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Overview 

  Idea of Lifted Newton Method 
  An algorithmic trick to exploit structure "for free" 
  Application to optimization 
 Convergence analysis 
 Numerical Tests 

Lifted Newton Method in detail described in: 



Simplified Setting: Root Finding Problem 

Aim: solve root finding problem 

where                             is composed of several nonlinear subfunctions: 



Simplified Setting: Root Finding Problem 

Aim: solve root finding problem 

where                             is composed of several nonlinear subfunctions: 

Idea: "Lift" root finding problem into a higher dimensional space… 



Lifted Problem 

The equivalent, "lifted" problem is: 

with  



Why to lift and increase the system size? 

  Lifting is generalization of  "multiple shooting” for 
•  boundary value problems [Osborne 1969] 

•  ODE / PDE parameter estimation [Bock1987, Schloeder1988] 

•  optimal control [Bock and Plitt 1984, Gill et al. 2000, Schaefer2005] 

  Lifting offers advantages in terms of 
•  sparsity exploitation (not today's focus) 
•  more freedom for initialization 
•  faster local contraction rate 



Motivating Toy Example 

 Original scalar root finding problem: 

  Lifted formulation: 5 equations in 5 variables: 

 Compare lifted and unlifted Newton iterates.  
 Use same initial guess – obtain lifted variables by forward evaluation. 



Motivating Toy Example 

  First iteration is identical, as we initialized identically 
  Lifted Newton method converges in 7 instead of 26 iterations! 



In each lifted Newton iteration 

we have to solve a large linear system: 

It is large and structure can be exploited… 

… but exploitation algorithms have so far been difficult to implement 
[Schloeder 1988, Schaefer 2005]. 

Lifted Problem is much larger ... is it more expensive? 
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Algorithmic Trick: Preliminaries 1 

"Lifted residual" (after minor code additions): 

Original "user function": 



Algorithmic Trick: Preliminaries 2 

Write 

with 

in each lifted Newton iteration, we have to solve: 

How to solve this linear system efficiently ? 



Well-known condensing algorithm 

Can eliminate 

to get “condensed” system in unlifted dimensions: 

First solve this sytem: 
Then expand solution: 

But how to compute a, b, A, B efficiently ? 



Basis of new trick: an auxiliary function 

Define  

as implicit function satisfying a perturbed fixed point equation ( by vector d  ) 

PROPOSITION: if                                      then 

                            and 

But how to obtain Z ?  



Obtain Z by another minor code modification 

 Can show that Z is obtained by one evaluation of the following 
function: 



Using Z, can easily compute a, A, b, B via directional derivatives: 

and then compute the Newton step 

Computational effort per iteration: 
  computing A & B (in one combined forward sweep) 
  factoring B 

Small extra efforts for lifting [cf. Schloeder 1988]: 

  computing vector a (one extra directional derivative) 
 matrix vector product 

Costs of generating and solving linear system 
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Two lifted algorithms 

  Lifted Gauss-Newton Method 

  Lifted SQP Method 



Lifted Gauss-Newton 

 Original Problem: 

  Lifted Problem: 

( obtained by lifting                                                )  



Lifted Gauss-Newton: Quadratic Subproblems 

  Linearized lifted problem = structured QP subproblem: 

 Condensed QP (solved by dense QP solver): 

easily get                                                           as lifted derivatives 
of 



Lifted Gauss-Newton: Quadratic Subproblems 
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 Condensed QP (solved by dense QP solver): 

easily get                                                           as lifted derivatives of 



Two lifted algorithms 

  Lifted Gauss-Newton Method 

  Lifted SQP Method 



 Regard unconstrained optimization problem: 

  Lifted formulation: 

  Aim is to automatically get efficient implementation of large SQP method 
  Idea: Lift root finding problem:      

 Question: Which variables shall be lifted ?   

Lifted SQP Method: Problem Statement 



To compute                                       perform the following code: 

Gradient evaluation via adjoint differentiation 

function value 

gradient 



To compute                                       perform the following code: 

Gradient evaluation via adjoint differentiation 

function value 

gradient 



Lifted Newton equivalent to Full Space SQP 

THEOREM: If we lift                                 with respect to all 
 intermediate variables: 

then full space SQP and lifted Newton iterations are identical, with  

COROLLARY: Same equivalence holds for lifting of constrained problems: 

if we lift Lagrange gradient and constraint: 
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Why does lifting often improve convergence speed ? 



Simple model problem: chain of scalar functions 

 Regard a sequence of scalar functions: 

  after affine transformations, can assume that solution is zero and 

  under these circumstances, the non-lifted function is: 



Convergence speed of Non-Lifted Newton 

 Derivative is given by 

  It is easy to show that non-lifted Newton iterations contract like: 

i.e. quadratic convergence with contraction constant  



  Lifted residual is  

THEOREM: Lifted Newton iterations contract in a "staggered" way: 

(if all        have the same sign, last variable is "leader" and contracts fastest) 

Lifted Newton Convergence 



Convergence for motivating toy example 



Practical Conclusions from Theorem 

Two cases: 

  Same curvature  lifted Newton better. 
 E.g. in simulation with iterative calls of same time stepping function 

 Opposite curvature  unlifted Newton better.  
 e.g.                           decomposed as  
 Unlifted Newton converges in first iteration, lifted not! 
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Large Example: Shallow Water Equation [Copsey 09] 

 Regard 2-D shallow water wave equation (with unknown parameters) 

 Discretize all 3 states u, v, h on 30 x 30 grid and perform 10000 
timesteps ( = 27 million variables ! ) 

 Measure only height h every 100 time steps ( = 90 000 
measurements) 

  Aim: estimate 2 unknown parameters, water depth H and viscous 
friction coefficient b 



Shallow Water Example: Measurements 
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Shallow Water Example: Measurements 



Shallow Water Example: Measurements 



Shallow Water: Compare three Gauss-Newton variants  

(A)  Non-lifted Newton with 2 variables only 

(B)  Lifted Newton (with 90 000 lifted variables), initialized 
 “automatically”, like non-lifted variant via a forward simulation 

(C)  Lifted Newton, but use all 90 000 height measurements for 
 initialization 



Iteration count for three methods (diff. initial guess) 

CPU time per iteration:  9 s  for unlifted,  12 s  for lifted 
(Note: formulation e.g. in AMPL would involve 27 million variables)  

       (A)                      (B)                          (C) 



Convergence for another PDE parameter estimation example 



Summary 

  Lifting offers advantages for Newton type optimization: 
•  faster local convergence rate (observed & proven in simplified setting) 
•  more freedom for initialization  

  Structure exploiting "Lifted Newton Methods" can easily be generated for 
any given user functions and any Newton type method: 
•  only minor code additions 
•  nearly no additional costs per iteration 
•  compatible with SQP, BFGS, Gauss-Newton, … 
•  compatible with any linear solver for condensed systems 


