
The Lifted Newton Method
 for Nonlinear Optimization

Moritz Diehl
Optimization in Engineering Center (OPTEC)

K.U. Leuven, Belgium
joint work with Jan Albersmeyer

Overview

  Idea of Lifted Newton Method
  An algorithmic trick to exploit structure "for free"
  Application to optimization
 Convergence analysis
 Numerical Tests

Lifted Newton Method in detail described in:

Simplified Setting: Root Finding Problem

Aim: solve root finding problem

where is composed of several nonlinear subfunctions:

Simplified Setting: Root Finding Problem

Aim: solve root finding problem

where is composed of several nonlinear subfunctions:

Idea: "Lift" root finding problem into a higher dimensional space…

Lifted Problem

The equivalent, "lifted" problem is:

with

Why to lift and increase the system size?

  Lifting is generalization of "multiple shooting” for
•  boundary value problems [Osborne 1969]

•  ODE / PDE parameter estimation [Bock1987, Schloeder1988]

•  optimal control [Bock and Plitt 1984, Gill et al. 2000, Schaefer2005]

  Lifting offers advantages in terms of
•  sparsity exploitation (not today's focus)
•  more freedom for initialization
•  faster local contraction rate

Motivating Toy Example

 Original scalar root finding problem:

  Lifted formulation: 5 equations in 5 variables:

 Compare lifted and unlifted Newton iterates.
 Use same initial guess – obtain lifted variables by forward evaluation.

Motivating Toy Example

  First iteration is identical, as we initialized identically
  Lifted Newton method converges in 7 instead of 26 iterations!

In each lifted Newton iteration

we have to solve a large linear system:

It is large and structure can be exploited…

… but exploitation algorithms have so far been difficult to implement
[Schloeder 1988, Schaefer 2005].

Lifted Problem is much larger ... is it more expensive?

Overview

  Idea of Lifted Newton Method
 An algorithmic trick to exploit structure "for free"
  Application to optimization
 Convergence analysis
 Numerical Tests

Algorithmic Trick: Preliminaries 1

"Lifted residual" (after minor code additions):

Original "user function":

Algorithmic Trick: Preliminaries 2

Write

with

in each lifted Newton iteration, we have to solve:

How to solve this linear system efficiently ?

Well-known condensing algorithm

Can eliminate

to get “condensed” system in unlifted dimensions:

First solve this sytem:
Then expand solution:

But how to compute a, b, A, B efficiently ?

Basis of new trick: an auxiliary function

Define

as implicit function satisfying a perturbed fixed point equation (by vector d)

PROPOSITION: if then

 and

But how to obtain Z ?

Obtain Z by another minor code modification

 Can show that Z is obtained by one evaluation of the following
function:

Using Z, can easily compute a, A, b, B via directional derivatives:

and then compute the Newton step

Computational effort per iteration:
  computing A & B (in one combined forward sweep)
  factoring B

Small extra efforts for lifting [cf. Schloeder 1988]:

  computing vector a (one extra directional derivative)
 matrix vector product

Costs of generating and solving linear system

Overview

  Idea of Lifted Newton Method
  An algorithmic trick to exploit structure "for free"
 Application to optimization
 Convergence analysis
 Numerical Tests

Two lifted algorithms

  Lifted Gauss-Newton Method

  Lifted SQP Method

Lifted Gauss-Newton

 Original Problem:

  Lifted Problem:

(obtained by lifting)

Lifted Gauss-Newton: Quadratic Subproblems

  Linearized lifted problem = structured QP subproblem:

 Condensed QP (solved by dense QP solver):

easily get as lifted derivatives
of

Lifted Gauss-Newton: Quadratic Subproblems

  Linearized lifted problem = structured QP subproblem:

 Condensed QP (solved by dense QP solver):

easily get as lifted derivatives of

Two lifted algorithms

  Lifted Gauss-Newton Method

  Lifted SQP Method

 Regard unconstrained optimization problem:

  Lifted formulation:

  Aim is to automatically get efficient implementation of large SQP method
  Idea: Lift root finding problem:

 Question: Which variables shall be lifted ?

Lifted SQP Method: Problem Statement

To compute perform the following code:

Gradient evaluation via adjoint differentiation

function value

gradient

To compute perform the following code:

Gradient evaluation via adjoint differentiation

function value

gradient

Lifted Newton equivalent to Full Space SQP

THEOREM: If we lift with respect to all
 intermediate variables:

then full space SQP and lifted Newton iterations are identical, with

COROLLARY: Same equivalence holds for lifting of constrained problems:

if we lift Lagrange gradient and constraint:

Overview

  Idea of Lifted Newton Method
  An algorithmic trick to exploit structure "for free"
  Application to optimization
 Convergence analysis
 Numerical Tests

Why does lifting often improve convergence speed ?

Simple model problem: chain of scalar functions

 Regard a sequence of scalar functions:

  after affine transformations, can assume that solution is zero and

  under these circumstances, the non-lifted function is:

Convergence speed of Non-Lifted Newton

 Derivative is given by

  It is easy to show that non-lifted Newton iterations contract like:

i.e. quadratic convergence with contraction constant

  Lifted residual is

THEOREM: Lifted Newton iterations contract in a "staggered" way:

(if all have the same sign, last variable is "leader" and contracts fastest)

Lifted Newton Convergence

Convergence for motivating toy example

Practical Conclusions from Theorem

Two cases:

  Same curvature  lifted Newton better.
 E.g. in simulation with iterative calls of same time stepping function

 Opposite curvature  unlifted Newton better.
 e.g. decomposed as
 Unlifted Newton converges in first iteration, lifted not!

Overview

  Idea of Lifted Newton Method
  An algorithmic trick to exploit structure "for free"
  Application to optimization
 Convergence analysis
 Numerical Tests

Large Example: Shallow Water Equation [Copsey 09]

 Regard 2-D shallow water wave equation (with unknown parameters)

 Discretize all 3 states u, v, h on 30 x 30 grid and perform 10000
timesteps (= 27 million variables !)

 Measure only height h every 100 time steps (= 90 000
measurements)

  Aim: estimate 2 unknown parameters, water depth H and viscous
friction coefficient b

Shallow Water Example: Measurements

Shallow Water Example: Measurements

Shallow Water Example: Measurements

Shallow Water Example: Measurements

Shallow Water: Compare three Gauss-Newton variants

(A) Non-lifted Newton with 2 variables only

(B) Lifted Newton (with 90 000 lifted variables), initialized
 “automatically”, like non-lifted variant via a forward simulation

(C) Lifted Newton, but use all 90 000 height measurements for
 initialization

Iteration count for three methods (diff. initial guess)

CPU time per iteration: 9 s for unlifted, 12 s for lifted
(Note: formulation e.g. in AMPL would involve 27 million variables)

 (A) (B) (C)

Convergence for another PDE parameter estimation example

Summary

  Lifting offers advantages for Newton type optimization:
•  faster local convergence rate (observed & proven in simplified setting)
•  more freedom for initialization

  Structure exploiting "Lifted Newton Methods" can easily be generated for
any given user functions and any Newton type method:
•  only minor code additions
•  nearly no additional costs per iteration
•  compatible with SQP, BFGS, Gauss-Newton, …
•  compatible with any linear solver for condensed systems

