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Simplified Optimal Control Problem in ODE

terminal
constraint r(x(T )) ≥ 0

6
path constraints h(x, u) ≥ 0

initial value
x0 r

states x(t)

controls u(t)
-p

0 t
p
T

minimize
x(·), u(·)

∫ T

0

L(x(t), u(t)) dt + E (x(T ))

subject to

x(0) − x0 = 0, (fixed initial value)
ẋ(t)−f(x(t), u(t)) = 0, t ∈ [0, T ], (ODE model)

h(x(t), u(t)) ≥ 0, t ∈ [0, T ], (path constraints)
r (x(T )) ≥ 0 (terminal constraints).



More general optimal control problems

Many features left out here for simplicity of presentation:

• multiple dynamic stages

• differential algebraic equations (DAE) instead of ODE

• explicit time dependence

• constant design parameters

• multipoint constraints r(x(t0), x(t1), . . . , x(tend)) = 0



Optimal Control Family Tree

Three basic families:

• Hamilton-Jacobi-Bellmann equation / dynamic programming

• Indirect Methods / calculus of variations / Pontryagin

• Direct Methods (control discretization)



Principle of Optimality

Any subarc of an optimal trajectory is also optimal.
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Subarc on [t̄, T ] is optimal
solution for initial value x̄.



Dynamic Programming Cost-to-go

IDEA:

• Introduce optimal-cost-to-go function on [t̄, T ]

J(x̄, t̄) := min
x,u

∫ T

t̄

L(x, u)dt + E(x(T )) s.t. x(t̄) = x̄, . . .

• Introduce grid 0 = t0 < . . . < tN = T .

• Use principle of optimality on intervals [tk, tk+1]:

J(xk, tk) = min
x,u

∫ tk+1

tk

L(x, u)dt + J(x(tk+1), tk+1) s.t. x(tk) = xk, . . .

xkr x(tk+1)r

-
tk+1tk

p

T



Dynamic Programming Recursion
Starting from J(x, tN ) = E(x), compute recursively backwards,
for k = N − 1, . . . , 0

J(xk, tk) := min
x,u

∫ tk+1

tk

L(x, u)dt + J(x(tk+1), tk+1) s.t. x(tk) = xk, . . .

by solution of short horizon problems for all possible xk and tabulation
in state space.
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Hamilton-Jacobi-Bellman (HJB) Equation

Dynamic Programming with infinitely small timesteps leads to
Hamilton-Jacobi-Bellman (HJB) Equation :

−∂J

∂t
(x, t) = min

u

(

L(x, u) +
∂J

∂x
(x, t)f(x, u)

)

s.t. h(x, u) ≥ 0.

Solve this partial differential equation (PDE) backwards for t ∈ [0, T ],
starting at the end of the horizon with

J(x, T ) = E(x).

NOTE: Optimal controls for state x at time t are obtained from

u∗(x, t) = arg min
u

(

L(x, u) +
∂J

∂x
(x, t)f(x, u)

)

s.t. h(x, u) ≥ 0.



Dynamic Programming / HJB: Pros and Cons

• “Dynamic Programming” applies to discrete time,
“HJB” to continuous time systems.

+ Searches whole state space, finds global optimum.

+ Optimal feedback controls precomputed.

+ Analytic solution to some problems possible
(linear systems with quadratic cost → Riccati Equation)

• “Viscosity solutions” (Lions et al.) exist for quite general nonlinear
problems.

- But: in general intractable, because partial differential equation (PDE)
in high dimensional state space: “curse of dimensionality”.

• Possible remedy: Approximate J e.g. in framework of neuro-dynamic
programming (Bertsekas and Tsitsiklis, 1996).

• Used for practical optimal control of small scale systems e.g. by Bon-
nans, Zidani, Lee, Back, ...



Indirect Methods
For simplicity, regard only problem without inequality constraints:

terminal
cost E(x(T ))

6

initial value
x0 r

states x(t)

controls u(t)
-p

0 t
p
T

minimize
x(·), u(·)

∫ T

0

L(x(t), u(t)) dt + E (x(T ))

subject to

x(0) − x0 = 0, (fixed initial value)
ẋ(t)−f(x(t), u(t)) = 0, t ∈ [0, T ]. (ODE model)



Pontryagin’s Minimum Principle

OBSERVATION: In HJB, optimal controls

u∗(t) = arg min
u

(

L(x, u) +
∂J

∂x
(x, t)f(x, u)

)

depend only on derivative ∂J
∂x

(x, t), not on J itself!

IDEA: Introduce adjoint variables λ(t) =̂ ∂J
∂x

(x(t), t)T ∈ R
nx and get

controls from Pontryagin’s Minimum Principle

u∗(t, x, λ) = arg min
u







L(x, u) + λT f(x, u)
︸ ︷︷ ︸

Hamiltonian =:H(x,u,λ)







QUESTION: How to obtain λ(t)?



Adjoint Differential Equation

• Differentiate HJB Equation

−∂J

∂t
(x, t) = min

u
H(x, u,

∂J

∂x
(x, t)T )

with respect to x and obtain:

−λ̇T =
∂

∂x
(H(x(t), u∗(t, x, λ), λ(t))) .

• Likewise, differentiate J(x, T ) = E(x)
and obtain terminal condition

λ(T )T =
∂E

∂x
(x(T )).



How to obtain explicit expression for controls?

• In simplest case,

u∗(t) = arg min
u

H(x(t), u, λ(t))

is defined by
∂H

∂u
(x(t), u∗(t), λ(t)) = 0

(Calculus of Variations, Euler-Lagrange).

• In presence of path constraints, expression for u∗(t) changes whenever
active constraints change. This leads to state dependent switches.

• If minimum of Hamiltonian locally not unique, “singular arcs” occur.
Treatment needs higher order derivatives of H.



Necessary Optimality Conditions

Summarize optimality conditions as boundary value problem :

x(0) = x0, (initial value)
ẋ(t) = f(x(t), u∗(t)) t ∈ [0, T ], (ODE model)

−λ̇(t) = ∂H
∂x

(x(t), u∗(t), λ(t))T , t ∈ [0, T ], (adjoint equations)
u∗(t) = arg min

u
H(x(t), u, λ(t)), t ∈ [0, T ], (minimum principle)

λ(T ) = ∂E
∂x

(x(T ))T . (adjoint final value).

Solve with so called

• gradient methods,

• shooting methods, or

• collocation.



Indirect Methods: Pros and Cons
• “First optimize, then discretize”

+ Boundary value problem with only 2 × nx ODE.

+ Can treat large scale systems.

- Only necessary conditions for local optimality.

- Need explicit expression for u∗(t), singular arcs difficult to treat.

- ODE strongly nonlinear and unstable.

- Inequalities lead to ODE with state dependent switches.

(possible remedy: Use interior point method in function space
inequalities, e.g. Weiser and Deuflhard, Bonnans and
Laurent-Varin)

• Used for optimal control e.g. by Srinivasan and Bonvin, Oberle,
...



Direct Methods
• “First discretize, then optimize”

• Transcribe infinite problem into finite dimensional, Nonlinear
Programming Problem (NLP) , and solve NLP.

Pros and Cons:

+ Can use state-of-the-art methods for NLP solution.

+ Can treat inequality constraints and multipoint constraints much
easier.

- Obtains only suboptimal/approximate solution.

• Nowadays most commonly used methods due to their easy
applicability and robustness.



Direct Methods Overview
We treat three direct methods:

• Direct Single Shooting (sequential simulation and optimization)

• Direct Collocation (simultaneous simulation and optimization)

• Direct Multiple Shooting (simultaneous resp. hybrid)



Direct Single Shooting [Hicks, Ray 1971; Sargent, Sullivan 1977]

Discretize controls u(t) on fixed grid 0 = t0 < t1 < . . . < tN = T, regard
states x(t) on [0, T ] as dependent variables.

6

x0r

states x(t; q)

discretized controls u(t; q)

q0

q1

qN−1 -p

0 t
p

T

Use numerical integration to obtain state as function x(t; q) of finitely many
control parameters q = (q0, q1, . . . , qN−1)



NLP in Direct Single Shooting

After control discretization and numerical ODE solution, obtain NLP:

minimize
q

∫ T

0

L(x(t; q), u(t; q)) dt + E (x(T ; q))

subject to

h(x(ti; q), u(ti; q)) ≥ 0, i = 0, . . . , N, (discretized path constraints)
r (x(T ; q)) ≥ 0. (terminal constraints)

Solve with finite dimensional optimization solver, e.g. Sequential
Quadratic Programming (SQP).



Solution by Standard SQP

Summarize problem as

min
q

F (q) s.t. H(q) ≥ 0.

Solve e.g. by Sequential Quadratic Programming (SQP), starting with
guess q0 for controls. k := 0

1. Evaluate F (qk), H(qk) by ODE solution, and derivatives!

2. Compute correction ∆qk by solution of QP:

min
∆q

∇F (qk)T ∆q +
1

2
∆qT Ak∆q s.t. H(qk) + ∇H(qk)T ∆q ≥ 0.

3. Perform step qk+1 = qk + αk∆qk with step length αk determined
by line search.



ODE Sensitivities
How to compute the sensitivity

∂x(t; q)

∂q

of a numerical ODE solution x(t; q) with respect to the controls q?
Four ways:

1. External Numerical Differentiation (END)

2. Variational Differential Equations

3. Automatic Differentiation

4. Internal Numerical Differentiation (IND)



1 - External Numerical Differentiation (END)

Perturb q and call integrator several times to compute derivatives by
finite differences:

x(t; q + ǫei) − x(t; q)

ǫ

Very easy to implement, but several problems:

• Relatively expensive, have overhead of error control for each
varied trajectory.

• Due to adaptivity, each call might have different discretization
grids: output x(t; q) is not differentiable!

• How to chose perturbation stepsize? Rule of thumb: ǫ =
√

TOL
if TOL is integrator tolerance.

• Looses half the digits of accuracy. If integrator accuracy has
(typical) value of TOL = 10−4, derivative has only two valid
digits!



2 - Variational Differential Equations

Solve additional matrix differential equation

Ġ =
∂f

∂x
(x, q)G +

∂f

∂q
(x, q), G(0) = 0

Very accurate at reasonable costs, but:

• Have to get expressions for ∂f
∂x

(x, q) and ∂f
∂q

(x, q) .

• Computed sensitivity is not 100 % identical with derivative of
(discretized) integrator result x(t; q).



3- Automatic Differentiation (AD)

Use Automatic Differentiation (AD): differentiate each step of the in-
tegration scheme.
Illustration: AD of Euler:

G(tk + h) = G(tk) + h
∂f

∂x
(x(tk), q)G(tk) + h

∂f

∂q
(x(tk), q)

Up to machine precision 100 % identical with derivative of numerical
solution x(t; q), but:

• Integrator and right hand side (f(x, q)) need be in same or com-
patible computer languages (e.g. C++ when using ADOL-C)



4 - Internal Numerical Differentiation (IND)

Like END, but evaluate simultaneously all perturbed trajectories xi

with frozen discretization grid.
Illustration: IND of Euler:

xi(tk + hk) = xi(tk) + hkf(xi(tk), q + ǫei)

Up to round-off and linearization errors identical with derivative of
numerical x(t; q), but:

• How to chose perturbation stepsize? Rule of thumb: ǫ =
√

PREC
if PREC is machine precision .

Note: adaptivity of nominal trajectory only, reuse of matrix factoriza-
tion in implicit methods, so not only more accurate, but also cheaper
than END.



Numerical Test Problem

minimize
x(·), u(·)

∫ 3

0

x(t)2 + u(t)2 dt

subject to

x(0) = x0, (initial value)
ẋ = (1 + x)x + u, t ∈ [0, 3], (ODE model)








1 − x(t)

1 + x(t)

1 − u(t)

1 + u(t)








≥








0

0

0

0








, t ∈ [0, 3], (bounds)

x(3) = 0. (zero terminal constraint).

Remark: Uncontrollable growth for (1 + x0)x0 − 1 ≥ 0 ⇔ x0 ≥ 0.618.



Single Shooting Optimization for x0 = 0.05

• Choose N = 30 equal control intervals.

• Initialize with steady state controls u(t) ≡ 0.

• Initial value x0 = 0.05 is the maximum possible,
because initial trajectory explodes otherwise.



Single Shooting: First Iteration



Single Shooting: 2nd Iteration



Single Shooting: 3rd Iteration



Single Shooting: 4th Iteration



Single Shooting: 5th Iteration



Single Shooting: 6th Iteration



Single Shooting: 7th Iteration and Solution



Direct Single Shooting: Pros and Cons

• Sequential simulation and optimization.

+ Can use state-of-the-art ODE/DAE solvers.

+ Few degrees of freedom even for large ODE/DAE systems.

+ Active set changes easily treated.

+ Need only initial guess for controls q.

- Cannot use knowledge of x in initialization (e.g. in tracking
problems).

- ODE solution x(t; q) can depend very nonlinearly on q.

- Unstable systems difficult to treat.

• Often used in engineering applications e.g. in packages gOPT
(PSE), DYOS (Marquardt), ...



Direct Collocation (Sketch) [Tsang et al. 1975]

• Discretize controls and states on fine grid with node values si ≈ x(ti).

• Replace infinite ODE

0 = ẋ(t) − f(x(t), u(t)), t ∈ [0, T ]

by finitely many equality constraints

ci(qi, si, si+1) = 0, i = 0, . . . , N − 1,

e.g. ci(qi, si, si+1) := si+1−si

ti+1−ti

− f
(

si+si+1

2 , qi

)

• Approximate also integrals, e.g.

∫ ti+1

ti

L(x(t), u(t))dt ≈ li(qi, si, si+1) := L

(
si + si+1

2
, qi

)

(ti+1 − ti)



NLP in Direct Collocation
After discretization obtain large scale, but sparse NLP:

minimize
s, q

N−1∑

i=0

li(qi, si, si+1) + E (sN )

subject to

s0 − x0 = 0, (fixed initial value)
ci(qi, si, si+1) = 0, i = 0, . . . , N − 1, (discretized ODE model)

h(si, qi) ≥ 0, i = 0, . . . , N, (discretized path constraints)
r (sN ) ≥ 0. (terminal constraints)

Solve e.g. with SQP method for sparse problems.



What is a sparse NLP?

General NLP:

min
w

F (w) s.t.

{

G(w) = 0,

H(w) ≥ 0.

is called sparse if the Jacobians (derivative matrices)

∇wGT =
∂G

∂w
=

(
∂G

∂wj

)

ij

and ∇wHT

contain many zero elements.

In SQP methods, this makes QP much cheaper to build and to solve.



Direct Collocation: Pros and Cons
• Simultaneous simulation and optimization.

+ Large scale, but very sparse NLP.

+ Can use knowledge of x in initialization.

+ Can treat unstable systems well.

+ Robust handling of path and terminal constraints.

- Adaptivity needs new grid, changes NLP dimensions.

• Successfully used for practical optimal control e.g. by Biegler
and Wächter (IPOPT), Betts, Bock/Schulz (OCPRSQP), v. Stryk
(DIRCOL), ...



Direct Multiple Shooting [Bock and Plitt, 1981]

• Discretize controls piecewise on a coarse grid

u(t) = qi for t ∈ [ti, ti+1]

• Solve ODE on each interval [ti, ti+1] numerically,
starting with artificial initial value si:

ẋi(t; si, qi) = f(xi(t; si, qi), qi), t ∈ [ti, ti+1],

xi(ti; si, qi) = si.

Obtain trajectory pieces xi(t; si, qi).

• Also numerically compute integrals

li(si, qi) :=

∫ ti+1

ti

L(xi(ti; si, qi), qi)dt



Sketch of Direct Multiple Shooting
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NLP in Direct Multiple Shooting

q q q q q q q q q q
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q

p

q

minimize
s, q

N−1∑

i=0

li(si, qi) + E (sN )

subject to

s0 − x0 = 0, (initial value)
si+1 − xi(ti+1; si, qi) = 0, i = 0, . . . , N − 1, (continuity)

h(si, qi) ≥ 0, i = 0, . . . , N, (discretized path constraints)
r (sN ) ≥ 0. (terminal constraints)



Structured NLP
• Summarize all variables as w := (s0, q0, s1, q1, . . . , sN ).

• Obtain structured NLP

min
w

F (w) s.t.

{

G(w) = 0

H(w) ≥ 0.

• Jacobian ∇G(wk)T contains dynamic model equations.

• Jacobians and Hessian of NLP are block sparse, can be exploited
in numerical solution procedure.



Test Example: Initialization with u(t) ≡ 0

single shooting:



Multiple Shooting: First Iteration

single shooting:



Multiple Shooting: 2nd Iteration

single shooting:



Multiple Shooting: 3rd Iteration and Solution

single shooting:



Direct Multiple Shooting: Pros and Cons

• Simultaneous simulation and optimization.

+ uses adaptive ODE/DAE solvers

+ but NLP has fixed dimensions

+ can use knowledge of x in initialization (here bounds; more
important in online context).

+ can treat unstable systems well.

+ robust handling of path and terminal constraints.

+ easy to parallelize.

- not as sparse as collocation.

• Used for practical optimal control e.g by Franke (“HQP”), Terwen
(DaimlerChrysler); Santos and Biegler; Bock et al. (“MUSCOD-
II”)



Conclusions: Optimal Control Family Tree
(((((((((((((((((((

����������

�
�

��

Hamilton-Jacobi-
Bellman Equation:

Tabulation in
State Space

Indirect Methods,
Pontryagin:

Solve Boundary Value
Problem

Direct Methods:
Transform into Nonlinear

Program (NLP)
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Single Shooting:
Only discretized controls

in NLP
(sequential)

Collocation:
Discretized controls and

states in NLP
(simultaneous)

Multiple Shooting:
Controls and node start

values in NLP
(simultaneous/hybrid)
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