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Linear MPC (or QP subproblems in NMPC) 

For  
•  linear dynamic system  
•  linear constraints   
•  quadratic cost 
only quadratic program (QP) needs to be solved: 



Eliminate states via “condensing“, obtain smaller scale 
quadratic program (QP) in variables 

                             (assumption: H positive definite) 

QP depends on       via affine functions           and  

Linear MPC = parametric QP  



K Karush-Kuhn-Tucker (KKT) Conditions 



Define set of “feasible parameters“: 

Well known: 

THEOREM: Set      is convex, and can 
be partitioned into polyhedral „critical 
regions“ each corresponding to a 
different working set      .  
QP solution on each region is affine in  

Parametric QP Solution Structure 



1.  g     ,   b   affine: then     ,     affine,  
    because solution of linear system: 

2.      ,         affine, therefore 

are linear constraints on         that 
define polyhedral „critical region“ in 

Sketch of Proof for Polyhedral Critical Regions 

Check KKT conditions for fixed working 
set     : 



Idea: Compute control on all 
critical regions in advance 
(Bemporad, Borrelli, Morari, 2002). 

Pro: MPC in microsecs. possible 
Contra: problem size limited  

Example: 50 variables, lower and 
upper bounds:  
350 =1023 possible critical regions. 
Prohibitive. 

Explicit MPC: Precalculate Everything 



 Combine Explicit and Online MPC 

 compute affine solution only on 
current critical region 

 go on straight line from old to 
new problem data (      convex ! ) 

 solve each QP on path exactly 
(keep primal-dual feasibility)! 

 need to change working set only 
at boundaries of critical regions 

Online Active Set Strategy (qpOASES) 



 determine change in b       and     g, ,  solve KKT system 

 choose steplength            maximal such that        

     still holds for all inactive (primal) constraints, and 

     for all active dual variables: Set 

     with                                        and  

How to compute each step? 



  add or remove constraints to/from working set 
when crossing borders of critical regions 

  use null space approach, keep QR-  
factorization of active constraint matrix, and 
Cholesky factorization of projected hessian: 

  each working set change costs only O(n2) flops, 
exactly as one QP iteration in efficient QP solvers! 

How to change working set? 



  during homotopy, often redundant 
constraints become active and cause 
degeneracy 
  example of three active constraints 
in 2-D: 

Extra difficulty: linear independence often violated 



Without linear independence, KKT system becomes 
unsolvable! Addition of degenerate constraints must be 
avoided. 

Remedy [Best 1996]: before adding extra row           to          
solve auxiliary system 

if s=0    , linear dependence is detected, and       helps to 
find a constraint from       that can be removed  

How to deal with degeneracy? 



Summary of qpOASES Algorithm  



Limit number of active set changes per sampling time: 
  lag behind, if too many changes necessary 
  deliver solution of some problem between old and new 
  make good for lag in later problems 

Real-Time Variant of qpOASES Algorithm 



P convex: QP on path infeasible <=> new QP infeasible 

Stop at last feasible QP,  
wait for better posed  
problems 

Infeasibility treatment 



P convex: QP on path infeasible <=> new QP infeasible 

Stop at last feasible QP,  
wait for better posed  
problems 

Fortunately: 
new QP feasible <=> full path is feasible,  
and strategy works again 

Infeasibility treatment 



qpOASES: Open Code by Hans Joachim Ferreau 

qpOASES: 
open source C++ code by Hans Joachim Ferreau 

http://www.kuleuven.be/optec/software/qpOASES 



Application to Chain of Masses 

  10 balls  connected                                              
by springs, No. 1 fixed  

  3-D velocity of ball No. 10                       
controlled:  

  2nd order ODE for other balls: 

  Force according to Hooke’s law strongly 
nonlinear:  

  Together: 57 nonlinear ODEs, chaotic system	





After disturbance, chain crashes into wall  



MPC controller shall avoid crashing into wall 

  linearize system at steady state 

 choose 200 ms sampling time 

 predict 80 samples:                           
3 x 80 = 240 degrees of freedom 

 bounds (up/lo): 2 x 240 = 480 

 state constraints that avoid hitting 
the wall: 9 x 80 = 720 

Note: large QP with ~1 MB data	



first half of MPC horizon 



MPC respects bounds and state constraint 



Compare four QP strategies 

  Standard solver (QPSOL), cold start 

  QPSOL, warm start 

  Online Active Set Strategy (qpOASES), full convergence 

  qpOASES, real-time variant with at most 10 QP Iterations 

Note: Explicit MPC cannot be applied due to problem size	





Number of QP Iterations (Working Set Changes) 



Number of QP Iterations (Working Set Changes) 



Number of QP Iterations (Working Set Changes) 



Number of QP Iterations (Working Set Changes) 



Performance of Online Active Set Strategy 

 Number of QP working set changes 3-5 times lower than for 
QPSOL with warm starts 

 Can limit maximum number without much suboptimality 

Additionally: 

 QPSOL often even needs Phase1 LP Iterations 

 qpOASES needs no new matrix factorizations 

 CPU times compare even more favourably... 



CPU Time Comparison: qpOASES Factor 10 Faster 



OPTEC Fast MPC Group 
(Electrical and Mechanical Engineering) 



Time Optimal MPC: a 100 Hz Application 

 Quarter car: oscillating spring 
damper system 

 MPC Aim: settle at any new 
setpoint in in minimal time 

 Two level algorithm: MIQP 
 6 online data 
 40 variables + one integer  
 242 constraints (in-&output) 

 use qpOASES on dSPACE 
 CPU time: <10 ms 

Lieboud Van den Broeck in front of 
quarter car experiment 



Setpoint change without control: oscillations 



With LQR control: inequalities violated 



With Time Optimal MPC 



Time Optimal MPC: qpOASES Optimizer Contents 



Time Optimal MPC: a 60 Hz Application 

 Overhead crane 
 MPC Aim: settle at any new 

setpoint in in minimal time 
 Two level algorithm: MIQP 

 6 online data 
 40 variables + one integer  
 242 constraints (in-&output) 

 use qpOASES on dSPACE 
 CPU time: <10 ms 

Lieboud Van den Broeck 



qpOASES: open code, but direct industrial funding 

Hoerbiger: MPC of Large Bore Gas Engines for US Pipeline Compressors 

IPCOS: Efficient QP for Process Control 



qpOASES running on Industrial Control Hardware (20 ms)  



Conclusions 

 Linear and Nonlinear MPC need reliable QP solution 
 Explicit MPC prohibitive for nontrivial problem dimensions 
 Online Active Set Strategy (qpOASES) is one order of 

magnitude faster than conventional QP with warmstarts 
 Linear MPC in kHz range realizable even for larger QPs 
 Time Optimal MPC interesting alternative to tracking 


