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Which problem are we solving?
For a model

ẋ = f (x)

y = h(x)

a candidate observer is

˙̂x = f (x̂) + K (t)(y − h(x̂))

The dynamics for the error e = x − x̂ is then

ė = f (x)− f (x̂)− K (t)(h(x)− h(x̂))

If the functions f (x) = Ax and h(x) = Cx had been linear, we would have

ė = (A− KC )e

and we could control convergence. What to do in general?
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The basic problem

there are some basic methods to achieve observer stability, i.e., error
dynamics stability. Common examples are:

Transform the original model to specific forms where design and
stability is easier
Lyapunov design
assume a Lyapunov function V (e) and choose K (t) such that V̇ < 0.
High-gain
Choose observer feedback gain large enough
Sliding mode
Control the error against a surface where convergence is guaranteed.
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Reading material

Sliding mode observers: I like Barbot [19]. They have material ob
transformation to a triangular form; possibly an advanced text. Skip
any parts that are not accessible to you. Also the concluding proofs
can be omitted. The main parts are 4.1, 4.2, 4.4. The paper [10] is
also worth a read.
High gain observers, read chapter in ”Nonlinear Systems” by Khalil.
[11]
Survey papers [3,4] good, possibly a little old but gives a good
overview.
Besancon [7] has a few Lyapunov related results
Moving Horizon Estimation, main paper [24] Rao et.al. Björn also
recommends [25, 26], the course lecture [27] and book [28].
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Design via transformation to linear problem

If we can, using a change of coordinates z = T (x) and possibly
transformation of the output w = Ψ(y), can transform the original model

ẋ = f (x)

y = h(x)

to

ż = Az + g(w)

w = Cz

where (A,C ) is an observable pair, then the design problem is trivial.
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A simple non-linear problem

ẋ = Ax + g(y), y = Cx

where we have the observer

˙̂x = Ax̂ + g(y) + K (y − Cx̂)

which can easily be made stable if (A,C ) is an observable pair since the
error dynamics is given by

ė = (A− KC )e

This indicates that this is not always possible; but possibly a little more
often than you think.
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Globally linearising methods

The basic idea, in a simple case, is to find a state transformation z = T (x)
such that you get a non-linear observable canonical form, estimate z and
then invert T (x) to get your estimate of x .

For a control affine model

ẋ = f (x) + g(x)u, y = h(x)

there are necessary and sufficient (!) conditions for the existence of such a
T (x).
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A small example
A small example that illustrates the principle

ẋ1 = x2

ẋ2 = x1x2

y = x1

Use the change of variables

z = T (x) =

(
x1

−1
2x

2
1 + x2

)
, x = T−1(z) =

(
z1

1
2z

2
1 + z2

)
In the new variables z we get

ż =
∂T (x)

∂x
f (x)

∣∣∣∣
x=T (z)

=

(
1 0
−x1 1

)(
x2
x1x2

)∣∣∣∣
x=T (z)

=

(
z2 + 1

2z
2
1

0

)
y = h(T−1(z)) = z1
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A small example

In the new variables z we have

ż =

(
0 1
0 0

)
z +

(1
2y

2

0

)
y =

(
1 0

)
z

where it is straightforward to design a stabilizing observer.

This also utilized something very useful – output injection
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Output injection example
Consider the model with three non-linear maps/lookup tables (V (p, h),
g1(p), and g2(p)

pV (p, h) = mRT

ṁ = u1g1(p) + u2g2(p)

y1 = p

y2 = h

After substitution of the measurement signals we have

ṁ = u1g1(y1) + u2g2(y1)

y1V (y1, y2) = mRT

use the second equation as a measurement equation to estimate the mass
m

˙̂m = u1g1(y1) + u2g2(y1) + K (y1V (y1, y2)− m̂RT )

r = y1V (y1, y2)− m̂RT
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Observable canonical form - linear

ẋ =


−a1 1 0 0 . . . 0
−a2 0 1 0 . . . 0
...

. . .
−an−1 0 0 . . . 0 1
−an 0 0 . . . 0 0

 x +


b1
b2
...

bn−1
bn

 u

y = x1

A− KC =


−(a1 + k1) 1 0 0 . . . 0
−(a2 + k2) 0 1 0 . . . 0

...
. . .

−(an−1 + kn−1) 0 0 . . . 0 1
−(an + kn) 0 0 . . . 0 0
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Nonlinear observable canonical form
One, of many, nonlinear counterparts is the input signal-triangular
observable form

ẋ =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

. . .
0 0 0 . . . 0 1
0 0 0 . . . 0 0

 x +


f1(x1, u)

f2(x1, x2, u)
...

fn−1(x1, . . . , xn−1, u)
fn(x1, . . . , xn, u)


y = x1

By construction, this is locally weakly observable (linearize and you will
see). For n = 3,

A =

? 1 0
? ? 1
? ? ?

 , C =
(
1 0 0

)
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Nonlinear observable canonical form

Observability (but perhaps not a good estimation approach) is direct

x1 = y

x2 = ẋ1 − f (x1) = ẏ − f (y)

x3 = ẋ2 − f (x1, x2) = ÿ − f (y , ẏ − f (y))

x4 = . . .
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Globally linearising methods

Conditions guaranteeing a solution is, not so surprising, rather strict.
The conditions quickly becomes technical and “messy” for MIMO but
for SISO they are a bit more appetising. See Torkel Glad’s text or the
book by Isidori for examples.
can be generalized to more general cases, for example by also allowing
output transformations.
My experience: Nice approach in theory but rarely applicable in
practice
Necessary and sufficient conditions for, e.g., control-affine systems
with smooth non-linearities

ẋ = f (x) + g(x)u

y = h(x)
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Direct Lyapunov design

For a linear system

ẋ = Ax + Bu

y = Cx

you can assume an observer

˙̂x = Ax̂ + Bu + K (y − Cx̂)

and then the error dynamics is

ė = (A− KC )e

and then choose K such that A− KC is a stable matrix.
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Lyapunov, cont.

Instead, assume a quadratic Lyapunov function

V (e) = eTPe, P > 0

Differentiation gives

V̇ = eT (P(A− KC ) + (A− KC )TP)e

Choose K such that V̇ < 0, then asymptotic stability is guaranteed, i.e.,
that

lim
t→∞

e(t) = 0
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Lyapunov design

The above approach is directly applicable to non-linear systems

ẋ = f (x , u)

y = h(x)

with an observer
˙̂x = f (x̂ , u) + K (y − h(x̂))

where the error dynamics is described by

ė = f (x , u)− f (x̂ , u) + K (h(x)− h(x̂))

Here you can also see the fundamental problems with the non-linearities.
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Non-linear Lyapunov

It is an art to design V such that it can be used to prove stability and
general (simple) methods are note possible. In general, diagonal Lyapunov
functions do not work for interconnected systems.

An obviously stable system

ė1 = −e1 + e2

ė2 = −e2

with a diagonal candidate Lyapunov function V (e) = e2
1 + γe2

2 does not
work but with a mixed term e1e2 it works. This is due to that V (t) can go
to 0 even if V̇ (t) is not negative for all t.
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Thau’s metod

Looking at special cases, there are general results like:

ẋ = Ax + f (x), y = Cx

and f (x) is locally Lipschitz, i.e., ‖f (x1)− f (x2)‖ < L‖x1 − x2‖ and there
is a solution H,K ,P with P > 0 for the equation

Q(A− KC ) + (A− KC )TQ + 2P = 0

Then, with a quadratic Lyapunov function V (e) = eTQe, it is possible to
show stability, i.e., V̇ < 0, if

λmin(P)

λmax(Q)
> L
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Theorem 1.2 in Besancon
A model

ẋ = A(u)x

y = Cx

with an observer

˙̂x = A(u)x̂ + S−1CT (y − Cx̂)

Ṡ = −SA(u)− AT (u)S + 2CTC − θS

Where does this come from?

Use a candidate Lyapunov function V (e) = eTSe you get

V̇ = eT (Ṡ + SA(u) + A(u)T − 2CTC )e = −θeTSe

which with θ > 0 and S positive definite we have V̇ < 0 which gives
convergence (note certain similarities with the Kalman filter equations).
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High gain observers
Basic idea
Choose observer gain large enough to dominate all non-linear effects in the
error dynamics.

To illustrate, consider the model

x (n) = fn(x , ẋ , . . . , x (n−1))

y = x1

i.e.

ẋ1 = x2

ẋ2 = x3

...
ẋn = fn(x)

y = x1

which is a special case of the non-linear observability form.
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A second order system
For a second order system

ẋ1 = x2

ẋ2 = f2(x1, x2)

y = x1

you can consider an observer

˙̂x1 = x̂2 + K1(y − x̂1)

˙̂x2 = f2(x̂1, x̂2) + K2(y − x̂1)

with the error dynamics

ė =

(
−K1 1
−K2 0

)
e +

(
0
1

)
δ(x , e)

where δ(x , e) = f2(x)− f2(x̂) = f2(x)− f2(x − e).
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Example, cont.

In the error dynamics

ė =

(
−K1 1
−K2 0

)
e +

(
0
1

)
δ(x , e)

If it weren’t for δ we would be finished, K1 and K2 are the coefficients in
the characteristic polynomial and the poles can be placed arbitrarily.

The influence from δ can be seen in the transfer function from δ to e

G (s) =

(
s + K1 −1
K2 s

)−1(0
1

)
=

1
s2 + K1s + K2

(
1

s + K1

)
If we could make this 0 we would be happy. That is unfortunately not
possible, the idea behind high gain observers is to make this transfer
function small.
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Example, cont.

Choose K2 � K1 � 1, for example as

K1 =
α1

ε
, K2 =

α2

ε2

then we get

G (s) =
ε

(εs)2 + α1(εs) + α2

(
ε

(εs) + α1

)
which gives that

lim
ε→0

G (s) = 0

Can we just choose ε to be very small and be happy?
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Example, cont.

The error dynamics, in the variables η1 = e1/ε, η2 = e2 can be written as

εη̇ =

(
−α1 1
−α2 0

)
η + ε

(
0
1

)
δ

Solutions will include terms like

(1/ε)e−at/ε

which tends to impulses as ε→ 0 (peaking phenomenon).

With state-feedback from states estimated with a high gain observer, often
saturation of the control signal is introduced to minimize the effect of
peaking.
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Noise
In the observer

˙̂x1 = x̂2 + K1(y − x̂1)

˙̂x2 = f2(x̂1, x̂2) + K2(y − x̂1)

we have that

x̂ =

(
s + K1 −1
K2 s

)−1((0
1

)
δ +

(
K1
K2

)
y

)
With a high gain observer, the influence of δ is small and the transfer
function from y to x̂ is

Gx̂y (s) =

(
s + K1 −1
K2 s

)−1(
K1
K2

)
= · · · =

α2

(εs)2 + α1(εs) + α2

(
1 + εs α1

α2
s

)
and

lim
ε→0

Gx̂y (s) =

(
1
s

)
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Summary/comments

Choose sufficiently high observer gains to dominate the non-linear
effects
Typically described for non-linear canonical forms
Introduces peaks in estimates
Noise sensitive
There are some robustness properties for feedback controllers based on
high gain observer estimates.
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Sliding mode, introductory example

For a system, where x1 is measured

ẋ = f (x), y = x1

a sliding mode observer typically looks like

˙̂x = f (x̂) + K sgn (y − x̂1)

i.e., it has a switching term in the feedback.

Has been shown to have good noise and robustness properties.
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Sliding mode controller - basic principle

(very) short summary of the basic principle:
1 Define a surface such that as long as we are on the surface, all states

will converge
2 Use a control law to steer against this surface

A multi variable control problem has been reformulated into a scalar
control problem.
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A differential equation that appears

Stability for
ẋ = −k sgn(x)

is immediate and the function V (x) = 1/2x2 is a Lyapunov function since

1
2
d

dt
x2 = −kx sgn(x) = −k|x |

The solution can be derived as

x(t) =

{
(|x0| − k t)sgnx0 0 ≤ t < |x0|

k

0 t ≥ |x0|k
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An example

ẋ1 = x2

ẋ2 = f (x1, x2)

y = x1

˙̂x1 = x̂2 + K1sgn(y − x̂1)

ẋ2 = f (y1, x̂2) + K2sgn(y − x̂1)

The error dynamics is then

ė1 = e2 − K1sgn(e1)

ė2 = f (x1, x2)− f (x1, x̂2)− K2sgn(e1)
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Example cont.

Define the surface S = {e|e1 = 0}. Choose K1 > |e2|, then the surface is
attractive

d

dt

1
2
e2
1 = e1e2 − K1e1sgn(e1) < −c |e1|

This gives that e1 → 0 in finite time, i.e., e1(t) = 0, t > t1. This is
referred to as the sliding condition

On the surface it holds that the error dynamics for e2 fulfills

ė2 = f (x1, x2)− f (x1, x̂2)− K2sgn(e1) =

= ∆f − K2/K1K1sgn(e1) = ∆f − K2/K1e2

Simply put, as long as K2/K1 is sufficiently large then e2 → 0 as long as we
are on the surface.

The estimation error is “killed” in finite time, one by one.
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Design methodology for triangular systems

Consider a model

ẋ1 = x2 + f1(x1, u)

ẋ2 = x3 + f2(x1, x2, u)

...
ẋn−1 = xn + fn−1(x1, . . . , xn−1, u)

ẋn = fn(x1, . . . , xn, u)

y = x1

If the system is not in this form, it can sometimes be transformed into this
form. Barot et.al. gives some, not easily interpreted, conditions for when
this is possible. Will not be covered here, but is similar to the conditions
for exact linearization.
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Design methodology for triangular systems
The observer is then

˙̂x1 = x̂2 + f1(x̂1, u) + K1 sgn(x1 − x̂1)

˙̂x2 = x̂3 + f2(x̂1, x̂2, u) + K2 sgn1(x̃2 − x̂2)

...
˙̂xn−1 = x̂n + fn−1(x̂1, . . . , x̂n−1, u) + Kn−1 sgnn−2(x̃n−1 − x̂n−1)

˙̂xn = fn(x̂1, . . . , x̂n, u) + Kn sgnn−1(x̃n − x̂n)

where

x̃2 = x̂2 + K1 sgn1(x1 − x̂1)

x̃3 = x̂3 + K2 sgn2(x2 − x̂2)

· · ·
x̃n = x̂n + Kn sgnn−1(xn−1 − x̂n−1)

sgni ≈ sgn but with anti-peak and LP. See Barbot et.al. for more
information.
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Properties of a sliding mode observer

due to noise, you can of course not maintain perfect surface control,
but the error dynamics reacts controlled to noise and you are kept
close to the surface.
The (claimed) main advantage compared to, e.g., EKF is robustness
properties in function f .
Many things to say about implementation, e.g., the sgn function is
often replaced with a fast saturation function.
Systems in MIMO companion-form can be handled in the exact same
way.
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Moving Horizon Estimation

Main idea is to formulate the estimation problem as a non-linear
optimization problem utilizing techniques from optimal control.

Main advantage same as in optimal control; direct to handle
constraints
Reading material
Rao, Christopher V., James B. Rawlings, and David Q. Mayne.
"Constrained state estimation for nonlinear discrete-time systems:
Stability and moving horizon approximations." IEEE transactions on
automatic control 48.2 (2003): 246-258.

xk+1 = fk(xk ,wk)

yk = hk(xk) + vk

where
xk ∈ Xk ,wk ∈ Wk , vk ∈ Vk
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MHE - basic idea

Basic idea is straightforward – reformulate the estimation optimization as
an optimization problem

min
x0,{wk}T−1

k=0

T−1∑
k=0

Lk(wk , vk) + Γ(x0)

s.t. xk+1 = fk(xk ,wk)

yk = hk(xk) + vk

Note that vk is completely determined by observations yk , and the
optimization variables x0 and wk as

vk = yk − hk(xk)
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MHE - basic idea

min
x0,{wk}T−1

k=0

T−1∑
k=0

Lk(wk , vk) + Γ(x0)

s.t. xk+1 = fk(xk ,wk)

yk = hk(xk) + vk

Loss function and initial value loss, for example

L(wk , vk) = wTQ−1
k w + vTR−1

k v ,

Γ(x) = (x − x0)TΠ−1(x − x0)

Main problem
Main problem with the above formulation is that, unless there is linear
dynamics and quadratic losses (then Kalman Filter), the computational
burden increases with new sample and it does not scale well.

45 / 50

MHE

To make the optimization problem tractable; employ a moving horizon
approximation. The loss-function can be written as

T−1∑
k=0

Lk(wk , vk) + Γ(x0) =
T−1∑

k=T−N
Lk(wk , vk) +

T−N−1∑
k=0

Lk(wk , vk) + Γ(x0)

Due to the state-space formulation, the first term only depends on

xT−N and wk , k = T − N, . . . ,T − 1

Denote the cost-to-come

Zτ (z) = min
T−1∑
k=0

Lk(wk , vk) + Γ(x0)

s.t. x(τ) = z
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MHE

With the cost-to-come, the moving horizon formulation can be written as

min
z,{wk}T−1

k=T−N

T−1∑
k=T−N

Lk(wk , vk) + Z(z)

s.t. xk+1 = fk(xk ,wk)

yk = hk(xk) + vk

Now, the only problem is what to do with the unknown cost-to-come
function

Z(z)

Exact expression for cost-to-come infeasible (unless the whole optimization
problem is feasible) so we have to accept approximations.
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MHE - Cost-to-come approximation
One strategy proposed in Rao et.al. is to use an Extended Kalman Filter,
linearized around the state estimates, to approximate the cost-to-come.
For a linearized model

fk(x ,w) = Akx + Gkw , hk(x) = Ckx

with

Lk(w , v) = wTQ−1
k w + vTR−1

k v , Γ(x) = (x − x̂0)TΠ−1(x − x̂0)

the arrival cost at time j is

Zj(z) = (z − x̂j)
TΠ−1

j (z − x̂j) + Φ∗j

where

Πj+1 = GjQjG
T
j + AjΠjA

T
j − AjΠjC

T
j (Rj + CjΠjC

T
j )−1CjΠjA

T
j
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Summary

High-gain
Sliding-mode
Lyapunov
Transformation
Moving Horizon Estimates
Some approaches you can see in the literature. Good complements to
the more common EKF (with relatives).
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