do
and kernel diagnoses. Section VII describes how to compute  if 5, N C = () then

the preferred diagnoses. Finally, Section VIII containg thsg Removes; from A,y
above-mentioned application study. All proofs of theoremg forall ¢ € C do
have been placed in an appendix. 7 Onew = 0; U {c}
8 forall 6 € A, 6 # d; do
II. THE GDE MINIMAL HITTING SET ALGORITHM 9 if 0x C dnew then goto LABEL1
Before presenting the new generalized minimal hitting sét end
algorithm, this section presents the GDE minimal hittingy s& Aadd = Dadd U {Onew}
algorithm and its associated framework as presented in [Z]. LABEL1
However, since we have a different objective than in tA& end
original paper, we will not always use the same notation atd ~ €nd
naming convention. 15 end

The system to be diagnosed is assumed to consist o8 P = Bota U Aadd
number of components represented by adeA conflict is
represented as a sét C C. The meaning of a conflicf' is

that not all components ia” can be in the normal fault-free et ¢ denote the set of such variables. For each component
mode. This means that only positive conflicts can be handlegyiablec in C let R, denote thelomainof possible behavioral
A conflict C; is said to beminimalif there is no other conflict modes, i.ec € R..
Cy such thatCy C C;. We will now define a set of formulas to be used to express
A diagnosisé is also represented as a setC C. Com- that certain components are in certain behavioral modeds|f
ponents contained in a diagnosisare assumed faulty anda component variable in the s2andM C R, the expression
components not contained if are assumed fault free. A ¢ ) is a formula. For example consider a sensor that we
diagnosisi; is said to beminimalif there is no other diagnosis model as the componest. The formulas; € {NF,G,UF}
d2 such thatd, C ;. means that the sensor is in mod&F, G, or UF. If M is
One fundamental relation between conflicts and diagnosgssingleton, e.gM = {NF}, we will sometimes write also
is that if C is the set of all minimal conflicts] is a diagnosis . — N F. Further, the constant with valuefalse is a formula.
if and only if for all conflictsC' € C it holds thato N C # 0. If 1) andry are formulas the@/\’}/, OV, and—¢ are formulas.
Thatis,d is diagnosis if it is a so calleditting setwith respect  |n accordance with the theory of first order logic we say that
to the collection of set€. a formula¢ is asemantic consequencoé another formulay,
Given a set of diagnosed and a new conflictC' the and write |= ¢, if the set of assignments of the variablés
minimal hitting set algorithm in [2] finds an updated set ofhat make~ true is a subset of the assignments that make
minimal diagnoses. A version of the algorithm, as described true. This can be generalized to sets of formulas, i.e.
in the text of [2], is here presented as Algorithm 1. st E{b1, .. om} ifand only if v A Ay, =
The algorithm has the property that ik is the set of ¢, A... A ¢,,. If it holds thatl' = ® and® = T, where®
all minimal diagnoses, the algorithm outpét will contain  and I are formulas or sets of formula and " are said to
all minimal diagnoses with respect to also the new confligle equivalent and we writé ~ &.
C. Further, it also holds tha® will contain only minimal e will devote special interest to conjunctions on the form
diagnoses. Note that this algorithm does not require the
conflict C' to be minimal, contrary to what has been stated cae€MiNea e My N---Nen € My, 1)
in [3]._It can also be noteq that the loop ovgre A (?ould pe where all components are unique, i.% c; if j # k, and
modified tod, € A,q, Which would be more efficient SinCe gach s, is a nonempty proper subset B, , i.e. ) # M; C

Aoua is smaller thanA. R.,. Let D; denote a conjunction on the form (1). From a set
of such conjunctions we can then form a disjunction

IIl. AL OGICAL FRAMEWORK

. . D1V DsV...Dpy 2
Each component is assumed to be in exactly one out of ! 2 )

several behavioral modes. A behavioral mode can be for éxete that the different conjunction®; can contain different
ample No-Fault §¥ F), Gain-fault (), Bias (B), Open Circuit number of components. We will say that a formula is in
(OC), Short Circuit 6C), Unknown Fault U F'), or just Faulty maximal normal formMNF if it is on the form (2) and has
(F). For our purposes, each component is abstracted tdhea additional property that no conjunction is a conseqgeenc
variable specifying the behavioral mode of that componemf another conjunction, i.e. for each conjunctién, there is
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no conjunctionD;, j # i, for which it holds thatD; = D,. B. Example

Note that the purpose of using formulas in MNF is that they o jllustrate how the logical language can be used to reason
are relatively compact in the sense that an MNF-formula doggq perform diagnostic inference, consider the following e
not contain redundant conjunctions and that each conpmctlamme' Assume again thét= {s1, s2, s3}, where all have the

does not contain redundant assignments. behavioral mode domailR,, = {NF,G,B,UF}. Assume
For an example consider the following two formulas congjsg that two conflicts have been detected:

taining components,, s, andssz, where all have the behav-

ioral mode domaiR,, = {NF,G,B,UF}. s1 €{NF} Asy € {NF}

sy € {UF}Asy € {B,UF}V s3 € {UF} s2 € {NF,B}

s1 € {UF}ANsy € {B,UF} Vs € {G,UF} This corresponds to the negated conflicts
The first formula is in MNF but not the second singge € s1 € {G,B,UF}V sy € {G,B,UF}
{UF} ANsy € {B,UF} | s1 € {G,UF}. The interpretation 55 € {G,UF)

of the first formula is that senset; is in the modeU F and
sensorss is in one of the mode® or UF, or sensorss is in  To identify the set of diagnoses we take the conjunction ef th

the modeU F. two negated conflicts and translate it to MNF. That is,

A. Conflicts and Diagnoses (s1 € {G,B,UF}Vsy; € {G,B,UF})\s; € {G,UF} ~
A conflict is assumed to be written using the logical ~s; € {G,B,UF}Ass € {G,UF}V sy € {G,UF} ~

language defined above. For example, if it has been found that ~ sy € {G,UF}

the component; can not be in the modé&/ F' at the same ) ) ) o
time asss is in the modeB or NF, this gives the conflict In the last equivalency, the first conjunction is removed
since the second is a consequence of the first, she.€

s1 € {NF} A sz € {B,NF} @) (G, B,UFYAsy € {G,UF} | 55 € {G,UF}. This removal

Note that in a real system, the behavior of a sensor in motsults in that the last formula is in MNF. From the last
NF can not be distinguished from a very small bias which f®rmula it is easy to read out that the diagnoses are all syste
a behavior belonging to the modg Thuss; € {NF}Asy; € behavioral modes such thag = G or s = UF, €.9.51 =
{B} can never be a conflict. NFNsy=GAs3=NF ands; = GAsyg =UFAs3 =NF

To relate this definition of conflict to the one used in In this small example, there were two conflicts and we could
Section IlI, consider the confliaf' = {s1, s2,s3}. With the easily, by hand, derive a formula in MNF equivalent to the
logical language, we can write this conflict as€ {NF} A conjunction of all negated conflicts. The algorithm presdnt
so €{NF}As3€{NF}. in the next section derives this MNF-formula in the general

Instead of conflicts, we will mostly use negated conflicts. loase.
particular we will use negated conflicts written in MNF. For
an example, if the conflict (3) is negated and written in MNF IV. THE GENERALIZED MINIMAL HITTING SET
we obtain ALGORITHM

s1 € {G,B,UF}V sy € {G,UF} (4) This section presents the new generalized minimal hitting
. :?et algorithm. It handles more than two behavioral modes per

we will from now on assume tha o : .

component and also non-positive conflicts. The algorithiaga

as inputs, a formul@ and a negated conflig®?, both written

Without loss of generality,
all negated conflicts are written on the form

co €My Ve eMyV---Ve, €M, (5) in MNF. The purpose of the algorithm is then to derive a new
wherec; # ¢y, if j # k, and@ # M; C R,,. This means formula @ in MNF such thatQ ~D A P.
that (5) is in MNF. In the algorithm we will use the notatioR; € D to denote

A system behavioral modis a conjunction containing a the fact thatD; is a conjunction irD. The algorithm can now

unique assignment of all components @n For example, if Pe Stated as follows: o _
C = {s1, 55,53}, a system behavioral mode could be To keep the algorithm description “clean”, some operations
have been written in a simplified form. More details are
s1=UFANsy=BANs3=NF

discussed in Section IV-C below. Note that an improvement
We consider the termdiagnosisto refer to a system behavioralcorresponding to the change 4f to A4 in Algorithm 1 is
mode consistent with all negated conflicts. not possible for the generalized algorithm.

Definition 1: Let P be the set of all negated conflicts. A The algorithm is assumed to be used in an iterative man-
system behavioral modé is a diagnosisif {d} UP £ 1 or ner as follows. First when only one negated confiigt is
equivalentlyd = P. considered, we already have a formula in MNF, and thus,

To relate this definition of diagnosis to the one used ithe algorithm is not needed. When a second confiigtis
Section I, assume that = {s1, s2, 3,54} and consider the considered, the algorithm is fed witR = P, and P = Px,
diagnosisé = {s1,s2}. With the logical language, we canand produces the outp@ such thatQ ~ P; A P,. Then, for
write this diagnosis as; = F A sy = FFAs3 = NF Asy = each additional conflicP,, that is considered, the inp@® is
NF. the old outputQ.
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Algorithm 2: B. Example
input : a formulaD in MNF, and a negated conflig? To illustrate the generalized minimal hitting set algamith
output: Q consider again an example whefe= {si, s2,s3} and the
1 Doig =D domain of behavioral modes for each componenRis =
2 Dgyqq := empty formula {NF,G,B,UF}. We use the algorithm with the following
3 forall D; € D do inputs:
4 if D; £ P then
5 RemoveD, from D, D:Dl\/DQ:Sl€{G,B,UF}\/$3€{G7UF}
6 forall P; € P do P=P VP =s€{BUF}Vs3€{GBUF}
7 Let D,.. be a conjunction in MNF such

In the execution of the algorithm, we enter line 4 where
the conditionD; (= P is fulfilled which means thatD; is
forall Dy, € D, Dy, # D; do removed fromD,,; and the second loop of the algorithm

if Dpew [= Dy, then goto LABEL1 is entered. There, in line 7, #&,., is created such that
10 end Dpew ~ D1 AP, = 51 € {G,B,UF} A sy € {B,UF}.

that D,y ~ D; A P;

©

u Dada := Dada V Dnew This D,,.., is then, in line 9, compared tb, in the condition
12 LABEL1 Dyew = Dy. The condition is not fulfilled which means that
13 dend Do is added taD, 44 in line 11. In the next iteration of the
14 en

second loop, @, is created such thaD,,.., ~ D1 A P, =
15 end si € {G,B,UF} A s3 € {G,B,UF}. Also this time the
16 Q := Doig V Dadd condition D,,.,, = D5 is not fulfilled, implying thatD,,.,, is
added toD,44. Next, the conjunctionD; is investigated but
since the conditiorD, = P in line 4 holds,D, is not removed
When the algorithm is used in this way, the following resultgom D14 and the second loop is not entered. The algorithm

can be guaranteed. output is finally formed as
Theorem 1:Let P be a set of negated conflicts and 8t

be the output from Algorithm 2 after processing all negated < = Poia V Padga = D2V (D1 A PLV D1 A Py) =

conflicts inP. Then it holds that =s3€{G,UF}V $1€{G,B,UF} Nss € {B,UF}V
a) 9 ~ P, and Vs €{G,B,UF} Ns3€{G,B,UF}
b) Q is in MNF.

It can be verified tha ~ D A P. Also, it can be seen that

The proof for this theorem can be found in the appendi% Is in MNF.

Remark: The importance of Theorem 1 is, according to . )
item (a) and Definition 1, that the formul@ represents all C- Algorithm Details
diagnosis in the sense thdtis a diagnosis if and only if it ~ To implement the algorithm, some more details need to be
holds thatd = Q, and according to item (b), tha® has the considered. The first is how to check the conditibn %= P
nice property of compactness as explained in Section Ill. in line 4. To illustrate this, consider an example whédpe
contains components, ¢y, andcz and’P components:s,, cs,
A. Relation to the GDE Minimal Hitting Set Algorithm andcy. SinceD is in MNF, andP in the form (5),D; and P
The original GDE minimal hitting set algorithm stated irwill have the form
Section Il represents confli_cts anq (_Jliagno_sgs as sets of_ com- D; =c; € MP Ay € MP Acs € MP (6)
ponents. The new generalized minimal hitting set algorithm P P P
can in fact be obtained by modifying this original algorithm P=czeMy Ves € Mg Ve €M, ™
The principal difference is that all set operations areaegdi \We realize that the conditio; = P holds if and only if
with operations on MNF-formulas. MpP C M or M C M{. Thus, this example shows that
The modifications are the following: in general,D; |= P holds if and only ifD; andP contain at
« Instead of using a set of minimal diagnos&sas input, least one common componentwhere MP C MF.
use a formulaD in MNF. Note thatD is not restricted to  The second detail is how to, in line 7, find an expression
be a disjunction of system behavioral modes, but insteg,.,, in MNF such thatQ,.., ~ D; A P;. To illustrate this,

a disjunction of conjunctions on the form (1). consider an example wher®; contains components; and
« Instead of using a conflict s€t as input, use a negatedc,, and P; the component,. SinceD is in MNF, andP in

conflict 7 on the form (5). the form (5),D; and P; will have the form
« Instead of checking the conditiah N C' = (), check the B D D

condition D; [~ P. Di=ci € My" Ny € My (82)
o Instead of the assignmerd,., := d; U {c}, find a Pj =cy € MY (8b)

conjunctionD,,.,, in MNF such thatD,,.,, ~ D; A P;.
« Instead of checking the conditioh, C 0,..,, check the
condition D,y = Dy, Dpew =1 € MP AN ey € MP n MY

Then Q,,.., will be formed as
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which means thaD,,..,, ~ D; A P;. If it holds that M N A. “Simplest” Property
ML # 0, Dpew Will be in MNF. Otherwise letD,,.,, = L.
The checkD,,., E Dy will then immediately make the
algorithm jump toLABEL1 meaning thatD,,.,, will not be
added toD, 4.

The third detail is how to check the conditidh,,.., = Dy
in line 9. To illustrate this, consider an example whérg..,
contains components;, and ¢, and Dy, the components:,
andcs. SinceD,,.,, andD are both in MNF,D,,.,, and D,
will have the form

For the case of more than two modes per component,
the concept ofpreferred diagnosesvas defined in [9] as a
generalization of minimal diagnoses. The basic idea isttieat
behavioral modes for each component are ordered in a partial
order defining that some behavioral modes are more preferred
than other. For exampley F' is usually preferred over any
other mode, and a simple electrical fault, such as shortiitirc
or open circuit, may be preferred over other more complex
" n behavioral modes. Further, an unknown faiilt’ may be the
Dnew =c1 € MlD/\ ¢ € M2D (98) |east preferred mode.
Dy =c2 € My" Neg € My ©b) Eor a formal definition let)! >. b2 denote the fact
tht for component, the behavioral modé. is equally or
more preferred thah?. For each component, this relation
Yorms a partial order on the behavioral modes. Furthergethes
relations induce a partial order on the system behavioral
modes. Letd; andds be two system behavioral modes, i.e.

Dy =c; € R, Acg € My’ Neg € My (11)  d; = Acec(c = bi). Then we writed; > d, if for all ¢ € C it
N ) holds that)! >. b2. A preferred diagnosis can then formally be
Now we see that the conditioR.., = Dy holds if and only gefined as a diagnosit such that there is no other diagnosis
if M{* C Re,, M3 © My, andR,, C Mg’. The firstof these ;. whered; > d;. In Section VIl we will discuss how the
three conditions is always fulfilled and the third can never tbreferred diagnoses can be obtained from an MNF formula
fulfilled since, by definition of MNFAJ” C R,. Thus, this representing all diagnoses. Note that in the case of only two

example shows thab,.., = Dj. holds if and only if (1),Dr modes, preferred diagnoses are exactly the minimal diagnos
contains only components that are also containedjn,,, A diff h d to th f preferred
and (2), for all components; contained in bothD,,.,, and di lfferent approach, corr;wpare ot ebc%rllcedpt ot preterred
Dy it holds thatM?” C MP. iagnoses, is to compute the most probable diagnoses as in

[7] and [8]. For example, in [8] the diagnosis problem is
formulated as a constraint satisfaction problem and thet mos
probable diagnoses are computed using A* search. When using
most probable diagnoses as in [7] and [8] it is required that
The complexity of Algorithm 2 mimics that of the originala probability is assigned to each behavioral mode. Note the
Algorithm 1. If |D| and|P| denote the number of conjunctionscontrast to the concept of preferred diagnoses which only
in D andP respectively, the worst case complexity of Algofequires a preference relation in the form of a partial order
rithm 2 is of the ordefD|?|P|. When the algorithm is used in This is an advantage in applications where it is difficult to
an iterative fashion to process a setofegated conflicts, the obtain probability values of each behavioral mode.
total worst case complexity becom?|>"*1, i.e. exponential. ) )
In spite of this worst case performance, the algorithm cdremark: One may ask what “preferred” or “simplest” diag-

perform well in a real world setting as will be described if0S€S means. One possible formal justification is the fellow
Section VIII. ing. If Q is a formula such tha@ ~ P, it holds thatP(d;|P) =

P(d; ANQ)/P(Q). This means thaP(d;|P) = P(d;)/P(Q) if
d =P, i.e. if d; is a diagnosis, an®(d;|P) = 0 if d; [~ P,
V. RELATION TO MINIMAL DIAGNOSES i.e.if d; is nota diagnosis. For a given et the termP(Q)
is only a normalization constant, which means that to compar
The concept of minimal diagnoses was originally proposd@(d;|P) for different diagnoses it is enough to consider the

in [1] and [2] for systems where each component has onfyiors P(d;). We assume that faults occur independently of
two possible behavioral modes, i.e. the normal fault-freelen each other which means thadt(d;) = []... P(c = b.)
and a faulty mode. Minimal diagnoses have two attractiwghere P(c = b%) is the prior probability that component
properties. Firstly, they represent the “simplest” diagg®) is in behavioral modé:. To know the exact value of a prior
in the sense that all other diagnoses contain additiondtlyfauP(c = b.) may be very difficult or even impossible. Therefore
components, and are therefore often desired when priogtizone may assume that for each component, the priors are
among diagnoses according to the principle of parsimonynknown but at least partially ordered. Under this assumnpti
Secondly, in case there are only positive conflicts, themmahi and given the set of negated conflicts, the preferred diagnos
diagnoses characterize the set of all diagnoses. These awe the ones with highest probability. It can be noted that in
properties will now be investigated for the generalizedecasontrast, the concept of most probable diagnoses, see §i7] an
of more than two modes per component and non-positij@], requires exact values of the priof¥c = b%), something
conflicts. that in real applications can be hard to obtain.

Without changing their meanings, these expressions can
expanded so that they contain the same set of component

D, =c1 € M" Nca € MY A ez € R, (10)

D. Complexity
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B. Characterizing Property All diagnoses represented by (12) are characterized by the

Now we investigate how the characterizing property ofindle kernel diagnosis; = N. Therefore none of the
minimal diagnoses can be generalized to the case of mRfunctions in (12) are kernel diagnoses. . _
than two modes and the presence of non-positive conflicts. I Previous algorithm for calculating kernel diagnoses is
some special cases, the preferred diagnoses charactériz@%en in [5]. In the language of this paper, this previous
diagnoses with the help of the partial order but this does algorithm first makgs a full expansion of the conjunction
not hold generally. of all negated conflicts by distributing. over v. Then all

In an MNF-formula, the conjunctions have the proper,[9onjunctions that are not kernel diagnoses are removed.
that they characterize all diagnoses. For example consider

the case when the components dfe= {si,s2,53,54}, VIl. EXTRACTING PREFERREDDIAGNOSES
R;, = {NF,B,G,UF} for all components, ands; € In Section V it luded that th uncti in th
{B,UF} A s3 € {G,UF} is one of the conjunctions in n Section V It was concluded that the conjunctions in the

an MNF formula. By letting each diagnosis be representc?#tpmg.frlom Alg??thm Zotlsharacterlze all dlilgnt()jsesl, and 'Itr']
as an ordered set corresponding(g, sz, s3, s4), this single efsip?mat\hcase_z ortwo TO es per compo(rjlen anb ?n y polall\'l\llze
conjunction characterizes the diagnoses conflicts, there is a one-to-one correspondence between-

conjunctions and the minimal diagnoses. This special case h
(B,UF} x {G,UF} x {NF,B,G,UF}x ?Iso trllerropertyttr}at_itf V\(ﬁ r?tudy e:lalch conju?ctiog I(? an MNF
ormula @ separately, it will have only one preferred diagnosis.
x {NF,B,G,UF} x {NF,B,G,UF} This preferred diagnosis is also a preferred diagnosis when

which is 256 diagnoses. considering the whole formul&. The consequence is that
For another example assume that each of the compondhi§ Straightforward to extract the preferred diagnosaira

C = {s1, 52, 53, 54} has only two modes, i.®,, = {NF, F}. formula Q. In the general case, there is no such guarantee.

A conjunctions; € {F} A s, € {F} would then characterize _FOr an example, consider two componesitsand s, where

all diagnose§ F} x {F} x {NF, F} x {NF, F}. In Section Il Rs; = {NF,E,F} and NF' >, E >, F, and a third

this conjunction would be represented by, s,}. If all con-  cOmponentss where Ry, = {NF,B,G} with the only

flicts are positive, all conjunctions would be on this formda rélations Ni* >, B and NF' >, G. Then consider the

there is a one-to-one correspondence between the comjnactMNF-formula

in an MNF-formula and the minimal diagnoses in the original

framework described in Section II. Q=s1 €{E}Nsz€{B,G}V

s1 €{E,F} Nsy e {E,F} ANs3 € {B,G} (13)

VI. RELATION TO KERNEL DIAGNOSES The preferred diagnoses consistent with the first conjancti

The paper [5] definegartial diagnosisandkernel diagnosis ares; = EAss = NFAs3 = Bands; = EAsg = NFAsg =
In this section we will see that the output of Algorithm 2 cads. The preferred diagnoses consistent with the second are
be seen as a set of kernel diagnoses. In [5], the conceptlkeme= EAsy = FEAs3=Bands; = ENss = EAs3=G.
diagnoses was introduced in the context of only two modés seen, the two diagnoses = F A sy = E A s3 = B and
per component. The purpose of kernel diagnoses is thatthesse= F A so = E'A s3 = G are not preferred diagnoses of the
of all kernel diagnoses characterizes all diagnoses evémein whole formulaQ.
case when there are non-positive conflicts. As noted in [5], The example shows that preferred diagnoses can not be
also a subset of kernel diagnoses is sometimes sufficientetdracted simply by considering one conjunction at a time.
characterize all diagnoses. Instead the following procedure can be used. For each con-
In the context of this paper we can define partial diagnosis asiction in Q, find the preferred diagnoses consistent with
a conjunctiond of uniqgue mode assignments such tliat P.  that conjunction, and collect all diagnoses found in aBet
Then, a kernel diagnosis is a partial diagnaessich that there The setd may contain non-preferred diagnoses. These can be
is no other partial diagnosi¢ whered = d'. removed by a simple pairwise comparison. Note that thaset
According to the following theorem, the outp@® from need not to be calculated for every new negated conflict that
Algorithm 2 is, in the two-mode case, a disjunction of kerné$ processed, instead only at the time the preferred diagnos
diagnoses. are really needed, for example before a service task is to be
Theorem 2:Let each component have only two possiblearried out.
behavioral modes, I be a set of negated conflicts, and let One may ask how much extra time that is needed for the
Q be the output from Algorithm 2 after processing all negatetbmputation of the preferred diagnoses, compared to the tim
conflicts inIP. Then it holds that each conjunction ¢f is a needed to process all negated conflicts and comgutdo
kernel diagnosis. 0 give an indication of this, the following empirical expeent
Note that the MNF property alone does not guarantee thaas set up. A number of 132 test cases were randomly
all conjunctions are kernel diagnoses. This can be seerein tfenerated. The test cases represent systems with between 4
following formula which is in MNF. and 7 components, where each component has 4 possible

behavioral modes. The number of negated conflicts varies
s1=NAs2=NVsi=NAsy=F (12)  petween 2 and 12.
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of a subset of the system. The outcome of each diagnostic test
is either pass or fail. If the outcome is fail, a negated confli

is created. The response of the diagnostic tests with respec
to the different single faults is shown in the table in Fig@re

An X in row ¢ and columnj means that the:th diagnostic

test may respond to the fault of columin

For example, we can see that the diagnostic test T7 may
respond to behavioral modes SCG or UF in any of injectors 2,
3, 4, or 5. If the outcome of the test T7 is fail, we obtain the
< negated conflicinj, € {SCG,UF} Vinjs € {SCG,UF}V
injs € {SCG,UF} Vinjs € {SCG,UF}.

We now assume that tests 10, 30, 38, 44, and 45 have
the outcome fail. Then the set of all preferred diagnoses
are to be computed with Algorithm 2 together with the
o L - L ~ . principles described in Section VII. For comparison we use

time [s) also a commonly used FDI-approach to fault isolation, ngmel
structured residual$l11]. In this approach the actual response
] of the diagnostic tests is matched to the expected responses
1 of the diagnostic tests for different faults, the so calledlit
signatures In the experiment we have used the table of fault
signatures as shown in Figure 2 but extended to all multiple
faults. Since the X:s in the table corresponds to the case of a
0 10 20 30 40 50 60 70 uncertain response we say that a fault (i.e. a system behavio
Aadtionattme ] mode) matches the actual response if each 0 corresponds to
Fig. 1. The plot shows the total time needed to compute prefeti@noses a diagnostic test with outcome pass, and each X to a test
on the Y-axis, and the time needed to comp@eon the X-axis (the with outcome pass or fail. To make the comparison between
straight line is included as reference). The histogram shthe distribution ha structured residuals and approach based on Algorithm 2
of additional computation time to compute the preferred diagaorelative . . .
the time needed to comput@. fair, we extend the structured residuals approach so that it
computes preferred diagnoses, which is also a more relevant
problem. This is done by traversing the table from left to
In Figure 1, the results for the 132 test cases are sho fight and the system behavioral modieof each column is

'm f al f i .
Each X-mark in the upper plot represents one test run ;ﬁd pared to a sét of already computed preferred diagnoses

the total ti ded t ¢ tarred di . “If"concluded thath < d for some diagnosigl € 2, thenb
€ fotal ime needed 1o compute preterred diagnoses 1S igrheglected, and otherwise added(1af the diagnostic test
the Y-axis, and the time needed to compueis on the

. . T ... response matches the column. Furthermore, if concluded tha
X-axis. The histogram shows the distribution of addltlonagle<pb d is removed fromt

computation_time needed to compute the preferred diagnose%hen calculating preferred diagnoses, we use a partial
from O, relative fo the time needed to compi@eAs seen, the order defined by the relation& F > b for all behavioral

extra time is mostly small compared to the total time need?rqodesb 4 NF andb > UF for all b £ UF. The

to compute the preferred diagnoses. total number of diagnoses is computed to be 31960. Further,
the number of preferred diagnoses is 27. Two examples of
VIIl. A PPLICATION EXAMPLE preferred diagnoses argVF, SBB, NF,UF,NF,NF) and
We will now illustrate how the new generalized minimalNF, SC,SBB,SLB, NF, NF).
hitting set algorithm can be used in a practical diagnosisBoth algorithms were implemented in SciLab. The compu-
application. As an application example we study an elegtrictation time needed for both approaches is shown below. For
driver for the fuel injectors of a 6-cylinder automotive @& comparison, also the time needed for Algorithm 2 to compute
This system has six components, namely one driver for eachtioeé MNF-formulaQ is shown.
the six injectors. Each driver has eight behavioral modéeg:
S BB (short between banks}C' (stuck closed)SCG (short
circuit to ground),SL B (short circuit on low side to ground),
OL (open load),SH B (short circuit on high side to battery),
andUF'. The complexity of this example is illustrated by the
fact that in total, there ar&® = 262144 system behavioral We can note that the new approach, based on Algorithm 2,
modes. computes preferred diagnoses 719 times faster than the stru
For on-board diagnosis of the system there are 52 diagnodgticed residuals approach. Additionally, it is seen thattfor
tests corresponding to precompiled potential conflicts].[Lhew approach, the extra time needed to compute preferred
These are implemented both in hardware and software of tiagnoses from the MNF formula, is less than 10% of the
embedded system. Each diagnostic test tests the fundtionaime needed to compute only the MNF formula.

20 o
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injector 1 injector 2 injector 3 injector 4 injector 5 injector 6

SBB SC SCG SLB OL SHB UF |[SBB SC SCG SLB OL SHB UF |SBB SC SCG SLB OL SHB UF |SBB SC SCGSLB OL SHB UF |SBB SC SCGSLB OL SHB UF |SBB SC SCGSLB OL SHB UF
T1 X
T2 X
T3 x
T4 x
Ts5 %
T6 x
T7 X X X X X X X X
T8 X X X X X X X X X X X X X X X X
T9 X X X X X X X X
T10 b3 X X X b3 X X b3
T11 X X X X
T12 X X X X
T13 X X X X
T14 X X X X
T15 X X X X
T16 X x| x x| x x| x X
T17 X X X X
T18 X X X X
T19 X X X X
T20 X X X X X X X X
T21 X X X X X X X X X X X X
T22 X X X X X X X X X X X X X X X X X X X X X X X X
T23 X X X X X X X X X X X X
T24 X b3 b3 X X b3 b3 X X b3 b3 X
T25 X X X X X X
T26 X X X X X X
T27 X X X X X X
T28 X X X X X X
T29 X X X X X X
T30| x X | x x| x x| x x| x x| x X
T31 X X X X X X
T32 X X X X X X
T33 X X X X X X
T34 X X X X X X X X X X X X
T35 X X X X X
T36 X X X X
T37 X X
T38 X X X X X
T39 X X X X
T 40 X X
T4l XX X X X
T 42 X X X X
T43 X X
Ta4 X X X X X
T45 XX XX
T 46 X X
Ta7 X X X X X
T48 X X X X
T 49 X X
T50 X X X X X
T51 X X X X
T52 X X

Fig. 2. The isolation table for the electrical driver systesinpwn for single faults.

As a further evaluation, the new approach, based on Algis-in the MNF-form that guarantees th&t does not contain
rithm 2, has been implemented in C and tested in a standaedundant conjunctions.
embedded Electronic Control Unit (ECU), with microproces- In a comparison with the original framework where conflicts
sor Freescale MPC563-66MHz, controlling a real automotivhd diagnoses are represented by sets, it was concluded
engine. This engine system contains 150 components ahet the conjunctions in the outp@, from the generalized
450 diagnostic tests. The evaluation has involved more thalgorithm, are a true generalization of the minimal diagsos
40 vehicles driving in total more than 200000 km. For thebtained from the minimal hitting-set algorithm. It hascals
purpose of testing, a variety of faults were injected in theeen concluded that the conjunctions are a true geneializat
system. In addition, real faults occurred spontaneousdhe Tof kernel diagnoses. Since, for the case of more than two
performance, and especially the computational time, of tihgodes per component, minimal diagnoses do not necessarily
algorithm was recorded. The conclusion is that the averagerrespond to the most desired diagnoses, it was insteachsho
computation time needed to compute all preferred diagnogesw preferred diagnoses could be obtained from the conjunc-
is less than 50ms, and the maximum time needed is lagms with a reasonable amount of computational effort.
than 0.5s. These numbers are more than satisfactory for theinally, one possible application for the proposed aldonit
engine system. This evaluation shows that even though theas demonstrated, namely on-board fault isolation in aotom
algorithm has an exponential behavior in the worst case,tiife embedded systems. In this application study it was seen
performs well in a real world setting where computations affat the proposed algorithm provides a significant perforaa
done in a standard automotive ECU. An explanation to thigiprovement compared to an approach based on structured
is that the number of diagnostic tests that will respond witlesiduals which is the standard fault isolation method iwith
fail is typically low, which means that the number of negatedDI. Further, in a real world test involving a fleet of vehigle
conflicts is low. the new algorithm has been shown to perform well.

IX. CONCLUSIONS

In this paper a generalized minimal hitting set algorithm
has been proposed. The key properties in comparison with the
original minimal hitting-set algorithm from [2] are that¢an The appendix contains proofs for the two theorems pre-
handle more than two modes per component and also ngented in the paper. In the proofs we will assume that the set
positive conflicts. The new algorithm has been developed im&negated conflict® is ordered. We will then use the notation
framework where all conflicts and diagnoses are represenigdto denote the subset of theth first elements i?,,. For a
with special logical formulas. It has been formally provaatt givenn, the notationQ*, or D*, will be used to denote the full
Q ~ P, i.e. the algorithm output is equivalent to the set of akbxpansion of/\PE]P, ‘P obtained by distributing\ over V. For
diagnoses. Further it was proven that the algorithm ou@ut example, ifP; = {a e{A,B}vbe {A},ae{B,C}Vce

APPENDIX
PROOFS OF THE THEOREMS
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{B}}, then the full expansion of\,_p, P will be All these investigations show that it is impossible tidat =
. Q1. ]
Q" =aec{B}Vaec{A B} Ace{B}V Lemma 2:Let D* be the full expansion of\,,  P. For

Vae{B,Cthnbe{A}vbe {A} Ace {B} (14) notwo conjunctiond; andD3 in D}, ..., there is a component
¢, setsM; and M,, and a conjunctionD, not containingc,
such thatD} ~ D Ac € M; andDj ~ D A c € M.
Proof: Assume thatD; .. has two conjunction®; and
'Ds such thatDf ~ DAce My andDs ~ D Ac e M
where the conjunctionD does not containc. Note that
each conjunction irD*, and therefore also D}, ., is the
conjunction of oneP; from each negated conflict i#. Let
Lemma 1:The outputQ from Algorithm 2 contains no two the negated conflicts it be indexed from 1 tdP|. Let I; be
conjunctions such thap: = Q. the index set of exactly those negated conflicts that have an
Proof: Assume the contrary, thap, and Q2 are tWo assignment?; such thatP; is a part of D: and P; contains
conjunctions inQ and @ = Q1. Note first that it can not the component.

hold that Q) € Dyq and @2 € Do since line 1 and 5 T jllustrate the notation introduced, consider the follogy
impliesD,,; € D andD is in the input required to be in MNF. gxample:
There are therefore three cases that need to be investigated

Furthermore, the notatio®; . is used to denote an ex-
pression obtained by removing, fro@*, one by one, each
conjunction@; as long as there is still another conjunctio

Q; leftin Q* such thatQ; | Q;.

Proof of Theorem 1

(1) Q1 € Doias Q2 € Dadas (2) Q2 € Doas Q1 € Dadas (3) Py = {P1, P2, Ps} =
Ql €Il)addr QQ G,Z)add- {Pll \/P12\/P13,
1) Since@: € Dy, it holds, from line 1, that); € D. Note P VP
that D44 is assigned in line 11 and the fa@Qt € Dyqq 2 22
then means thaD,,.,, = Q. in some iteration of the Py V Py V Pss,
second loop. During this iteration it could not be the case Py V Py}

that D; = @+, since then®; would have been removed
from Dold in line 5. Therefore,Dnew must have been Note that all negated ConﬂiCtgj have the form (5) Let the
compared t@; in line 9. SinceR, has really been added,assignments P1; , P, and Ps; contain the component
and line 11 executed, it cannot have been the case thatnd for clarity, these have been marked with gray. Let
QZ':Ql- DTZ P11 AN Py; A P3y A Pyp. This means that € M; ~
2) SinceQ € Dyqq4, it holds from line 7 that); = D;AP; Py A Py andD ~ Py A Py;. The index seff; is uniquely
for someD; € D. The factQ, = Q: implies thatQ, = determined to bd; = {1,2}.
D, ANP; = D;. This is a contradiction sinc@, € D, and Now to continue with the proof, lef; be the index set
D is in MNF. of exactly those negated conflicts that have an assignifent
3) From the wayD,,.,, is formed in line 7, there are threesuch thatP; is a part of D and P; contains the component
cases: (af)2 = D;APj2, Q1 = D;APj1, (0) Q2 = Dio A Note that sinceD; # D3, it holds that the setd/; and M,
P;j, Q1 =DnAPj, (€)Q2 = DisAPjs, Q1 = Di1 APj1, are distinct, and therefore, also the shtsand I, are distinct.
where in all casesP;; # Pj» and D;; # Ds. Since each conjunction i@}, is the conjunction of one
a) Lets say that?;; = a € A,. Note that according F; from each negated conflict i, it holds that inD7, Dis
to (5), A, C R,. For the relationy, = D; A Pj» = formed byP;:s from the negated conflici§’. Similarly, in D3,
D; A Pj; = @1 to hold, it must therefore be the D is formed byP;:s from the negated conflict§’. Now let D),
case that the component 8f; is contained inD; or  be the conjunction of thosg;:s in D; that belong to negated
Pjy. The latter is not possible because of the assumednflicts in the sef§’ N ;. Let D’ be the conjunction o,
form (5) of P. Hence lets say thdD; = a € AA.... and thoseP;:s in Df, not containinge. Note thatD’ ~ D.
The relation @2 = @ implies A C AN A, To illustrate the notation, continue with the example above
which further means thatt C A,. This implies andletD; = PiaA Po; A P31 APj2. Then it holds thaf, =
D; ): a € Ap ): P. ThUS,Ql and QQ are, because {2,3}, IQC Nl = {1}, Dé = Pio, andD’ = Pio A P3s A Py
of the condition in line 4, never subject to be added Next let D. be the conjunction of theé;:s that belong to
to D,q4q Which is a contradiction. negated conflictg; NI, and are present il;. In the example,
b) SinceQ2 € Dudd, Dnew = @2 in some iteration of I, NI, = {2} and D. = P, . Note that it always hold that
the second loop. In this iteratiof); in the algorithm ¢ € M, = D. andc € M, = D..
equalsD;,. Thus Dy, in the third loop can take the Let D = D' A D., with D’ and D, formed as described
value D;;. We have thaiD,.,, = Q2 = Di2 A P; = above, and note thdd; must be inD*. Also note thatD] ~
D;1 N P; = D;;. This means according to theD Ac € My = D' A D. = D} and similarly,D; = Dj.
condition in line 9, that), can not have been added If D ~ Dj, this would imply D} = Dj; ~ Dy which
to D,q4q Which is a contradiction. contradicts the starting assumption tHaf . contains both
c) We have that), = D;s APjs = D;1 APj1 |= Din € Dj andD3. Therefore, it must hold thab; # Dj. However,
D. By reasoning as in case (b), this means that together withD; |= D%, this implies thatD; can not be in
can not have been added 1,4,. D* . which is a contradiction. [ ]

min
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Lemma 3:Let D* be the full expansion of\,, .,  P'. Qi = Q,. In this way we can repeatedly apply Lemma 3 as
Let @ = Dyq V Dygq be the output from Algorithm 2 given long as the newD obtained is not contained iP,;; and
Dy, andP as inputs. If there is &; , € D},,,, and aP; ¢ there is noQ, ~ D; .. A P; contained inDgqq.

P, such thatD,  is not contained inD,; and there is no  We will now prove that after a finite number of applications
conjunction@; ~ D;, A P; contained inD,4, after running of Lemma 3 we obtain &; ., such thatD;  is contained
the algorithm, then there is®;,, , in Dy, ;, such thatD; A in Dyyqy or there is aQ, ~ D;, . A P; contained inD, 4.
P =D, ., andD; . APjl~=D;, AP Note that each application of Lemma 3 guarantees fhatA
Proof: The fact thatD; , is not contained irD,;; means P; = D;,,, A P;andD; ., APj % D;, A P;. These two

that the second loop of the algorithm must have been entegdperties imply that in the series of applications of Len@pa

Tm+1

when D, = D;, . Then the fact that n@); ~ D; A P; is all conjunctions obtained are unique, i.e. all conjunctioh
contained inD,44, Means, according to line 9, that D;,. .., D, ., ... are unique. This means that the maximum
number times Lemma 3 can be applied in this way is limited
D;,, N Pj = Dy (15) by the number of conjunctions iD.

for someDy, # D, . By cho0SiNgim 1 = k, this givesD;. A Assume now that I__emma 3 has been applied the maximum
P = D, ’ ’ number of times (which equals the number of conjunctions in
I NS . D minus 1) and we have not obtained aRy ., whereD;
Next we will prove thatD; A P; D; A P;. This . . . . mtl bt
P met i J is contained irD,,4 or there is &, ~ D;, ., A P; contained

is equivalent to provingD, A P; = D; A P;. Let the single . .
assignment inP; be a € A,, and letcomps D; denote the N Daga. Then Lemma 3 actually says that we can a_pply It
once more and obtain a new 9ef Since all conjunctions

set of components il;. We will divide the proof into three el
cases: (1n & comps D;, (2) a € comps D;, a &€ comps Dy,
and (3)a € comps D;, a € comps Dy.

Tm

obtained from Lemma 3 are unique, we cannot obtain a

previous conjunction but also, there are no conjunctiofts le

. This is therefore a contradiction which proves that latesemv

1) The fact (15), or equivalenthp; A P; |= Dy, together | emma 3 has been applied the maximum number of times, we
with the fact that: ¢ comps D;, would imply D; [= Dy myst obtain a conjunctio®; ., where D; ., is contained
Th|s is a contrad_lcuon smc@i €D, D, € D,andD is in D4 or there is aQ, ~ D;, ., A P; contained inDyg.
in the input required to be in MNF. -

2) This case means that; can be written a®); = D'Aa € Lemma 5:Let Q be the output from Algorithm 2 after

Ai/ wherea ¢ comps D', and the fact (15) becomesyycessing all negated conflictslin Let O* be the full expan-
D'Na e Ain Ay = Dy. Tr/ns together with the fact g of Apee P. Then there is a one-to-one correspondence
a ¢ comps Dy, implies thatD" |= D, and consequently penyeen the conjunctions i@ and Q* . such that for each

chﬁltFDi = Dy, which is a contradiction sinc® is in - conjunction; in Q there is a unique conjunctiag; in Q%

, ) where@; ~ )7 and vice versa.
3) Assume thatD, A P; |= D; A P;. This relation can be Proof: The proof is constructed by induction over For
written D;. Aa € A, N A, = D; ANa € A, N A; where a gi

p , o P, venn, let Q* be a full expansion of\,., P. For the
D), and D; are conjunctions not containing componenfyqyction start, let: = 1 which means thak,, consists of only
a. This relation would implyD}, |= D;. Further on, the ,ne negated conflicP. As stated in Section IV, the algorithm
fac_t (1,5) b_ecomeng Na € Ay A= Dy Aa € Ay, s not needed in this case singealready is in MNF. That is,
which implies .thath. = Dy Thus we havé; ~ D; and  he output after processing this single conflictds= P. Since
the only possible difference betwedn and Dy would ,, _ 1 ‘it also holds thaQ* = P. Then, trivially, it holds that

be the assignment of componentLemma 2 says this is ¢5r each conjunction; in Q there is a unique conjunction

impossible. Qr in Q% such thatQ; ~ Q*, and for eachQ? in Q7 .
With ¢ =i, andk = i,,1, these four cases have shown thahere is a uniqu&); in Q such thatQ; ~ Q;.
D;,... NPj = D;,, NPj. u For the induction step, consider an arbitrary> 1. Let D*

Lemma 4:Let D be the full expansion o\, P.Let be a full expansion of\,.,  P. Let D be the algorithm
Q be the output from Algorithm 2 giveR;, ;. and’P as inputs. output after having processed all negated conflict®,n ;.
For each conjunctiorD; in D; . and P; in P it holds that Assume that for each conjunctia; in D there is a unique
there is a conjunctioid);, in Q such thatD; A P; = Q. conjunctionD} in D} .. such thatD; ~ Dy, and for eachD}

Proof: If, after running the algorithmp; is contained in in D, thereis a uniqu®; in D such thatD; ~ D} . Without
Doiq, then the lemma is trivially fulfilled. If instead @, ~ loss of generality we can then assume that D; ., .
D; A Pj is contained inD,qq, then the lemma is also trivially — Let Q be the algorithm output when feeding it with =
fulfilled. Study now the case wher®; is not contained in D} . and a new negated confligt. Let Q% .. be constructed
Doiq and noQ); ~ D; A P; is contained irD,q4. We can then from P,,. We will below prove that for each conjuncti@p; in

apply Lemma 3 withi,,, = i. This gives us &;, ., in D},;, Q there is a conjunctio®; in Q;,,. such thatQ; ~ Q7, and

such thatD; A Pj = D;,, ., for eachQ; inQ: .. there is aQ; in Q such thatQ; ~ Q7.
If D;, ., is contained inD,q4, then the lemma is fulfiled  Consider an arbitrary conjunctiap; in Q. Because of line
with Q. = D;, . Ifinstead aQ, ~ D;, ,, A P; is contained 16, Q; is in D,;q Or Dyqq. First we consider the case when

in Dgyqq, Note thatD; A P; = D
D

imea iMplies D; A Pj = Q1 isinD,y. SinceQ) is in Dyq, thenQ, = D; for a D; in
APj ~ @Q,. This means that the lemma is fulfilled withD. Because of line 4 and 5, it holds th&t = P and there

Tm+1
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is therefore, according to the discussion in Section IV-C, thatQ; = Qi ~ Q; where bothQ} and@; are inQ},,,,. Due
conjunctionP; in P such thatD; |= P;. ThusD; A P; ~ D; to the definition ofQ; ; , this must mean tha®; = Q;. Thus
and therefore(), ~ D; A P;. By definition, the conjunction we have the relatio)} = Qi ~ Qf = Q; which implies

D; A P; is in Q* so we have shown, for the cagg is in Q7 ~ Q. In conclusion, with@); = Q, we have proven that

Doia, that there is &7 = D; A P; ~ Q) in Q. for eachQ; in Q.. there is a@); in Q such thatQ); ~ Q7.
Next assume that there is @} in Q. such thatQ; ~ Finally, a consequence of Lemma 1 is tigt i.e. there is no
Q7. This would mean that there is anoth@f = Dy A P, in  other@;2 in Q such thatQ;s ~ Q;. [ |

Q* such thatQ} E Q3 andQ; = Q7. Note thatDy, is in D*. Theorem 1l:Let P be a set of negated conflicts and (8t
Now there are two possible cases: {1¥ i, (2) k =14, j # 1. be the output from Algorithm 2 after processing all negated
1) SinceD; ~ D; A P; andi # k, we have the relation conflicts inP. Then it holds that
Di~D; NP; ~Qi = Q3 ~Dp NP |=Dy. Alsowe a) Q~P, and
have D, AP, ~ Q5 ¥~ Q7 ~ D; AN\P; ~ D;. This implies  b) Q is in MNF. O
that Dy, [~ D;. However, sinceD; is in D} ; ., there can Proof: For the (a)-part of the theorem, consider:;,
not be anyD; in D" such thatD; |= Dy and Dy, [~ D;.  obtained fromP. By definition of Q% , it holds thatQ? , ~
Thus we have a contradiction. P. ThenQ ~ PP is a trivial consequence of Lemma 5.
2) SinceD; ~ D;\P;, we have the relatiol; ~ D;A\P; ~  For the (b)-part of the theorem, note first that Lemm@ 1
Q7 E Q3 ~ D; AP = P. This means thaD; ~ D; AP} says that contains no two conjunctions such #at= Q.
and further thatD; ~ D; A Py ~ Q5 = Q7 ~ D; AP; ~  Also we need to prove that each conjunction is in the form

D; which is a contradiction. specified by (1).
In conclusion, th_ese co_ntradictions show, for the a@ses in All conjunctions inD,4; are on the form (1) because of
D4, that there is &7 in Q7 . such thatQ; ~ Q. the requirement ot,,.,, in line 7. Therefore all conjunctions

Next we consider the case Wheh is in Dyqq. Since@1  added in the process of forming from the setP are on the
is in Dyqa, the second loop of the algorithm has been enter@skm (1). Possibly there might also be conjunctionsdnnot
withaD; in D andP; in P such that), ~ D;AP;. Therefore, added viaD,., but instead originating from the first negated
Q1 ~ D; A\ P;, and, by definition we have thd®; A P; is in  conflict P in P. But sinceP is, by definition, on the form (1),
Q*-QThUS, we have shown that there i€)a ~ D; A P; ~ Q1 it holds that all conjunctions il must be on the form (1)m
in Q*.

Next assume that there is @} in QF ., such thatQ; ~
Q3. This would mean that there is anoth@h ~ Dy A P, in
Q* such thatQ7 = Q3. Now there are two possible cases: (1?)e

ki, (2 k=1i,j#L.

Proof of Theorem 2

Lemma 6:Let each component have only two possible
havioral modes, let be a partial diagnosis with respect to

. S . : P, and letQ be the output from Algorithm 2 after processing
1) Since @ is in D,4q, and, according to line 8 and 9, . .
it must hold thatD; A P, 1 Dy. At the same time, "all negated conflict®. Then it holds thatl = @, for some

Q1 F Q3 impliesD; AP; ~ Q7 = Q5 ~ Dy NP = Dy, @ In
which is a contradiction.

2) We have thatD; A P; ~ Qf = Q3 ~ Dy, NP, = P,.
According to (5),P; does not contain the same compo-
nent asp,. ThenD A P; = P, implies D; = P;. This
in turn implies D; ): P and consequently, according to
line 4, that the second loop is not entered which is a
contradiction.

We have here shown that, also for the c@seis in D, 44, that

there is aQ)f in QF .. such thatQ! ~ Q. X . . "
In conclusion, when we feed the algorithm with= D* there ”.‘”S‘ be a conjunctia, |.n i .such.that.D = Q.
min — According to Lemma 5 there is a conjunctiéh, in Q such
and P, it holds that, for each conjunctio®; in Q there is N N N
: . . ; y that @, ~ QF. Thus, we havel = D* = Q} ~ Q,. [ |
a conjunction@; in Q; . such thatQ; ~ Q7. From the Th 5L h have onl ibl
definition of Q* . it also holds trivially thatQ?! is unique eorem <. et each component have only t\.NO possible
min L ' behavioral modes, |ef be a set of negated conflicts, and let
Q be the output from Algorithm 2 after processing all negated

i.e. there is no othe®}, in Q. such thatQ! ~ Q7,. Left
to prove now is that for eacty; in Q;,,, there is a unique conflicts inP. Then it holds that each conjunction &f is a
kernel diagnosis. O

Q; in Q such thatQ); ~ Q7.

Take an arbitran@; in Q7 ;,. The conjunctions o7 ;,
must be a subset of the conjunctions of the full expansion of Proof: Take an arbitrary conjunctiod);, in Q. From
D;.in N\ P. Therefore there is @; in D;,,. and aP; in P Theorem la we know th& ~ P. Thus we have&),, = Q ~ P
such thatQ); = D; A P;. Since we feed the algonthm with which means thaf);. is a partial diagnosis.

D; .., andP, we can apply Lemma 4 which tells us that there Now assume that there is another partial diagndSisuch
is aQy in Q such thatD; A P; = Q. that @ = d’. Note that this also means th@t, # d’. Since

Above we have concluded that sin€g. is in Q, there is a d’ is a partial diagnosis, Lemma 6 implies that there i©.a

conjunction@; in Qj,;,. such thatQ, ~ @Q;. Thus we have in Q such thatd’ = Q.. Thus we have);, = d’ = Q,. This,

min

Proof From the definition of partial diagnosis it holds
thatd = P. This means that for each negated confiittin

P it holds thatd = P. Then note that eact® in P is a
disjunction of unique assignments, ezg= N. The factd = P
implies, according to the discussion in Section IV-C, thexthe

73 contains at least one of the assignmentsi.irCreate D*

by taking the conjunction of one of these assignments from
eachP in P. It will then hold thatd = D*. By construction,

D* is a conjunction inQ*. Then, by construction o . .
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together withQ,, 2 d’, contradicts the fact tha® is in MNF,
which is stated by Theorem 1b. The contradiction means that
there is no other partial diagnos# such thatQ, = d’, and
Qr must therefore be a kernel diagnosis. |
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