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Outline of the DAFE module, lectures

1) Basic properties
= principles
- differences between ODE:s and DAE:s
- differential index
2) Simulation methods
= principal problems with high index problems
= simulation of low-index problems
= index reduction techniques
3) Adjoint sensitivity analysis, numerical code, and Modelica, simulation
of object-oriented models
/) Modelica continued
«» Simulation of Modelica models, structural analysis

Is and is not

What this part of the course is (hopefully):
= Understand what a DAE is, characteristics, and structure
= Understand why they are useful

= Understand why they are (sometimes) more difficult to simulate than
an ODE

= Understand the origins of the difficulties and how to detect them

= Know how and when one can expect your favourite solver for ODE:s
to work well also for DAE:s

= How to simulate models described in object orients languages, like
Modelica

What this part is not:
= detailed derivations and analysis of specific methods for simulation of

= index reduction using dummy-derivatives
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DAE:s
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Outline
o Introduction to differential-algebraic models
@ Briefly; solution to differential-algebraic equations
o [llustrative example in three acts
o Differential index
o Initial conditions
o Simulation of DAE:s with low index
o Implicit and semi-explicit forms
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ODE vs DAE

Algebraic vs dynamic vs. state variables

In an ODE
A system of ordinary differential equations nan

x(t) = £(t,x(t))

d the state is x but for a DAE

Ex(t) = f(t,x(t)), x(0)=xo
F(x(t),x(t),t) =0, x(0)= xp,x(0)=xp

where x(t) € R” and f : R x R" — R".

.

X is not exactly the state. It includes the state, but there are typically

A mathematically, and numerically, convenient representation of a ; .
more variables than state-variables.

dynamical system.
For that reason, it is sometimes beneficial to write a DAE as

F(x(t), x(t), y(t),t) = 0

where x(t) are the dynamic variables and y(t) the algebraic variables.

A general DAE formulation instead

F(%X(t),x(t), t) =0, x(0)=xp,x(0)=x0

Again: Note that x(t) not necessarily is the state here (more later).
where x(t) € R" and F : R” x R” x R — R".

N\
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Why DAE? A simple electrical circuit

up = f(t)
Object oriented modelling u = Ryi
Basic physics E u» = Raip
structure and numerics w ) L3, ) duc
Invariants " \ g w § \L ic=¢C dt
Simplification of an ODE, e.g., assume a physical connection is stiff Z: up = L%
instead of flexible. Can result in a DAE that is much simple to solve ’
than the original ODE o J [] ic o = +iL
Singular perturbation problems (SPP) B h=f+ic
Inverse problems, given y(t), simulate corresponding u - \ —_|¢ o = U1+ uc
Many names: singular, implicit, descriptor, generalized state-space, up=up+ W

non-causal, semi-state, ...
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uc = u2

10 equation in 10 unknown
(UO, uy, u,up,uc, iOa i17 i27 iL, IC)
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Modelica model of the circuit

model Circuit
import Modelica.Electrical.Analog.Basic.x*;
import Modelica.Electrical.Analog.Sources.*;
Resistor R1;
Resistor R2;
Capacitor C;
Inductor L;
Ground G;
SineVoltage src;
equation
connect(G.p, src.n);
connect(src.p, Rl.p);
connect(src.p, L.p);
connect(R1.n, R2.p);
connect(R1.n,C.p);
connect(L.n, R2.n);
connect(L.n, C.n);
connect(C.n, G.p);
end Circuit;
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Differential-algebraic models

A general DAE in the form

F(ya Y, t) =0
is kind of similar to an ODE
y ="~y t)
How big difference could there be?
Why not apply, e.g., an Euler-forward /backward
FOE ynt—m) =0, FOE20 =0
and solve for y;?
Unfortunately, it is not that simple! (in general)(but sometimes!) J
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FEquations generated from the Modelica model (33 eqs.)

R1.R * R1.i = Rl.v; src.signalSource.y = sin();

Rl.v = Rl.p.v - Rl.n.v; src.v = src.signalSource.y;
0.0 = Rl.p.i + Rl.n.i; Src.v = Src.p.v - Ssrc.n.v;
Ri1.i = Rl.p.i; 0.0 = src.p.i + src.n.i;

R2.R * R2.i = R2.v; src.i = src.p.i;

R2.v = R2.p.v - R2.n.v; L.n.i + R2.n.i + C.n.1i + G.p.1
0.0 = R2.p.i + R2.n.1; + src.n.i = 0.0;

R2.1 = R2.p.1i; L.n.v = R2.n.v;

C.i = C.C * der(C.v); R2.n.v = C.n.v;

C.v.=C.p.v - C.n.v; C.n.v = G.p.v;

0.0 =C.p.1i + C.n.1i; G.p.v = src.n.v;

C.i =C.p.1i; Rl.n.i + R2.p.i + C.p.1 = 0.0;
L.L * der(L.i) = L.v; Rl.n.v = R2.p.v;

L.v=L.p.v - L.n.v; R2.p.v = C.p.v;

0.0 =L.p.i + L.n.i; src.p.i + Rl.p.i + L.p.i = 0.0;
L.i =L.p.i; src.p.v = Rl.p.v;

G.p.v = 0.0; Rl.p.v = L.p.v;
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A simple case

Assume a DAE
x=f(x,y,t)
0=2g(x,y,t)

If you can solve for y in the second equation y = g~1(x, t), you'll have an
ODE
x = f(x.g }(x, 1), t)

Loss of structure when transforming into an ODE (rem. the simple circuit).

As on last slide, apply Euler-backwards directly?
F(yn, (¥n — ¥n-1)/h,ts) =0
But ... what happens with the mathematically well formulated model

x=f(x,y,t)
0=g(x,t)
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Differential-algebraic models

A general DAE
Fly.y,t)=0

is pretty similar to an ODE
y="F(y.t)

What is the difference? When can an ODE solver work also for DAE:s?

Answer: Sometimes )

This first lecture deals with these differences, characteristics of DAE:s and
when ODE methods can be directly applied

Next time more on how to simulate DAE:s and how to transform them
into a form suitable for an ODE solver.
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Outline

o Briefly; solution to differential-algebraic equations
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A super simple example

The DAE below can easily be tranformed into an ODE
%(8) = =x(t) + y(2)
0 =x(t) + y(t) — u(t)
but for illustration, a directly applied backward Euler gives

Xt4+1 — Xt
T = —Xt+1 + Yet1

0 = Xx¢41 + Ye41 — Upg1

which can be solved numerically, or analytically as

(Xt+1> _ 1 < Xt + h Uy )
Yt+1 1 + 2h — Xt + (]_ + h)Ut+1
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DAFE and ODE

= |ntegration, gives smoother solutions; differentiation gives more
non-smooth solutions.

= Differentiation is "simpler” than integration analytically; numerically
it is the other way around

= ODE - pure integration.
DAE - mix between integration and differentiation
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Solutions

Assume a DAE

7 =g(t)
21 =22

You can easily see that it is not direct to numerically derive solutions
(z1(t), z2(t)) if the function g(t) has discontinouties.

For ODE:s the situation is more simple

x = f(x,t)
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Solvability /solutions

Definitions on solvability for DAE is similar to solvability for ODE:s.
Require consistency! (we will talk more about what this means)

One difference worth noting: An ODE solution is always at least once
differentiable, this is not true for DAE:s and all components are not as
smooth.

Consider

yoo=x [0 (XYt o] (x) (0

y =v(t) 0 of\y/) [0 —1]\y v(t)
where v(t) € C1. Then y will be 1 time differentiable and x not
differentiable.
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Different DAFE formulations

Implicit ODE
F(y,y.t) =0, F, invertible

Linear time-invariant DAE
Ey = Ay, E singular

Semi-explicit DAE

x = f(x,y,t)
0=g(x,y,t)
18 /56
Solvability
A linear and time-invariant DAE
Ay + By = f(t)

is solvable if and only if AA + B has full rank for any A € C (think
Laplace-transform) for a smooth f(t).

(sA+ B)Y(s) = F(s)

—t t?] d
1 t|grTr=0

is not solvable on the interval t > 0 in spite of |AA(t) + B(t)| = 1.

However, the DAE

Something to think about at home: figure out why. Hint: uniqueness. |

That this is a DAE and not an (implicit) ODE is due to
det A(t) =0

Characterizing solvability and solutions for time-variable DAE:s complex
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DAFE wvs. stiff problems

A semi-explicit DAE

x1 = fi(x1, x2, t)
0= fZ(XlaXza t)

is similar to the stiff ODE (e small)

= similarities

= differences

x1 = fi(x1, x2, t)

exp = h(x1,x2, t)

= when do ODE methods work for DAE:s?

= In this presentation, | will for simplicity mainly illustrate using
one-step Euler-backwards

The simple circuit model, act 1
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i
ow = L ur,
A 10 ~
R U2
Yu
:
22
U v
Z¢}
uc —

x1 = (Uc,ir), xo = (U2, o, tg, U1, Uy, i1, ic, ip)

ug = f(t)
up = Rlil
up = Roip
. du,
=C
T
di
— =t
U= R
o =11+ i
ih=i+ic

up = uy + uc
up = uy + up

uc =u
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Outline

o [llustrative example in three acts
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Reformulate equations into computational form
€10 - Up 1= Uc
o . 1
el.UO—f(t) e i _FUZ
€ . up = Rlil 2
. e u f(t
€3 Uy = R212 ! 0 ( )
duc €g .Ul = Up — Uc
e4:’C_Cdt up = u + up
dip 1
e u =L— h:=—u
> L dt R1
€ :lo=1h+1 ic:=h—1h
e7:ih=h+ic € :igp:=h+1i
eg: Ug = uy + uc
€ :uL=up+u 64.duc_l,-c
o “dt C
€10 : UCc = U2 .
dlL 1
& — =—u
gt Lt
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The simple circuit model, act 2 (C — R3)

Uo

ur,

x1=ir, xo = (i3, U, o, Ug, U1, UL, I1, ic, Ip)

up = f(t)
u1 = Riip
u = Raia
u3 = Rsi3
up = L%
o =1h + i
h=1ih+Ii

up = uy + u3

up = up+ u
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Reformulate equations into computational form
dip 1
a _ -,
N
up = f(t)
Solve for {u1, up, u3, i1, iz, i3} in (6 unknowns, 6 equations)
u1 Ri(R2 + Rs)
up R2Rs
us 1 f%zf?3 u
C | = 0
n RiR> + RiR3 + RoR3 R> + R3
I R%
é f?2
fo =i+ i
up = up+ U
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Reformulate equations into computational form

dip 1

P

up := f(t)

Solve for {u1, up, u3, i1, iz, i3} in (6 unknowns, 6 equations)

u1 = Riip
up = Roip
us = R3i3

n=1h+i
Uup = up + u3

uz = uz

fo:=h+1iL
up = uy+ u
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The simple circuit model, act 3 (C <> L)

up = f(t)
) up = Riip
1
A u = Roip
. du
ic=C dtc
diy
0 l w=Lg
o =i+ ic
ur, n=n+i
up = u1 + ug
uc =up+ up

up = up

x1 = (uc,ir), xo = (ug, ip, tp, Uy, up, i1, ic, i)
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Reformulate equations into computational form

It is not possible to, in the same way as before, to obtain a computational
form. If you write the model in the form

x1 = g(x1,x2)

0= h(Xl,XQ)

where X1 = (UC, iL) och Xo = (U(), uy, uz, up, io, i1, f2, fc). Then

h
rank hy, = rank 78 (;)1(:(2) =
1 0 0 0 0 1 0 0
0 1 0 0 0 -1 -1 0
0 O 1 0 0 0 -1 -1
0 O 0 0 0 -1 0 1
=rnkfg 9 0 1 0 o0 o of77<8
0 —R1 0 -1 1 0 0 0
0 0 -R2 0 -1 0 0 0
0 0 0 -1 0 0 0 0
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Transfer functions for model 1

The three models are linear, i.e., we can compute the transfer functions to
show what is happening.

uc = Re f u =71

T R +R+sCRR, Tt

; 7if_ P R1+R2+S(L+ CR1R2+CLR2S)
TR 0~ sL(Ry + Ry + CR1Rys)
v — f o= 1+SCR2

0= "7 R+ Ry + sCRiR;

R1+SCR1R2 . 1
uy = f, b = f
Ry + Ry + sCRiR» Ry + Ry + sCRiR»
R2 . SCR2
753 Ic

= f =
R1+R2+SCR1R2 ’ R1+R2+SCR1R2
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Summary of the three acts

= Act 1: simple, very similar to an ODE
= Act 2: bit more difficult, took some algebra but we were OK
= Act 3: significantly more difficult

The difference between these three acts were changes in components.

Important: All three are mathematically well formed models!

A main property that separates them is: differential index J
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Transfer functions for model 2

The three models are linear, i.e., we can compute the transfer functions to
show what is happening.

i/_ = 11‘- Uy = R2R3

s’ RoRs + Ri(R: + Rs)

. R>

u =1, 5 RR L R(R TRy
= R+ R; s = Ry R3

RoRs + Ri(Ra + R3) ' R2R3 + Ri(Rz2 + Rs)

Ri(R> + R3)

e R2R3+R1(R2+R3)f, to=1f
= Rs3 p i = Ri(R2 + R3) + sLR; + Ry(Rs + sL)

RyR3 + Ri(Ry + R3) ' sL(R2R3 + R1(R2 + R3))
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Transfer functions for model 3

The three models are linear, i.e., we can compute the transfer functions to
show what is happening.

v = f u = sLR,
’ R1R2+SL(R1—|—R2)
. R> .
L= R1R2+5L(R1+R2)f’ ic = scf
b f P Ry + sCRy(Ry + sL) + sL(1 +5CR1)f
o 0 SLRy + Ru(Ra + sL)
ty = Rl(R2 + SL) i1 _ R2 + sL
SLR2+R1(R2+SL) ’ SLR2+R1(R2+SL)
sLR, . sL
uz

— 5 = f
RiRs+sL(Ri+R2) " 2~ RiRa+sL(R + Ry)
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Index, one example

A linear example that illustrates an important difference between a DAE
and an ODE

x1+x+x3="Hh 3=fh—f
= .
).(2—|—X1:f'2 XQZ_X1+f-2
X =1f >'<3:X1—f2—7;2+7&1—f3(3)

= What are allowed initial conditions? For an ODE they are free
= Not the case for a DAE, there might be "hidden” algebraic constraints

xi=h—-f
X2 = f3

x3=fi—fh—f+fh

Something called (differential) index characterize DAE:s J
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Outline

o Differential index
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(Differential-) Index

A DAE is almost an ODE, just need some differentiation

Differentiate the second equation

0=gux+gy=2axf +8y

If gy_1 exists we can rewrite as

x=f(x,y)
y= _‘gjfléixf

Comments: solutions sets, equivalence.
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Index, cont.

F(t,y,y)=0

Definition

The minimum number of times the DAE has to be differentiated with
respect to t to be able to determine y as a function of t och y is called
the (differential-) index of the DAE.

= index might be solution dependent, uniform index

= There are several types of index, the above is called differential index.
= Perturbation index

= variants of the above (see paper)

Anyhow: index is a measure how far from an ODE the DAE is.
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Sufficient condition for index
Fly,y)=0
d
“Fly.y)=0
g 0y)
@it )
G- ry)=0

which can be collected to Fj(t,y,y;) = 0. Algebraicly F;(t,y,y;) =0
consists of nj equations in nj + n unknown variables.
A sufficient condition for y is a unique function (locally) if t and y is that
OF;
dy;
is 1-full column rank

DAE:n has index no larger than v if OF ,11/0y,+1 has 1-full rank and
F,11 = 0 is consistent.
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Linear constant DAFE:s of any index

Ex = Jx+ Ku

Then there exists a non-singular matrix P and a change of variables
z = @x such that

I 0\ (zn\ (A 0\ [z n B

0o N)J\x) " \o 1)\» p)"
Where matrix N is nilpotent, i.e., there is an integer m such that N’ # 0
for i < mand N = 0.

A simple algebra exercise gives that the solution to the DAE is

z1 = Az, + Bu
m—1 ) ]
7= — Z N Du()
i=0

How is the degree of nilpotency m related to the index? Transfer function,

how does it relate to the degrees of numerators and denominators?
38 /56

1-full rank

When has the equation

a unique solution for x;7?

Unique x3 solution if and only if

rang A = n + rang Az

X1
100
<011>X2:b

X3

Example:

Now, back to the last slide, what does 1-full rank mean there?
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Common forms for differential equations

= ODE
y=f(y,t)

= Hessenberg index 1/semi-explicit index 1

x = f(x,z,t)
0=g(x,z,t), g, nonsingular for all ¢

= Hessenberg index 2

x=f(x,z,t)
0=g(x,t), gxf, nonsingular for all t

Our index 2 equation, all algebraic variables are “index 2" variables.
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Outline

o Initial conditions
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Remainder of the lecture

The remainder of the lecture will introduce some important differences
between ODE:s and DAE:s from a simulation perspective. We will come
back to these in detail in upcoming lectures.

1 Initial conditions
2a Simulation of equations with index 0 and 1

2b Simulation of equations with index > 2

42/ 56

Bullet 1: Initial conditions

For the DAE
F(t,y(t),y(t)) =0
is it sufficient that the initial conditions y(0) and y(0) satisfies
F(0,y(0),y(0)) = 0?
Remember the model that had no degrees of freedom
X1 +x2+x3="

X+ x1 =0
xp=1f

= |[ndex and “hidden” conditions

= Methods to determine consistent initial conditions
= Pantelides algorithm
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Initial conditions, cont.

What degrees of freedom do we have for the initial condition? In the
equations

x1t+xe+x3="h
X +x1=Fh
xp =13

there is no freedom at all and the solution was uniquely determined (in the
class of smooth functions) directly by the equations.

If we have m equations/variables, it holds that the degrees of freedom /
that 0 </ < m and it is not trivial to find consistent initial conditions.
x=f(x,y)
0=g(x,y)

Pantelides algorithm

We will come back to a possible solution later
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Bullet 2a: Index 1 "as easy” as ODE

Will come back to this, but the basic principle is easily illustrated.

Assume a semi-explicit DAE in the form

x1 = fi(x1, x2, t)
0 = fH(x1,x, t)

with index 1. Then,
ot

%2

has full column rank and it exists a (local) inverse w.r.t. x».

The algebraic variable can then be inserted in the dynamic equation
resulting in an ODE which can be solved using any standard ODE method.

47/56

Outline

o Simulation of DAE:s with low index

Bullet 2a: Index 1 "as easy” as ODE, cont.
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Consider an implicit index 1 DAE
F(x,x,t) =0
Apply a basic implicit Euler backward

Xt — Xt—1

F( .

)Xtat) :0

and solve numerically for x;. Index 1 property ensures that a solution
exists.

Important note: Procedure no different than implicit Euler for ODE:s.
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A simple example

Consider the DAE

X=—-x+y = x(t) = —y(t) = x(0)e™?*
O=x+y

A Backward Euler step gives

Xe41 — Xt _ 1
gy T X + Vi1 Xe41 = 7 n TR
0= X111+ ye1 Y41 = —Xe41

which is exactly what you would've gotten for BE for the original
X = —2x

,and  y(t) = —x(t)

Now, have a look at Forward Euler and see why it doesn't even make
sense.

49/ 56
Bullet 2b: Why is index > 1 so difficult?
Equations you, generally, can solve using basic ODE methodology is
= Index 1 DAE:s (more to follow)
= Linear DAE:s with constant coefficients of any index (kind of)
Ay + By =f
Will not pursue this here. More details in "ODE methods for the
solution of differential /algebraic systems”.
= For index > 1, direct ODE methodology does not work at all. We
need new techniques and index reduction is one possibility we will
discuss a lot in upcoming lectures.
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Bullet 2a: Index 1 "as easy” as ODE, cont.

One conclusion: BDF and other typical implicit solvers will work
approximately the same for DAE:s of index 1 as for ODE:s.

There are practical differences though, see Hairer/Wanner and the
following papers for further details
= Petzold, " Differential /algebraic equations are not ODEs"

= Brenan, Campbell and Petzold Petzold, " Numerical Solution of
Initial-Value Problems in Differential Algebraic Equations”

Outline
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o Implicit and semi-explicit forms
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Implicit and semi-explicit forms
A fully implicit DAE

F(x,x)=0

can always be rewritten as a semi-explicit DAE by introducing a new
variable x’ (algebraic, should not be confused with x)

. /
X =X

F(x',x)=0

Does this mean that we can forget about implicit forms and focus on
semi-explicit?

No, not really. I
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An implicit example, cont’d

Turns out that

/ /
€1 X1 +X =11

€21 X1 —X2= U2

d /
€3 —x] = X
ot T

d /
e —Xo = X
4 dt2 2

has index 2.

Assignment: Verify that you need (ey, é1, €2, €2, €3, €3, €4, €4, €4) to be able
to solve for highest derivatives.

Rule of thumb

Going from fully implicit to semi-explicit increases index by 1
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An implicit example
Consider the implicit index-1 DAE

e x1+x=u

€ X1 — X2 = U

From equations (e, €2, &) we can solve for the highest derivatives.

Transform the DAE into a semi-explicit DAE by introducing x| and x}

/ /
€:x1+x=u
€21 X1 — X2 = U2

d

. )
e3.EX1_X1

. d /
e4.ax2:x2

What is the index of this one? I
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