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Some Relations Between Extended and
Unscented Kalman Filters
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Abstract—The unscented Kalman filter (UKF) has become a
popular alternative to the extended Kalman filter (EKF) during
the last decade. UKF propagates the so called sigma points by
function evaluations using the unscented transformation (UT),
and this is at first glance very different from the standard EKF
algorithm which is based on a linearized model. The claimed ad-
vantages with UKF are that it propagates the first two moments of
the posterior distribution and that it does not require gradients of
the system model. We point out several less known links between
EKF and UKF in terms of two conceptually different implementa-
tions of the Kalman filter: the standard one based on the discrete
Riccati equation, and one based on a formula on conditional ex-
pectations that does not involve an explicit Riccati equation. First,
it is shown that the sigma point function evaluations can be used
in the classical EKF rather than an explicitly linearized model.
Second, a less cited version of the EKF based on a second-order
Taylor expansion is shown to be quite closely related to UKF.
The different algorithms and results are illustrated with examples
inspired by core observation models in target tracking and sensor
network applications.

Index Terms—Extended Kalman filter (EKF), transformations,
unscented Kalman filter (UKF).

I. INTRODUCTION

T HIS contribution compares various approaches for how to
propagate a Gaussian approximate state distribution for a

nonlinear system

(1a)

(1b)

The nonlinear filters in this study are in one way or another
related to the Taylor expansion of a nonlinear function
around an estimate ,

(2)
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where and (initially for notational convenience)
. Here, denotes the Jacobian and the Hessian of the func-

tion , defined in the Appendix, and is a point in the
neighborhood of . The equality holds for a in a neigh-
borhood of if a convergent Taylor series exists for in the
region, and is otherwise just an approximation. Basically, as an
overview, the following algorithms apply:
• The extended Kalman filter (EKF) [1], [2] is based on the
first two terms in (2). This works fine as long as the rest
term is small. Small here relates both to the state estima-
tion error and the degree of nonlinearity of . Basically,
as a rule of thumb, the rest term is negligible if either the
model is almost affine, or the signal-to-noise ratio (SNR) is
high, in which case the estimation error can be considered
sufficiently small.

• The second-order compensated EKF [3]–[5] approximates
the rest term with , and com-
pensates for the mean and variance of this term.

• The unscented Kalman filter (UKF) [6], [7] can be inter-
preted, as will be demonstrated, as implicitly estimating the
first terms (but not the Jacobian and Hessian themselves)
in the nonlinear transformation in (2).

The standard forms of the KF and EKF include a discrete-
time algebraic Riccati equation (DARE) for propagating the
state covariance, while the UKF in its proposed form is based
on a different principle in linear estimation and has no explicit
DARE. Further, UKF is based on function evaluations of
only, so neither the Jacobian nor the Hessian are needed. This is
a first claimed advantage of the UKF :

[7]: “ unscented transform (UT) is not the same
as using a central difference scheme to calculate the
Jacobian.”

This is indeed true, but, as we will point out, there is a du-
ality in the implementation. UKF can be implemented with
Riccati equations, and the EKF (and even the linear KF) can
be implemented without Riccati equations using only function
evaluations.
The core tool in the analytic results is the underlying trans-

form approximations of a nonlinear mapping , pro-
viding a Gaussian approximation of the stochastic
variable . It is often stated that the UT gives the correct first–
and second-order moments ( and ):

[7]: “Any set of sigma points that encodes the mean and
covariance correctly calculates the projected mean and
covariance correctly to the second order.”

However, we showwith a simple counterexample that this is not
the case, even for a quadratic function of Gaussian variables.

1053-587X/$26.00 © 2011 IEEE
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We also show analytically that the UT generally does not give
the same elements in the covariance as the second-order Taylor
expansion, which should at least be exact for quadratic functions
of Gaussian variables. On the other hand, we show that the UT
gives a good approximation of many common sensor models in
tracking and navigation applications.
The two quotes from [7] are actually cited almost literally in

a large number of papers on UKF, so this gives a strong moti-
vation for revisiting and clarifying the various links described
in this contribution. The outline is as follows. The transforma-
tions, the basic relations and some numerical illustrations are
given in Section II. Section III discusses the classical imple-
mentation of EKF, and shows how the sigma points of the UT
can be used to estimate derivatives such that the need for Ja-
cobians and Hessians is eliminated. Section IV gives a general
version of the Riccati-free nonlinear filter, where the transform
approximation can be chosen individually for the time and mea-
surement update, respectively. Section V concludes the paper.

II. NONLINEAR TRANSFORMATIONS

This section summarizes different methods to approximate
the distribution of a nonlinear mapping of a Gaussian
variable with a Gaussian distribution

(3)

The following subsections describe different approaches to ap-
proximate and . The symbol is here used to indi-
cate a distribution approximation. The underlying idea is that it
is often easier to approximate a distribution than a general non-
linear function, so the analytic distribution of will not be
considered here.

A. Taylor Transformations

Consider a general nonlinear transformation and its second-
order Taylor expansion

(4)

where is the dimension of the vector , and .
The Hessian of the component of is denoted , with

. The notation is used to denote a vector in
which element is . Analogously, the notation will be
used to denote the matrix where the element is . The-
orem 1 gives the theoretical mean and covariance of (4) when
is substituted with . The equality holds for a in a neigh-
borhood of if a convergent Taylor series exists for in the
region, and is otherwise just an approximation.
Theorem 1 (First Moments of the Taylor Transformation):

Consider the mapping

(5a)

from to . Let and , then the
first moment of is given by

(5b)

Further, let , then the second moment of is
given by

(5c)

with .
The result is in for instance [5] given without proof, so we in-

clude it here for completeness and for preparing for Theorem 2.
Proof: Suppose without loss of generality that

and . Further, to simplify
notation, let . Then, one direct way to express
the expected value of the rest term is to use the trace linearity
property and ,

(6)

The variance is more complicated to compute, and the Gaussian
assumption is needed. Below, a derivation of both mean and
variance is provided.
First, let , where , so that

. Then

(7)

The singular value decomposition (SVD) ,
where the diagonal elements of are (the vari-
ance of the noise in the direction of the respective eigenvectors),
gives a second transformation which does not change
the eigenvalues of the covariance, and in particular its trace is
the same, since . Thus (using

for scalar zero mean variance
Gaussian variables)

(8a)

(8b)

(8c)

Now, the sum of the diagonal elements of a matrix can be
expressed as the trace of the square of the matrix in the SVD, so

(9)

Further, if the function is vector-valued, the covariance be-
tween different rows can be derived in a similar way. Let

be the Hessian of the th row of . Then the result is

(10)
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In summary, the rest term for a vector valued function has
mean and covariance given by

(11a)

(11b)

This concludes the proof.
The following remarks are important:
• For quadratic functions , the
Hessian is independent of . That is, Theorem
1 gives the correct first– and second-order moments.

• For polynomial functions , the principle of moment
matching can be applied to compute and analyti-
cally, see [8]. For a Gaussian , all moments of can be
expressed as polynomial functions of and .

• The mean and covariance can also be derived from a linear
regression formulation, where the sigma points become the
regressors [9].

• The moment integrals

(12a)

(12b)

where is the probability density function of , can be
approximated with numerical integration techniques. The
Gauss-Hermite quadrature rule is examined in [10], and the
cubature rule is investigated in [11]. The latter reference
gives a nice link to the unscented transform which we will
come back to.

To summarize the theorem, the first-order Taylor approxima-
tion (TT1) can be used to form an approximate Gaussian distri-
bution for as

(13)

Further, the second-order Taylor approximation (TT2) leads to
a Gaussian approximation with mean and covariance provided
by the theorem as

(14)

It is a trivial fact that the gradient and Hessian in TT1 and TT2,
respectively, can both be computed using numerical methods. It
is worth stressing that both and are in all illustra-
tions computed using numerical methods. That is, only function
evaluations of the nonlinear function are assumed to be
available. However, as we will demonstrate in Theorem 3 and
the following discussion, there is a numerical method to approx-
imate the terms actually needed in TT2, which is one order of
magnitude more efficient than approximating the Jacobian and
Hessian explicitly.

B. Monte Carlo Transformation

The Monte Carlo Transformation (MCT) provides a general
framework to compute an accurate approximation, which
asymptotically should be the best possible one. The method is
straightforward. First, generate a number of random points

, let these pass the nonlinear function, and then estimate the
mean and covariance as follows:

The law of large numbers assures that these estimates converge
to the true values, which makes the MCT well suited for valida-
tion purposes.

C. UT

The UT is in a sense similar to the MCT approach in that
it selects a number of points , maps these to ,
and then estimates the mean and covariance in the standard way.
The difference lies in how the points are selected.
First define, and from the SVD of the covariance matrix

where is the th column of and is the ’th
diagonal element of . Then, let

(15a)

(15b)

where . Let , and apply

(16a)

(16b)

where is often denoted and used to make
the notationmore compact for the covariancematrix expression.
The design parameters of UT have here the same notation as

in UKF literature (e.g., [12]):
• is defined by .
• controls the spread of the sigma points and is suggested
to be approximately .

• compensates for the distribution, and should be chosen
to for Gaussian distributions.

• is usually chosen to zero.
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TABLE I
DIFFERENT VERSIONS OF THE UT (COUNTING THE CT AS A

UT VERSION GIVEN APPROPRIATE PARAMETER CHOICE)
IN (15) USING THE DEFINITION

Note that when , and that for
the central weight . Furthermore, . We
will consider the following two versions of UT summarized in
Table I, corresponding to the original one in [6] and an improved
one in [12].
The cubature transform (CT), that is used in the cubature

Kalman filter (CKF [11]), is derived using different principles
than the UT. However, it still fits the UT framework for a partic-
ular parameter tuning. The CT parameters are given in Table I
for comparison.
The derivative-free EKF (DF-EKF) in [13] avoids the center

sigma points just as the CT, but includes also an arbitrary scaling
factor to the other sigma points. For the case , themethod
coincides with CKF. Here the transformation used is denoted
derivative-free transform (DFT).
In summary, TT1 is a computationally cheap approximation,

TT2 aims at computing the correct mean and covariance by
taking care of the second-order term in the Taylor expansion
(for functions quadratic in , TT2 is completely correct,
otherwise it is often a good approximation), the MC approach
is always asymptotically correct (if the moment exists), and that
the UT is a fairly good compromise between TT2 and MC, that
improves computational complexity to MC while being simpler
to implement than TT2.
The unscented transform may have a negative weight for

the center point . This might cause problems when imple-
menting the UKF, for instance using the square root form. On
the other hand, the cubature filter described in [11] has a similar
set of sigma points. The points all have positive weights, and
the central point is left out.

D. Analytical Comparison of TT2 and UT

In the following theorem, the relation between TT2 and UT
will be analyzed, and expressions for the resulting mean and
covariance are given and interpreted in the limit as the sigma
points in the UT approach the center point.
Theorem 2 (Asymptotic Property of UT): Consider the map-

ping from to of the stochastic variable with
mean and covariance . The UT yields the following mean

and covariance asymptotically as in
UT2.

(17a)

(17b)

TABLE II
NONLINEAR APPROXIMATIONS OF FOR . THEORETICAL
DISTRIBUTION IS WITH MEAN AND VARIANCE . THE MEAN AND
VARIANCE ARE BELOW SUMMARIZED AS A GAUSSIAN DISTRIBUTION

For , equality holds if .
Proof: Reorganizing the terms in (16) gives

(18a)

(18b)

With the sigma points in (15), differences can be constructed
that, in the limit as (i.e., with ),
yield the derivatives:

(19)

(20)

Note that .
Using this, the limit case of (18) can be evaluated

(21a)

and

(21b)

By comparing (21) and (5) for a scalar , both TT2
and UT asymptotically gives the same result. In general, the
covariances of TT2 and UT differ since

(22)
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TABLE III
NONLINEAR APPROXIMATIONS OF THE RADAR OBSERVATIONS (RANGE AND BEARING) TO CARTESIAN POSITION MAPPING

FOR THREE DIFFERENT DISTRIBUTIONS OF . THE MEAN AND VARIANCE ARE BELOW
SUMMARIZED AS A GAUSSIAN DISTRIBUTION. THE NUMBER OF MONTE CARLO SIMULATIONS IS 10 000

Note that if and are scalar, but this
is in general not the case. Even with diagonal matrices, the result
may differ. Consider for instance the example

. One explanation for this discrepancy is
that the UT cannot express the mixed second-order derivatives
needed for the TT2 compensation term without increasing the
number of sigma points. The quality of this approximation de-
pends on the transformation and must be analyzed for the case
at hand.

E. Numerical Comparisons

We here provide some examples where the following
methods are compared:

TT1: First-order Taylor expansion leading to Gauss’
approximation formula.

TT2: Second-order Taylor expansion, which compensates
the mean and covariance with the quadratic
second-order term.

UT: The unscented transformations UT1 and UT2. UT2
will be the default one in the sequel if the number is
not indicated.

MCT: The Monte Carlo transformation approach, which in
the limit should compute correct moments.

Tables II and III summarize the results.
Example 1 (Sum of Squares): The following mapping has a

well-known distribution

(23)

This distribution has mean and variance . For the Taylor
expansion, we have

It follows that

That is, TT1 fails completely and TT2works perfectly. UT gives
correct mean. The standard version of UT gives negative vari-
ance, while the modified one overestimates the variance, and
CT gives zero variance, as seen in Table II.
Example 2 (Radar Measurements): Consider the mapping of

range and bearing to Cartesian coordinates

(24)

For the first case in Table III, , we have the Taylor
expansion

Note that all higher order derivatives have the unit norm,
for all , so the second-order Taylor

expansion cannot be regarded as an accurate approximation.
This is particularly the case when the angular error is large, as
it is designed to be here.
It follows from (14) and Theorem 2 that

and that the covariance approximations differ. The results are
available in Table III.
Example 3 (TOA, DOA, and RSS Measurements): The

basic measurements in sensor networks [14] are time of ar-
rival (TOA), direction of arrival (DOA), and received signal
strength (RSS). These all relate to the position in a nonlinear
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TABLE IV
NUMERICAL COMPARISON OF APPROXIMATE TRANSFORMATIONS FOR

NONLINEAR MEASUREMENT MODELS IN SENSOR NETWORK APPLICATIONS.
THE MEAN AND COVARIANCE ARE IN EACH CASE SUMMARIZED AS AN

APPROXIMATE GAUSSIAN DISTRIBUTION

way. Range measurements in two and three
dimensions, respectively, are given by

Received signal strength in two dimensions in dB scale (where
the measurement noise can be seen as additive and Gaussian
[14]) is given by

Finally, direction of arrival is expressed as

where is the four quadrant arc-tangent function. The
resulting approximation depends a lot on the assumed Gaussian
distribution of position. We choose a distribution which is typ-
ical in single sensor tracking applications, where the prior dis-
tribution before the measurement update is uncertain in the di-
rection tangential to the measurement information. The results
are summarized in Table IV.
The conclusion from the example, andmany similar tests with

other prior distributions of the position, is that TT1 is inferior
and that the UT, and in particular the tuning provided by the CT,
is to be preferred to TT2. However, all of TT1, TT2, and UT can
be arbitrarily bad compared to the MCT.

It should be remarked, though, that all the cases in Examples 2
and 3 are deliberately designed to excite higher order terms in
the Taylor expansion. As the range to the target increases, the
higher order terms will decrease with a rate that for the higher
order terms is higher than that for the lower order terms. Based
on the preceding analysis, one may expect that the TT2 will
converge faster than TT1 and UT.

III. DARE-BASED EKF

Here, detailed recursions are given for the EKF without and
with second-order compensation, respectively. The function

is here more compactly written , and similarly
.

A. EKF Algorithms

Using the transformation approximation TT1 and TT2, re-
spectively, immediately gives the two Riccati-based EKF filters
in Algorithm 1.

Algorithm 1: DARE-based EKF and EKF2

The EKF2, using the TT2 transformation, for the model (1) is
given by the following recursions initialized with and :

(25a)

(25b)

(25c)

(25d)

(25e)

(25f)

The EKF, using the TT1 transformation, is obtained by letting
both Hessians and be zero.

The common EKF should work well when the bias and vari-
ance contribution of the second-order Taylor term is negligible
to the noise

(26a)

(26b)

Here, means that the eigenvalues of are all much
greater than zero. These are conditions that can be monitored
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on-line, but with a large computational overhead, or analyzed
off-line based on only the model and typical operating points.

B. Numerical Approximations of Gradients and Taylor Terms

The standard form of the EKF involves symbolic derivatives.
However, numeric derivatives may be preferred in the following
cases:
• The nonlinear function is too complex to be differentiated.
For instance, it may involve a computer vision algorithm
or a database look-up.

• The derivatives are too complex functions, requiring too
much computer code, memory or computations to be
evaluated.

• A user-friendly algorithm is desired, with as few user in-
puts as possible.

The derivatives can then be approximated numerically, for in-
stance by

(27a)

(27b)

The number of function evaluations is for the difference
in (27a) ( for a central difference) and for
difference in (27b) ( for a central difference). This should
be compared to the total complexity of EKF2, which is of order
. These numerical approximations of the Jacobian and the

Hessian can be used in (25).
However, we next derive an alternative implementation

using the sigma points, where these matrices never need to be
formed. This algorithm is fundamentally different from other
approaches in literature for derivative free (derivative free
here means that neither analytical derivatives nor numerical
approximations of the Jacobian or the Hessian are required)
implementation of the EKF, such as DF-EKF in [13].
Theorem 3 (Sigma-Point Based DARE EKF): Consider the

mapping for . Given the transformed
sigma-points in (15), the terms in Algorithm 1 in-
volving Jacobians and Hessians can be approximated arbitrarily
well as with

Further, for a scalar ,

Proof: Using the SVD

(28)

the sigma points in (15) can be written, using
when

(29a)

(29b)

The Taylor expansion (2) for the transformed sigma points can
then be written

(30)

Note that the second-order rest term is accurate only in a small
neighborhood of , so the sigma points should be chosen close
to , which means that should be small.
The first- and second-order terms in the Taylor expansion can

now be resolved using the following linear combinations

(31a)

(31b)

as . Taking the weighted sum of the term in (31), we get

(32a)

Similarly, summing quadratic forms for (31) gives

(32b)

Further

(32c)
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For the final statement in the theorem, note that

(32d)

Now, (32d) can be simplified if so only symmetric
factors remain. This concludes the proof.

That is, the standard EKF can be implemented without
forming the Jacobians and , neither analytically nor
numerically. This holds also for the second-order EKF, where
neither the Jacobians nor Hessians need to be formed.
It is interesting to compare the computational complexity of

the three alternatives of using analytical Jacobian (and Hes-
sian), numerical approximation of these and finally the numer-
ical approximation of the terms needed in the EKF. For the
standard EKF, the matrix times matrix multiplication
is of complexity , which is also the case for the first two
terms in Theorem 3. This fact is well known. Next, consider
the second-order EKF. The complexity of computing is of
complexity
The last statement in Theorem 3 holds only for a scalar state,

which is a rather limited result. There is no apparent way to
generalize this using only the sigma points in the UT. However,
by also including the “corner” sigma points, this issue can be
resolved.
To motivate this statement, define an extended set of sigma

points where the points

(33a)

(33b)

are added to the set in (15), and is defined for
each new sigma point. The derivation is based on the observa-
tion that

(34a)

(34b)

One can then show that

(35)

Here, the first two terms can be computed with the standard
sigma points using (3c), while the last term is what is needed
to evaluate (32d) in the multivariable case. The details are out-
side the scope of this contribution. There are actually two ad-
vantages of implementing the second-order EKF in this way,
even compared to the case where the analytical Hessian is
available. First, the terms and are here
numerically approximated in a basis that automatically incor-
porates , so the product is not needed to form explicitly.
The direct computation of for all is of
complexity (only the diagonal terms need to be computed
for the trace), while the numerical approximation in (3c) is only

. Further, direct evaluation of for all and
is of complexity , while the numerical approximation in
(32d) is .
In summary, the transformed sigma points can be used to ap-

proximate the linear term and rest term in the Taylor expansion
(2), without explicitly computing the Jacobian and Hessian of
and . This is one sound motivation for propagating the sigma
points through the nonlinearity. From Theorem 3 and the fol-
lowing discussion, we make the following remarks on the EKF,
assuming for simplicity additive noise processes:
• Equations (32a), (32b) give the gradient needed in the stan-
dard EKF (25). That is, can be substituted with one of
these approximations on all occasions.

• Equation (3c) provides the mean corrections in the second-
order EKF (25a), (25e).

• Equation (32d) provides the covariance corrections in
the second-order EKF (25f), (25h) for a scalar , but
as we have argued this can be resolved by using more
sigma points (33), leading to a computationally efficient
implementation.

IV. RICCATI-FREE EKF AND UKF

The Kalman filter equations are often obscured by the com-
plexity of the Riccati equation. However, one key idea in the
UKF is based on a result from optimal filtering, where UT but
also TT1, TT2, and MCT can be used.
As a brief review, the basic idea is to consider the nonlinear

transformation

(36)

of the state and a stochastic variable , both assumed
Gaussian distributed, using the prior

(37)

The transformed variables can then be approximated with the
following Gaussian distribution, using TT1, TT2, UT, or MCT:

(38)

The quality of the approximation depends on the nonlinearity
and the method used. Assuming an observation of the non-
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linear relation , a well-known result (see for instance
[15, Lemma 7.1]) states that

(39)

(40)

The basic idea is thus to approximate the covariance matrix for
numerically and compute the Kalman gain from

its block matrix decomposition. Algorithm 2 gives the general
algorithm. Note that the process noise does not need to be ad-
ditive in this approach. These transformations provide a frame-
work for nonlinear filtering from which the following different
combinations of transforms can be done:
• The EKF obtained using TT1 above is equivalent to the
EKF in (25).

• The EKF version obtained using TT2 above is equivalent
to the second-order compensated EKF in (25).

• The Monte Carlo approach should potentially be the most
accurate, given that a sufficient number of samples are
used, since it asymptotically computes the correct first- and
second-order moments.

• The UKF is obtained by using the UT (1, 2 or other vari-
ants) in both time and measurement updates above.

• One should be aware of that it is not advisable to start with
a large initial covariance when using UKF, since the
sigma points are then located far from the true state, in
contrast to the EKF variants.

• There is a freedom to mix transform approximations in the
time and measurement update.

• If the observation model is linear, the usual Kalman filter
measurement update should be performed. The same holds
for a linear dynamic model.

The actual performance for the 16 different combinations de-
pends of course on the degree of nonlinearity in the system
model. As a rule of thumb, the choice can be guided by studying
the nonlinear mappings in the dynamic model and sensor model
individually. For target tracking and navigation applications, it
is often the nonlinear sensor model that gives the greatest fil-
tering challenge as pointed out in [16].

Algorithm 2: Nonlinear Transformation-Based Filtering

The nonlinear transform-based filter for the model (1) is given
by the following recursions initialized with and :
1) Measurement update: Let

(41a)

(41b)

The transformation approximation (UT, MC, TT1, TT2)
gives

(41c)

The measurement update is then

(41d)

(41e)

(41f)

2) Time update: Let

(41g)

(41h)

The transformation approximation (UT, MC, TT1, TT2)
gives

(41i)

Example 4 (Bearings-Only Tracking): The next example ex-
emplifies the common bearings only problem depicted in Fig. 1.
Here a situation where a target, known to be in an approximate
location quantified by and , is being triangulated using
bearings-only measurements . This can be mathematically de-
scribed as

where the state is the Cartesian position of the target,
for clarity, and . For this situation, the

gradients needed to perform filtering using an EKF are

Note, the first-order approximation of is best for
.
Now, assume

and that the bearing to the target is measured first from the po-
sition and then from , as depicted
in Fig. 1. Fig. 2 depicts the estimates based on this new and
noise-free measurements for the different filters.
The variance of the estimation error based on Monte Carlo

simulations of the problem specified above, using the described
filters, yield the result in Table V. The table somewhat contra-
dicts the previous results. One thing to observe is that the UKF
outperforms the EKF. Hence, it seems that the conservative
matrix actually pays off.
Finally, note that the PF and the inferred distribution is almost

identical. Worth noticing, though, is the substantially better es-
timates achieved with the PF compared to the other used filters.
Hence, this is a situation when the PF pays off.
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Fig. 1. Bearings-only problem. Twomeasurements are used, one from and
one from .

Fig. 2. Estimate with , based on one and two measurements.
(Estimates are denoted with in the center of each covariance ellipse, and the
true target position is denoted with .) (a) Measurements from: (EKF and
UKF almost coincide, as do PF and true.) (b) Measurements from: .

TABLE V
MEAN SQUARE ERROR FILTER PERFORMANCE FOR 1000 MONTE CARLO
SIMULATIONS. TRUE POSTERIOR IS COMPUTED BY A PMF WITH A DENSE

GRID, AND THE PF PERFORMANCE IS GIVEN FOR COMPARISON

V. CONCLUSION

For nonlinear filtering problems where the nonlinearity is se-
vere compared to the prior state information, the classical EKF
“stinks” compared to the UKF, which has been concluded in
a large number of applications. We have shown that the less
cited EKF2 based on a second-order KF is closely related to
the UKF. Indeed, in a way EKF2 approximates the first two mo-
ments in a more accurate way for multivariable transformations.
The comparison is performed in terms of the corresponding
transformations of a nonlinear mapping for being
Gaussian. The UT does not give the correct second-order mo-
ments even for quadratic functions, an often stated property.
This was demonstrated with the simple counterexample

which has an analytical solution. On the other hand, for
many standard sensor models, the UT performs very well.

APPENDIX

The Jacobian and Hessian for a scalar function
are defined as

(42a)

...
. . .

...

(42b)
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