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configuration. It is evident that as yz, decreases (i.e., the arm straigh- 
tens),  the  coupling  between  the joints becomes  more  severe,  eventually 
resulting in an unstable system. 

V. CONCLUSIONS 

We  have  established  the  feasibility, at least in principle, of decoupling 
the dynamics of a rigid-body  model of a manipulator arm system. The 
advantages of the open-loop  synthesis in comparison with the classical 
feedback  solution [7] are two-fold:  there is no need for complete state 
feedback; in addition to being  conceptually  simple, the open-loop 
synthesis is dnectly compatible with  the IJC design  philosophy adopted 
in  most manipulator control systems. 

Further work in this area includes a sensitivity study on the effect of 
parameter variation on decoupling. It is  known that a large  class of 
feedback dewupling solutions are structurally unstable [8]: even smaU 
parameter variations may result in a breakdown of decoupling. Hence, 
more future effort  should be devoted  to  the study of approximate and 
adaptive decoupling [9]. The open-loop design studied here presents a 
feasible approach to adaptive decoupling in that most of the parameters 
in  the  synthesis are known analytic functions of the ann or 
motor/gearbox parameters. Problems  in  these and other areas,  such as 
the decoupling of manipulators with  flexible arms, will continue to 
demand our attention in the future. 

APPENDIX 
AN IJC DESIGN 

From (16) and (22), the  closed-loop  transfer function between Syi and 
6wi of the EST system is given  by 

The denominator polynomial function of (A.l) can, after some manipu- 
lation, be written as 

+(higher order terms in s) 

where 

The two dominant poles of (A.1) are then  given  by the zeros  of the 
polynomial 

Df(s )=s2+sa i (NiKs - f : ) -a f :  (A.3) 

where the gains f; and jj may, in principle, be chosen to yield  any 
desired damping ratio and bandwidth for the dominant modes. Further- 
more, from (A.l), the input gain g’ may also be chosen to satisfy 
steady-state requirements. 

However,  in addition to stability, most applications have constraint 
requirements on the control and state variables which  must be  met in 
order to avoid saturation problems.  Suppose the control signal Soi of (22) 
is not to  exceed E volts  in  magnitude. We assume upriori that 

I ~ Y ~ ( ~ > I  G 0, ISi(O1 G 6, Iswi(t)l G w. 
Let the input gain gi be chosen  such that at Swi=W, the steady-state 
deflection of 8 y i  is a; thus, by (A.I), 

Then it  is  easy to verify that l s O i l  G 6 provided the feedback gains satisfy 
the  following inequality: 
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2ulf;l+ blji’l G ci. (A51 

Thus, for instance, a complete  design for the feedback  gains  would  be 
given  by the following conditions: 

ai(NiKB-j;)=2&dn 

2al f ; (+bl f i (=a 

-Q.=&),’ ( A 4  

where and w, are, respectively,  the damping ratio and natural 
frequency for the dominant modes of the  closed-loop ESJ system. Since 
(A.6) contains three equations in only  two  design  parameters, either .$ or 
a,, but not both, may  be  specified in order to yield a solution for the 
feedback gains. 
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I. INTRODU(SIION 

The substantial real-time computational burden imposed  by the ex- 
tended Kalman filter (Em apd related suboptimal nonlinear estimators 
(cf. [l,  ch. 6D sigmficantly limits the scope of applications for which 
these estimators are practical. The major portion of this computational 
burden results from calculations associated with propagating the error- 
covariance  matrix,  which in turn is used for real-time updating of the 
gain  matrix acting on the filter residuals. When one considers the gross 
nature of the approximations that are routinely made in modeling the 
stochastic disturbances affecting a system and to a  lesser extent in 
modeling the interplay between  these disturbances and the system’s 
nonlinearities, it seems somewhat  surprising that so much  real-time 
computational effort  should  be  devoted to careful propagation of the 
model’s errorcovariance matrix. The empirical fact that the EKF per- 
forms well in many applications despite the gross nature of these routine 
approximations suggests that perhaps the  record of successes  enjoyed  by 
the EKF is attributable to an intrinsic robustness against the effects of 
approximations introduced in the design  of its  residual-gain. 

With  a view towards  designing  nonlinear  estimators  with  greatly 
reduced  real-time computational requirements, we have been thusly 
motivated to examine the possibility of employing  a precoqufed a p  
proximation to the EKF residual-gain,  thereby  entirely eliminating  the 
enomom conputational burden of real-time error-cmriance proPogotion. 
The principal  implications of the results we have obtained in this 
connection are threefold. 

First, we have found that the real-time propagation of error-covari- 
ance may actually be unnecessary. SpeaficaUy, our results  imply that for 
many applications one can obtain satisfactory  performance from a 
constant-gain e x t e h d  Kalmnn fitter (CGEKF), designed to be optimd 
for a stochastic linear time-invariant  model  crudely approximating the 
actual nonlinear system. Second, aided by the structural simplicity of the 
CGEKF, we have been able to apply modem input-output techniques of 
analysis to prove that the CGEKF is intrinsical& r o h f  against the 
effects of approximations introduced in the design of its residual-gain 
matrix. That is,  we have proved that the CGEKF approach yields under 
certain conditions a nondiwrgent nonlinear estimator even  when  a  rela- 
tively crude stochastic linear  system  model is used in designing the 
residual gain. Our nondivergence  results take the form of analytically 
verifiable conditions which  also can be used to test  specific CGEKF 
designs for nondivergence,  thereby  reducing the engineer‘s dependence 
on Monte Carlo simulation for design  validation.  Moreover, the nature 
of these  nondivergence conditions is such as to provide  a  basis for the 
constructive modification and improvement of CGEKF designs.Third, 
our results combine with the linearquadratic-optimal-regulator robust- 
ness results of [2] and [3] in a fashion reminiscent of the separation 
theorem of estimation and control. We have proved that any nondiver- 
gent estimates- and this includes nondivergent CGEKF estimates- 
can be substituted for true values in a nonlinear feedback control system 
without inducing instability. This suggests  a  powerful new technique, 
based on linear-quadratic-Gaussian optimal feedback theory, for the 
synthesis of simplified dynamical output-feedback compensators for 
nonlinear regulator systems. The technique leads to a  feedback  com- 
pensator design  consisting of a cascade of a CGEKF and an optimal 
constant linear-quadratic state-feedback (LQSF) gain  matrix. We have 
proved that the inherent robustness of optimal linear-quadratic state 
feedback  against  unmodeled  nonlinearity [2], [3]  combines with the 
intrinsic robustness of the CGEKF to assure that such  feedback designs 
will be closed-loop stable even in systems  with substantial nonlinearity. 

The aforementioned CGEKF robustness,  nondivergence, and regula- 
tor stability results are derived in the  general context of the class  of 
nonlinear estimators whose  design is not necessarily  based on statistical 
considerations-for  example,  designs intended to optimize structural 
simplicity or error-transient response, i.e., nonlinear observers (cf. [4D. 
This general  class of nonlinear estimators include as a  special  case the 
CGEKF, which is suboptimally designed  with  respect to a statistical 
criterion. In the context of this broader class of suboptimal nonlinear 
estimators, our results  provide  analytically  verifiable conditions which 
can be used to test  nondivergence and to evaluate robustness  against the 
effects of design approximations; though one cannot in general  expect 

such  designs to be as robust as the CGEKF. The CGEKF output-feed- 
back separation-type property extends to this broader class of estimators, 
showing that nondivergent  estimates can, unconditionally, be substituted 
true values in otherwise-stable  feedback  systems  without  ever causing 
instability. 

11. RELATED L m m  

The literature on the subject of robustness and computational consid- 
erations in nonlinear estimation is sparse and largely  inconclusive. The 
discussion of nonlinear estimation in Schweppe [S, ch. 131 provides a 
good  intuitive understanding of the trade-offs  between computational 
requirements and residual-gain  choice;  though the possibility of a con- 
stant residual-gain is not explicitly  considered. The idea of using a 
constant residual-gain for linear fdtering is  well known (cf. [l, pp. 
238-242D, but the connection with nonlinear filtering has not been 
established. The practicality of avoiding  real-time  error-covariance prop 
agation in nonlinear estimation by  use of a precomputed, but estimate- 
dependent, residual-gain is demonstrated by the simulation  results of 
Larson, Dressier, and Ratner [22]. References [4] and [6],  which concern 
nonlinear estimator stability and error bounds, respectively, appear to be 
the most  closely related to the present  paper. 

Gilman and Rhodes [6] suggest a procedure for synthesizing nonlinear 
estimators with a precomputable, but time-varying,  residual-gain. Their 
estimator, like the traditional EKF, has the intuitively  appealing struc- 
ture of a model-reference estimator (cf. [5,  p.  403D; that is, it consists of 
an internal model of the system  dynamics  with observations entering via 
a gain acting on the residual error between the system and model 
outputs. The distinguishing feature of the estimator suggested in [6] is 
that the  residual-gain is chosen so as to minimize  a certain upper bound 
on the mean-square estimate error. This procedure tends to ensure a 
robust design  since,  assuming the minimal  value of the error-bound does 
not “blow-up,” the estimator cannot diverge. A limitation of this design 
procedure is that the error-bound may be very  loose for systems  with 
substantial nonlinearity; so there is no assurance that the bound-mini- 
mizing  residual-gain is a good choice. Also, there is no aprion’ guarantee 
that the resultant estimator wiU even be stable since the minimal error- 
bound may  become arbitrarily large as time elapses. 

Tam and Rasis [4] have proposed a constant-gain model-reference- 
type nonlinear estimator which  is  a natural extension of Luenberger‘s 
observer for linear systems,  having  a  design  based  solely on stability 
considerations. The results of  [4] show that, given  such  a nonlinear 
observer  design, if certain Lyapunov functions can be found, then one 
can conclude that 

a) The estimator is  nondivergent; 
b) The estimator can be used for state reconstruction in a full-state 

feedback  system  without  causing  instability. 
However, from an engineering standpoint they are nonconstructive: no 
design  synthesis procedure is suggested; no method is proposed for 
constructing the Lyapunov functions required to test the stability of a 
design; no procedure is suggested for optimizing the estimate accuracy 
of the  design. The CGEKF results presented in the present paper 
address all these  deficienceis  by  providing  a constructive procedure for 
synthesizing stable constant-gain model-reference estimator d e s i g n s  
which are to a  first approximation optimally accurate. Moreover, our 
results  prove that, provided an estimator is nondivergent, it can be used 
for state reconstruction without  ever  causing instability, irrespective of 
the availability of Lyapunov functions. 

111. NOTATION AND TERMINOLOGY 

In this paper the input-output view  of systems is taken, considering a 
system to be an interconnection of “black  boxes”  each representable by 
its input-output characteristics. As will become apparent, the input-out- 
put view provides  a  convenient and natural setting for the discussion and 
analysis of estimator robustness and divergence, as well as feedback 
system  stability. In this section the pertinent terminology drawn from 
[7]-[  111, and [20] is reviewed and the notion of estimator divergence is 
formalized. 
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An operator is a  mapping of functions into functions-such as is 
defined by a  ‘%lack  box”  which  maps input timefunctions into output 
time-functions. An operator is said to be nonanticipatiw if the  value 
assumed by its output function at any time instant to does not depend on 
the values  assumed  by  its input function at times t >to- An operator is 
said to be memoryless or equivalently nondynamicaI if the instantaneous 
value of its output at time to depends only on the value of its input at 
time t,,. A dynamical operator is an operator which  is not necessarily 
nondynamical. 

To facilitate the discussion,  the  various input and output functions 
considered  in t h i s  paper are presumed to be  imbedded in extensions of 
normed function spaces of the type 

% ( R + , R ‘ )  L { z : R + + R ‘ ;  I lzl l<w} (3.1) 

[l  1 ,  p. 1251 on which is defined the norm 

The Gateaux deriutiwe [S, p. 171 of the operator 3 at the point zo is 
defined to be the bounded linear operator V s z o ]  having  the property 
that for all z 

1 
V5Izolz= ~ ~ o ~ ( 9 ~ z o + ~ z ) - % o ) ,  (3.8) 

provided that such an operator V%zo] exists.  When the derivative 
V a z o ]  exists, 3 is said to be Gateaux differentiable at z,,. For example, if 
9 is  memoryless,  Le., if (%z)(t)=flz(t)) for some f:R‘l+R‘*, then 
Vaz,,] is  simply the Jacobian matrix (af/az)(ro) (cf. [8, p. 191). Alterna- 
tively, if 5 is  a linear operator then V R z $  = 5 for all z,,. 

The relevance of the above terminology to estimation  stems from the 
fact that for each control input function u, the error e 2 i- x of an 
estimator can be represented as the output of a u-dependent operator 
&[u]  whose inputs are the  system  noise,  say 6, and measurement noise, 
say 8; i.e., 

To formalize the notion of estimator divergence  the  following  defini- 
tions are introduced: an estimator is nondwrgent if its error operator is 

(3.3) bounded uniformly  in u, i.e., if there  exists  a continuous, increasing 

(3.10) 

Because the space “nz, may  be  unfamiliar to many  readers, we briefly 
discuss  its relation to the similar, but distinct, .space which is more 
widely  used in input-output system  analysis. The feature that dis- 
tinguishes % from h is the introduction of the “normalizing factor” 
I/‘  into the inner product (3.4). Whereas the h-norm is appropriately 
viewed as a  measure of the “total energy” of a function, the  normalizing 
factor I / T  leads to the  “average  power” interpretation of the norm (3.2). 
The space 3R, is  larger than h, every function in h being  included in 
the subspace of 3lr, comprised of functions of zero norm. 

The gain or norm of an operator 5, denoted g(3 and 11511, respec- 
tively, are defined by 

O<r<m 

The incremental  gain of 3 is 

(3.5) 

(3.6) 
O < r < m  

If g(B< co, 5 is said to havefinite gain. Likewise, if &TJ < w, then 9 is 
said to have finite incremental gain. The operator 3 is b d d  if inputs 
of finite norm produce outputs of finite norm; i.e., there  exists  a 
continuous, increasing function p:R+R such that ~ ~ ~ z ~ ~ < p ( ] ~ z ] l ) .  A 
dynamical  system is said to be bounded if the operator describing  its 
input-output characteristics is bounded; the  system  is  said to be finite 
gain stuble if the operator has finite gain. An operator 9 is said to be 
strongly positiw, denoted 5>0, if for some c >O and all Z , T  

( Z , 3 Z ) , ~ ~ l l Z I l $  (3.7) 

If { 3[x]Ix E X} is a collection of operators whose input-output relations 
are dependent upon the variable x E !X and if, for some constant c > 0 
(which does not depend on x), (3.7) holds for all x, then we say that 3 x 1  
is unij04 strongly positice; equivalently we write “uniformly for all 
x, 3 x 1  >O.” An operator 3 is said to positiw, denoted 3> 0, if (3.7) 
holds with z =O. 

Evidently,  convergence  implies  nondivergence  with finite gain which 
in turn implies  nondivergence.  These definitions can be loosely interpre- 
ted as follows: an estimator is nondivergent if mean-square bounded 
disturbances produce mean-square bounded estimate error; it is nondi- 
vergent with finite gain if the  mean-square estimate error is proportional 
to the  magnitude of the disturbances; it is convergent if the mean-square 
error always  tends to zero. An estimator that is not nondivergent  is said 
to be diwrgent. 

IV. PROBLEM FOF~MULATION 

We consider the problem of estimation  for the nonlinear system 

where w is a  vector of functions including y,u,t as well as all other 
known or obseroed functions (e.g., estimates i of x generated from 
observations and known exogenous inputs to the system); 

@[ w ] ,   9 [ w ] ,   e [ w J  are (for  each w) nonanticipative, Gateaux differen- 
tiable, dynamical nonlinear operators with finite incremental gain ; 

(E%(R+,R”) ,  BE%(R+,RP) are disturbance input functions; 
y is an RP-valued  observed output function; 
u is an Rm-valued known control input function; 
x is an R”-valued function which is to be estimated based on knowl- 

edge of y and u. 
We refrain from specifying the statistical properties (e.g., the mean 

and the covariance) of at) and @(t) at this point as these  have no bearing 
on our general  results in Section V. However, the statistical properties of 
at) and 8(t) play  a  role in CGEKF design  which we address in 
subsequent  sections. 
As a candidate for estimator for the  system (4.1) we consider the 

model-reference estimator 

- i = @ ! [ w ] i + 9 [ w ] u - H [ w ] ( ; - y )  
d 
dl 
j =  e[ W ] i  

for each T E  R, the  quantity llzll, is finite. The extension includes functiom like e’ which where H [ w ]  is a Of appropriate dimensions whose entries 
have infinite  norm-cf. [20, part 111. on w. When @[w],  e[wJ, and H [ w J  are independent of w and when @[w] 

The extension of m ( R + , R ‘ )  consists of the set of aU functions I: R++R‘such that 
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- - - - - - - - - - - - - - 1 7.41 or Kalman filtering [ 14, ch. 7. Also, the simplest estimator structure 
results when A ,  C, and hence H are chosen to be independent of w. 

1 
I V. NONLWEAROBSERVERR~JLIS 

We now state two basic theorems  concerning the nonlinear observer 
(42). The  first result, Theorem 1, states that substitution of estimates 
generated  by  a  nondivergent nonlinear observer for true values in an 
otherwise-stable  feedback control system can never  destabilize the 

utility of nonlinear observers for state reconstruction in nonlinear opti- 

rem 2, gives  sufficient conditions for a nonlinear observer to be nondi- 
vergent. The proofs are in the Appendix. 

Theorem I :  Let 9 be  a nonanticipative nonlinear dynamical operator 
and are nondynamical, then (42) is identical in structure to the with finite incremental  gain.  Suppose that the system (4.1) is closed-loop 
so-called  "o&ewer for nonlinear stochastic  systems"  proposed by Tarn bounded (finite gain stable) with feedback U = $ X -  Then the system (4.1) 
and his [4]; consequently, we refer to the structure (4.2) as a nonlinear with feedback u=gi  also be clOsed-lOOp bounded (finite gain 
obseroer. extended ~h~ filter is a type of nonlinear  stable),  provided that the estimate .i is  nondivergent  (with finite gain). 
observer in which the gain H[w]  is suboptimally designed  based on 
statistical considerations. Theorem 2: Let the *dependent  matrix S [ w ]  and the conskkznt matrix 

A useful method for descniing the  dynamical  evolution of the no&- P be symmetric  uniformly  positive-definite solutions of the wdependent 
ear observer's mor Lyapunov equation 

RESIDUALS 

E - 2  HEASUREMENT closed-loop  system. This result has obvious  implications regarding the 

FEEDBACI mal and suboptimal feedback control systems. The second  result, Theo- 

Fig. 1. Feedback  representation of the  error dynamics of the nonlinear observer. 

e = x - x ,  
A ^  (4.3) ( A [ w ] - H [ w ] C [ W ] ) P + P ( A [ ~ ] - H [ W ] C [ W ] ) ~ + S [ W ] = O .  (5.1) 

is by the feedback equations (see Fig. 1)  If uniformly for all x ,w 

r = c [ w , x ] e - ~  then the nonlinear observer (4.2) is nondivergent with finite gain. 

o = - H [ w ] r - 6  (4.5) that the matrix P must  be  chosen  such that xT(t)Px(t) is a positivedefi- 

A .  (4.6) dynamics. For example,  when A ,  C, and R are constant matrices and H 

The condition (5.1) is not a severe restriction; it specifies, in essence, 

nite  Lyapunov function ensuring closed-loop  stability for the ideal 
situation in which  the linearization (4.9) exactly  models the actual error 

stabilizes the error-dynamics feedback  system (4.4), (4.9, a constant 
and b[w,x]  and i?[w,x] are dynamical nonlinear operators defined by matrix P satisfying (5.1) can be readily found by  simply  picking any 

positive-definite constant matrix S and solving (5.1) for the (unique!) 

The interesting part of Theorem 2 is the condition (5.2). It char- 

assured of being  nondivergent. An important feature of Theorem 2 is the 

where 

r = y - y  

~ ~ w , x l z = & [ w l ( x + z ) - B ~ ~ l x  (4.7)  positive definite solution P satisfymg (5.1)  113,  p.  3411. 

~ [ w , x ] z = e [ w ] ( x + z ) - e [ w l z  (4.3 acterizes  a  class of nonlinearities for which the nonlinear observer (4.2) is 

for all E q ( R +  , R  fI). From this feedback representation of the error form- Of (52): it is 
dynamics of the no&ear observer (42), it is immediately apparent that system (4.4) from the linearization (4.9) 

in terms Of the &idon Of the 
in the 

the problem of choosing the r&dd-gain H[.l so as to make the gain. when the  deviation is zero (i.e., (&,e )=(A ,  C)) then the condition 
estimator nondivergent is identical to the  problem of choosing  a stabiliz- 
ing  feedback for the  system (4.4). 

assume that (4.4) describing the ~open-loop error-dynamics,, admits 
nominal linearization 

(5.2) is  always  satisfied  since S is positive  definite. 
The question naturally arises "How difficult is it to verify condition 

we (5.2)?" The fact that the left-hand side of (5.2) is linear in & and e and 
the the fact that a  positively  weighted s u m  of positive operators is positive, 

make (5.2) much  easier to verify than might be apparent at first insp 
tion. For example,  suppose @!, e, A ,  C, and R are nondynamical and 

In order to facilitate the selection of a suitable residual-gain 

(for simplicity) independent of w. If there are constants c$, a$ ( I =  42; 
i=I,...,p;j,k=l,...,n)suchthatforallxER" 

r = C [ w ] e  (4.9) 

where A [  w] and C [ w ]  are matrices of appropriate dimensions  whose 
entries, in general, depend nondynamically on w? In the case  where A O > a , ~ ) ~ [ A - V & [ x ] l i l , ( a , ~ ) > O  (5.4) 
and C are chosen to be constant (Le., independent of w) the problem is 

O > c ~ ~ ~ r [ C - v ~ [ x ] ] i j ~ c ~ ) > o  (5.3) 

2For example, if ( ~ w ] x ) ( t ) ~ f ( x ( r ) , u ( r ) )  and ( q w ] x ) ( f ) = h ( x ( r ) )  for some  functions cb' ) ( PyiTHT + Hei5TP ) + S > 0 (5.5) 
f: R"-R" and g :  R n k  Rm+RP, then it might be ieasonable to choose 

- 4 [ w l ( O = z ( x ( f ) . 4 t ) )  af a,f)(Pek5T+ejezP)+S>0 (5.6) 
(where q denotes the ith standard basis  vector, i.e., the vector  whose 

c[wpI(+ &4t));  elements are zero except the ith which is a  one). To verify conditions 
(5.5) and (5.6) requires that one check the positive  definiteness of as 

ah 

this is the choice traditionally advocated for extended Kalman filter design. many n X n-matrices as there are nonzero elements in the set 
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Fig. 2. The  system with constant-gain  extended  Kalman  filter (CGEKF). 

{c~'~,a,~)~l=1,2;i=l,-~~,p;j,k=l,~~~,n} 

(which can be done, for example, by checking that the principal leading 
minors of each  matrix are positive 113,  p. 341n. So, if the nonlinear 
system  (4.4)  is identical to the linearization (4.9) except for N memory- 
less nonlinearities, then one need  only  check the positive  definiteness of 
at most 2N n X n-matrices to verify  (5.2). 

VI. THE CONSTAWT-GAIX EXTENDED KALMAN FILTER (CGEKF) 

Intuitively, it is clear that if the linearization (4.9) is sufficiently 
faithful to the nonlinear system  (4.4),  then the error response of the 
nonlinear observer (4.2) will be  close to the error response one would  get 
in the ideal situation in  which  the linearization is exact. This intuition is 
validated by the error-bounding results of [6] and [15]. Consequently, if 
the disturbances and 0 are reasonably well approximated by zero-mean 
white  noise,  then it is reasonable to expect that a  good suboptimal 
minimum variance estimator can be obtained by choosing  the  residual- 
gain H to be the minimum-variance-optimal  gain for the linearized 
system  (4.9),  i.e., the  Kalman filter gain [14,  p.  2141 

~ [ ~ ~ = ~ [ ~ ] c ~ [ w ] e - ~ [ ~ ]  (6.1) 

where Z[ w] = E'[ w] > 0 satisfies the Riccati equation3 

O = Z [ W ] A ' [ W ] + A [ W ] Z [ W ] - X [ W ] C ~ [ W ] B - ' [ W ] C [ W ] X [ W ] + E [ ~ ]  

(6.2) 

and Z[w] and e[ w] are (w-dependent) positivedefinite covariance 
matrices of the disturbances 5 and 0, respectively.  When H is constant 
(i.e., independent of w), the resultant estimator is the constant-gain 
extended Kalman filter (CGEKF) depicted in Fig. 2. 
A surprising and important consequence of the CGEKF approach to 
nonlinear observer  design is that,  in addition to yielding  a  suboptimally 
accurate estimator design, the CGEKF design procedure is inherently 
robust in the sense that even  a crude linearization (4.9) will suffice for 
residual-gain  design.  The CGEKF design procedure automatically en- 
sures that the deviation from the design linearization admissible under 
the conditions of Theorem  2 can be quite large.  The  extent of this 
robustness is quantified in  the  following  result. 

Theorem 3 (CGEKF Robustness): If X is independent of w and if 
uniformly for all XE%(R, ,R")  and all w 

+ z ( z [ w ] + X C T [ w ] 9 - ' [ w ] C [ w ] Z ) > 0 ,  1  (6.3) 

then the CGEKF is  nondivergent  with finite gain.4 

sa that  there is a  unique  positive  definite solution of (61) (cf. 114, pp. 2362431). 

that (6.2) be independent of w, i.e., that A ,  C, I, and 8 be independent  of w. 

'We assume that  the  required controllability  and  observability conditions are satisfied 

4Sice Z is determined  by (6.2), a  sufficient condition for X to be independent of w is 

Prooj Let 

Then (6.2) and (6.3) ensure that (5.1) and (5.2), respectively, are satisfied. 
The result  follows  from Theorem 2. 

Exawpfe: To illustrate the application of Theorem 3,  we consider the 
problem of designing an estimator for the nonlinear system 

h(x)=x ,ER' .  

If  we suppose that at) and B(t) are Gaussian white  noise  with covariance 
matrices E and 8, respectively, and if we employ the linear model 

x=Ax+Bu+#  
y=cx+e I 

with .=[ -7 1 -;] 
B= [ :] 
C=[O 11 

E=[ 1 0  ] 
0 1  

e= 1, 

then  solving (6.1) and (6.2) for Z and H yields 

H =  [ Y 1. 
The resultant CGEKF estimator is 

For every function x:  R++R", define the operator a x ] :  %(R+,R2)+ 
%(R+,R2)  bY 

for all q E % ( R + , R 3  and all t E R + .  By Theorem 3, a sufficient 
condition for the CGEKF (6.9) to be nondivergent is that 3 x 1  be 
uniformly strongly positive for all x. This requires that there exist  some 
positive constant E such that for every x : R+  +R and every r E R + 
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This will be the case if and only if the dependent  matrix 

[ A - j + ) - H  af ( c-~(X))]z+f(E+ZCrB-IcZ) ah 

= [ ( ; x : + ; )  

(6.1 1) 

OI 
(6.12) 

1 

is  uniformly  positive definite for all x E R z .  Clearly,  the matrix is 
uniformly  positive definite; so the CGEKF (6.9) is assured of being 
nondivergent  with fiite-gain. (End of Example) 

To fully appreciate the implications of Theorem 3  with  regard to the 
robustness of the CGEKF design  procedure, it is instructive to consider 
the situation in which for all x 

B[x] = A (6.13) 

so that all the  differences  between the open-loop error dynamics  system 
(4.4) and the design linearization (4.9) are lumped into the p dynamical 
nonlinearities, & ( i  = 1,. . ,p), which are in series with the system 
outputs. This is equivalent to all nonlinearity in the system  (4.1)  being 
lumped in the actuators and sensors (see Fig. 3). It is  emphasized that 
this does not mean that we are restricting our attention to systems  with 
only actuator and sensor nonlinearity; rather, we are merely stipulating 
that the actual system's open-loop error dynamics (4.4)  have  the  same 
input-output behavior as such a  system. 

For simplicity, we further assume 0 is of the form 

e=diag(e,,,e,,- . . ,epp). (6.15) 

With (6.13)-(6.15) satisfied, the nondivergence condition (6.3) of Theo- 
rem  3  reduces to 

(6.16) 

which is satisfied if 

The condition (6.17) establishes  a 'lower bound'' the inherent robustness 
of the CGEKF design procedure, Le.,  every CGEKF design can tolerate 
at least nonlinearities satisfymg (6.17). One can interpret this inherent 
robustness  in  terms of the gain and phase margin of the feedback 
representation (cf. Fig. 1)  of the CGEKF error dynamics as follows: 
Suppose that the z. ( i= 1,o.o ,p )  are stable linear dynamical  elements 
with respective to transfer functions &(s) ( i =  I; . . ,p ) .  Then, condition 
(6.17) becomes (as a consequence of Parseval's theorem) 

Re[L,(ju)] 2 7 ( i =  1,. - . ,p ) ;  
1 (6.18) 

i.e., the Nyquist locus of each L,,ciw) must  tie to the right of the vertical 
line in the complex plane passing through the point 1/2+jO. For 
example, if 4 ( s )  ( i=  1; . . ,p) are nondynamical linear gains, i.e., Li(&) 
= k, then (6.18) becomes 

1 k >  3 .  (6.19) 

Alternatively, if 

Li(s)=eigi ({=I , . - -  ,PI 

corresponding to a pure phase shift of angle +i ( i  = 1 , e  * ,p) in the p 
respective output channels of the open-loop error dynamics  system, then 
condition (6.18) becomes 

I&] < 60". (6.20) 

One can interpret the conditions (6.19) and (6.20) as saying the 
CGEKF design procedure led to an infinite gain margin, at least 50 
percent gain  reduction tolerance, and at least +60" p h e  mmgn in each 
output  channel of the error dynamics  feedback  system  (Fig.  1 j t h e  
margins  being  relative to the ideal situation in which the linearization 
(4.9)  is exact.  Engineers  experienced in classical  servomechanism  design 
will recognize that these  minimal stability margins are actually quite 
large,  ensuring that the nonlinear observer error dynamia feedback 
system of Fig.  1 will be stable despite substantial differences  between the 
design linearization (4.9) and the system (4.4). Consequently, the 
CGEKF design procedure is assured of yielding  a  nondivergent nonlin- 
ear observer  design for systems  with  a  good deal of nonlinearity. 

This surprisingly  large  robustness of the CGEKF design procedure is 
mathematically dual to the robustness of linearquadratic state-feedback 
regulators reported in [2] and [31, wherein  full-state-feedback linear 
optimal  regulators are shown to have infinite gain margin,  50 percent 
gain reduction tolerance, and  k60" phase margin in each input channel 
This duality is a consequence of the symmetry  between the equations 
governing the regulation error of linear optimal regulators and the 
equations governing the estimate mor of the CGEKF (cf. 12, (B.l) and 
(4.3)] versus (4.4) and (6.2)  here). 

VII. PRACTICAL CGEKF SYNTHESIS 

The results of the preceding  section  provide  a  basis for computer- 
aided-design of practical, nondivergent CGEKF estimators. The follow- 
ing procedure shows how  these results might be employed for this 
purpose. 

Step I :  Pick constant values for A ,  C, B and 0. The values of A and 
C should be initially  chosen to reflect as closely as possible the deriva- 
tives V@[x] and Ve[x], respectively, i.e., so that IIA -V@[x]ll and 
IIC-VC[x]ll are small, at least for those  values of x and w which are 
most  probable-statistical linearization methods (cf.  [16, ch. 7D may be 
helpful in this regard. The matrices 0 and should  be  initially  chosen to 
reflect the covariances of the disturbances 6 and Q respectively. If the 
input-output relations of the operators @, $3, and e are not precisely 
known, then the designer may wish to consider compensating for this 
using state-augmentation following the spirit of [ 1 7  and [ 181 in order to 
reduce  bias  errors. 

Step 2: Compute Z and R from (6.1) and (62). This can be done with 
the aid of a digital computer using available software for solving the 
Riccati equation. 

Step 3: Test the resultant CGEKF design for nondivergence. This can 
be done any of the following ways: 

I )  By checking the conditions of Theorem 3; 
2)  By direct digital Monte Carlo simulation; 
3)  By approximate dmiing-function simulation [ 1, Sec. 6.41. 

If the estimator is  nondivergent, go to Step 5;  otherwise,  proceed to Step 
4. 

Step 4: Take the divergent CGEKF and, assisted  by  a  computer, 
determine the values of x for which the condition (63) is not satisfied. 
Modify the matrices A and C so as to reduce the magnitude IIA - V 
@[x]ll and IlC-Ve[x]ll at these-values of x. If necessary, adjust the E 
and 8 matrices. Return to Step 2. 
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S t q  5: Check  the  nondivergent CGEKF for satisfactory performance, 
i.e., for acceptable error statistics. This can be done using one or more of 
the  following approaches: 

1) By direct digital Monte Carlo simulation; 
2) By approximate describing-function  simulation [l,  Sec. 6.41; 
3) By using the error-bounding results  in  [6] and [15]. 

If performance is acceptable, stop. Otherwise, further adjust the values 
of the constant matrices A ,  C, 2, and 8 as in Step 4 and return to Step 2. 

(End of Procedure) 
For systems that are not "too nonlinear'' this procedure can be 

expected to converge rapidly to an acceptable CGEKF design.  However, 
for highly nonlinear systems, the procedure may  not  lead  easily to a 
satisfactory design,  even  when  such  a  design  exists. A noteworthy 
limitation of the procedure is that no explicit  method is provided for 
selecting the "best'' modifications of A ,  C, E, and 8 as required in Step 
5.  Even  in cases  where  a  nondivergent CGEKF estimator is not practical 
it may be possible to exploit  Theorem 3 to construct a  gain-scheduled 
CGEKF estimator which, if properly  initialized and if not subjected to 
excessively  large disturbances, has satisfactory  performance. This is 
accomplished  by using estimatedependent matrices A[;],  C[i], qil, 
and E[;] leading to estimate-dependent Z[i] and H [ i ] .  That is, H [ i ]  is 
"scheduled" according to x. The  on-line computations for such an 
estimator would be necessarily  more  burdensome than for a CGEKF; 
but, provided  a  simple  enough  gain  scheduling  algorithm is employed, 
this burden would be substantially less than that of an EKF for which 
on-line  error-covariance propagation is  required. For each  fixed  value of 
i-i.e., ;(t)~xo=constant-condition (6.3) of Theorem 3 defines a 
subset of R" having the property that provided the true state trajectory 
remains for all future time  within that set, the CGEKF with constant 
residual  gain matrix H(q) is stable and nondivergent. Thus, Theorem 3 
serves to determine the number of location of fixed values-viz. x = x. 
-at  which it is necessary to compute values for H in order to cover the 
entire reachable state space  with  stabilizing constant residual gain 
matrices. This information is  useful in assessing whether  a gain sched- 
uled  design is practical and how  complicated the gain  scheduling  algo- 
rithm must be. It should be emphasized,  however, that the results of 
Theorems 2 and 3 do not apply  rigorously in the case of an estimate-de- 
pendent X. Consequently,  such gain-scheduled estimators may  require 
careful  initialization and may not be able to recover from large  dis- 
turbances without  reinitialization,  much  like the traditional EKF which, 
in  general, has similar limitations. 

VIII. SVBOPI~MAL NONLINEAR OUTFWT-FEEDBACK 
CONlROLLERs 

The CGEKF results of the present paper combine with the results of 
[2] and [3] on the nonlinearity tolerance of linear-quadratic state-feed- 
back  (LQSF) control laws to suggest  a  simple, practical nonlinear exten- 
sion of the celebrated hearquadratic Gaussian optimal output-feed- 
back control design  technique. The idea is to cascade a CGEKF estima- 
tor with  a constant LQSF  gain matrix, both optimally  designed for the 
time-invariant nominal linearization of the system (4.1) 

X = A X + B U + &  X(O)=O 
y = c x + e  

(8.1) 

with performance index 

J(x,u) E [  ,Ihm ~ ~ ' x T ( t ) Q ~ ( t ) + u T ( t ) R u ( t ) d r ]  (8.2) 

where 

matrices E and 8; 
6 and 0 are zero-mean  white Gaussian with  respective covariance 

A ,  B, C are matrices of appropriate dimensions; 
R, Q are positive definite weighting  matrices of appropriate dimen- 

sions. It is assumed for simplici@ that A,  B,  C, R ,  Q, 8, E, @, 9, and e 
are not w-dependent. For the linearization  (8.1), the optimal Kalman 
filter residual gain is given  by (6.1) and (6.2) and the optimal LQSF 
feedback is given  by 

~ 

THE  NONLINEAR SYSTEM 
I 1 

I 

I (CONSTANT  LOSF  GAIN) < 
I -R- 'BTK - x CGEKF 

I 

I 
I 

SUBOPTIMAL  NONLINEAR OUTPUT-FEEDBACK COMPENSATOR1 I 
L _ - _ _ _ _ _ _ _ _ _ - _ _ _ - _ _ - - _ _ - - -  J 

Fig. 4. Suboptimal nonlinear output-feedback amtroller. 

where K =  ET > 0 satisfies  the  time-invariant Ricatti equation 

O = ~ X + A ~ K - K B R - ' B ~ K + Q .  (8.4) 

Cascading  the CGEKF with  the  feedback (8.3) leads to the suboptimal 
nonlinear output-feedback control law  (see  Fig.  4) 

This approach to suboptimal nonlinear output-feedback control design is 
similar in spirit to the approach outlined in  [19],  wherein an extended 
Kalman filter is cascaded with  a time-wying suboptimal feedback gain; 
however the precomputed constant gains in the control law  (8.5) make it 
drastically  simpler to implement  from the standpoint of real-time  com- 
putational burden. The remarkable robustness of the CGEKF design 
procedure and of LQSF control designs [2], [3] assure that this approach 
will produce a  stabilizing  feedback control law for systems  with  even 
substantial nonlinearity. The extent of this robustness is quantified in the 
following result. 

Theorem 4 (nonlinear Output-jeeaBack robustness): If uniformly for all 
X 

and if 

E[A-@+(B-%)(-R-'BTK)]+~(Q+KBR-'BTK)>0,(8.7) 1 

then the system (4.1)  with output-feedback (8.5) (as is  depicted  in  Fig.  4) 
is finite gain stable. 

Proof This result  is  a direct consequence of [2, theorem B.11 and of 
Theorems 1 and 3 of this paper: applying Theorem 3, condition (8.6) 
ensures that the CGEKF is  nondivergent  with finite gain; applying [2, 
theorem B.11, condition (8.7) ensures that the system (4.1)  with full-state 
feedback (8.3)  is stable with finite gain; the result  follows from Theorem 
1. 

IX. CONCLUSIONS 

Efforts to find methods for reducing the real-time computational 
burden of the  extended Kalman filter  have  led us to consider the 
possibility of a  constant-gain  extended Kalman filter (CGEKF), d e  
signed to be optimal for a constant linear approximation of the actual 
nonlinear system.  Since the residual-gain for a CGEKF estimator is 
constant and precomputable, the enormous real-time computational 
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burden of error-covariance propagation and residual-gain updating is 
eliminated, drastically reducing  real-time computational requirements. 
Because in many applications the linearization and disturbance model- 
ing  approximations made in CGEKF design  may  be only slightly cruder 
than the gross approximations that are made in EKF design, it is 
expected that the error-performance of CGEKF designs  may actually be 
competitive  with traditional EKF designs. 

By representing  a nonlinear estimator as a  servomechanism in which 
error is the output to be regulated, we have  been able to apply modem 
input-output techniques of analysis to generate  results  explicitly char- 
acterizing the robustness of CGEKF estimators-and,  more  generally, 
estimators  having the structure of the nonlinear  observer (4.2)-against 
the effects of approximations introduced in designing the residual gain. 
This result  provides conditions characterizing the amount of hia t ion  of 
the constant linear  residual-gain  design  model from the actual nonlinear 
system that can be tolerated by specific CGEKF designs  without the 
possibility of divergent  estimates.  Additionally, we have found that every 
CGEKF has a certain intrinsic robustness against divergence  which is 
interpretable as an infinite gain  margin and at least  a +60" phase 
margin in each output channel of the associated errordynamics feed- 
back  system. The synthesis of practical CGEKF designs has been 
discussed and  it has been  shown that the CGEKF nondivergence condi- 
tions can be exploited to constructively  modify and improve CGEKF 
designs. 

Of fundamental significance is the "separation"  result  (Theorem  1) 
which  shows that nondivergent  estimates can, unconditionally, be sub- 
stituted for true values in feedback control systems without inducing 
instability. This provides  theoretical justification for the use of extended 
Kalman filters (including CGEKF's) and other types of nonlinear ob- 
servers for state reconstruction in nonlinear feedback control systems. 

A  new method, based on linearquadratic-Gaussian optimal feedback 
theory, has been  proposed for the synthesis of suboptimal output-fed- 
back control laws for nonlinear systems. The method leads to a  simply- 
structured nonlinear dynamical feedback  law that is drastically  simpler 
to implement than suboptimal linearquadratic-Gaussian nonlinear 
feedback controllers incorporating a  time-varying  gain and a traditional 
EKF (cf.  [191). The feedback  law  decomposes ~ t u r a l l y  into an LQSF 
gain  matrix and a CGEKF estimator in a fashion reminiscent of the way 
the separation theorem of estimation and control leads to a  similar 
decomposition in linear problems. It has been shown that the inherent 
robustness of the CGEKF design procedure and of linear-quadratic 
state-feedback  combine to assure that this design approach will lead to a 
stable feedback  law for systems  with substantial nonlinearity. 

A limitation of the scope of the results of this paper is that they 
concern  primarily  such "coarse" measures of system  performance as 
stability and nondivergence.  "Finer"  measures  such as error-covariance 
are not explicitly addrased; though the CGEKF design procedure tends to 
emure that error-cooariame i~ approximately minimired when the linear 
design  model matrices ( A ,  C )  closely approximate the nonlinear opera- 
tors (@,e). This relative  de-emphasis of error covariance is partially 
justified by the fact that the covariances of the disturbances [ and B are 
seldom  precisely  known in practice; so it is seldom practical to precisely 
analyze the statistical properties of an estimate.  Nondivergence and 
stability  properties-properties that are prerequisite to a bounded error 
covariance-can be analytically  assessed independently of statistical 
considerations, as we have demonstrated. 

APPENDIX 

In this Appendix the results of Zames [7l (as elaborated upon in [9],  
[20D are used to prove  Theorems  1 and 2. For compactness of notation 
the argument w msmiated wiih the wrim operators and matrices has been 
suppressed. We begin by introducing a  definition. 

D+ition: Let T: %+% be an operator. Then the incremental opera- 
tor g x ]  is defined  by 

q x ] d x  L2 S(x+lx)-Fx ( A 0  

for all x and 6x elements of X. 
Proof of Theorem I :  First, note that 

hr 

Let [' (+ (8 9) [xle.  Then the dynamics of the closed-loop  system 
with u = 9; satisfy 

whereas the dynamics  with u = $x satisfy 

-x= (@+99)x+6  x(O)=O. 
d 
dt 

Since  by hypothesis  (A4)  is stable (finite  gain stable), it is sufficient to 
observe that 

Proof of Theorem 2: Let s denote the linear functional operator 
s = d /&.  From (4.4) and (4.5) it follows that 

s e = ( d [ x ] - ~ ~ [ x ] ) e - ( 5 - ~ ~ ) .  ('46) 

From [7, theorem 31 a  sufficient condition for (A7) to be finite gain 
stable is the existence of an c > 0 such that5 

( s + c ) - ' P - ' > O  (A84 

( -63![x]+HG[x]-€Z)P>O (A8b) 

uniformly for all XE s ( R + ,  R") and for all w. Parseval's theorem 
ensures that (A8a) holds for all c >O. Define 

T L  ( A  - @ - H ( C - Q ) P +  7s. 1 

Then in view of (5.1), a necessary and sufficient condition for (A8b) to 
hold  is 

9 x 1  >o 

uniformly for all xE%(R+,R") and for all w. Now, for all gE 
% ( R + J " )  

gx]q T(x+q)-Tq 

So, for all s€&(R+,R")  

careful review of the  proofs of [q reveals that  the stronger claim of finite gain stability is 
' A c W y  [7, theorem 31 merely claims boundedness rather than r i t e  gain stability. A 

justified in the  present situation (d. 19. p. lWl, [20, part Im. Also, it  should be noted that 
technically  the defiition of an extended  normed space employed in m does not permit 
the extension of %(., .); a less restrictive definition, consistant with Zames' theoq [71 
and admitting w, is given in [20, part II]. 

9R+R+.R") 4 completely analogous to ordinary Riemann integration betwen two 
%tegration between two points in an infiite-dimensional function space such as 

pomts m a fume dimensional space such as R"--d. 121, p. 6651. 
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( A W  
Thus, a sufficient condition for (A10) and hence (A&) to hold is V%l[x] 
uniformly strongly positive; that is, uniforxnly for all x € - ( R + , R ” )  
and for all w 

[ ( A - v B [ x ] ) - H ( C - V e [ x ] ) ] P +  p > o .  1 
(A 13) 
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