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configuration. It is evident that as v, decreases (i.e., the arm straigh-
tens), the coupling between the joints becomes more severe, eventually
resulting in an unstable system.

V. CoONCLUSIONS

We have established the feasibility, at least in principle, of decoupling
the dynamics of a rigid-body model of a manipulator arm system. The
advantages of the open-loop synthesis in comparison with the classical
feedback solution [7] are two-fold: there is no need for complete state
feedback; in addition to being conceptually simple, the open-loop
synthesis is directly compatible with the 1JC design philosophy adopted
in most manipulator control systems.

Further work in this area includes a sensitivity study on the effect of
parameter variation on decoupling. It is known that a large class of
feedback decoupling solutions are structurally unstable [8]: even small
parameter variations may result in a breakdown of decoupling. Hence,
more future effort should be devoted to the study of approximate and
adaptive decoupling [9]. The open-loop design studied here presents a
feasible approach to adaptive decoupling in that most of the parameters
in the synthesis are known analytic functions of the arm or
motor /gearbox parameters. Problems in these and other areas, such as
the decoupling of manipulators with flexible arms, will continue to
demand our attention in the future.

APPENDIX
AN 1JC DEsSIGN

From (16) and (22), the closed-loop transfer function between 8y; and
&w; of the ESJ system is given by

8’;.‘(3) - Hi(s)g'
Oi(s) " say— H(s)(fi+fis) + Gi(s)

i

(A1)

The denominator polynomial function of (A.1) can, after some manipu-
lation, be written as

i

D(s)=KG(E +M2)[s2+sa,~(N,-KB -fi)—afi]

+ (higher order terms in s) (A2)

where

S N Kr ;i 2
""“(RLJM)/(JM*M )

The two dominant poles of (A.l1) are then given by the zeros of the
polynomial

D'(s)=s +s50,( NKz—f3) — o f} (A3)
where the gains f] and f; may, in principle, be chosen to yield any
desired damping ratio and bandwidth for the dominant modes. Further-
more, from (A.1), the input gain g’ may also be chosen to satisfy
steady-state requirements.

However, in addition to stability, most applications have constraint
requirements on the control and state variables which must be met in
order to avoid saturation problems. Suppose the control signal dv; of (22)
is not to exceed © volts in magnitude. We assume a priori that

[Bvi(D]<a, |8v(Dl<b, [dw(r)|<w.

Let the input gain g; be chosen such that at §w;=w, the steady-state
deflection of &y, is a; thus, by (A.1),

_ahi
i

-

(A4)

Then it is easy to verify that |6t;] < © provided the feedback gains satisfy
the following inequality:
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2a|fi|+ bl fi| < B.

Thus, for instance, a complete design for the feedback gains would be
given by the following conditions:

c!i(]vz‘I(B _fi) =2€wn
~afi=e
24| fil+ bl fi|=o

where £ and «, are, respectively, the damping ratio and natural
frequency for the dominant modes of the closed-loop ESJ system. Since
(A.6) contains three equations in only two design parameters, either £ or
w,, but not both, may be specified in order to yield a solution for the
feedback gains.

(A5)

(A.6)
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1. INTRODUCTION

The substantial real-time computational burden imposed by the ex-
tended Kalman filter (EKF) and related suboptimal nonlinear estimators
(cf. [1, ch. 6] significantly limits the scope of applications for which
these estimators are practical. The major portion of this computational
burden results from calculations associated with propagating the error-
covariance matrix, which in turn is used for real-time updating of the
gain matrix acting on the filter residuals. When one considers the gross
nature of the approximations that are routinely made in modeling the
stochastic disturbances affecting a system and to a lesser extent in
modeling the interplay between these disturbances and the system’s
nonlinearities, it seems somewhat surprising that so much real-time
computational effort should be devoted to careful propagation of the
model’s error-covariance matrix. The empirical fact that the EKF per-
forms well in many applications despite the gross nature of these routine
approximations suggests that perhaps the record of successes enjoyed by
the EKF is attributable to an intrinsic robustness against the effects of
approximations introduced in the design of its residual-gain.

With a view towards designing nonlinear estimators with greatly
reduced real-time computational requirements, we have been thusly
motivated to examine the possibility of employing a precomputed ap-
proximation to the EKF residual-gain, thereby entirely eliminating the
enormous computational burden of real-time error-covariance propagation.
The principal implications of the results we have obtained in this
connection are threefold.

First, we have found that the real-time propagation of error-covari-
ance may actually be unnecessary. Specifically, our results imply that for
many applications one can obtain satisfactory performance from a
constant-gain extended Kalman filter (CGEKF), designed to be optimal
for a stochastic linear time-invariant model crudely approximating the
actual nonlinear system. Second, aided by the structural simplicity of the
CGEKEF, we have been able to apply modern input-output techniques of
analysis to prove that the CGEKF is intrinsically robust against the
effects of approximations introduced in the design of its residual-gain
matrix. That is, we have proved that the CGEKF approach yields under
certain conditions a nondivergent nonlinear estimator even when a rela-
tively crude stochastic linear system model is used in designing the
residual gain. Our nondivergence results take the form of analytically
verifiable conditions which also can be used to test specific CGEKF
designs for nondivergence, thereby reducing the engineer’s dependence
on Monte Carlo simulation for design validation. Moreover, the nature
of these nondivergence conditions is such as to provide a basis for the
constructive modification and improvement of CGEKF designs.Third,
our results combine with the linear-quadratic-optimal-regulator robust-
ness results of {2] and [3] in a fashion reminiscent of the separation
theorem of estimation and control. We have proved that any nondiver-
gent estimates— and this includes nondivergent CGEKF estimates—
can be substituted for true values in a nonlinear feedback control system
without inducing instability. This suggests a powerful new technique,
based on linear-quadratic-Gaussian optimal feedback theory, for the
synthesis of simplified dynamical output-feedback compensators for
nonlinear regulator systems. The technique leads to a feedback com-
pensator design consisting of a cascade of a CGEKF and an optimal
constant linear-quadratic state-feedback (LQSF) gain matrix. We have
proved that the inherent robustness of optimal linear-quadratic state-
feedback against unmodeled nonlinearity [2], [3] combines with the
intrinsic robustness of the OCGEKF to assure that such feedback designs
will be closed-loop stable even in systems with substantial nonlinearity.

The aforementioned CGEKF robustness, nondivergence, and regula-
tor stability results are derived in the genmeral context of the class of
nonlinear estimators whose design is not necessarily based on statistical
considerations—for example, designs intended to optimize structural
simplicity or error-transient response, i.e., nonlinear observers (cf. [4]).
This general class of nonlinear estimators include as a special case the
CGEKF, which is suboptimally designed with respect to a statistical
criterion. In the context of this broader class of suboptimal nonlinear
estimators, our results provide analytically verifiable conditions which
can be used to test nondivergence and to evaluate robustness against the
effects of design approximations; though one cannot in general expect
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such designs to be as robust as the CGEKF. The CGEKF output-feed-
back separation-type property extends to this broader class of estimators,
showing that nondivergent estimates can, unconditionally, be substituted
true values in otherwise-stable feedback systems without ever causing
instability.

II. RELATED LITERATURE

The literature on the subject of robustness and computational consid-
erations in nonlinear estimation is sparse and largely inconclusive. The
discussion of nonlinear estimation in Schweppe [S, ch. 13] provides a
good intuitive understanding of the trade-offs between computational
requirements and residual-gain choice; though the possibility of a con-
stant residual-gain is not explicitly considered. The idea of using a
constant residual-gain for linear filtering is well known (cf. [1, pp.
238-242]), but the connection with nonlinear filtering has not been
established. The practicality of avoiding real-time error-covariance prop-
agation in nonlinear estimation by use of a precomputed, but estimate-
dependent, residual-gain is demonstrated by the simulation results of
Larson, Dressler, and Ratner [22]. References [4] and [6], which concern
nonlinear estimator stability and error bounds, respectively, appear to be
the most closely related to the present paper.

Gilman and Rhodes [6] suggest a procedure for synthesizing nonlinear
estimators with a precomputable, but time-varying, residual-gain. Their
estimator, like the traditional EKF, has the intuitively appealing struc-
ture of a model-reference estimator (cf. [5, p. 403]); that is, it consists of
an internal model of the system dynamics with observations entering via
a gain acting on the residual error between the system and model
outputs. The distinguishing feature of the estimator suggested in [6] is
that the residual-gain is chosen so as to minimize a certain upper bound
on the mean-square estimate error. This procedure tends to ensure a
robust design since, assuming the minimal value of the error-bound does
not “blow-up,” the estimator cannot diverge. A limitation of this design
procedure is that the error-bound may be very loose for systems with
substantial nonlinearity; so there is no assurance that the bound-mini-
mizing residual-gain is a good choice. Also, there is no a priori guarantee
that the resultant estimator will even be stable since the minimal error-
bound may become arbitrarily large as time elapses.

Tarn and Rasis [4] have proposed a constant-gain model-reference-
type nonlinear estimator which is a natural extension of Luenberger’s
observer for linear systems, having a design based solely on stability
considerations. The results of [4] show that, given such a nonlinear
observer design, if certain Lyapunov functions can be found, then one
can conclude that

a) The estimator is nondivergent;

b) The estimator can be used for state reconstruction in a full-state

feedback system without causing instability.
However, from an engineering standpoint they are nonconstructive: no
design synthesis procedure is suggested; no method is proposed for
constructing the Lyapunov functions required to test the stability of a
design; no procedure is suggested for optimizing the estimate accuracy
of the design. The CGEKF results presented in the present paper
address all these deficienceis by providing a constructive procedure for
synthesizing stable constant-gain model-reference estimator designs
which are to a first approximation optimally accurate. Moreover, our
results prove that, provided an estimator is nondivergent, it can be used
for state reconstruction without ever causing instability, irrespective of
the availability of Lyapunov functions.

III. NoTATION AND TERMINOLOGY

In this paper the input-output view of systems is taken, considering a
system to be an interconnection of “black boxes” each representable by
its input-output characteristics. As will become apparent, the input-out-
put view provides a convenient and natural setting for the discussion and
analysis of estimator robusiness and divergence, as well as feedback
system stability. In this section the pertinent terminology drawn from
[71-[11], and [20] is reviewed and the notion of estimator divergence is
formalized.
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An operator is a mapping of functions into functions—such as is
defined by a “black box” which maps input time-functions into output
time-functions. An operator is said to be nonanticipative if the value
assumed by its output function at any time instant 7, does not depend on
the values assumed by its input function at times ¢ >#;. An operator is
said to be memoryless or equivalently nondynamical if the instantaneous
value of its output at time #, depends only on the value of its input at
time f5. A dynamical operator is an operator which is not necessarily
nondynamical,

To facilitate the discussion, the various input and output functions
considered in this paper are presumed to be imbedded in extensions of
normed function spaces of the type

My(R4,R") 2 (2:RL>R"; ||zl < o0}
[11, p. 125] on which is defined the norm

3.1

Y .
Izl 2 Jim lzll, (32)
where for all 7,2,z
Nzl = <z.2),

Gz, 2 1 [Tl 20

(33)

(3.4)

for all 7>0.!

The quantity |jz]]> can be viewed as the “average power” in the
function z; in fact, if z is generated by an ergodic random process (cf.
[12, p. 327]), then ||z]? is simply the expected value of z 7(£)z(r).

Because the space 9N, may be unfamiliar to many readers, we briefly
discuss its relation to the similar, but distinet, space £, which is more
widely used in input-output system analysis. The feature that dis-
tinguishes oM, from £, is the introduction of the “normalizing factor”
1/ into the inner product (3.4). Whereas the £,-norm is appropriately
viewed as a measure of the “total energy” of a function, the normalizing
factor 1/7 leads to the “average power™ interpretation of the norm (3.2).
The space 9N, is larger than £,, every function in £, being included in
the subspace of 9, comprised of functions of zero norm.

The gain or norm of an operator §, denoted g(%) and ||F||, respec-
tively, are defined by

g
g2 sp LI (3.5)
o<zl <eo I2l5
0<T<
The incremental gain of ¥ is
5(%) & 1F2,~ Fzall,
g(®= suj g4l <ilr 3,
0<||Z|—«".I;|l,<o<:~ 21— 2, (3.6)
O<r<

If g(%) < o0, F is said to have finite gain. Likewise, if g(%) < oo, then ¥ is
said to have finite incremental gain. The operator ¥ is bounded if inputs
of finite norm produce outputs of finite norm; i.e., there exists a
continuous, increasing function p:R—R such that ||Fz| <p(lz]]). A
dynamical system is said to be bounded if the operator describing its
input-output characteristics is bounded; the system is said to be finite
gain stable if the operator has finite gain. An operator ¥ is said to be
strongly positive, denoted & >0, if for some € >0 and all z,7

{2, F2), >¢llz]1% (€N)]

If {FIx]lx €%} is a collection of operators whose input—output relations
are dependent upon the variable x €% and if, for some constant € >0
(which does not depend on x), (3.7) holds for all x, then we say that ] x]
is uniformly strongly positive; equivalently we write “uniformly for all
x,9[x]>0.” An operator ¥ is said to positive, denoted >0, if (3.7)
holds with e=0.

"The extension of IM,y(R,,R") consists of the set of all functions z: R, —R" such that
for each 7€ R, the quantity ||z||. is finite. The extension includes functions like e’ which
have infinite norm—cf. [20, part II).
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The Gateaux derivative [8, p. 17] of the operator ¥ at the point zg is
defined to be the bounded linear operator V%{z,] having the property
that for all z

VG1z0]2 = lim +(F(z0+ €2)~ F20), (38)
provided that such an operator V%]zy] exists. When the derivative
V] z,) exists, F is said to be Gateaux differentiable at zy. For example, if
% is memoryless, ie., if (Fz)()=RAz(¢)) for some f:R"—R", then
V2] is simply the Jacobian matrix (3f/9z)(zy) (cf. [8, p. 19]). Alterna-
tively, if F is a linear operator then V#[zo}=F for all z,.

The relevance of the above terminology to estimation stems from the
fact that for each control input function u, the error e = i—x of an
estimator can be represented as the output of a w-dependent operator
& [u] whose inputs are the system noise, say £ and measurement noise,
say @; ie.,

e2 t—x=5[ul(£0). 39

To formalize the notion of estimator divergence the following defini-
tions are introduced: an estimator is nondivergent if its error operator is
bounded uniformly in u, ie., if there exists a continuous, increasing
function p: R— R such that

S?‘Pllglu](&ﬂ)ll <p(IED1); (3.10)
it is convergent if p(-)=0, it is nondivergent with finite gain if
sup g(lu]) < co. (3.1D)

Evidently, convergence implies nondivergence with finite gain which
in turn implies nondivergence. These definitions can be loosely interpre-
ted as follows: an estimator is nondivergent if mean-square bounded
disturbances produce mean-square bounded estimate error; it is nondi-
vergent with finite gain if the mean-square estimate error is proportional
to the magnitude of the disturbances; it is convergent if the mean-square
error always tends to zero. An estimator that is not nondivergent is said
to be divergent.

IV. PrOBLEM FORMULATION

We consider the problem of estimation for the nonlinear system

2 e=GIwlx+Bwlu+g  x(0)=0
y=Clwlx+0

@n

where w is a vector of functions including y,u,7 as well as all other
known or observed functions (e.g., estimates x of x generated from
observations and known exogenous inputs to the system);

@[w], B[w], Clw] are (for each w) nonanticipative, Gateaux differen-
tiable, dynamical nonlinear operators with finite incremental gain;

§EIM(R,,R™), 0€OMy (R, R?) are disturbance input functions;

» is an RP-valued observed output function;

u is an R™-valued known control input function;

x is an R"-valued function which is to be estimated based on knowl-
edge of y and &.

We refrain from specifying the statistical properties (e.g., the mean
and the covariance) of §(¢) and 8(¢) at this point as these have no bearing
on our general results in Section V. However, the statistical properties of
&) and 6(¢) play a role in CGEKF design which we address in
subsequent sections.

As a candidate for estimator for the system (4.1) we consider the
model-reference estimator

4 §=Glwli+Bwlu—HIwl(5~) “2)
p=gIwi

where H[w) is a matrix of appropriate dimensions whose entries depend
on w. When @[w], C[w], and H[w] are independent of w and when &[w]
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Fig. 1.

and C[w] are nondynamical, then (4.2) is identical in structure to the
so-called “observer for nonlinear stochastic systems™ proposed by Tarn
and Rasis [4]; consequently, we refer to the structure (4.2) as a nonlinear
observer. An extended Kalman filter is a special type of nonlinear
observer in which the gain H[w] is suboptimally designed based on
statistical considerations.

A useful method for describing the dynamical evolution of the nonlin-
ear observer’s error

e=t—x, (4.3)
is by the feedback equations (see Fig. 1)
ie=é.l’,[w xle+v; e(0)=0
a” ’ 49
r=C[w,x]e—8
v=—H[w]r—¢ 4.5)
where
r&yp—y (4.6)

and (:i’,[w,x] and ?[w,x] are dynamical nonlinear operators defined by

&lw,x]e=E[w](x+2) - Q[w]x (4.7)

(:B[w,x]z=@[WI(x+z)—Q[W]Z (4.8)
for all zE€9M,(R,,R"). From this feedback representation of the error
dynamics of the nonlinear observer (4.2), it is immediately apparent that
the problem of choosing the residual-gain H[-] so as to make the
estimator nondivergent is identical to the problem of choosing a stabiliz-
ing feedback for the system (4.4).

In order to facilitate the selection of a suitable residual-gain H{-], we
assume that (4.4) describing the “open-loop error-dynamics™ admits the
nominal linearization

d
Ee-A[w]e+u,

r=C[w]e

e(0)=0
4.9)

where A[w] and C[w] are matrices of appropriate dimensions whose
entries, in general, depend nondynamically on w.2 In the case where 4
and C are chosen to be constant (i.e., independent of w) the problem is
reduced to a time-invariant linear estimation problem for which several
methods are available for choosing H[-]; e.g., pole assignment [13, Sec.

2For example, if (@[w]xX#)=F(x(2),u(r)) and (C[w]x)(r)=h(x(?)) for some functions
f:R">R” and g: R"X R™—RP, then it might be reasonable to choose

A[w](£)= :—;’;(x(t).a(t))
Cwl()= g—";(x(:));

this is the choice traditionally advocated for extended Kalman filter design.
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7.4] or Kalman filtering [14, ch. 7]. Also, the simplest estimator structure
results when A4, C, and hence H are chosen to be independent of w.

V. NONLINEAR OBSERVER RESULTS

We now state two basic theorems concerning the nonlinear observer
(4.2). The first result, Theorem 1, states that substitution of estimates
generated by a nondivergent nonlinear observer for true values in an
otherwise-stable feedback control system can never destabilize the
closed-loop system. This result has obvious implications regarding the
utility of nonlinear observers for state reconstruction in nonlinear opti-
mal and suboptimal feedback control systems. The second result, Theo-
rem 2, gives sufficient conditions for a nonlinear observer to be nondi-
vergent. The proofs are in the Appendix.

Theorem I: Let § be a nonanticipative nonlinear dynamical operator
with finite incremental gain. Suppose that the system (4.1) is closed-loop
bounded (finite gain stable) with feedback u=§x. Then the system (4.1)
with feedback u=8x will also be closed-loop bounded (finite gain
stable), provided that the estimate x is nondivergent (with finite gain).

Theorem 2: Let the w-dependent matrix S[w] and the constant matrix
P be symmetric uniformly positive-definite solutions of the w-dependent
Lyapunov equation

(A[w]— H[wIC[w])P+P(4[w]- H[w]C[w)T+S[w]=0. (5.1)

If uniformly for all x,w
{A[w]—-V(EIwD[x]— H[w}(C[w])-V(CIwD[x]} P+ %S [w]>0, (52)

then the nonlinear observer (4.2) is nondivergent with finite gain.

The condition (5.1) is not a severe restriction; it specifies, in essence,
that the matrix P must be chosen such that x 7()Px(¢) is a positive-defi-
nite Lyapunov function ensuring closed-loop stability for the ideal
situation in which the linearization (4.9) exactly models the actual error
dynamics. For example, when 4, C, and H are constant matrices and H
stabilizes the error-dynamics feedback system (4.4), (4.5), a constant
matrix P satisfying (5.1) can be readily found by simply picking any
positive-definite constant matrix § and solving (5.1) for the (unique!)
positive definite solution P satisfying (5.1) [13, p. 341].

The interesting part of Theorem 2 is the condition (5.2). It char-
acterizes a class of nonlinearities for which the nonlinear observer (4.2) is
assured of being nondivergent. An important feature of Theorem 2 is the
Jorm: of conditions (5.2): it is expressed in terms of the deviation of the
system (4.4) from the linearization (4.9) used in selecting the residual-
gain. When the deviation is zero (i.e., (€, 8)=(4, C)) then the condition
(5.2) is always satisfied since § is positive definite.

The question naturally arises “How difficult is it to verify condition
(5.2)?" The fact that the left-hand side of (5.2) is linear in @ and € and
the fact that a positively weighted sum of positive operators is positive,
make (5.2) much easier to verify than might be apparent at first inspec-
tion. For example, suppose @, @, 4, C, and H are nondynamical and
(for simplicity) independent of w. If there are constants c{), afl) (/=1,2;
i=1, - ,p; j,k=1,---,n) such that for all x€R"

0>cf) <[C~VE[x]ly<cfP >0 (5.3)

0>afd) <[4~ VE[x]Lx<aP >0 (5.4)

(where [M]; denotes the jjth element of the matrix M), then one may
readily verify that sufficient conditions for (5.2) to hold are
cff {(Pee/HT+ Hee/P)+5 >0

afl(Pee” +eelP)+5>0

(5.5)
(56)

(where ¢; denotes the ith standard basis vector, i.e., the vector whose
elements are zero except the ith which is a one). To verify conditions
(5.5) and (5.6) requires that one check the positive definiteness of as
many n X n-matrices as there are nonzero elements in the set
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Fig. 2. The system with constant-gain extended Kalman filter (CGEKF).

{ef.aDli=1,2;i=1,--- pijik=1,"- .}
(which can be done, for example, by checking that the principal leading
minors of each matrix are positive {13, p. 341]). So, if the nonlinear
system (4.4) is identical to the linearization (4.9) except for N memory-
less nonlinearities, then one need only check the positive definiteness of
at most 2N n X n-matrices to verify (5.2).

VI. Tue CoNSTANT-GAIN EXTENDED KaLMAN FrLTER (CGEKF)

Intuitively, it is clear that if the linearization (4.9) is sufficiently
faithful to the nonlinear system (4.4), then the error response of the
nonlinear observer (4.2) will be close to the error response one would get
in the ideal situation in which the linearization is exact. This intuition is
validated by the error-bounding results of [6] and [15]. Consequently, if
the disturbances £ and 8 are reasonably well approximated by zero-mean
white noise, then it is reasonable to expect that a good suboptimal
minimum variance estimator can be obtained by choosing the residual-~
gain H to be the minimum-variance-optimal gain for the linearized
system (4.9), i.e., the Kalman filter gain [14, p. 214]

H(w|=2[w]CT[w]®"'[w] 6.1

where Z[w]=37[w]> 0 satisfies the Riccati equation®

0=2[w]d T[w]+ A[w]E[w]-Z[w]CT[w]® [Ww]C[wIE[w}+ E[w]
(6.2)

and Zfw] and O[w] are (w-dependent) positive-definite covariance
matrices of the disturbances £ and 8, respectively. When H is constant
(i.e., independent of w), the resultant estimator is the constant-gain
extended Kalman filter (CGEKF) depicted in Fig. 2.
A surprising and important consequence of the CGEKF approach to
nonlinear observer design is that, in addition to yielding a suboptimally
accurate estimator design, the CGEKF design procedure is inherently
robust in the sense that even a crude linearization (4.9) will suffice for
residual-gain design. The CGEKF design procedure automatically en-
sures that the deviation from the design linearization admissible under
the conditions of Theorem 2 can be quite large. The extent of this
robustness is quantified in the following result.

Theorem 3 (CGEKF Robustness): 1f X is independent of w and if
uniformly for all x€9M,(R,,R") and all w

{Alw]-V(CIwDix]- H[wl(C[w]-V(CI»DxD}Z
+ 2 (E W]+ ECT[w]0 [WIC[W]E) >0, (63)

then the CGEKF is nondivergent with finite gain.*

3We assume that the required controllability and observability conditions are satisfied
so that there is a unique positive definite solution of (6.2) {cf. [14, pp. 234-243].

4Since I is determined by (6.2), a sufficient condition for E to be independent of w is
that (6.2) be independent of w, i.e, that 4, C, Z, and 8 be independent of w.
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Proof: Let

S[w]=E[w]+ECTIW]9“[»v]C[vv]E} (6.4)

P=E,

Then (6.2) and (6.3) ensure that (5.1) and (5.2), respectively, are satisfied.
The result follows from Theorem 2.

Example: To illustrate the application of Theorem 3, we consider the
problem of designing an estimator for the nonlinear system

(1) =f(x(1)) +g(u(t)) + &) ]

y(r)=h(x(1))+8(z) (6.5

where
y(HER!

x(t)s[ i;gg ] ER2

HOS &

_|f 1(x)
fix)= [fz(x) ]

g(u)= [ Sgﬂo(u) ] ER?

h(x)=x,ER.

li>

1
RE YE T W
Xy

If we suppose that &) and 6(:) are Gaussian white noise with covariance
matrices = and O, respectively, and if we employ the linear model

.€:=Ax+Bu+§} (6.6)

y=Cx+6
with

[} 1

then solving (6.1) and (6.2) for T and H yields

1

H=[‘”.

The resultant CGEKF estimator is

67

(6.8)

E=f(%)+g(u) - H(h(%)-»).

For every function x: R, —R”, define the operator F[x]: M,(R ,,RY)—>
My(R,,R?) by

[FLxhnl() = 4~ g x() - A{ €~ o (x()) [2ne) - 610

(6.9)

for all nE9M,(R,,R?) and all t€R,. By Theorem 3, a sufficient
condition for the CGEKF (6.9) to be nondivergent is that $[x] be
uniformly strongly positive for all x. This requires that there exist some
positive constant ¢ such that for every x: R, »R? and every rER,

0 FlxIn), —ellnll?

=1 [ o([4- Lo -n(c- ) |2
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Fig. 3. System with all nonlinearity lumped in actuators and sensors.

+ %(E+2CT8‘IC2)—€|:(1’ ‘]’])n(r)d»o. ©.11)
This will be the case if and only if the x-dependent matrix

¥ _3r 1= rg-!
[ L (x) H(C - (x))]2+ L(E+ECTOICE)

(%"f;%) ?} (6.12)

is uniformly positive definite for all x€R2 Clearly, the matrix is
uniformly positive definite; so the CGEKF (6.9) is assured of being
nondivergent with finite-gain. (End of Example)

To fully appreciate the implications of Theorem 3 with regard to the
robustness of the CGEKF design procedure, it is instructive to consider
the situation in which for all x

@x]=4 (6.13)

Clx]=[diag(%," - -, R,)]IC (6.19)

so that all the differences between the open-loop error dynamics system
(4.4) and the design linearization (4.9) are lumped into the p dynamical
nonlinearities, 9; (i=1,-+-,p), which are in series with the system
outputs. This is equivalent to all nonlinearity in the system (4.1) being
lumped in the actuators and sensors (see Fig. 3). It is emphasized that
this does not mean that we are restricting our attention to systems with
only actuator and sensor nonlinearity; rather, we are merely stipulating
that the actual system’s open-loop error dynamics (4.4) have the same
input-output behavior as such a system.
For simplicity, we further assume # is of the form
O=diag(0,,,65, - ,8,,). (6.15)
With (6.13)—(6.15) satisfied, the nondivergence condition (6.3) of Theo-
rem 3 reduces to

ECTdiag[ol-ll(VQLl[x]— %) .. ,%:(qup[x]— %)]cm FE>0,

(6.16)
which is satisfied if

VL> 5 G=Lep) ©17

The condition (6.17) establishes a “lower bound” the inherent robustness
of the CGEKF design procedure, i.c., every CGEKF design can tolerate
at least nonlinearities satisfying (6.17). One can interpret this inherent
robustness in terms of the gain and phase margin of the feedback
representation (cf. Fig. 1) of the CGEKF error dynamics as follows:
Suppose that the 9, (i=1,---,p) are stable linear dynamical elements
with respective to transfer functions L,(s) (i=1,- - -,p). Then, condition
(6.17) becomes (as a consequence of Parseval’s theorem)

Re[L(jw)] > % (i=1,-,p); (6.18)
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i.e., the Nyquist locus of each L(jw) must lie to the right of the vertical
line in the complex plane passing through the point 1/2+0. For
example, if L(s) (i=1,---,p) are nondynamical linear gains, i.e., L,(je)
=k, then (6.18) becomes

k> 6.19)

| =

Alternatively, if

Li(s)=ej¢i (i=],"',p)
corresponding to a pure phase shift of angle ¢; (i=1,---,p) in the p
respective output channels of the open-loop error dynamics system, then
condition (6.18) becomes

;] < 60°. (6.20)

One can interpret the conditions (6.19) and (6.20) as saying the
CGEKEF design procedure leads to an infinite gain margin, at least 50
percent gain reduction tolerance, and at least *+60° phase margin in each
output channe! of the error dynamics feedback system (Fig. 1)—the
margins being relative to the ideal situation in which the linearization
(4.9) is exact. Engineers experienced in classical servomechanism design
will recognize that these minimal stability margins are actually quite
large, ensuring that the nonlinear observer error dynamics feedback
system of Fig. 1 will be stable despite substantial differences between the
design linearization (4.9) and the system (4.4). Consequently, the
CGEKEF design procedure is assured of yielding a nondivergent nonlin-
ear observer design for systems with a good deal of nonlinearity.

This surprisingly large robustness of the CGEKF design procedure is
mathematically dual to the robustness of linear-quadratic state-feedback
regulators reported in [2] and [3], wherein full-state-feedback linear
optimal regulators are shown to have infinite gain margin, 50 percent
gain reduction tolerance, and +60° phase margin in each inmput channel.
This duality is a consequence of the symmetry between the equations
governing the regulation error of linear optimal regulators and the
equations governing the estimate error of the CGEKF (cf. [2, (B.1) and
(4.3)] versus (4.4) and (6.2) here).

VII. PracricaL CGEKF SYNTHESIS

The results of the preceding section provide a basis for computer-
aided-design of practical, nondivergent CGEKF estimators. The follow-
ing procedure shows how these results might be employed for this
purpose.

Step 1: Pick constant values for 4, C, £ and 0. The values of 4 and
C should be initially chosen to reflect as closely as possible the deriva-
tives V@[x] and VC[x], respectively, i.e., so that ||4—V@[x]| and
[IC—VC[x]) are small, at least for those values of x and w which are
most probable—statistical linearization methods (cf. [16, ch. 7]) may be
helpful in this regard. The matrices @ and Z should be initially chosen to
reflect the covariances of the disturbances @ and & respectively. If the
input-output relations of the operators @, %, and € are not precisely
known, then the designer may wish to consider compensating for this
using state-augmentation following the spirit of [17] and [18] in order to
reduce bias errors.

Step 2: Compute X and H from (6.1) and (6.2). This can be done with
the aid of a digital computer using available software for solving the
Riccati equation.

Step 3: Test the resultant CGEKF design for nondivergence. This can
be done any of the following ways:

1) By checking the conditions of Theorem 3;

2) By direct digital Monte Carlo simulation;

3) By approximate describing-function simulation {1, Sec. 6.4].

If the estimator is nondivergent, go to Step 5; otherwise, proceed to Step
4.

Step 4: Take the divergent CGEKF and, assisted by a computer,
determine the values of x for which the condition (6.3) is not satisfied.
Modify the matrices 4 and C so as to reduce the magnitude |4 —V
@[x]ii and ||C—V¢[x]|} at these values of x. If necessary, adjust the =
and © matrices. Return to Step 2.
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Step 5: Check the nondivergent CGEKTF for satisfactory performance,
i.e., for acceptable error statistics. This can be done using one or more of
the following approaches:

1) By direct digital Monte Carlo simulation;

2) By approximate describing-function simulation [1, Sec. 6.4);

3) By using the error-bounding results in [6] and [15].

If performance is acceptable, stop. Otherwise, further adjust the values
of the constant matrices 4, C, E, and © as in Step 4 and return to Step 2.
(End of Procedure)

For systems that are not “too nonlinear” this procedure can be
expected to converge rapidly to an acceptable CGEKF design. However,
for highly nonlinear systems, the procedure may not lead easily to a
satisfactory design, even when such a design exists. A noteworthy
limitation of the procedure is that no explicit method is provided for
selecting the “best” modifications of 4, C, E, and O as required in Step
5. Even in cases where a nondivergent CGEKF estimator is not practical
it may be possible to exploit Theorem 3 to construct a gain-scheduled
CGEKEF estimator which, if properly initialized and if not subjected to
excessively large disturbances, has satisfactory performance. This is
accomplished by using estimate-dependent matrices A[x], C[x], 8{x],
and Z[x] leading to estimate-dependent Z]x] and H{x]. That is, H{x] is
“scheduled” according to x. The on-line computations for such an
estimator would be necessarily more burdensome than for a CGEKF;
but, provided a simple enough gain scheduling algorithm is employed,
this burden would be substantially less than that of an EKF for which
on-line error-covariance propagation is required. For each fixed value of
x—i.e., x(f)=x,=-constant—condition (6.3) of Theorem 3 defines a
subset of R” having the property that provided the true state trajectory
remains for all future time within that set, the CGEKF with constant
residual gain matrix H(xg) is stable and nondivergent. Thus, Theorem 3
serves to determine the number of location of fixed values—viz. x=1x,
—at which it is necessary to compute values for H in order to cover the
entire reachable state space with stabilizing constant residual gain
matrices. This information is useful in assessing whether a gain sched-
uled design is practical and how complicated the gain scheduling algo-
rithm must be. It should be emphasized, however, that the results of
Theorems 2 and 3 do not apply rigorously in the case of an estimate-de-
pendent X. Consequently, such gain-scheduled estimators may require
careful initialization and may not be able to recover from large dis-
turbances without reinitialization, much like the traditional EKF which,
in general, has similar limitations.

VIII. SuBoPTIMAL NONLINEAR OUTPUT-FEEDBACK
CONTROLLERS

The CGEKF results of the present paper combine with the results of
[2] and [3] on the nonlinearity tolerance of linear-quadratic state-feed-
back (LQSF) control laws to suggest a simple, practical nonlinear exten-
sion of the celebrated linear-quadratic Gaussian optimal output-feed-
back control design technique. The idea is to cascade a CGEKF estima-
tor with a constant LQSF gain matrix, both optimally designed for the
time-invariant nominal linearization of the system (4.1)

x=Ax+Bu+§&;

x(0)=0
y=Cx+0 } 3.1

with performance index

J(xu) & E[ lim % O’xT(:)Qx(z)+uT(z)Ru(x)dz] (82)

where

§ and @ are zero-mean white Gaussian with respective covariance
matrices £ and 8;

A, B, C are matrices of appropriate dimensions;

R, O are positive definite weighting matrices of appropriate dimen-
sions. It is assumed for simplicity that 4, B, C, R, 0,0, £, @, B, and C
are not w-dependent. For the linearization (8.1), the optimal Kalman
filter residual gain is given by (6.1) and (6.2) and the optimal LQSF
feedback is given by
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Fig. 4. Suboptimal nonlinear output-feedback controller.
u=—R 'B'Kx (8.3)
where K= KT > 0 satisfies the time-invariant Ricatti equation
0=KA+A'K- KBR 'B'K+Q. (8.4

Cascading the CGEKF with the feedback (8.3) leads to the suboptimal
nonlinear output-feedback control law (see Fig. 4)

=—R™'B7K:

%£=@£+@u~ECT8_‘(j—y) (8.5)

y=Cx.

This approach to suboptimal nonlinear output-feedback control design is
similar in spirit to the approach outlined in [19], wherein an extended
Kalman filter is cascaded with a time-varying suboptimal feedback gain;
however the precomputed constant gains in the control law (8.5) make it
drastically simpler to implement from the standpoint of real-time com-
putational burden. The remarkable robustness of the CGEKF design
procedure and of LQSF control designs [2], [3] assure that this approach
will produce a stabilizing feedback contro! law for systems with even
substantial nonlinearity. The extent of this robustness is quantified in the
following result,

Theorem 4 (nonlinear output-feedback robustness): If uniformly for all
x

[4-V8[x]+(~ECTO-')(C- VE[xD]E+ 5 (E+ECTOICE) >0

(8.6)
and if

K[4-@+(B-@)(~ R ~'B7K)]+ 5 (Q+ KBR~'BTK)>0,(37)

then the system (4.1) with output-feedback (8.5) (as is depicted in Fig. 4)
is finite gain stable.

Proof: This result is a direct consequence of {2, theorem B.1] and of
Theorems 1 and 3 of this paper: applying Theorem 3, condition (8.6)
ensures that the CGEKF is nondivergent with finite gain; applying [2,
theorem B.1], condition (8.7) ensures that the system (4.1) with full-state
feedback (8.3) is stable with finite gain; the result follows from Theorem
L

IX. CONCLUSIONS

Efforts to find methods for reducing the real-time computational
burden of the extended Kalman filter have led us to consider the
possibility of a constant-gain extended Kalman filter (CGEKF), de-
signed to be optimal for a constant linear approximation of the actual
nonlinear system. Since the residual-gain for a CGEKF estimator is
constant and precomputable, the enormous real-time computational
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burden of error-covariance propagation and residual-gain updating is
eliminated, drastically reducing real-time computational requirements.
Because in many applications the linearization and disturbance model-
ing approximations made in CGEKF design may be only slightly cruder
than the gross approximations that are made in EKF design, it is
expected that the error-performance of CGEKF designs may actually be
competitive with traditional EKF designs.

By representing a nonlinear estimator as a servomechanism in which
error is the output to be regulated, we have been able to apply modern
input-output techniques of analysis to generate results explicitly char-
acterizing the robustness of CGEKF estimators—and, more generally,
estimators having the structure of the nonlinear observer (4.2)—against
the effects of approximations introduced in designing the residual gain.
This result provides conditions characterizing the amount of deviation of
the constant linear residual-gain design model from the actual nonlinear
system that can be tolerated by specific CGEKF designs without the
possibility of divergent estimates. Additionally, we have found that every
CGEKF has a certain intrinsic robustness against divergence which is
interpretable as an infinite gain margin and at least a +60° phase
margin in each output channel of the associated error-dynamics feed-
back system. The synthesis of practical CGEKF designs has been
discussed and it has been shown that the CGEKF nondivergence condi-
tions can be exploited to constructively modify and improve CGEKF
designs.

Of fundamental significance is the “separation” result (Theorem 1)
which shows that nondivergent estimates can, unconditionally, be sub-
stituted for true values in feedback control systems without inducing
instability. This provides theoretical justification for the use of extended
Kalman filters (including CGEKF’s) and other types of nonlinear ob-
servers for state reconstruction in nonlinear feedback control systems.

A new method, based on linear-quadratic-Gaussian optimal feedback
theory, has been proposed for the synthesis of suboptimal output-feed-
back control laws for nonlinear systems. The method leads to a simply-
structured nonlinear dynamical feedback law that is drastically simpler
to implement than suboptimal linear-quadratic-Gaussian nonlinear
feedback controllers incorporating a time-varying gain and a traditional
EKF (cf. [19]). The feedback law decomposes naturally into an LQSF
gain matrix and a CGEKF estimator in a fashion reminiscent of the way
the separation theorem of estimation and control leads to a similar
decomposition in linear problems. It has been shown that the inherent
robustness of the CGEKF design procedure and of linear-quadratic
state-feedback combine to assure that this design approach will lead to a
stable feedback law for systems with substantial nonlinearity.

A limitation of the scope of the results of this paper is that they
concern primarily such “coarse” measures of system performance as
stability and nondivergence. “Finer” measures such as error-covariance
are not explicitly addressed; though the CGEKF design procedure tends to
ensure that error-covariance is approximately minimized when the linear
design model matrices (4, C) closely approximate the nonlinear opera-
tors (@, ). This relative de-emphasis of error covariance is partially
justified by the fact that the covariances of the disturbances § and 8 are
seldom precisely known in practice; so it is seldom practical to precisely
analyze the statistical properties of an estimate. Nondivergence and
stability properties—properties that are prerequisite to a bounded error
covariance—can be analytically assessed independently of statistical
considerations, as we have demonstrated.

APPENDIX

In this Appendix the results of Zames [7] (as elaborated upon in [9],
[20]) are used to prove Theorems 1 and 2. For compactness of notation
the argument w associated with the various operators and matrices has been
suppressed. We begin by introducing a definition.

Definition: Let §: X —»% be an operator. Then the incremental opera-
tor Flx] is defined by

ff[x]&x < F(x+6x)—Fx (A1)
for all x and éx elements of .
Proof of Theorem 1: First, note that
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F 4

BIr=B8(x+e)=BGx+ (39 [x]e. (A2)

fa
Let ¢’ = &+ (98)[x]e. Then the dynamics of the closed-loop system
with u=§x satisfy

Ze=(@+@Mx+e5  xO)=0 (A3)
whereas the dynamics with = §x satisfy
Lr=(@+3Dx+g  xO=0. (ad)

Since by hypothesis (A4) is stable (finite gain stable), it is sufficient to
observe that

L o4

€711 = 1€+ (BG) [x]ell < IIEll + 11 (D E) [x]ell
<€+ £(B)E(8)llel < 0. (AS5)

Proof of Theorem 2: Let s denote the linear functional operator
s=d/dt. From (4.4) and (4.5) it follows that

se=(@[x]- HE[x])e—({— HO). (A6)

Premultiplying by P!, introducing the dummy variable z and the
arbitrary constant ¢ >0, and rearranging yields

(P le)=(s+e) P 1z (A72)
= —(~8lx]+HC[x]- I )P(P~'e)—({~ HB). (ATb)

From [7, theorem 3] a sufficient condition for (A7) to be finite gain
stable is the existence of an € >0 such that’

(s+e)~'P-150
(—@Ix)+HC[x]-eI)P>0

(A8a)
(A8b)

uniformly for all x€9M,(R,,R") and for all w. Parseval’s theorem
ensures that (A8a) holds for all € >0. Define

T2 (4-g—H(C-C)P+ 5. (9)
Then in view of (5.1), a necessary and sufficient condition for (A8b) to
hold is

Fx]>0 (A10)

uniformly for all x€9M,(R,,R") and for all w. Now, for all y&
OMy(R,,R™)

Flxln = Flx+n)—Fn
= f **96]z)dz

= fo 'Y Fx+ pnIndp. (A1)

So, for all E€M,(R,,R")

SActually [7, theorem 3] merely claims boundedness rather than finite gain stability. A
careful review of the proofs of [7] reveals that the stronger claim of finite gain stability is
justified in the present situation (cf. [9, p. 109], [20, part II]). Also, it should be noted that
technically the definition of an extended normed space employed in [7] does not permit
the extension of IM,y(-,+); a less restrictive definition, consistant with Zames’ theory [7]
and admitting 9R,, is given in [20, part II).

SIntegration between two points in an infinite-dimensional function space such as
IMy(R 4+, R") is completely analogous to ordinary Riemann integration between two
points in a finite dimensional space such as R"—cf. [21, p. 665].
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<, BLxlm), =, _[) lV(?’U])[m]na!p>,= fo "0, VFLx+pmIn), dp.

(A12)

Thus, a sufficient condition for (A10) and hence (A8b) to hold is V%] x]
uniformly strongly positive; that is, uniformly for all x€9M,(R,,R")
and for all w

[(4 — V@[ x]) - H(C~ VC[x])]P+ %s >0. (A13)
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