The Lifted Newton Method

for Nonlinear Optimization

Moritz Diehl
Optimization in Engineering Center (OPTEC)
K.U. Leuven, Belgium
joint work with Jan Albersmeyer



Overview

® ldea of Lifted Newton Method

® An algorithmic trick to exploit structure "for free"
® Application to optimization

® Convergence analysis

® Numerical Tests
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Simplified Setting: Root Finding Problem

Aim: solve root finding problem
F(u)=20

where F < C'Y(R™«,R")is composed of several nonlinear subfunctions:



Simplified Setting: Root Finding Problem

Aim: solve root finding problem

where F < C'Y(R™«,R")is composed of several nonlinear subfunctions:

Algorithm 1: Function with output of intermediate variables

Input : u e R"

Output: 1 e R™, ... 2, € R" F € R"
begin
fori=1,2..... m do
||z = fi(u, 21,29, ..., 2i_1);
end for
F = fplu,xq1, 29, ..., 2);
end

Idea: "Lift" root finding problem into a higher dimensional space...



Lifted Problem

The equivalent, "lifted" problem is:

with
f1 (u) — @
foluw, 1) —  T9
Glu,x) =
f'm. ("ll.‘ L1yeooyim—1 ) — I

frlu,z1,...,2)



Why to lift and increase the system size?

® Lifting is generalization of "multiple shooting” for
* boundary value problems [Osborne 1969]
 ODE / PDE parameter estimation [Bock1987, Schloeder1988]
« optimal control [Bock and Plitt 1984, Gill et al. 2000, Schaefer2005]

® Lifting offers advantages in terms of
« sparsity exploitation (not today's focus)
* more freedom for initialization
» faster local contraction rate



Motivating Toy Example

® Original scalar root finding problem:

F(u) = u'® —2 =0

® Lifted formulation: 5 equations in 5 variables:

Iy R . q2
f[f]_ — ’UZ fL‘Z o« — le

. 2
Iry = fl?é Ty = Ty
Fi=x4—2

® Compare lifted and unlifted Newton iterates.
® Use same initial guess — obtain lifted variables by forward evaluation.



Motivating Toy Example

® Firstiteration is identical, as we initialized identically
e Lifted Newton method converges in 7 instead of 26 iterations!
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Lifted Problem is much larger ... is it more expensive?

In each lifted Newton iteration

Pl ok N Axk
uk+t )k Auk

we have to solve a large linear system:

Aljk B (::)C;Y &k —1 ok
( Auk ) - [U('u.r)(l s U )] Gz, u")

It is large and structure can be exploited...

... but exploitation algorithms have so far been difficult to implement
[Schloeder 1988, Schaefer 2005].
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Algorithmic Trick: Preliminaries 1

Original "user function":

Algorithm 1: Function with output of intermediate variables

Input :u e R™

Output: 2z e R™ ... ,: Uy € R, F € R«
begin
fori=1.2....,m do
| &Tr; = f.i('ll-. 1,9,y ..., ;171',_1);
end for
F = fp(‘ll,, T1,T9,... .;l‘m):
end

"Lifted residual” (after minor code additions):

Algorithm 2: Residual function G(u,y)

Input : w,yq,..., Urn
Output: G4, ..., dn F
begin

fori=1.,2,...,mdo
r; = filu,xy, 29, ..., 25 1);

Al

7y = i — Yis

T = Yis
end ior

F = frlu,z1,29,...,2,);
end




Algorithmic Trick: Preliminaries 2

Write H(u,2) — v
Glu,xz) = ( fr(u, z) )
with f1(
( falu, 11) \
H(u,z) =\ .
\ fm(uw, 21, ..., 2m_1) )

in each lifted Newton iteration, we have to solve:

OH
H(u,xz)—x +(dH(u x) —1I, >A1+—(u x)Au =0
dx du

) Ofr
Jr(u,z) + : ()le (u, x)Ax + ‘_fF (u, x)Au =0

Ju

How to solve this linear system efficiently ?



Well-known condensing algorithm

oOH

Can eliminate Az = (
ox

N

—1
(u, ) — ]Inl.> (H(u,z) —x)+

v

OH N\ lon
— ( 5 (u,x) — ]Inm) W(lll) Au

A

~

=:A

to get “condensed” system in unlifted dimensions:

0 = fr(u,z)+ fF(u rja —+ (af”(u l)—l—%(u,ar)A) Au
=: b + B Au.

First solve this sytem: Au = —B7 1y
Then expand solution: Ay = g 4+ A Au

But how to compute a, b, A, B efficiently ?



Basis of new trick: an auxiliary function

Define Z(u,d)

as implicit function satisfying a perturbed fixed point equation ( by vector d )

H(u,z)—2—d=0

PROPOSITION: if d = H(u,z)—x  then

07 OH ~OH
E(u d) = — (I(U xr) — ]Inr> —(u, )

and

oz OH —1
%(U. (1) — (()—l(u .l,) — ]_—[,,1"1‘)

But how to obtain Z ?



Obtain Z by another minor code modification

® Can show that Z is obtained by one evaluation of the following
function:

Algorithm 3: Modified function Z(u, d)
Input : u.dq,....,d,
Output: z1,...,2,,, F
begin

fori=1,2,....,mdo

r; = filu,x1, 09, ..., 2,_1);

2 = 1 — dy

T = 2.
end for
F=frlu,zy,29,...,2);
end




Costs of generating and solving linear system

Using Z, can easily compute q, 4, b, B via directional derivatives:

()Z ()Z

b= fp(u,:zr)+ fF ~(u, x)a B = OfF(u x) + djf (u, z)A

ou

and then compute the Newton step
Au=—B"1b

Ar=a+ A Au

Computational effort per iteration:
e® computing A & B (in one combined forward sweep)
e factoring B

Small extra efforts for lifting [cf. Schioeder 1988]:

® computing vector a (one extra directional derivative)
® matrix vector product A Au
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Two lifted algorithms

® Lifted Gauss-Newton Method

® Lifted SQP Method



Lifted Gauss-Newton

| ‘
e Original Problem: min 5||F1(’u)||§

—

S.t.

F5(u) {i} 0

V

® Lifted Problem: 1 ‘
min || fr, (u, )3

S.t.
} 0

fr(u,x) {
H(u,x) —x 0

VAN

( obtained by lifting F(u) := (Fi(u), Fo(u)")t )



Lifted Gauss-Newton: Quadratic Subproblems

® Linearized lifted problem = structured QP subproblem:

) . 2
1 IfF Au
min  — Uk, T ) + - L (up.xs
Au, Az 2 fFl (u k) d(u, x) (u k) (AJ‘ 0
S.t.

Iry (- (Au) (=,
festun) + g o) (3) (S}




Lifted Gauss-Newton: Quadratic Subproblems

® Linearized lifted problem = structured QP subproblem:

) . 2
1 IfF Au
min  — Uk, T ) + - L (up.xs
Au, Az 2 fFl (u k) d(u, x) (u k) (AJ‘ 0
S.t.

Iry (- (Au) (=,
festun) + g o) (3) (S}

OH Au :
H(ug,xr) — o) + a(u, ) (ur, ) (AU) — Az = 0

® Condensed QP (solved by dense QP solver): 1 ‘
( y ) lgi,n —)Hbl + Bl AUH%

S.t.
by + BoAu {i} 0

easily get b = (b ,05)" and B = (B, BY)" as lifted derivatives of
F(u) == (Fi(u)', Fo(u)h)!



Two lifted algorithms

® Lifted Gauss-Newton Method

® Lifted SQP Method



Lifted SQP Method: Problem Statement

® Regard unconstrained optimization problem: min 99(-11,)
u
® Lifted formulation: min folu,wi,wo,. .., Wy )
w,w
S.t.
/ fi( !
fo u, ul) — w2
glu,w) = , =0
\ f m ('U-- Wey.. ., 'U-"m.—l) — Wy

® Aim is to automatically get efficient implementation of large SQP method
® |dea: Lift root finding problem:

F(u) :=V,po(u) =0

® Question: Which variables shall be lifted ?



Gradient evaluation via adjoint differentiation

To compute F(u) := Vyp(u) perform the following code:

function value Wi, = frn(w,we, ... w, — 1)
T——) = folu,wy, ... wy,)
Wy, = VS
Wy—1 = Vawm_ifo + V1 Jm@m

m
wy = vI."lb‘lf @ + E v'wlfi w;
=2

m

(3.8a)
(3.8b)



Gradient evaluation via adjoint differentiation

To compute F (u

un

function value W,

—)

ﬁ’nz —1

W

Wm I~

gradient —

— f1 ("U,)

— fg (u, w1 )

— f m ("lL. wy Wn l)

= fo(u,w Wy, )

— vur, f @

=V W 1f @ + vwm_lfvn "lz’m.
m

— v;'lL.‘1f 7] + Z v'wlfilz’-i
=2

m

— Vuf@ + Z Vufl "lf’,‘.

) = Vaup(u) perform the following code:



Lifted Newton equivalent to Full Space SQP

THEOREM: If we lift F'(u) :
€I

Vaup(u) with respect to all
intermediate variables: ( 0

Wy ooy Wiy Wypys « o - 5 W1 )

then full space SQP and lifted Newton iterations are identical, with A = w

COROLLARY: Same equivalence holds for lifting of constrained problems:

min ¢(u) min folu,w)
w —_—
subject to subject to
h(u.) = 0. g(u.,-ur) — O‘
fr(u,w) =0,

if we lift Lagrange gradient and constraint:

V. Eol’ig
h
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Why does lifting often improve convergence speed ?



Simple model problem: chain of scalar functions

® Regard a sequence of scalar functions:

1 = fl ("ll.), £y = fQ(I‘l ) yoees Ly = fm('l?m—l)~ and fF (ir"m.) — fm.+1 ('I"m.)

® after affine transformations, can assume that solution is zero and

filz) =z + b;j(x) +O| |

® under these circumstances, the non-lifted function is:

F(u) = fong1 ([ f1(u)..)) = u + ( Z bi.)UQ -+ O(‘U’IB)

—



Convergence speed of Non-Lifted Newton

® Derivative is given by

m-+1
F/(u,) =14+ 2( Z b,l-)*u, = O(|,u..|2)
i=1

® |t is easy to show that non-lifted Newton iterations contract like:
m-+1

ulF+1 = ( Z b.i) (u*12 + O(Jul*l}?)

1=1

m-1
l.e. quadratic convergence with contraction constant (ZIZJI bi)



Lifted Newton Convergence

® Lifted residual is

9
( u + byu” — @1 \
9

ry + bQI‘f — I

Glu,x) = + O (H( lll )

Typ—1 + bm l m— 1 Um
\ Tm + bm+1 T m /

)

THEOREM: Lifted Newton iterations contract in a "staggered" way:
[ u \ o ( b ( “[k] +Zm+1 (ll"y:]l)H \

m k
Iy Zl:_;l bl (;F'E—]l)
| : o (“( y
1

' ' 2 2
K] K]
Tm—1 b'm. <'~lvm —1 + bm +1 | Tm

\ T, / \ bt («1’%])2 )

(if all b; have the same sign, last variable is "leader" and contracts fastest)




Convergence for motivating toy example

error

Lifted

4
iteration




Practical Conclusions from Theorem

Two cases:

® Same curvature - lifted Newton better.
E.g. in simulation with iterative calls of same time stepping function

® Opposite curvature - unlifted Newton better.
eg. F(u)=u decomposedas fi(u)=1u> folz)=+x
Unlifted Newton converges in first iteration, lifted not!
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Large Example: Shallow Water Equation [Copsey 09]

® Regard 2-D shallow water wave equation (with unknown parameters)

—qgO. h(t u(t,z,y)
—Jc)hz‘zz/ v(t,x,y)

—H| [0 u(t, x,y) + Oyv(t,z,y)]

dyu(t,x,y)
()tl( L Y)
()th(.g;..;)

® Discretize all 3 states u, v, h on 30 x 30 grid and perform 10000
timesteps ( = 27 million variables ! )

® Measure only height /1 every 100 time steps ( = 90 000
measurements)

® Aim: estimate 2 unknown parameters, water depth H and viscous
friction coefficient b



Shallow Water Example: Measurements




Shallow Water Example: Measurements




Shallow Water Example: Measurements




Shallow Water Example: Measurements




Shallow Water: Compare three Gauss-Newton variants

(A) Non-lifted Newton with 2 variables only

(B) Lifted Newton (with 90 000 lifted variables), initialized
“automatically”, like non-lifted variant via a forward simulation

(C) Lifted Newton, but use all 90 000 height measurements for
initialization



Iteration count for three methods (diff. initial guess)

(A) (B) (C)
b H # iterations #iterations #iterations
unlifted lifted (autom. init.) | lifted (meas init.)

0.5 | 0.01 5 5 4

5 0.01 6 5 4

15 | 0.01 17 7 6
30 | 0.01 27 7 6

2 | 0.005 31 9 5

2 0.02 38 12 5

2 0.1 44 13 8
0.2 | 0.001 33 12 7

1 | 0.005 A7 10 5

4 0.02 56 10 5

1 0.02 44 9 6

20 | 0.001 24 10 6

‘true values b = 2 and H = 0.01

CPU time per iteration: 9 s for unlifted, 12 s for lifted
(Note: formulation e.g. in AMPL would involve 27 million variables)



Convergence for another PDE parameter estimation example

150
10 T T T T 1 1
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® Lifting offers advantages for Newton type optimization:
 faster local convergence rate (observed & proven in simplified setting)
« more freedom for initialization

® Structure exploiting "Lifted Newton Methods" can easily be generated for
any given user functions and any Newton type method:

* only minor code additions

« nearly no additional costs per iteration

« compatible with SQP, BFGS, Gauss-Newton, ...

« compatible with any linear solver for condensed systems



