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This course

Objectives
Course aimed at PhD students that are not doing research in estimation.

1 Basic definitions, fundamentals
2 General knowledge on design methodologies

Examination
Compulsary attendance on lectures
Solve course exercises and active participation in discussions

Course organization
Lectures as a complement to books/papers. You can not take this
course by only attending lectures, reading is a must!
6 credits
prel. 4 lectures, 4 discussions
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This lecture

Fundamentals for observers for linear systems
Not much about design today
An overview and possibly a different perspective than Kailath.
Text: Kailath Chapter 2.3, 2.4 and Chapter 4 + additional notes.
Exercises:

Kailath: 2.3-1a, 2.3-3, 2.3-5, 2.3-15, 2.3-16, 2.4-2a, 2.4-4, 2.4-5a,
2.4-8a, 4.1-3, 4.1-7, 4.1-8, 4.1-9, 4.2-2, 4.3-3, 4.3-4
The marked exercises in this lecture Le1.1 - Le1.6
Exercises 2.3-22, 2.4-6, 4.1-4, 4.2-2, 4.2-3 are interesting (requirec last
time, but not mandatory this time. But do take a look!)
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When does it work?

Basic definitions
Definition of an observer
Linear observability
Simple design & canonical forms

Test for observability
Observability matrix
PBH rank/eigenvector test
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Observerbarhetsgramian

Is observability everything?
The non-observable subspace and Kalman decomposition
Reduced observers
Observers for control and diagnosis
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What is an observer?

What is an observer, stateobservers, filter, Kalman filter, Luenberger
observer . . .

Model : ẋ = f (x , u)

y = h(x)

Observer : ẇ = g1(w , y , u)

x̂ = g2(w , y , u)

You want x̂(t) = x(t), or minimal variance or

lim
t→∞

x̂(t) = x(t)
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Typical case

For a model

ẋ = f (x , u)

y = h(x)

Typical observer:

˙̂x = f (x̂ , u) + K (x̂ , y , . . . )(y − h(x̂))

where the observer gain K () is chosen such that the error dynamics is
stable, i.e., e(t) = x(t)− x̂(t)

lim
t→∞

e(t) = 0
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What is the usual way?

ẋ = Ax + Bu ˙̂x = Ax̂ + Bu + K (y − Cx̂)

y = Cx

with the estimation error e = x − x̂ the error dynamics is

ė = (A− KC )e

why is the feedback necessary? Systems are often stable by
themselves?
how do you choose K and what are your objectives?
when can we choose K so that we get desired properties?
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Observer as a parameter estimator

Assume a parameterized, by θ, function

yt = h(ut ; θ)

and we have measured data y and u and are interested in estimating the
constant θ.
This can be written as an estimation problem for the state-space form

θt+1 = θt

yt = h(ut ; θ)

where the state is the parameters we are interested in.
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Observer as a parameter estimator, cont.

If the system is dynamic, it is equally ”easy”. Rewrite the model

xt+1 = f (xt , ut ; θ)

yt = h(xt , ut ; θ)

as

θt+1 = θt

xt+1 = f (xt , ut ; θ)

yt = h(xt , ut ; θ)

and estimate the new, extended, state. This means that the state x in the
original model is estimated simultaneously as the parameter state θ.
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A word of warning

Note!
The is certainly not the whole truth about how to estimate parameters in
nonlinear dynamical systems. There are many traps and pitfalls.

Paper (linked from the course page) that analyses the problem

Lennart Ljung, ”Asymptotic behavior of the extended Kalman filter as a
parameter estimator for linear systems”, IEEE Transactions on Automatic
Control, vol. 24, no. 1, pp. 36-50, 1979.
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Observer as a parameter estimator, example
Assume a first order system and we are interested in the parameter β

ẋ = −βx + u

y = x
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A more general input signal, what then?
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Step response experiment

Discretize the system with a basic euler forward

βt+1 = βt
xt+1 − xt

Ts
= −βtxt + ut

yt = xt

Now we have a regular state-space form and if we can estimate the state
vector we have also estimated the parameter β.
designing an Extended Kalman Filter (EKF)

β̂t+1 = β̂t +K 1
t (yt − x̂t)

x̂t+1 = x̂t − Ts β̂t x̂t + Tsut +K 2
t (yt − x̂t)

It is sensitive how to determine the observer gains K 1
t and K 2

t . More about
that later.
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EKF as a recursive parameter estimator

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

t

β

14 / 63

When does it work?

Example 1:

ẋ1 = −x1 + x2

ẋ2 = −x2 + u

y1 = x1

y2 = x2

Does it work with only y1?
With only y2?

Example 2:

ẋ1 = x2

ẋ2 = x1 + u

y = x1 + x2

What now?

To be able to design a stable observer, the non-measured signals must be
sufficiently visible in the measurements.
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Partitioning

Basically, a non-observable system can always be written in the form

ẋ1 = g1(x1, x2)

ẋ2 = g2(x2)

y = h(x2)

u

y

x1

x2
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Observer, definition

There are different version in the litterature, often similar to

Assume an autonomous dynamical system

ẋ = f (x), y = h(x) (1)

Definition (Observer)

A dynamical system
ż = Φ(z , y)

is an observer for (1) if there is a (locally) invertible function T (x) such
that

T (x(0)) = z(0)⇒ z(t) = T (x(t))

Possibly you can add a stability requirement in the definition.
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Observability - when does it work?

ẋ = Ax + Bu, x(0) = x0

y = Cx

Definition (Observability)

A linear system is said to be observable (on [0, tf ]) if x0 is uniquely
determined by y(t) (t ∈ [0, tf ]).

Definition (Observability)

The state x0 6= 0 is said to be non-observable if when u(t) = 0, t ≥ 0 the
output is y(t) = 0, t ≥ 0.
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Observability

ẋ = Ax + Bu, x(0) = x0

y = Cx

Definition (Observability)

A system is observable if the observability matrix

O =


C
CA
...

CAn−1


has full column rank.
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Observability

ẋ = Ax + Bu, x(0) = x0

y = Cx

Definition (Obsaervability)

A system is observable if the observability gramian

Σo =

∫ ∞
0

eA
T τCTCeAτdτ

is invertible.

(I’ll get back to this later)
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Observability

My favourites are variants of the ones below

Definition (Observability)

Let y1(t) be the output when x(0) = x1 and y2(t) the output when
x(0) = x2. A linear system is observable if y1(t) = y2(t)⇒ x1 = x2.

Definition (Observability)

A linear system is observable (on [0, tf ]) if x(t) (t ∈ [0, tf ]) is uniquely
determined by y(t) (t ∈ [0, tf ]).

Both these definitions are directly extendable to non-linear and
time-varying systems.
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Observer by differentiation

A ”naïve” method:
ẋ = Ax , y = Cx

y(t)
ẏ(t)
...

y (ρ−1)(t)

 =


C
CA
...

CAρ−1

 x(t) = Ox(t)

observability = possible to solve the system of equations
observability index
can ρ < n, ρ > n, always ρ = n?
analogous in discrete time
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Observer by differentiation, cont.



y1(t)
...

y (ρ1−1)(t)
...

y2(t)
...

y (ρ2−1)(t)
...


=



C1
...

C1A
ρ1−1

...
C2
...

C2A
ρ2−1

...


x(t)

not necessarily the case that you have to differentiate all measurement
signals equally many times
minimal ρi are called the observability indices
For an observable system, max ρi =?,

∑
ρi =?
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Observerbality indices

It is not necessary to differentiate all measurement signals equally many
times for O to have full column rank

c1 c2 c3
A0 x x x
A1 x x
A2 x
A3

rank



c1
c2
c3
c1A
c3A
c1A

2

 = 6,



y1
ẏ1
ÿ1
y2
y3
ẏ3

 =



c1
c2
c3
c1A
c3A
c1A

2

 x

The lengths of the ”chains” {ρi} = {3, 1, 2} are the observerbability indices.
Realisation theory and how ”deep” you have to dig to access the true state
value.
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Asymptotic observers

If (C ,A) is an observable pair the poles of A−KC can be placed arbitrarily

An asymptotic observer fulfills the condition

lim
t→∞

x(t)− x̂(t) = 0

For the model and the observer

ẋ = Ax + Bu, ˙̂x = Ax̂ + Bu + K (y − Cx̂)

y = Cx + Du

the error dynamics is (e = x − x̂) ė = (A− KC )e
The eigenvalues for för A− KC can be places arbitrarily with a well chosen
K if and only if (A,C ) is an observable pair.
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Design choices

more than 1 output ⇒ more freedom to place the poles
place the poles in −1 and −2, what converges as e−2t and what
converges as e−t?
modes of the error dynamics (eigenstructure assignment)
noise and minimal variance (Kalman-filter)
robustness agains modelling errors in different norms and criteria

parametric uncertainty
guarantee area for the poles under uncertainty
. . .
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Ackermann’s formula

One (among many) known direct formula for controllable SISO
systems
Bad numerical properties
See course material for a derivation of the formula

K = αc(A)O−1


0
...
0
1

 , αc(A) = An + αn−1A
n−1 + · · ·+ α0I

and αi are the coefficients in the desired polynomial
detλI − A + KC = λn + αn−1λ

n−1 + · · ·+ α1λ+ α0
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Observable canonical form
Why is it called observable canonical form?

y(t) =
b(p)

a(p)
u(t) =

b1p
n−1 + · · ·+ an−1p + bn

pn + a1pn−1 + · · ·+ an−1p + an
u(t)

ẋ =


−a1 1 0 0 . . . 0
−a2 0 1 0 . . . 0
...

. . .
−an−1 0 0 . . . 0 1
−an 0 0 . . . 0 0

 x +


b1
b2
...

bn−1
bn

 u

y =
(
1 0 . . . 0

)
x

A− KC =


−(a1 + k1) 1 0 0 . . . 0
−(a2 + k2) 0 1 0 . . . 0

...
. . .

−(an−1 + kn−1) 0 0 . . . 0 1
−(an + kn) 0 0 . . . 0 0
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Nonlinear canonical form

More on this later, but a direct non-linear counterpart is

ẋ =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

. . .
0 0 0 . . . 0 1
0 0 0 . . . 0 0

 x +


f1(x1, u)
f2(x1, u)

...
fn−1(x1, u)
fn(x1, u)


y =

(
1 0 . . . 0

)
x

If you can translate a system into this form you can accomplish linear error
dynamics. More on this later.
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Observable realizations

y(t) =
b(p)

a(p)
u(t) ⇔ a(p)y(t)− b(p)u(t) = 0

can above model correspond to a non-observable system? Does it
depend on if a(s) and b(s) has common zeros?
can it be realizrd by a non-observable state-space model?
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Observable realizations

Realize
y(t) =

p + 1
p2 + 3p + 2

u(t)

in controllable and observable canonical forms respectively

ẋ =

(
−3 −2
1 0

)
x +

(
1
0

)
u, ẋ =

(
−3 1
−2 0

)
x +

(
1
1

)
u

y =
(
1 1

)
x , y =

(
1 0

)
x

both these realizations, do they correspond to the same system?
is it possible to find a state transformation from one to the other?
explain
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Summary

This far
What is an observer?
Observability, when does it work? Definition for linear systems.
Observervability index, observability indices
Asymptotic observer
Canonical forms for linear systems, observable realizations
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Based on the observability matrix

ẋ = Ax , y = Cx

Theorem (Observability)

The pair (C ,A) is observable if and only if

rank


C
CA
...

CAn−1

 = n

simple
numerically not so good for large (and not so large) systems
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PBH rank/eigenvector test

ẋ = Ax , y = Cx , can be written as
(

C
λI − A

)
x = 0

Theorem (PBH eigenvector)

The pair (C ,A) is non-observable if and only if there exists an x 6= 0 such
that

Ax = λx , Cx = 0

Theorem (PBH rank)

The pair (C ,A) is observable if and only if(
C

λI − A

)
has full column rank for all s ∈ C.

really useful, connect to geometric interpretation.
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PBH
Sketch proof for

∃x .


C
CA
...

CAn−1

 x = 0⇔ ∃λ, x .
(

C
λI − A

)
x = 0

⇐ Direct substitution
⇒ Without loss of generality, assume system is partitioned in an

observable and non-observable part, i.e.,

ẋ =

(
A11 A12
0 A22

)
x + Bu

y =
(
0 C2

)
x

where (C2,A22) is an observable pair.
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Exercise: non-observable subspace

Assume a non-observable model

ẋ = Ax , y = Cx

The null-space for the observability matrix O gives the non-pobservable
subspace. This means that there exists λ and v such that(

λI − A
C

)
v = 0

Exercise Le1.1: What is the relation between v in the null-space above to
those in the non-observable subspace? Is the null-space equal to the
non-observable subspace?
Hint: Jordan forms.
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Generalized observability matrix
We are going to derive a condition that is numerically more attractive than
direct application of O.
Differentiate the state-space model as before, but do not substitute

ẋ = Ax ẍ = Aẋ . . . x (n−1) = Ax (n−2)

y = Cx ẏ = Cẋ . . . y (n−1) = Cx (n−1)

Collect all the x and y you get the system of equations

I −A 0 . . . 0 0
0 I −A . . . 0 0
...

...
...

...
...

...
0 0 0 . . . I −A
0 0 0 . . . 0 C
0 0 0 . . . C 0
...

...
...

...
...

...
0 C 0 . . . 0 0
C 0 0 . . . 0 0





x (n−1)

x (n−2)

...

...

ẋ
x


=



0
0
...
0
y
ẏ
...

y (n−2)

y (n−1)
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Generalized observability matrix

You can show that the system is observable if and only if Oext has full
column rank

Oext =



I −A 0 . . . 0 0
0 I −A . . . 0 0
...

...
...

...
...

...
0 0 0 . . . I −A
0 0 0 . . . 0 C
0 0 0 . . . C 0
...

...
...

...
...

...
0 C 0 . . . 0 0
C 0 0 . . . 0 0


∈ R(n(n+m)−n)×n2

Oext nice enough to allow structural analysis, which O does not allow.
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Observability gramian

The observability gramian was mentioned earlier.
We can write

y(t) = CeAtx0 ⇒ (eAt)TCT y(t) = (eAt)TCTCeAtx0

⇒
∫ ∞

0
(eAt)TCT y(t)dt =

∫ ∞
0

(eAt)TCTCeAtdtx0 = Σox0

and then derive the result

Theorem (Observability)

An LTI system is observable if, and only if, the observability gramian

Σo =

∫ ∞
0

eA
T τCTCeAτdτ

is invertible.
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Time variable systems

ẋ(t) = A(t)x(t), y(t) = C (t)x(t), x(0) = x0

where A(t) and C (t) are continuous matrix functions. Whit

y(t) = C (t)x(t) = C (t)Φ(t)x0 (Φ(t) = eAt for LTI system)

As before, let

Σo(t) =

∫ t

0
ΦT (τ)CT (τ)C (τ)Φ(τ)dτ

define the observability gramian Σo(t).

The system is observable on [0, t] if there is any t in the interval such that
Σo(t) is invertible.

There are similar results for O, but more on that in the nonlibear part of
the course.
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Exercise on time variable systems
Exercise Le1.2: Assume a linear system with a function f () according to

ẋ = −ax + f (x ; θ1, θ2)

y = x

and we are interested in estimating x and the function parameters θi with
an observer. Assume that the function f is linear, i.e.,

f (x ; θ1, θ2) = θ1 + (θ2 − θ1)x

The state x is observable (we are measureing it directly), rewrite the
system as

θ̇1 = 0, θ̇2 = 0 (2a)

z = ẏ + ay =
(
1− y y

)
θ = C (t)θ (2b)

We have now a time-variable linear system. Use the gramian criterion to
show that the system (2) is observable on the interval [0, t], t > 0 if ẏ 6= 0.
Why is this result expected?
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Summary

Test to verify observablity for linear systems based on
observability matrix
PBH tests
Generalized observability matrix
Observability gramian, which also works for time varying systems
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Is observability sufficient?
Observability tells us if it is possible to find x0 given y(t), but it doesn’t
tell us how much of x0 that is visible in the output. For a stable and
observable system, the energy of y(t) is one measure.

ẋ = Ax , x(0) = x0,

y = Cx

∫ ∞
0

y(τ)T y(τ)dτ = · · · = xT0 Σox0

Exercise Le1.3: Show that the observability gramian Σo satisfies the
Lyapunov equation

ATΣo + ΣoA + CTC = 0

Indicate where the stability requirement is used.
Hints:

1 Matrices eAt and A commutates
2 d

dt e
AT tMeAt is an interesting expression.

Further, the symmetrical solution to the Lyapunov equation is unique under
pretty general conditions.
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Observerbarhetsgramianen

ẋ =

(
−2 −1
ε −1

)
x

y =
(
1 1

)
x

Exercise Le1.4: Compute the observability gramian as a function of ε and
interpret the result.
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The non-observable subspace

The matrix O =


C
CA
...

CAn−1

 seems important.

non observable subspace
why can’t you speak of the observable subspace

Example:

ẋ =

(
−2 −1
0 −1

)
x , y =

(
1 1

)
x

O =

(
1 1
−2 −2

)
, kerO = Im

(
1
−1

)
This means that all x(t) on the line

x(t) = x0 +

(
1
−1

)
s

have the same effect on y(t), ẏ(t), . . . . 49 / 63

Geometrical interpretations

ẋ = Ax

y = Cx

Take a subspace V that fulfills
a) AV ⊆ V (V is A invariant)
b) V ⊆ kerC (V is in the null-space of matrix C )
c) V is the largest linear space that fulfills conditions a and b

How do we compute V? What does V mean?
Nonlinear generalizations exists.
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Decomposition

The last slide gives us that, by a change of variables, the model can be
written in a form where x1 is non-observable and x2 observable

ẋ =

(
A11 A12
0 A22

)
x + Bu

y =
(
0 C2

)
x

u

y

x1

x2
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Detectability

ẋ =

(
A11 A12
0 A22

)
x , y =

(
0 C2

)
x

the pair (A22,C2) is observable

A− KC =

(
A11 A12 − K1C2
0 A22 − K2C2

)
e2(t) = e(A22−K2C2)te2(0)

ė1(t) = A11e1 + (A12 − K1C2)e2

The existance of an asymptotic observer does not require observability, only
detectability (all non-observable modes are stable).
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Kalman decomposition

More general:

ẋ =


Acō A12 A13 A14
0 Aco 0 A24
0 0 Ac̄o A34
0 0 0 Ac̄o

 x +


Bcō

Bco

0
0

 u

y =
(
0 Cco 0 Cc̄o

)

Observable
Non-controllable

Observable
Controllable

Non-observable
Controllable

Observable
Non-controllable

u

y

y
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Reduced observers

ẋ =

(
A11 A12
A21 A22

)
x , y = x1

the observer normally has the same order as the system
We are measuring some states directly, this can be utilized
We can design an observer with order n − n1. We gain something,
what do we lose?

x̂1 = y , ˙̂x2 =?
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Reduced observers
There are many ways to derive reduced obsevers, I like this one where the
first dynamic equation is used in the feedback (why can’t the measurement
equation be used?):

˙̂x2 = A21y + A22x̂2 + K (ẏ − A11y − A12x̂2)

The only problem is that there is an ẏ in the equation. With a new state
w = x̂2 − Ky we get the state-space equation for the observer

ẇ = (A22 − KA12)w + (A21 + A22K − KA11 − KA12K )y

x̂1 = y

x̂2 = w + Ky

What are the error dynamics?
What is the observability requirements for a reduced observer?
Exercise Le1.5: Show that the observability condition for the original
system implies that the poles can be selected arbitrarily in the error
dynamics of the reduced observer.
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Reduced observer

Exercise Le1.6: Design a reduced and a full-order observer for the system

ẋ =

(
0 1
0 0

)
x

y = x1

Place the poles similar in the two and compare sensitivity to measurement
noise in both designs.
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Separation principle
Assume a linear system and state feedback from estimated states

ẋ = Ax + Bu

y = Cx

˙̂x = Ax̂ + Bu + K (y − Cx̂)

u = r − Lx̂
This gives a closed loop system with 2n states as(

ẋ
˙̂x

)
=

(
A −BL
KC A− KC − BL

)(
x
x̂

)
+

(
B
B

)
r

y = Cx

The characteristic polynomial can be shown to factorize as

det(sI − A + BL) det(sI − A + KC )

Separation result
Optimal controller for the system can be split into two separate
optimization problems: observer and controller.

It is often the case that connecting two stable systems might give an
unstable system. This is not the case here.
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Separation principle

An interesting property for state feedback and observers is that the transfer
function from the reference signal r to y can be shown to be

Gyr (s) = C (sI − A + BL)−1B

which is exactly as if the observer is not there at all. Cancellations in the
transfer function this way usually means non-observale/controllable states.

what this means and how it works is illustrated nby an excellent exercise in
Kailath.
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Observers for diagnosis

Observers is a common way to generate residuals.
In a residual generator you are generally not interested in the state
additional freedom therefore appears
fault isolation

ẋ = Ax + Bu,

y = Cx

˙̂x = Ax̂ + Bu + K (y − Cx̂)

r = y − Cx̂
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Observer for diagnosis

ẋ =

[
−1 −2
3 −4

]
x +

[
0
1

]
u

y = x

design a residual generator (with poles in −α) using the observer

˙̂x =

[
−1 −2
3 −4

]
x̂ +

[
0
1

]
u +

[
−1 + α −2

1 −4 + α

]
(y − x̂)

r = y1 − x̂1

Assume an actuator fault, what happens in the residual?

ė = (A− KC )e + Bf =

(
−α 0
2 −α

)
e +

(
0
1

)
fu

r = Ce = e

with the transfer function

Grfu = C (sI − A + KC )−1Bfu 62 / 63
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