
Lecture 1 – Simulation of differential-algebraic equations

DAE models and differential index

Erik Frisk
erik.frisk@.liu.se

Department of Electrical Engineering
Linköping University

May 13, 2024

1 / 56

Is and is not

What this part of the course is (hopefully):

Understand what a DAE is, characteristics, and structure

Understand why they are useful

Understand why they are (sometimes) more difficult to simulate than
an ODE

Understand the origins of the difficulties and how to detect them

Know how and when one can expect your favourite solver for ODE:s
to work well also for DAE:s

How to simulate models described in object orients languages, like
Modelica

What this part is not:

detailed derivations and analysis of specific methods for simulation of
DAE:s

2 / 56

Outline of the DAE module, lectures

1) Basic properties

principles
differences between ODE:s and DAE:s
differential index

2) Simulation methods

principal problems with high index problems
simulation of low-index problems
index reduction techniques

3) Adjoint sensitivity analysis, numerical code, and Modelica, simulation
of object-oriented models

4) Modelica continued

Simulation of Modelica models, structural analysis
index reduction using dummy-derivatives

3 / 56

Outline

Introduction to differential-algebraic models

Briefly; solution to differential-algebraic equations

Illustrative example in three acts

Differential index

Initial conditions

Simulation of DAE:s with low index

Implicit and semi-explicit forms

4 / 56

ODE vs DAE

ODE

A system of ordinary differential equations

d

dt
x(t) = f (t, x(t)), x(0) = x0

where x(t) ∈ Rn and f : R× Rn → Rn.

A mathematically, and numerically, convenient representation of a
dynamical system.

DAE

A general DAE formulation instead

F (
d

dt
x(t), x(t), t) = 0, x(0) = x0, ẋ(0) = ẋ0

where x(t) ∈ Rn and F : Rn × Rn × R → Rn.

5 / 56

Algebraic vs dynamic vs. state variables

In an ODE
ẋ(t) = f (t, x(t))

the state is x but for a DAE

F (ẋ(t), x(t), t) = 0, x(0) = x0, ẋ(0) = ẋ0

x is not exactly the state. It includes the state, but there are typically
more variables than state-variables.

For that reason, it is sometimes beneficial to write a DAE as

F (ẋ(t), x(t), y(t), t) = 0

where x(t) are the dynamic variables and y(t) the algebraic variables.

Again: Note that x(t) not necessarily is the state here (more later).

6 / 56

Why DAE?

Object oriented modelling

Basic physics

structure and numerics

Invariants

Simplification of an ODE, e.g., assume a physical connection is stiff
instead of flexible. Can result in a DAE that is much simple to solve
than the original ODE

Singular perturbation problems (SPP)

Inverse problems, given y(t), simulate corresponding u

Many names: singular, implicit, descriptor, generalized state-space,
non-causal, semi-state, . . .

7 / 56

A simple electrical circuit

uL

R2

R
1

i0

i1

iL

iC

i2

C

L

U0

uC

u1

u2

u0 = f (t)

u1 = R1i1

u2 = R2i2

iC = C
duc
dt

uL = L
diL
dt

i0 = i1 + iL

i1 = i2 + iC

u0 = u1 + uC

uL = u1 + u2

uC = u2

10 equation in 10 unknown
(u0, u1, u2, uL, uC , i0, i1, i2, iL, iC)

8 / 56

Modelica model of the circuit

model Circuit

import Modelica.Electrical.Analog.Basic.*;

import Modelica.Electrical.Analog.Sources.*;

Resistor R1;

Resistor R2;

Capacitor C;

Inductor L;

Ground G;

SineVoltage src;

equation

connect(G.p, src.n);

connect(src.p, R1.p);

connect(src.p, L.p);

connect(R1.n, R2.p);

connect(R1.n,C.p);

connect(L.n, R2.n);

connect(L.n, C.n);

connect(C.n, G.p);

end Circuit;

9 / 56

Equations generated from the Modelica model (33 eqs.)

R1.R * R1.i = R1.v;

R1.v = R1.p.v - R1.n.v;

0.0 = R1.p.i + R1.n.i;

R1.i = R1.p.i;

R2.R * R2.i = R2.v;

R2.v = R2.p.v - R2.n.v;

0.0 = R2.p.i + R2.n.i;

R2.i = R2.p.i;

C.i = C.C * der(C.v);

C.v = C.p.v - C.n.v;

0.0 = C.p.i + C.n.i;

C.i = C.p.i;

L.L * der(L.i) = L.v;

L.v = L.p.v - L.n.v;

0.0 = L.p.i + L.n.i;

L.i = L.p.i;

G.p.v = 0.0;

src.signalSource.y = sin();

src.v = src.signalSource.y;

src.v = src.p.v - src.n.v;

0.0 = src.p.i + src.n.i;

src.i = src.p.i;

L.n.i + R2.n.i + C.n.i + G.p.i

+ src.n.i = 0.0;

L.n.v = R2.n.v;

R2.n.v = C.n.v;

C.n.v = G.p.v;

G.p.v = src.n.v;

R1.n.i + R2.p.i + C.p.i = 0.0;

R1.n.v = R2.p.v;

R2.p.v = C.p.v;

src.p.i + R1.p.i + L.p.i = 0.0;

src.p.v = R1.p.v;

R1.p.v = L.p.v;

10 / 56

Differential-algebraic models

A general DAE in the form

F (ẏ , y , t) = 0

is kind of similar to an ODE

ẏ = f (y , t)

How big difference could there be?

Why not apply, e.g., an Euler-forward/backward

F (
yt − yt−h

h
, yt−h, t − h) = 0, F (

yt − yt−h

h
, yt , t) = 0

and solve for yt?

Unfortunately, it is not that simple! (in general)(but sometimes!)

11 / 56

A simple case
Assume a DAE

ẋ = f (x , y , t)

0 = g(x , y , t)

If you can solve for y in the second equation y = g−1(x , t), you’ll have an
ODE

ẋ = f (x , g−1(x , t), t)

Loss of structure when transforming into an ODE (rem. the simple circuit).

As on last slide, apply Euler-backwards directly?

F (yn, (yn − yn−1)/h, tn) = 0

But ... what happens with the mathematically well formulated model

ẋ = f (x , y , t)

0 = g(x , t)

12 / 56

Differential-algebraic models

A general DAE
F (y , ẏ , t) = 0

is pretty similar to an ODE

ẏ = f (y , t)

What is the difference? When can an ODE solver work also for DAE:s?

Answer: Sometimes

This first lecture deals with these differences, characteristics of DAE:s and
when ODE methods can be directly applied

Next time more on how to simulate DAE:s and how to transform them
into a form suitable for an ODE solver.

13 / 56

A super simple example

The DAE below can easily be tranformed into an ODE

ẋ(t) = −x(t) + y(t)

0 = x(t) + y(t)− u(t)

but for illustration, a directly applied backward Euler gives

xt+1 − xt
h

= −xt+1 + yt+1

0 = xt+1 + yt+1 − ut+1

which can be solved numerically, or analytically as(
xt+1

yt+1

)
=

1

1 + 2h

(
xt + h ut+1

−xt + (1 + h)ut+1

)

14 / 56

Outline

Introduction to differential-algebraic models

Briefly; solution to differential-algebraic equations

Illustrative example in three acts

Differential index

Initial conditions

Simulation of DAE:s with low index

Implicit and semi-explicit forms

15 / 56

DAE and ODE

ẏ(t) = z(t)

Integration, gives smoother solutions; differentiation gives more
non-smooth solutions.
Differentiation is ”simpler” than integration analytically; numerically
it is the other way around
ODE - pure integration.
DAE - mix between integration and differentiation

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

16 / 56

Solutions

Assume a DAE

z1 = g(t)

ż1 = z2

You can easily see that it is not direct to numerically derive solutions
(z1(t), z2(t)) if the function g(t) has discontinouties.

For ODE:s the situation is more simple

ẋ = f (x , t)

17 / 56

Different DAE formulations

Implicit ODE
F (y , ẏ , t) = 0, Fy ′ invertible

Linear time-invariant DAE

Eẏ = Ay ,E singular

Semi-explicit DAE

ẋ = f (x , y , t)

0 = g(x , y , t)

18 / 56

Solvability/solutions

Definitions on solvability for DAE is similar to solvability for ODE:s.

Require consistency! (we will talk more about what this means)

One difference worth noting: An ODE solution is always at least once
differentiable, this is not true for DAE:s and all components are not as
smooth.

Consider

ẏ = x
y = v(t)

⇔
[
0 1
0 0

](
ẋ
ẏ

)
=

[
1 0
0 −1

](
x
y

)
+

(
0

v(t)

)
where v(t) ∈ C1. Then y will be 1 time differentiable and x not
differentiable.

19 / 56

Solvability
A linear and time-invariant DAE

Aẏ + By = f (t)

is solvable if and only if λA+ B has full rank for any λ ∈ C (think
Laplace-transform) for a smooth f (t).

(sA+ B)Y (s) = F (s)

However, the DAE [
−t t2

−1 t

]
d

dt
y + y = 0

is not solvable on the interval t > 0 in spite of |λA(t) + B(t)| ≡ 1.

Something to think about at home: figure out why. Hint: uniqueness.

That this is a DAE and not an (implicit) ODE is due to

det A(t) ≡ 0

Characterizing solvability and solutions for time-variable DAE:s complex
20 / 56

DAE vs. stiff problems

A semi-explicit DAE

ẋ1 = f1(x1, x2, t)

0 = f2(x1, x2, t)

is similar to the stiff ODE (ϵ small)

ẋ1 = f1(x1, x2, t)

ϵẋ2 = f2(x1, x2, t)

similarities

differences

when do ODE methods work for DAE:s?

In this presentation, I will for simplicity mainly illustrate using
one-step Euler-backwards

21 / 56

Outline

Introduction to differential-algebraic models

Briefly; solution to differential-algebraic equations

Illustrative example in three acts

Differential index

Initial conditions

Simulation of DAE:s with low index

Implicit and semi-explicit forms

22 / 56

The simple circuit model, act 1

uL

R2

R
1

i0

i1

iL

iC

i2

C

L

U0

uC

u1

u2

u0 = f (t)

u1 = R1i1

u2 = R2i2

iC = C
duc
dt

uL = L
diL
dt

i0 = i1 + iL

i1 = i2 + iC

u0 = u1 + uC

uL = u1 + u2

uC = u2
x1 = (uc , iL), x2 = (u2, i2, u0, u1, uL, i1, iC , i0)

23 / 56

Reformulate equations into computational form

e1 : u0 = f (t)

e2 : u1 = R1i1

e3 : u2 = R2i2

e4 : iC = C
duc
dt

e5 : uL = L
diL
dt

e6 : i0 = i1 + iL

e7 : i1 = i2 + iC

e8 : u0 = u1 + uC

e9 : uL = u1 + u2

e10 : uC = u2

⇒

e10 : u2 := uC

e3 : i2 :=
1

R2
u2

e1 : u0 := f (t)

e8 : u1 := u0 − uC

e9 : uL := u1 + u2

e2 : i1 :=
1

R1
u1

e7 : iC := i1 − i2

e6 : i0 := i1 + iL

e4 :
duc
dt

=
1

C
iC

e5 :
diL
dt

=
1

L
uL

24 / 56

The simple circuit model, act 2 (C → R3)

R
3

R2

R
1

i0

i1

iL

i3

i2

L

u2

uL
u1

u3

U0

u0 = f (t)

u1 = R1i1

u2 = R2i2

u3 = R3i3

uL = L
diL
dt

i0 = i1 + iL

i1 = i2 + i3

u0 = u1 + u3

uL = u1 + u2

u3 = u2

x1 = iL, x2 = (i3, u2, i2, u0, u1, uL, i1, iC , i0)

25 / 56

Reformulate equations into computational form

diL
dt

=
1

L
uL

u0 := f (t)

Solve for {u1, u2, u3, i1, i2, i3} in (6 unknowns, 6 equations)

u1 = R1i1

u2 = R2i2

u3 = R3i3

i1 = i2 + i3

u0 = u1 + u3

u3 = u2

i0 := i1 + iL

uL := u1 + u2
26 / 56

Reformulate equations into computational form

diL
dt

=
1

L
uL

u0 := f (t)

Solve for {u1, u2, u3, i1, i2, i3} in (6 unknowns, 6 equations)

u1
u2
u3
i1
i2
i3

 :=
1

R1R2 + R1R3 + R2R3



R1(R2 + R3)
R2R3

R2R3

R2 + R3

R3

R2

 u0

i0 := i1 + iL

uL := u1 + u2

27 / 56

The simple circuit model, act 3 (C ↔ L)

i2
R2

R
1

i0

i1

U0

u2

iC

C uC
u1

uL L

iL

u0 = f (t)

u1 = R1i1

u2 = R2i2

iC = C
duc
dt

uL = L
diL
dt

i0 = i1 + iC

i1 = i2 + iL

u0 = u1 + uL

uC = u1 + u2

uL = u2

x1 = (uC , iL), x2 = (u2, i2, u0, u1, uL, i1, iC , i0)

28 / 56

Reformulate equations into computational form
It is not possible to, in the same way as before, to obtain a computational
form. If you write the model in the form

ẋ1 = g(x1, x2)

0 = h(x1, x2)

where x1 = (uC , iL) och x2 = (u0, u1, u2, uL, i0, i1, i2, iC). Then

rank hx2 = rank
∂h(x1, x2)

∂x2
=

= rank



1 0 0 0 0 1 0 0
0 1 0 0 0 −1 −1 0
0 0 1 0 0 0 −1 −1
0 0 0 0 0 −1 0 1
0 0 0 1 0 0 0 0
0 −R1 0 −1 1 0 0 0
0 0 −R2 0 −1 0 0 0
0 0 0 −1 0 0 0 0


= 7 < 8

29 / 56

Summary of the three acts

Act 1: simple, very similar to an ODE

Act 2: bit more difficult, took some algebra but we were OK

Act 3: significantly more difficult

The difference between these three acts were changes in components.

Important: All three are mathematically well formed models!

A main property that separates them is: differential index

30 / 56

Transfer functions for model 1

The three models are linear, i.e., we can compute the transfer functions to
show what is happening.

uC =
R2

R1 + R2 + sCR1R2
f , uL = f

iL =
1

sL
f , i0 =

R1 + R2 + s(L+ CR1R2 + CLR2s)

sL(R1 + R2 + CR1R2s)
f

u0 = f , i1 =
1 + sCR2

R1 + R2 + sCR1R2
f

u1 =
R1 + sCR1R2

R1 + R2 + sCR1R2
f , i2 =

1

R1 + R2 + sCR1R2
f

u2 =
R2

R1 + R2 + sCR1R2
f , iC =

sCR2

R1 + R2 + sCR1R2
f

31 / 56

Transfer functions for model 2

The three models are linear, i.e., we can compute the transfer functions to
show what is happening.

iL =
1

s
f , u2 =

R2R3

R2R3 + R1(R2 + R3)
f

uL = f , i3 =
R2

R2R3 + R1(R2 + R3)
f

i1 =
R2 + R3

R2R3 + R1(R2 + R3)
f , u3 =

R2R3

R2R3 + R1(R2 + R3)
f

u1 =
R1(R2 + R3)

R2R3 + R1(R2 + R3)
f , u0 = f

i2 =
R3

R2R3 + R1(R2 + R3)
f , i0 =

R1(R2 + R3) + sLR3 + R2(R3 + sL)

sL(R2R3 + R1(R2 + R3))
f

32 / 56

Transfer functions for model 3

The three models are linear, i.e., we can compute the transfer functions to
show what is happening.

uC = f , uL =
sLR2

R1R2 + sL(R1 + R2)
f

iL =
R2

R1R2 + sL(R1 + R2)
f , iC = sCf

u0 = f , i0 =
R2 + sCR2(R1 + sL) + sL(1 + sCR1)

sLR2 + R1(R2 + sL)
f

u1 =
R1(R2 + sL)

sLR2 + R1(R2 + sL)
f , i1 =

R2 + sL

sLR2 + R1(R2 + sL)
f

u2 =
sLR2

R1R2 + sL(R1 + R2)
f , i2 =

sL

R1R2 + sL(R1 + R2)
f

33 / 56

Outline

Introduction to differential-algebraic models

Briefly; solution to differential-algebraic equations

Illustrative example in three acts

Differential index

Initial conditions

Simulation of DAE:s with low index

Implicit and semi-explicit forms

34 / 56

Index, one example
A linear example that illustrates an important difference between a DAE
and an ODE

ẋ1 + x2 + x3 = f1

ẋ2 + x1 = f2

x2 = f3

⇒
ẋ1 = ḟ2 − f̈3

ẋ2 = −x1 + f2

ẋ3 = x1 − f2 − f̈2 + ḟ1 − f
(3)
3

What are allowed initial conditions? For an ODE they are free

Not the case for a DAE, there might be ”hidden” algebraic constraints

x1 = f2 − ḟ3

x2 = f3

x3 = f1 − ḟ2 − f3 + f̈3

Something called (differential) index characterize DAE:s

35 / 56

(Differential-) Index

A DAE is almost an ODE, just need some differentiation

ẋ = f (x , y)

0 = g(x , y)

Differentiate the second equation

0 = gx ẋ + gy ẏ = gx f + gy ẏ

If g−1
y exists we can rewrite as

ẋ = f (x , y)

ẏ = −g−1
y gx f

Comments: solutions sets, equivalence.

36 / 56

Index, cont.

F (t, y , ẏ) = 0

Definition

The minimum number of times the DAE has to be differentiated with
respect to t to be able to determine ẏ as a function of t och y is called
the (differential-) index of the DAE.

index might be solution dependent, uniform index

There are several types of index, the above is called differential index.

Perturbation index

variants of the above (see paper)

Anyhow: index is a measure how far from an ODE the DAE is.

37 / 56

Linear constant DAE:s of any index

Eẋ = Jx + Ku

Then there exists a non-singular matrix P and a change of variables
z = Qx such that(

I 0
0 N

)(
ż1
ż2

)
=

(
A 0
0 I

)(
z1
z2

)
+

(
B
D

)
u

Where matrix N is nilpotent, i.e., there is an integer m such that N i ̸= 0
for i < m and Nm = 0.

A simple algebra exercise gives that the solution to the DAE is

ż1 = Az1 + Bu

z2 = −
m−1∑
i=0

N iDu(i)

How is the degree of nilpotency m related to the index? Transfer function,
how does it relate to the degrees of numerators and denominators?

38 / 56

Sufficient condition for index
F (y , ẏ) = 0

d

dt
F (y , ẏ) = 0

...

d j−1

dt j−1
F (y , ẏ) = 0

which can be collected to Fj(t, y , yj) = 0. Algebraicly Fj(t, y , yj) = 0
consists of nj equations in nj + n unknown variables.
A sufficient condition for ẏ is a unique function (locally) if t and y is that

∂Fj

∂yj

is 1-full column rank

DAE:n has index no larger than v if ∂Fv+1/∂yv+1 has 1-full rank and
Fv+1 = 0 is consistent.

39 / 56

1-full rank

When has the equation

(
A1 A2

)(x1
x2

)
= b

a unique solution for x1?

Unique x1 solution if and only if

rang A = n1 + rang A2

Example: (
1 0 0
0 1 1

)x1
x2
x3

 = b

Now, back to the last slide, what does 1-full rank mean there?

40 / 56

Common forms for differential equations

ODE
ẏ = f (y , t)

Hessenberg index 1/semi-explicit index 1

ẋ = f (x , z , t)

0 = g(x , z , t), gz nonsingular for all t

Hessenberg index 2

ẋ = f (x , z , t)

0 = g(x , t), gx fz nonsingular for all t

Our index 2 equation, all algebraic variables are “index 2” variables.

41 / 56

Remainder of the lecture

The remainder of the lecture will introduce some important differences
between ODE:s and DAE:s from a simulation perspective. We will come
back to these in detail in upcoming lectures.

1 Initial conditions

2a Simulation of equations with index 0 and 1

2b Simulation of equations with index ≥ 2

42 / 56

Outline

Introduction to differential-algebraic models

Briefly; solution to differential-algebraic equations

Illustrative example in three acts

Differential index

Initial conditions

Simulation of DAE:s with low index

Implicit and semi-explicit forms

43 / 56

Bullet 1: Initial conditions
For the DAE

F (t, y(t), ẏ(t)) = 0

is it sufficient that the initial conditions y(0) and ẏ(0) satisfies

F (0, y(0), ẏ(0)) = 0?

Remember the model that had no degrees of freedom

ẋ1 + x2 + x3 = f1

ẋ2 + x1 = f2

x2 = f3

Index and “hidden” conditions

Methods to determine consistent initial conditions

Pantelides algorithm

44 / 56

Initial conditions, cont.
What degrees of freedom do we have for the initial condition? In the
equations

ẋ1 + x2 + x3 = f1

ẋ2 + x1 = f2

x2 = f3

there is no freedom at all and the solution was uniquely determined (in the
class of smooth functions) directly by the equations.

If we have m equations/variables, it holds that the degrees of freedom l
that 0 ≤ l ≤ m and it is not trivial to find consistent initial conditions.

ẋ = f (x , y)

0 = g(x , y)

Pantelides algorithm

We will come back to a possible solution later

45 / 56

Outline

Introduction to differential-algebraic models

Briefly; solution to differential-algebraic equations

Illustrative example in three acts

Differential index

Initial conditions

Simulation of DAE:s with low index

Implicit and semi-explicit forms

46 / 56

Bullet 2a: Index 1 ”as easy” as ODE

Will come back to this, but the basic principle is easily illustrated.

Assume a semi-explicit DAE in the form

ẋ1 = f1(x1, x2, t)

0 = f2(x1, x2, t)

with index 1. Then,
∂f2
∂x2

has full column rank and it exists a (local) inverse w.r.t. x2.

The algebraic variable can then be inserted in the dynamic equation
resulting in an ODE which can be solved using any standard ODE method.

47 / 56

Bullet 2a: Index 1 ”as easy” as ODE, cont.

Consider an implicit index 1 DAE

F (ẋ , x , t) = 0

Apply a basic implicit Euler backward

F (
xt − xt−1

ht
, xt , t) = 0

and solve numerically for xt . Index 1 property ensures that a solution
exists.

Important note: Procedure no different than implicit Euler for ODE:s.

48 / 56

A simple example

Consider the DAE

ẋ = −x + y ⇒ x(t) = −y(t) = x(0)e−2t

0 = x + y

A Backward Euler step gives

xt+1 − xt
h

= −xt+1 + yt+1 ∼ xt+1 =
1

1 + 2h
xt

0 = xt+1 + yt+1 yt+1 = −xt+1

which is exactly what you would’ve gotten for BE for the original

ẋ = −2x , and y(t) = −x(t)

Now, have a look at Forward Euler and see why it doesn’t even make
sense.

49 / 56

Bullet 2a: Index 1 ”as easy” as ODE, cont.

One conclusion: BDF and other typical implicit solvers will work
approximately the same for DAE:s of index 1 as for ODE:s.

There are practical differences though, see Hairer/Wanner and the
following papers for further details

Petzold, ”Differential/algebraic equations are not ODEs”

Brenan, Campbell and Petzold Petzold, ”Numerical Solution of
Initial-Value Problems in Differential Algebraic Equations”

50 / 56

Bullet 2b: Why is index > 1 so difficult?

Equations you, generally, can solve using basic ODE methodology is

Index 1 DAE:s (more to follow)

Linear DAE:s with constant coefficients of any index (kind of)

Aẏ + By = f

Will not pursue this here. More details in ”ODE methods for the
solution of differential/algebraic systems”.

For index > 1, direct ODE methodology does not work at all. We
need new techniques and index reduction is one possibility we will
discuss a lot in upcoming lectures.

51 / 56

Outline

Introduction to differential-algebraic models

Briefly; solution to differential-algebraic equations

Illustrative example in three acts

Differential index

Initial conditions

Simulation of DAE:s with low index

Implicit and semi-explicit forms

52 / 56

Implicit and semi-explicit forms

A fully implicit DAE
F (ẋ , x) = 0

can always be rewritten as a semi-explicit DAE by introducing a new
variable x ′ (algebraic, should not be confused with ẋ)

ẋ = x ′

F (x ′, x) = 0

Q

Does this mean that we can forget about implicit forms and focus on
semi-explicit?

A

No, not really.

53 / 56

An implicit example
Consider the implicit index-1 DAE

e1 : ẋ1 + ẋ2 = u1

e2 : x1 − x2 = u2

From equations (e1, e2, ė2) we can solve for the highest derivatives.

Transform the DAE into a semi-explicit DAE by introducing x ′1 and x ′2

e1 : x
′
1 + x ′2 = u1

e2 : x1 − x2 = u2

e3 :
d

dt
x1 = x ′1

e4 :
d

dt
x2 = x ′2

Q

What is the index of this one?

54 / 56

An implicit example, cont’d

Turns out that

e1 : x
′
1 + x ′2 = u1

e2 : x1 − x2 = u2

e3 :
d

dt
x1 = x ′1

e4 :
d

dt
x2 = x ′2

has index 2.

Assignment: Verify that you need (e1, ė1, e2, ė2, e3, ė3, e4, ė4, ë4) to be able
to solve for highest derivatives.

Rule of thumb

Going from fully implicit to semi-explicit increases index by 1

55 / 56

Lecture 1 – Simulation of differential-algebraic equations

DAE models and differential index

Erik Frisk
erik.frisk@.liu.se

Department of Electrical Engineering
Linköping University

May 13, 2024

56 / 56

	Introduction to differential-algebraic models
	Briefly; solution to differential-algebraic equations
	Illustrative example in three acts
	Differential index
	Initial conditions
	Simulation of DAE:s with low index
	Implicit and semi-explicit forms

