Yor the implicit Euler method applied to the index one DAE (4.6.4), there
exists an expansion of the form (4.6.5) where ¢}, = 0 for n > 1 Therefore,
the error in the extrapolate Tj; is O(H7) for all 5 [171]. For this reason, the
expense of iterating the implicit Euler method to convergence may be justlﬁe.d
when extrapolation of the values is employed and a high order of accuracy is
desired, for difficult nonlinear systems. .

We note that if B(y) is nonsingular as in an index zero DAE (E!.e., an
implicit ODE), there exists an unperturbed asymptotic error expansion for
both linearly implicit schemes.

Extrapolation based on the linearly implicit midpoint metho‘d has been
experimented with by Deufthard [95] and later by Hairer z?,nd Lu[rnch {.135] for
use in solving stiff ODE’s. A limited theoretical result is obtaafle& in {1.35]
which proves the existence of an perturbed h* expansion of the discretization
error for this method when applied to a simple stiff system of the form,

v = fv) v0)=w
ez’ = —r+g(y), 2(0)= .
For the corresponding DAE (e = 0), the pertubation terms vanish.

It is important to note that extrapolation methods do not in genera.l enfo_rcfe
the satisfaction of algebraic constraints. Specifically, consider the semi-explicit
index one DAE (4.6.2) obtained when ¢ = . Of course, the first coluxfm of the
extrapolation tableau, generated by the implicit Euler methc?d, sat}sﬁes the
algebraic equations. However, the extrapolated values determined via (4.6.1)
do not satisfy the algebraic constraints ‘exactly’ (i.e., to the r?und-off level
of accuracy). In this case it is simple, althongh a bit expensive, to apply
extrapolation to the y variables and to compute the z variables via a Newton
iteration on the algebraic constraints. o

The investigation of extrapolation methods for index two DAE?S is j}i?t
beginning. We have seen experimental evidence in Section 4.4 for semx»lexpif(:ft
index two systems which indicates that extrapolation based on thfé Wlpiimt
Euler method may be very useful. However, a complete theory justifying the
use of this method is not yet available. The existence of an unperturbe’d
asymptotic A% expansion of the global error for semi-explicit index two DAE’s

of the form

y foly) + foly)=
0 = g(y)

is shown by Lubich [172] for an extension of Gragg’s method [1?7]. ‘In par-
ticular, the differential equations are discretized via an explicit midl?oznt rule,
while the algebraic equations are discretized in an implicit way. This met}}od
would be appropriate for nonstiffindex two systems. Finally, the extrapolation
method of Bader and Deuflhard [13] (namely, a semi-implicit midpoint ru_ie)
can be extended in a similar way to this class of index two systems. Lubich
shows that the resulting method also has an A? expansion.

Chapter 5

Software for DAE’s

5.1 Introduction

The most compelling reason for developing methods and analysis is to solve
problems from applications. But first the methods must be implemented in
codes which are efficient, robust, easy to use, and well documented. In this
chapter we will discuss some of the software issues which are important in
developing and using a code for solving DAE’s,

Several classes of methods emerge from the convergence analysis of the
previous chapters as potential candidates for methods on wkhich to base a vari-
able stepsize variable order general purpose code for index one DAE’s. Within
the class of multistep methods, the BDF methods suffer no order reduction
for index one systems. One-step methods such as the L-stable singly implicit
methods of Burrage and Butcher [38,39,45] and the extrapolation metheds of
Deuflhard et al.{96,97] which are based on the semi-implicit Euler method also
appear to be promising for this purpose. The most widely used production
code for DAE’s at this time is the code DASSL of Petzold [200], which is
based on BDF methods. We will concentrate our attention in this chapter
on the algorithms and issues which are important in the implementation of
DASSL. However, it is important to note that many of these issues arise in
the implementation of any numerical ODE method for the solution of DAE’s.

DASSL is designed to be used for the solution of DAE’s of index zero
and one. The convergence analysis in Chapter 3 establishes that the BDF
methods achieve the same order of convergence for this class of DAE's as they
do for ODE'’s. Thus there is some theory providing the foundation for the
software. However, there are issues other than the order of convergence of
the methods which are important in successfully implementing and using the
methods, These issues are more complex for DAE’s than for ODE’. For
example, the initial conditions for a DAE must be chosen to be consistent,
the linear system which must be solved on each time step is ill conditioned for
small stepsizes, error estimates used in the selection of stepsizes are sensitive
to inconsistencies in the initial conditions and sharp changes in the solution,

115

3
I
B
o
i

and the solution methods are dependent on a more accurate approximation to
the iteration matrix than is generally needed for ODE’s.

Since it is possible to write a problem in the form F(t,y,¥") = 0 which
has index larger than one, it is important to be aware that a failure of the
code could be due to a higher index formulation. In this case, the user of the
code needs to know the possibilities of modifying the code to solve the higher
index problem, or of rewriting the problem in a lower index form, and the
advantages or disadvantages of these alternatives. In general, the diagnostics
in DAFE codes are not as well developed as those in nonstiff ODE codes. It is
sometimes difficult for the code to distinguish, for example, between a failure
due to inconsistent initial conditions and one due to a higher index problem
formulation. Thus it is useful for anyone who plans to make more than a
casual use of this type of code to be familiar with some of the details of how
the code works, how it would likely behave in the event of different types of
failure, and what the alternatives are for obtaining a solution in the event of
code failure. On the other hand, it is our experience that the vast majority
of DAFE problems from applications are solved suceessfully with DASSL, often
by users with little previous experience in solving DAE’s and ODE’s.

in this chapter we will explore software development issues for DAE’s. In
Section 5.2 we describe the basic algorithms and strategies used in DASSL,
including the predictor and corrector formulas, solution of the nonlinear sys-
tem, stepsize and order selection and error control. In Section 5.3 we focus
on using DASSL, including how to set up a problem, how to obtain consis-
tent initial conditions, and how to interpret failures. We also describe codes
based on DASSL which are written or are currently under development with
extended capabilities. K is important to remember that DASSL and other
general purpose DAE codes of which we are aware are designed for solving
index zero and index one DAE systems. In general, these codes will fail for
higher index systems. But we have seen in Chapter 3 and Chapter 4 that the
BDF methods and some other methods converge for some important classes
of higher index systems, most notably for semi-explicit index two systems. In
Section 5.4 we discuss the solution of higher index systems, either by rewriting
the system in a lower index form which has the same analytic solution, or by
solving it directly using a code like DASSL, where the error control and other
strategies have been modified appropriately.

DASSL is designed for solving initial value problems of the implicit form
F(t,y,9'} = 0 which are index zero or one. At this time we are aware of sev-
eral other general purpose codes for solving related problems which have been
used extensively in applications. The code LSODI, developed by Hindmarsh
and Painter [144], is similar to DASSL in that it is based on BDF methods.
This code is written for linearly implicit DAE’s of the form A{t, 1)y = f(t,¥).
The user must supply a subroutine for evaluating the matrix A times a vector.
LSODI differs from DASSL in the way that it implements the BDYF formulas,
in the way that it stores and interpolates the past solution values needed by the

Ve AR XSS P DL RAL SGLED 1N EASSL 117

BDF formulas, and most notably in the stepsize and order selection and error
control strategies. Our experience with the two codes is that on many prob-
Ie‘ms they are quite similar in accuracy and efficiency. For DAE’ and ODE%
with eigenvalues close to the imaginary axis in the complex plane DASSL
has a more robust order selection strategy. The SPRINT code, deve:loped by
BerZ{ns, Dew and Furzeland [16,18,19,20], also employs BDF methods fo.r the
solutx‘on of linearly implicit DAE’s, This code uses the filtered error estimate
c%escrlbed in Section 5.4.2, and has been used in a wide variety of method ot;
lines applications. The FACSIMILE code, developed by Curtis {84}, uses BDF
methods to solve semi-explicit index one systems. Another code o,f which we
are aware is the code LIMEX of Deuflhard et al.[97]. This code is based on
‘ext}”a{)olation of the semi-implicit Euler method. The theory for this mt;thod
is ‘hmlted to linearly implicit DAFE’s, We do not have any experience using
.thlS code, but Maas and Warnatz {177 report good success in solving probi;ams
in combustion modeling. This code attempts to diagnose failures in the first
step, but again the technique used cannot distinguish between systems of index
two (or higher) and inconsistent initial conditions for an index one problem
One-step methods, such as {he extrapolation method, have an inherent advan:
tage over multistep methods for problems with frequent discontinuities simpl
because they can restart after a discontinuity with a higher order methgdy
+

whereas the usual implementations of multistep methods restart with a first
order method,

5.2 Algorithms and Strategies in DASSL
5.2.1 Basic Formulas

DASSL is a code for solving index zero and one systems of differential

equations of the form /algebraic

Flt,y,9') = 0
v(to) = 1w (5.2.1)
v'(te) = uh,

where F, y, and 3 are N-dimensional vectors, The basic idea for solvin

DAE systems using numerical ODE methods, originating with Gear [113] ig
to replace the derivative in (5.2.1) by a difference approximation, and tI‘:en
to solve the resulting system for the solution at the current time ,tﬂﬂ using

Newton's method: For example, replacing the derivative in (5.2.1) by the first
order backward difference, we obtain the implicit Euler formula

F (i . yn«{v] ~ Yn —
n+l:¥ntl, hn+1 = 0, (522)

where hn'_,,l # Iny1 — fx. This nonlinear system is then usually solved using
some variant of Newton’s method. We will discuss the solution of the system

FR S ’ VY P FE S WU TTIR YRR CA W F R A S P TR PRV OB FE VAT A

{5.2.2) in the next subsection. The algorithms used in DASSL are an exten-
sion of this basic idea. Instead of always using the first order formula {5.2.2),
DASSL approximates the derivative using the kth order backward differentia-
tion formula (BDF), where & ranges from one to five. On every step it chooses
the order k and stepsize hy, .5, based on the behavior of the solution.

DASSL uses a variable stepsize variable order fized leading coefficient [147)
implementation of BDF formulas to advance the solution from one time step
to the next. The fixed leading coefficient implementation is one way of ex-
tending the fixed stepsize BDF methods to variable stepsizes. There are three
main approaches to extending fixed stepsize multistep methods to varjable
stepsize. These formulations are called fixed coefficient, variable coefficient
and fixed leading coeflicient. The fixed coeflicient methods have the property
that they can be implemented very efficiently for smooth problems, but suffer
{from inefliciency, or possible instability, for problems which require frequent
stepsize adjustments. The variable coefficient methods are the most stable
implementation, but have the disadvantage that they tend to require more
evaluations of the Jacobian matrix in intervals when the stepsize is changing,
and hence are usnally considered to be less efficient than a fixed coeflicient im-
plementation for most problems. The fixed leading coefficient formulation is a
compromise between the fixed coefficient and variable coefficient approaches,
offering somewhat less stability, along with usually fewer Jacobian evalua-
tions, than the variable coefficient formulation. In contrast to DASSL, the
code LSODI [144] is a fixed coefficient implementation of the BDF formulas.
The relative advantages and disadvantages of the various formulations are ex-
plained in much greater detail in Jackson and Sacks-Davis [147]. It is possible
that with a stepsize selection strategy which is different from the ones usually
implemented in BDF codes, the variable coefficient implementation could be
the most efficient [230]. However, this idea has not been extensively tested. It
is still an open question for stiff ODE’s and for DAE’s which formulation is
best for a general purpose code.

Now we will describe the basic formulas used in DASSL. Suppose we have
approximations ¥,—; to the true solution y{t,_;) for i = 0,1,... &k, where k is
the order of the BDF method that we are currently planning to use. We would
like to find an approximation to the solution at time t,4y. First, an initial
guess for the solution and its derivative at tn41 is formed by evaluating the
predictor polynomial and the derivative of the predictor polynomial at {,,;.
The predictor polynomial wf, () is the polynomial which interpolates y,..;
at the last k 4 1 times,

wi’:—}-i(tﬂ—'l‘) = Yn—iy i=01,... k.

The predicted values for y and y' at f,4; are obtained by evaluating wZ, (1)

G RGOS KNG 3 CRAL EGIES TN DRSS e gyt e

and wh {t) at t,44, s0 that

0
yiﬁh = whii(tas1)
7o)
Y41 = w:ﬂ-l(tﬁ%l)‘

The approximation y,41 to the solution at £,y which is finally accepted
by DASSL is the solution to the corrector formula. The formula used is the
fixed leading coefficient form of the k** order BDF method. The solutjon to
the corrector formula is the vector yn4y such that the corrector polyromial
w$, (1) and its derivative satisfy the DAE at tat1, and the corrector polyno-
mial interpolates the predictor polynomial at & equally spaced points behind
tﬂ.-{-l!

c ‘-‘Jgﬂ(inﬂ) = Un+l
o wy{+1(tn+1 ~thegr) = Wf+1(tn+1 —thap), 1 <i<E,
F(tn“,wn+1{in+1),w;iz(tn+;)} 0.

i

{5.2.3)
In the next subsection we deseribe how the solution Yn+1, implicitly defined

by conditions (5.2.3}, is determined by solving a system of nonlinear equations
by Newton’s method,

The values of the predictor yfﬁl, y:fi}] and the corrector y,4y at 1,4 are
defined in terms of polynomials which interpolate the solution at previous time
steps. Following the ideas of Krogh [155] and Shampine and Gordon [225],
these polynomials are represented in DASSL in terms of modified divided

differences of y. More precisely, the quantities whieh are updated from step
to step are given by

Piln 1) = hnpi d et Ry = tagy gy, 021
ofn+1) = hopfein+1), i>t
Biln+1) = wz(n+1}%112(”+1)"'¢£-1(n+1)’ -

wi(n)%(ﬂ)“'?ﬁ’iwl(“)

#in) = ya
qbl{n) s "I')E(n)wz(ﬂ) . ‘wim}(n}{yn$yn“~11 e ,yﬂ.-H~I]a I >1
¢iln) = Biln+ gi(n), i1 (5.2.4)

0;(n+1) = 1

‘ _ Wy (i= 1) .
cint1) = h(nt Dm0 a(n+ 1) 270
nn+1) = 0

Ti{n+) = v+ D)+ aiq(n+ Do, i1

k1
Osm_z_.

i=1 3

S T

e r W O E T W RO T RN ER Y

k
aﬂ(n + 1) m - Za;(n+ 1).
Fe=1

The divided differences are defined by the recurrence

[yn] = Hn
[y?h Yn—1:.:-, 24‘n~k+1] - [yﬁ—l! Yn—-25--+4 yﬁm*k]

[yn,yﬂ—-la“"yﬂ“k} = tn ~ tok '

The predictor polynomial is given in terms of the divided differences by

£ = +{t -t)[yﬂ,yn.—-l] + (t h tn)(t tn«l)[ynayﬂ-—lnyﬂ‘“ﬁ]
wn+;(i) Yn (™
T 0 10 S S URY ¢ 0 SRS | (VIS PR s &
(X »t) (5.2.5)

Evaluating w,fH at fop1, and rewriting (5.2.5) in terms of the notation in
(5.2.4), we obtain the predictor formula

k+1

30 =3 gr(n).
g

Differentiating (5.2.5) and evaluating w{F | at t,.41, we find after some manip-
ulation that

k41
gy = 3wl + 1)gi(n),
i

i lation in (5.2.4).
where v(n + 1) satisfies the recurrence re . ‘
To ﬁ:nd the corrector formula, we note as in Jackson and Sacks-Davis {147}

that (5.2.3) implies
o
wCha(1) = @ (1) = Bt} (w1 ~ B0, (5.2.6)
where

b(in+]~ihn+1) = 0, ?:—'—"1,2,“.,16
b(tny1) =

Differentiating (5.2.6) and evaluating at £,45 gives
Ho
as(Ynrt = Ys) + hasa (¥ = %) = 0, (52.7)

where the fixed leading coefficient a, is defined in (5.2.4). Solving (5.2.7) for

Y41, we find that the corrector iteration must solve
ol ©) =
F (tn+lnyn+1ayg?1 - :1(3¢'n+1 - yn+1)) =0 (5.2.8)
n

for Ynt+i-

W \Iﬁlv

Finally, DASSL employs an interpolant to compute the solution between
mesh points. This capability is needed for output purposes, when the user
requires a value of the solution at points which are not necessarily at the
timesteps chosen by the code. The interpolation is a necessity in the root
finding version of DASSL which we will describe later, Starting from the end

of a successful step, the interpolant which DASSI, uses between t, and ¢

nt1 18
given by

wppilt) = Yot (- Lt 1) [Un g1, U]
+(t - tngt = £ Wng 1, ¥, Yn—1] +--- {5.2.9)
HE = tne)(E = 40) (8= o ka2 ¥ntts Yo - + Yrwh1)

where k is the order of the method which was used to advance the solution
from t,, to t,4;. Note that the interpolant is continuous, but that it has a
discontinuous derivative at {,, and tny1- It is possible to define a ¢ interpolant
(15,238}, which leads to a more robust code for root finding. However, at this
time the CT interpolant is not implemented in DASSL. It will likely appear in
later versions.

It is important to note that algebraic relations {constraints) for DAE’s
are not automatically satisfied at interpolated points. If this is important for
the application, for example if DASSL is to be restarted at the interpolated
point, then in the present version the user may need to recalculate some of

the solution components at the interpolated point so that they are consistent
with the constraints,

5.2.2 Nonlinear System Solution

The corrector equation {5.2.8) must be solved for Yn+1 at each time step. Here,
we describe how this is done in DASSL.

To simplify notation, rewrite the corrector equation (5.2.8} as

Flt,yyoy+ 8 =0 (5.2.10)
where o = —a,/h,yy and 8 = y;(i}, - ay,(fgl. In (5.2.10), all variables are

evaluated at ¢,4q, @ is a constant which changes whenever the stepsize or

order changes, and 3 is a vector which remains constant while we are solving
the corrector equation.

The corrector equation is solved using a modified Newton iteration, given
by
,y(m-!-l} = y(m} _ CG"IF(t, y(m),a,y{m) + ﬁ), (5211)

where y(® is given by (5.2.5), ¢ is a scalar constant which will be defined
shortly, and G is the iteration matrix,

or or

(;:aay’-{r« g

The partial derivatives are evaluated at the predicted y and .
To solve (5.2,11), the matrix (7 is factored into a product of an upper and
lower triangular matrix, G = LU, and (5.2.11) is then solved by

Lsim) rim)
U(s(m} = 3(771},

(5.2.12)

where §(7) = y(m+1) _ olm) and 20 = —eP(1, 4™, agt™ + B). In‘ D{\SSL,
the matrix G may be dense or have a banded structure. The fa,ct()f'lzat.}on of
(G and the solution of the systems in (5.2.12) are performed by routines in the
LINPACK [100} software package. .

For many applications, and especially when the system to be solyed is la:rge,
the costs of computing and factoring G dominate the cost of the integration.
Often the matrices 8F/8y’ and §F/8y change very little over the span.of
several time steps. However, the constant o changes whenever the.stepstze
or order of the method being used changes. If the derivative malmtr;ces a.n‘d
the constant « have not changed very much since the last ite;at}on matrix
was computed, then it is desirable to use the old itﬁm’cim} mﬂa.t‘nx in ‘(5.2.1'1),
instead of reevaluating the matrix on every step. Thus, if G is th-e 1terat:on
matrix that we have saved from some previous time step, GG = GB.F/ay +
3F [dy, where & depends on the stepsize and order at some Past time step
when ' was last computed, then the jteration we actually use is

gt = g e G R(L 0, 0y ™ 4 B). (5.2.13)

As long as G is close enough to G, (5.2.13) will converge at an adeguate rate,
and we will be able to solve the corrector equation. ‘ ‘

The constant ¢ is chosen to speed up the rate of convergence o‘f the xteratlc.»n
when o # &. The idea of using this type of accelera‘ti‘on was mtrotiuced‘ in
{40,156}. Choosing ¢ = 1 corresponds to the usual modified Newton iteration
for solving (5.2.10) for y, and choosing ¢ = afd corresponds to th:a modified
Newton iteration for solving F(¢t,6" !y’ — 8),v") = 0, (where ¢ = &y + §) for
¥, To find the optimal value of ¢, note that the iteration {5.2.13) converges,
for a sufficiently good initial guess, when the spectral radius of

B = -G

is less than one. When (5.2.13) is used to solve the linear ODE, y -~ Ay.z 0,
we find that if A is an eigenvalue of A, then A =1 ~ c(a.w A)M/(& ~ A} is an
eigenvalue of B. For a general DAE system where the e:gen'values of & ate
unknown, we take ¢ to minimize the maximum of this expression over all A in
the left half of the complex plane. This minimization gives

2&
at &’

C ==

When ¢ is chosen in this way, the corresponding A is

« ~a

/\“_“a-i-(i'

(5.2.14)

The expression (5.2.14) is useful in deciding when to compute a new itera-
tion matrix, Assuming that X is an appreximation to the rate of convergence
of {5.2.13} when a # &, and that we are willing to tolerate a rate of conver-
gence of u (in DASSL, u = 0.25), then a new iteration matrix is computed
before attempting the iteration whenever the stepsize and/or order changes
sufficiently so that [A] > u. Of course, a new iteration matrix is also computed
whenever the corrector fails to converge after four iterations.

A decision which is important to the reliability and efficiency of a code like
DASSL is when to terminate the corrector iteration {5.2.11}. It is well-known
that

™ = 90l < Ty — g

where y* is the solution to the corrector equation and p is an estimate of the
rate of convergence of the iteration. Following Shampine [221], the iteration
is continued until

*ff—pliy‘"“‘” - ™| < 0.33 (5.2.15)

so that the iteration error ||y* — D will be sufficiently small. While
condition {5.2.15) appears at first to be independent of any user requested
error tolerances, this information is buried in the norin. In particular, the
default norm used in DASSL is a weighted root mean square norm, where the
weights depend on the relative and absolute error tolerances and on the values
of y at the beginning of the step. The constant 0.33 was chosen so that the
errors due to terminating the corrector iteration would not adversely affect
the integration error estimates. More precisely, if the weights are all equal and
proportional to a desired integration error tolerance €, then condition (5.2.15)
may be interpreted as restricting the corrector iteration error to be less than
33¢. A maximum of four iterations js permitted. Whenever p > 0.9, the
corrector iteration is considered to have failed, and the iteration matrix is
reevaluated if it isn’t current.

It is possible for the user to define a personalized norm by substituting a
routine for computing the norm. This option is important in some applications,
for example in the method of lines solution of partial differential equations.

The rate of convergence is estimated whenever two or more corrector iter-
ations have been taken by

m m 1/m
_ {1yt gl
S N e Ty '

If the difference between the predictor and the first correction is very small
(relative to roundoff error in ¥}, the iteration is terminated, unless o has

R D e R

changed or a new iteration matrix has just been formed. In these last two
cases, a second corrector iteration is forced and a new estimate of p will be
computed. Tf the iteration is terminated after only one corrector iteration,
p is not recomputed. This last exception is needed because the rate may be
polluted by roundoff error, and hence be misleading, On other steps, the rate
of convergence is taken to be the last rate computed.

If the corrector iteration fails to converge, the iteration matrix is reeval-
uated and the iteration is attempted again. With a new iteration matrix, if
the corrector again fails to converge, the stepsize is reduced by a factor of one
guarter. After ten consecutive failures, or if the stepsize becomes so small that
£+ his equal to t in computer arithmetic, DASSL returns to the main program
with an error flag.

The matrix is either computed by finite differences, or supplied directly
by the user. In finite differencing, if G is banded, the columns of ¢ having
nonzero elements in different rows are approximated simultaneously, using an
idea of Curtis et al.[85]. The 7 columa of G is approximated by

Pty + éiej,0(y + 5,56;) +A) - Pty oyt B) (5.2.16)
;

where ¢; is the j'* unit vector, and é; is the increment. This formulation of
the differencing uses fewer function evaluations than differencing 9F/3y and
AaF/3y' separately, and then adding them together to form G = adF/0y' +
aFfdy. :

The differencing procedure can be sensitive to roundoff error. The main
source of difficulty in computing the iteration matrix & by finite differencing
is the choice of the increment §;. The choice

8; = sign(hy}y max(y;l, Ihylt, W)V, (5.2.17)

where WT; = RTOL|y;| + ATOL is the weight vector used in the norm, is
used in DASSL. RTOL and ATOL are the relative and absolute error toler-
ances specified by the user, and u is the unit roundoff error of the computer.
Normally, when ly;| is not very close to zero, about half of the digits of y
will be perturbed by the increment determined by (5.2.17). If |y;| is near
zero, it is guite possible that a nearby value of y; is not so smali, and since
yi(t+h) = y; + hyl, [hy;| was included in the maximum in {5.2.17) to prevent
a near zero perturbation from being selected. In the event that {y;| and |hy}
are both near zero, WT; is included in the maximum because the user has
told us implickily by setting the error tolerances that it is the smallest number
which is relevant with respect to y;. It is important to note that the sign of
the increment will be negative if the solution is decreasing. This choice can
occasionally be a source of difficulty for problems where F is undefined for
y < 0, or not differentiable at y = 0.

A D I S e

5.2.3 Stepsize and Order Selection Strategies

An important feature of DASSL is that it changes the stepsize and the order
of the methoed to solve problems more efficiently and reliably. In this subsec-
tion we describe the criterion used to decide when to accept a step, and the
strategies for selecting the stepsize and order for the next step. ’

. One of the most important questions concerning reliability of a DAF code
is how it decides to accept or reject a step. There are two sources of errors that
we are concerned with. The first is the local truncation error of the method.
It is the amount by which the solution to the DAE fajls to satisfy the BDF
formula. The fixed leading coefficient form of the BDF approximates hy' with
the formula,

k1
hat1¥nps = D aici(n+ Dgi(n + 1) — (o, — a(n + 1)drsal(n + 1),

=2

‘wgere the notation is defined in equation (5.2.4). The true solution ¥(t} sat-
isfies
k+1

hae1¥(tesr) = 3 eia(n+ Di(n + 1)

1=2
=(@s = 0%(n + 1))dpya(n + 1) + 141,
where 1,4, is the local truncation error, given by

Tagr = (a’k+1(” + D+ a, - e(n+ 3}) Pryaln + 1)

+ 3 aia(n+ D + 1), (5.2.18)

1=k+3

and ¢i{n + 1) are the scaled divided differences (i-e, the ¢;) defined in (5.2.4)
evaluated at the true solution y(¢). DASSL estimates the principal term 0;”
the local truncation error, which is the first term in (5.2.18).

The divided difference ¢p2(n+1)in (5.2.18) is approximated by ¢y 4o(n +
1}, and ¢ry2(n+1) is the same as the difference between the predictor and the
corrector‘. To see this, let w} (1) be the unique polynomial that interpolates
Yndi-is 1 = 0,4,...,k+ 1. Then recalling that the predictor interpolates
Yn—is 1 ::-(}, 1,...,k, it follows directly from the equations for the interpolating
polynomials that w} () — why (1) = grya(n + 1) at ¢ = tnt1. The desired
;c;sf;i;fgg?ws immediately since Wre1{tng1) = Ynyy and w,‘f’“(:‘.nﬂ) = y,(:l), by

This estimate of Pr42(n+1) is asymptotically correct in the case of constant
stepsize or under slightly more general conditions [115,147]. The stepsize and
order selection strategies in DASSL tend to favor sequences of constant stepsize
and order, and the estimate has worked quite well in practice. Thus, the
principal term of the local truncation error is estimated by ’

(oksr(n+ 1)+ a, ~ a®(n + 1) Wonss — v, 11 (5.2.19)

The other source of error that is impartant is the error in interpolating
to find the solution between mesh points for output purposes. 'In DASSL
the solution at a point t* between mesh points, t, < t* < t,41, is found by
evaluating the polynomial of degree k (where k is the order of the metIrmd
which was used to find ¥n+1) Which interpolates y at the last if:+ 1 points
YrdtsUns-- -2 Unoks1, at t*. The error in this interpolated vzj.iue is cor‘nposed
of two parts. The first part is the interpolation error, due tg mter.pol.atmg the
true solution ¥(€) at tue1,tn,. .., tn—k+1 by 2 polynomial. The principal term
of the interpolation error is bounded by

oka(m + Dfldbgal(n + D (5.2.20)

The second part of the error is due to the fact that we are_interpolatjing the
computed solntion instead of the true solution. This error is proportional to
the errors in the solution at the mesh points, We are already trying to control
these errors in (5.2.19), so we do not approximate them here. ‘

Taking {5.2.19) and (5.2.20) together, at every step we reguire that

ERR = M|ynss — v1, 1| < 1.0, (5.2.21)

where
M = max (akH(n + D lorpa(n+ 1) 4+ 0 — o®(n + l)l) .

H this condition is not satisfied, then the step is rejected. Note that condition
{5.2.21) requires that the estimated integration error be less than the requ.ested
integration error tolerances, as reflected in the weighted norm of the predictor-
corrector difference.

Whether or net a step is rejected, the code must decide which order method
is to be used on the next step. Since the predictor (5.2.5) and the correc'tor
(5.2.7) are of the same order, the leading order terms in their corresponding
Taylor series expansions are identical aside from the error consta,nt:q. DASSL
estimates the leading order term in the remainder of the Taylor series expan-
sion, independent of the error constants, at orders £ — 2, k — 1, and k. If
the last k + 1 steps have been taken at constanl stepsize and order, then the
leading error term for order k + 1 is also estimated. These estimates are

TERKM2 = ||(k~ Dog_1(n + U)gy(n + D] ~ [[RF-1ylE=-10]

TERKML = |lkou(n + Dppr{n +)i} = ||pFy5N)
TERK = [j(k+ Dorpr(n + Ddrgaln + 1)} ~ [|pEF)]

TERKPL = [}(k + 2)orsa(n + Urya(n + Dif = [[pF+H25+2)]|,

{5.2.22)
Since the higher order estimate TERKP1 is formed only after k +.1 steps at
constant stepsize, ogyo(n + 1) = 1/(k + 2). Note that these estimates are
scaled to be independent of the error constants for each order. The str‘a,tengss
for raising or lowering the order are nearly identical with those described in

Shampine and Gordon [225]. Briefly, there is an initial phase where the order
and stepsize are increased on every step, and after that the order is raised
or lowered depending on whether TERKM2, TERKM1, TERK and TERKP1
form an increasing or decreasing sequence. The philosophy behind this type
of order selection strategy is that the Taylor series expansion is behaving as
expected for higher orders only if the magnitudes of successive higher order

terms form a decreasing sequence. Otherwise, it is safer to use a lower order
method.

It is interesting to note that the order selection strategy in DASSL differs
from that used in the LSODE family of codes [144] in several important as-
pects. In LSODE and its variants, error estimates are formed for the order
k— 1, k and k + 1 methods, as if the last k + 1 steps were taken at constant
stepsize. The order is chosen which gives the largest stepsize based on these
estimates. Thus, the order is chosen based solely on efficiency considerations.
In DASSL, the terms [A*=1y5=D|| ||Rky*|i, etc. in the Taylor series expan-
ston, rather than the error estimates for those orders, are compared. Several
successive terms are examined, and the order is chosen based on maintaining
a decreasing sequence. While the terms that DASSL compares are related to
the error estimates, they are not the same.

The advantage of the order selection strategy which is implemented in
DASSL is that it effectively solves a problem that variable order BDF codes
can have because the higher order BDF methods are unstable for some ODE’s,
Consider the model problem y' = Ay, where A has eigenvalues with large
imaginary parts but small negative real parts. The higher order BDF methods
are unstable for this type of problem unless the stepsize is chosen to be quite
small. If these small stepsizes are not required for the resolution of the solution,
then the BDF code can take larger stepsizes with the more stable, lower order
formulas than with the higher order formulas. The presence of instability
is evidenced by rapid oscillations, or more simply by]jh”y,{f }[j > !ihqy,(f)n
for p > ¢ [231]. When DASSL is solving a problem of this type and the
higher order formulas begin to have a problem with instability, the estimates
TERKM2, TERKM1, TERK, and TERKP1 fail to form a decreasing sequence.
Then, the order is lowered until these terms {recomputed for the new order) are
again decreasing. Thus the code is forced to use a stable, lower order method,
thereby allowing larger stepsizes. The same sort of phenomena occurs with
the error estimates in LSODE, but in DASSL testing for monotonicity and
comparing the terms in (5.2.22) rather than the error estimates favors the lower
order methods and force a lowering of the order sooner. The strategy used in
the LSODE codes sometimes fails to lower the order, and in those cases the
code can be quite inefficient because it continues to use the higher order BDF
and needs to take very small stepsizes to maintain stability. It is important to
note that for all modern ODE solvers, the stepsize selection strategy reduces
the stepsize as a response to instability. Thus the codes do not give a faulty
solution because of the instability for large stepsizes, but instead reduce the

°
[
2
3
i
[
i

stepsize and become very inefficient. Because of these differences in the order
selection strategies between DASSL and LSODE, DASSL is more robust than
the LSODE codes for this type of problem. Order selection strategies to control
instability in higher order BDF methods are discussed in detail in [231}

After the step has heen accepted or rejected and the order of the method to
be used on the next step has been determined, DASSL decides what stepsize to
use on the next step. The most effective strategy, based on our experiences and
experimentation, is the one used by Shampine and Gordon [225]. The error
at the new order k is estimated as if the last £ + 1 steps were taken at the
new stepsize, and the new stepsize is chosen so that the error estimate satisfies
(5.2.21). More precisely, DASSL chooses the new stepsize rhayq conservatively
50 that the error is roughly one half of the desired integration error tolerance.
Thus r is given by

r = (2.0EST)" Y+ (5.2.23)

where EST is the error estimate for the order k& method which was selected
for the next step and is given by the term estimated in {5.2.22} for the new
order k, but scaled now by the error constant 1/(k + 1). After a successful
step, the stepsize is increased only if it can be doubled, and then it is doubled.
If a decrease is called for after a successful step, the stepsize is decreased by
at least a factor r = 0.9, and at most r = .5. After an unsuccessful step, if
this is the first failure since the last successful step, then r is determined by
(5.2.23) and multiplied by 0.9. The stepsize is reduced by at least r = 0.9 and
at most T = 0.25. After the second failure, the stepsize is reduced by a factor
of one quarter, based on the philosophy that the error estimates can no longer
be trusted.

DASSL keeps a count of the number of integration error test failures since
the last successful step. After a large stepsize decrease, the fixed leading
coeflicient BDY formulas are most accurate at order one, in contrast to the
variable coefficient formulation where the accuracy does not deteriorate so
much for higher order formulas when the stepsize is decreased drastically. It
is likely that the first order formula is best anyway in this situation because
the past values of y will not yleld much useful information if the error test
has already failed several times. After three consecutive error test failures, the
order is reduced to one, and the stepsize is reduced by a factor of one guarter
on every failure thereafter. When the stepsize is so small that ¢+ h = ¢,
an error return is made. In DASSL this minimum stepsize is computed as
hin = 41 max(jt,|,] TOUT]|) where u is the unit roundoff error, i, is the
current mesh point, and TOUT is the user requested output point.

As 2 final issue in this subsection, we discuss how DASSL selects the ini-
tial stepsize. Fven for ODE codes, this issue is somewhat tricky. Numerous
strategies have been proposed. See for example [116,225,237]. DASSL uses

hy = sign(TOUT — T) min (zm%rom - T}, %liy’ﬂ”l) .

- e A AT ma T A Y N ATAAAALA NS A LA WIS RIS L AN LYY ¥ -4

This strategy is designed to yield a successful step for a zeroth order method
and is quite conservative. If {|y’]| is very small, then it is hoped that TOUT-T
gives some information on the scale of the solution interval. It is not terribly
uncommon in applications for ||y|| to be zero or very small at the initial time,
as frequently the derivative values are unknown for the algebraic variables.
In these cases, the value of TOUT influences the initial stepsize. Hence, dif-
ferent values of TOUT can change the performance of the code. This aspect
of DASSL’s initial stepsize algorithm is similar to the strategy proposed by
Soderlind in his code DASP3 [233] for the numerical solution of coupled stiff
ODE’s and DAE's. There is an option in DASSL for the user to select the
initial stepsize,

5.3 Obtaining Numerical Solutions

5.3.1 Getting Started with DASSL

DASSL is designed to be as easy to use as possible, while providing enough
flexibility and control for solving a wide variety of problems, It is extensively
documented in the source code. The user interface for DASSL is based on the
user interface for ODE solvers proposed by Shampine and Watts in [226], with
a few changes which are necessary to accommodate the more general DAE
systems. In this subsection we outline what a user must do to solve a problem
with DASSL.

We emphasize that DASSL is designed for solving index zero and index
one problems of the form

F(t?y?y’) =0
¥to) = wo (5.3.1)
y’(t(l) = yz)e

where F, y and y’ are N-dimensional vectors. DASSL makes use of a subrou-
tine RES which is written by the user to define the function F in (5.3.1). RES
takes as input the time T and the vectors Y and YPRIME, and produces as
output the vector DELTA, where DELTA = F(T,Y,YPRIME) is the amount
by which the fanction F fails to be zero for the input values of T, Y and
YPRIME. The subroutine has the form

SUBROUTINE RES(T,Y,YPRIME,DELTA IRES,RPAR,IPAR)

‘The parameter IRES is an integer flag which DASSL always sets to zero prior
to calling RES. It is used to flag situations where an illegal value of Y or a
stop condition has been encountered. For example, in some applications, if a
component of Y becomes even slightly negative, then the function F cannot
be evaluated. In this case, the user would check for a negative component of
Y upon entering RES. If one is found, then the user would set JRES = —1

and return without evaluating the function. DASSL then cuts the stepsize
and attempts the step again. RPAR and IPAR are real and integer vectors,
respectively, and are at the user’s disposal to use for communication purposes.
They are never altered by DASSL or any of its subroutines.

To get started, DASSL needs a consistent set of initial values T, Y and
YPRIME. A necessary but not always sufficient condition for consistent ini-
tialization is that F(T,Y YPRIME) = 0 at the initial time. At the time of this
writing, we are not aware of any general codes for computing consistent initial
values of Y and YPRIME, given enough information about Y and YPRIME to
specify a unique solution to the analytical problem. An algorithm for accom-
plishing this task in general has recently been developed and will be discussed
in Section 5.3.4. For problems in which the initial values of Y are given, there
is an option in DASSL to compute the initial value of YPRIME, given a start-
ing guess for YPRIME. In this case, DASSE takes a small implicit Euler step
for its first step, and uses a damped Newton iteration to solve the nonlinear
system. The error estimate on this step is different from the estimate which
DASSL usually uses because the initial derivatives are not available for use in
an error estimate. It is sometimes possible to start DASSL without consistent
valwes of YPRIME, but it should be noted that the error estimates on the first
step are not correct in this case unless the user has specified the option for the
code to compute the ipitial values of YPRIME.

The call to DASSL is

CALL DASSL{RES,NEQ,T,Y,YPRIME, TOUT INFO,RTOL,ATOL,
IDID,RWORK LRW IWORK,LTW RPAR IPAR JAC)

The parameters are described in detail in the documentation to DASSL, so
we will only discuss a few features here. Many of these features are activated
by setting an element of the option vector INFO to one. The user subroutines
RES and JAC must be declared external in the user’s main program. The
variable NEQ equals N, the number of equations in the system (53.1). In
case DASSL fails, the scalar variable IDID should be examined to see what
specific error caused the difficulty. The documentation of DASSL gives a
detailed explanation of all the error messages.

Frequently a user desires the numerical solution at a set of ontput times,
so the usual way to call DASSL is in a loop which increments the output
time TOUT until the end of the interval has been reached. The value of the
solution which DASSL returns is the value of the interpolant (3.2.9) at those
times. To obtain more detailed information about the solution at the internal
timesteps that DASSL selects, there is an option to have DASSL return after
each internal time step.

As we have described in Section 5.2.2, the algorithms in DASSL reguire
an estimate of the iteration matrix, G = aBF/fdy" + 8F/8y. There is an
option to specify this matrix directly which requires the user to provide a
subroutine JAC. The default is for DASSL to approximate this matrix via finite

P o A LA AL LA 1 IS 131

s‘a;fer:nces. The advantage of the finite difference option is that it js simpler
e strongly recommend, especially for novice users and new problems, to let
¥

Section 5.3.3, we gi i
3. give some suggestions on how to recognize this situati
. - " - IS
Wh;:h option is most efficient is quite problem dependenfn Fiuation.
e czi;i :}iz,n.y fprob[:;msf i;:l applications, the iteration matrix is banded. If
inlormed of this matrix structure by an a iate j :

' ppropriate input, then
t:ifstorage needed will be greatly reduced, the numerical differencing v:'iIl be
Sxec(‘)lrtr;xemuxr;m;h :norelcheiaply, and a number of important algorithms will

€h raster. In the case thal the user com
! . ; putes a banded matrix
via, st!brou.tme JAC, the elements must be stored in a special format which
explained in the documentation. ’
i‘f)r a very few problemF i.n applications whose analytic solutions are always
positive, we have found that it is crucial to avoid small negative solutions which

Finally, a comment on the relative and absolute error tolerances RTOQL
;;1:8 tAO'I;(iII:. jl‘hesetva,ria(.ibles can be specified either ag vectors'or assscaiars*
¢ Important decisions in the code make use of these t o
izompute weights for the norm, and the finite difference Jacobian {jf);)a;if;fn::
ton makes use of them directly when there is no other information availabl
:,ibout the scale of the solution. We cannot emphasize strongly en hathe
importance of carefully selecting these tolerances to accurately rzj?ect ft);:g Ie
of the problem. In particular, for problems whose solution compone tsca .
scaled very differently from each other, it is advisable to provide thlz)a co:i1 i E'MI‘:
vector valued tolerances. For users who are not sure how to set the tol e
RTOL and ATOL, we recommend starting with the following rule of ‘:;&ﬂc‘]’;s
;:tt ngg*Lthe nun_l?,:,i 1o)f significant digits required for solution con-lpone::tn;.-.
insigngﬁun;t__ 1 - Set ATOL; to the value at which J#:] is essentially

The norm which DASSE uses is a weighted root mean square norm given
, give

by

NEQ
Ivlf = J(/NEQ) 7 (vi/WT;)2

f=z]

where
WT; = RTOL,}Y,| + ATOL;.

These are the best choices for the majority of problems. However, for some
]

132 m———

problems, particularly method of lines solutions to partial differential equa-
tions, it is better to make use of additional information on the structure of ¥
to define the weights and/or the norm. It is possible for the user to replace
these subroutines, but we generally recommend against this. Details are given
in the DASSL documentation.

The FORTRAN source code for DASST, is available by way of the National
Energy Software Center (NESC). The address is Argonne National Laboratory,
0700 South Cass Avenue, Argonne, Tinois 60439, U.S.A. Single and double
precision versions are available. The accession number for DASSL at NESC
is 9918. Prospective users from Western Furope or Japan can obtain DASSL
from the NEA Data Bank. The address is B.P. No. 9 (Bat. 45) F-91180,

Q1F-sur-YVETTE, France.

5.3.2 Troubleshooting DASSL

In our experience, DASSL solves most DAL systems from applications with-
out difficulty. However, we have occasionally encountered systems for which
DASSL has trouble. In this subsection we will describe some of the possible
sources of trouble and give some advice on how to recognize the problem, along
with possible remedies.
In diagnosing problems, it is helpful to be aware of the existence of informa-
tion about the internal operations of DASSL. Information which is accessible
through the work arrays RWORK and IWORK includes: the stepsize to be
attempted on the next step, the stepsize used on the last successful step, the
order of the method to be attempted on the next step, the order of the method
ased on the last step, and running totals of the number of steps taken, the
pumber of calls to RES, the number of evaluations of the iteration matrix
needed, the number of integration error fest failures, and the number of con-
vergence test failures. We have found the information on integration error test
failures and convergence test failures to be particularly useful. The jocations
of this information are given in the DASSL documentation.

Before proceeding, we wish to emphasize that the DASSL code has success-
fully solved a wide variety of scientific problems and has had & large number
of users. A user who suspects a bug should first very carefully examine his
own code and reread the DASSL documentation. In our experience, -bugs in
user code and incorrect use of DASSL are by far the most likely causes of

difficulties.

Inaccurate Numerical Jacobian

The finite difference Jacobian calculation is, in our opinion, the weakest part of

+he DASSL code. It is a difficult problem to devise an algorithm for calculating

the increments for the differencing which is both cheap and robust. We have
seen cases of extremely poorly gsealed systems from applications, where some

elements of the finite difference J acobian were computed to be zero when they:

should have been quite large. To see how thi
shoule : - To is can happen, sup i
them?;z:tgiie (sizitf;l Whl";h }?oks like '\.(yl — ¥2), where Zf > ;ip;feczil:;:;a
ohe partial m;) n;ahe t.lfus t(_:rm with respect to y,, the difference is ba.seg
o e i :15 if 3 is L:xrge enough compared to gy, we will b

2 ¥t - Y2 in machine arithmetic and the code :vi!l think tE:

the partial derivative i i
i1s zero. It is likely ¢ i i
more robust finite difference Jacobian af hh o Tuture versions of DASSI, a

Salane [218] will be considered. gorithm such as the one proposed by

Usnall :
that is m g;}f};igﬁni)tﬁ)ms of an inaceurate numerical Jacobian are 2 stepsi
er than appears to be warranted from accur@y cons?&!ezte

a,tions, and high ratios conwv £ €, e [2 e
tios of convergence tos i £
— £ i 4 t failures both to error t st fallures

There are several i
1 possible remedies to difficulti :
difference St ' o difficulties with obtainin ;
RES oo O?erlilrti)mmamo‘ns to the Jacobian matrix. The funrtiong sgl?l(::ioﬁf' "
; e rewritien or a change of . ’ - utine
tions and . ge of variables made to avoid Ha.
he writtmp(:;ﬂ: scfaled var:ables‘. A user defined analytic JAC ;m;?:;eua
stitutad : éom tluser defined finite difference Jacobian routine can b Ca};ﬂ
particul;}r iﬂce«m‘les a more careful look at the error toieranées hel N SUI~
e b; . ;easzng ATOL for exceedingly small components v}.hich Ec)lSl .
canse of the waj)ghi) :L?If%rst'eiy will ofter remedy this problem 'T}zis ;; ﬁOt
S ‘ is used in the cal ; L e
finit ; e caleulation of t ,)
mf;‘dlfiii'erence Jacobians, as we have explained in Sectionhf; lzn;fmment b5 for
ina : . . . 2.2,
example };:0 “:) lli:,te that l.f there is an iteration inside the user RES routine (£
IacobiaI; old b a !gonlmea,r system), then the increment for the num: ((;11'
nit roundo'ﬁ‘ oo e Based on the error of this iteration, rather than onmtch
r. Because such an iteration can also cause difficuliies wi tl‘f
5 Wl

t o 1] a,Ild eITor t‘ i 3 we
i .!ma;t m DASSL, o] Stl‘()‘ﬂ

problem.

\ : . gly encourage
sich situations whenever possible by reformulating ti%e

Inconsistent Initial Conditions/Discontinuities

If th - ied initi iti
ma;ef :ser sa:};:pi;ied initial conditions for y and ' areinconsistent, then DAS
roupy OT§is en

may fal fajiu:esrit; s;g).n (’)Flgienseymptog of the failure can be eititer stzcces‘;is\i
, ar problems, the New i i :

crror tos | ot \ ewton iteratio i

Conve g u'e'to a poor initial gness. For index one systems w’thn‘ roon i'-aﬂ .

hcondlt:ons, the error estimate tends he stepsisn oo

proaches zero. Tk is i

e :;:h To iee why this is true, consider the simple algebraic equati

y = i)ecaus 33;;;; u;frgs(t;:()). mDASSL ajways starts with the implici% Eui(:;

penod bec ' ir emory of past steps. An implicit Eule

for i sytem g1 31 < 1) The o stimte i (12} ~ o which
as 13 — fo. A more extensive discussion of theléjff;cultli(;s

encountered by codes based
given in [200], on the BDF methods when applied to DAE’s is

to a constant as the stepsize ap-

E4d NELIAS A it b A e mmamm o

Tt is important to note that initial guesses which are only slightly inconsis-
tent can cause DASSL to fail to complete the first step. Failure occurs becaunse
the errors, and therefore the inconsistencies, are measured in the weighted
aorm which is determined by RTOL and ATOL. Hence it is important for the
user to compute these initial conditions very accurately. If a discontinuity is
introduced, perhaps inadvertently by a user input function, into an algebraic
variable of the system, this same behavior can also occur in later steps.

Higher Index Systems

DASSL cannot solve higher index systems without modifications to the error
estimates and other strategies in the code. We will discuss the possibilities
for solving higher index systems in Section 5.4. Here we focus on recognizing
these types of systems when they have inadvertently been given to DASSL. In
general, the error estimates used in DASSL do not tend to zero as the current
stepsize tends to zero for systems whose index is greater than one — in fact,
they may even diverge! As a response to a large integration error estimate,
the code drastically (and repeatedly) reduces the stepsize until the iteration
matrix becomes ill-conditioned. For a system of index v, we show in Sectien
5.4.2 that the iteration matrix has condition O(R™"). For small enough step-
sizes, this conditioning problem causes the Newton iteration not to converge,
and the code eventually fails due to multiple convergence test failures. There
is an error return flag in DASSL which signals multiple integration error test
failures followed by multiple convergence test failures. This error return is
usually a signal of a higher index problem, or possibly of an index one prob-
lem with inconsistent initia] conditions or a discontinuity. However, it is also
quite possible for these types of problems to fail solely because of multiple con-
vergence test failures, particularly for nonlinear problems with index greater
than two. Sometimes DASSL can start solving a smooth higher index system
and fail after a stepsize or order change or a rapid change in the solution, s0
the failures will not necessarily occur on the first step.

Singular Iteration Matrix

While it is possible to define a solvable DAE system whose iteration matrix
is singular for all possible values of the stepsize, we have never seen such a
problem occur in an application and it would necessarily have to have an
index which was greater than one. DASSL gives an error return flag for a
singular iteration matrix only after the code has tried to compute the iteration
matrix for several quite disparate stepsizes and has always produced a matrix
which is singular. It is possible that a singular matrix can be created by a
very inaccurate finite differencing of the matrix within DASSL or by a bug
in a user supplied JAC routine. Singularity can also occur because there are
redundant equations in the system to be solved (that is, redundant equations
in RES). In this case the user needs to reformulate the problem to include

e e a4 A A Ak A R AT NS LA A AAF LTI 140

some .extra information and remove the redundant information. Otherwise
there: is no possibility for obtaining a unique solution. In our experience, this
l?ug is a fairly common occurrence in codes using DASSL in the metht’)d of
lines solution of partial differential equations when the boundary conditi

have been improperly specified. ’ v ronaens

Poorly Scaled System/Inappropriate Error Tolerances

The error tolerances RTOL and ATOL are the means by which the user com
municates to DASSL the accuracy requirements of the solution and the scale;
of t:he problem. 1t is possible for DASSL to miss important changes in .the
lution because these error tolerances are too loose. On the other hand. if ts}(:t;
tf)lerances are too tight, then DASSL will work very hard to get mcurat,ea solu
tions for variables which may be very small and insignificant. In particular Wc;
do not recommend using pure relative error control (ATOL = 0) for soiu;;io
components which may be small or become small during the integration Thﬂ
f:ode tends to function most efliciently if it does not need to také unnec; :
ily szf:a!l stepsizes because the iteration matrix becomes more singular ass S;:“
stepsme tends to zero. On the other hand, the error estimates ingDA‘-ISL .
valid only for sufficiently small stepsizes. As with many ODE codes ‘DASBSJSII?
may not perform well with exceedingly loose tolerances. We recomm,end ask-

ing for at least two digits of accurac i
‘ y except possibly for ex i
and unimportant solution components. ! ceedingly small

5.3.3 Extensions to DASSIL

Although DASSL is a powerful code which can handle a wide variety of prob
lems, some problems require capabilities which are not impiement};é irI:Th-
standard version of DASSL or which can be performed mére efficient] w't;:
a code ‘ba,sed on DASSL but oriented towards a more specific task I); t?h'
subsection we will discuss DASSLRT, a root finding version of DASS'L DASIS
SAC, a version of DASSL for sensitivity analysis problems, and severai oth .
extensions to DASSL which are at this time under deVelop;nent B
The standard version of DASSL solves a DAE from time T to' time TOUT
where TOUT is specified by the user. In some problems it is more natural t ,
stop th.e code at the root of some function g(¢,y). For example, in com rut' .
the tl'"a,‘)ectory of an object, it does rot make sense to continue th’e soiutioI:l m%
the time when the object hits the ground. In other problems, it is):ﬁet:espaS
to stop the code at the root of g because the function F cha:n,ges at the 53‘?’
of g. For example, in computing the flow of a fluid, the flow is ‘chok;g? ?
the pressure ratio exceeds a critical value, and unchoked otherwise Chok 3d
flows obey a different set of DAE’s than unchoked flows, so it is ;1ec)essae
to check for the root of the function defined by the press&re ratio mi;tus t;zz'

T 3 ” ot
[ltl(ai Va.hle aJldl deﬁ.ne tiie 111“(EEO]I j 313 EE,E S aCCO!‘dlng f:O Whether the ﬂOW

Lau A i

In our experience, some users have attempted to implement these types of
root finding problems by first inserting an IF statement in the RES routine
and switching the function based on the sign of g. We do not, in general, rec-
ommend this approach. Since linear multistep methods utilize function and
derivative information over several integration steps, it does not make sense to
switch the function (effectively introducing a discontinuity in the derivatives)
without restarting the integration. The sudden change in the derivatives of I’
can wreak havoc with the numerical Jacobian approximation, Newton itera-
tion, error estimates, and stepsize and order selection algorithms in DASSL. It
can be grossly inefficient and even lead to failure for some problems. Instead,
we recommend setting a flag in the main program which determines which
case of the function is to be evaluated. The flag is communicated to RES via
IPAR. Then, DASSLRT should be called. When it returns at a root, the flag
is changed in the main program. It may also be necessary at this time to
enforce consistency of the constraint equations. Then DASSLRT is restarted.
For complex problems which involve several cases of F, it may be necessary
to use several flags.

It is helpful in formulating problems to understand roughly how DASSLRT
works. First, whenever DASSL completes a successful step to t,41, it evaluates
the root function g(tny1,%ns1). If the sign of g{tat1,¥n4r} is different from
the sign of g(tn,), then a root must have occurred in the interval {tn,tns1].
DASSL then calls a root solver to find the root of g{t,w!,,(2)) = Oin [ts, tnsa].
The root solver in DASSLRY is based on ideas developed by K. Hiebert and
L. F. Shampine [142}. The ‘Tilinois algorithm’ {86] is used for actually locating
the root.

In general, a vector of functions gi{t,y), ¢ = 1,2,..., NG, may be supplied
to DASSLRT such that the root of apy of the NG functions g; is desired. Of
coutse, there may be several such roots in a given output interval. DASSLRT
returns them one at a time, in the order in which they occur along the solution,
An integer array tells the user which g;, if any, were found to have a root on
any given return. We note that because DASSLRT detects roots by looking
for sign changes in g, it is conceivable for it to skip intervals where there are
multiple roots. We have not found this to be a problem in the applications
that we have seen.

At the time of this writing, DASSLRT exists and is routinely used to
solve application problems at Lawrence Livermore National Laboratory and
at Sandia National Laboratories, Livermore. A version for outside release is
planned. : :

A second extension of DASSL has been developed to handle sensitivity

analysis for DAE’s. Suppose we are given a DAE

i

F(t,y,9'\p)
y(ie,P)

H

°Brown, Hindmarsh and Petzold, and is
0, (5.3.23}
vo(p) (5.3.2b)

5.3. OBTAINING NUMERICAL SOL UTIONS 137

where y, ¥ € RV, whose solution depends on a vecto

parameters p. We would like to compute the
functions

r of M time independent
(N, M) matrix W(t) of sensitivity

0

Wit) = —Zud

{t) p (5.3.3)

which describes how the solution com
the parameters.

The sensitivity matrix satisfies a system of DAE’
by partial differentiation of equations (
vector p

ponents change as a result of changes in

s ' s which can be derived
5.3.2) with respect to the parameter

y

aF OF JF
W[t bl # oF

Wt 70 (5:3.4)
8 3.4

Wity) = 2
dp

C?mputationa,]iy, the important observ

equations (5.3.4) is that they are linear an

matrix as the original system {5.

ation with respect to the sensitivity
d that they have the same iteration

3.2) if they are solved usin
. ‘ g g the same sequence
of methods and stepsizes. Caracotsios and Stewart [66] have written 3 code

DA.SSAC fcr' solving the sensitivity system which makes use of these obs
vzmci}s and is based on DASSL. The code works as follows. The se;nsiti ?tr‘
eq.uations (5.3.4) are appended to the original system. The system is s 1"‘ (Jif
using a version of DASSL which has been modified to evaluate the iter:»;e
Mmatrix on every step, require only one Newton iteration for the linear s st:m
(5.3.1'1), and make use of the repetitive block diagonal structure of the itefat' m
r:natr;x to save storage and operations in forming the matrix and sélvin :gn
!me'ar system. The error estimates and stepsize adjustment are hased og the
entire system (5.3.4) appended to (5.3.2). Tt is to be noted that the sensitig't' .
may not be accurate if the iteration matrix is computed via finite diiferencli;es
One lofthe abvious deficiencies of the standard DASSL is the lack of opti ;
Hor dealing with Jacobian matrices which do not fit naturally i;;to Glii e
or banded category. This is particularly apparent in the case of lar;&secraljl;:
| i}r:i!:nrfeg(:;; ;?T;l;ai ﬁinf‘ineeri}zg appiica,téons {see for example [1 1)) ami
: : ; % solution ol partial differential eguations i
;1:;:2?2;1%' Marfq:tlzrd; {iSO} has recently impiement(id a versil:nrgi? gf&%‘?ﬁ
W es use of the RWELL spar i i ‘
jversi.on of DASSL which uses the precin(;iiij;?; t(;;llizllgssy;zf;ozoi‘:: iA
ke linear system at each Newton iteration is currently under developmen: ;;

expected to be released soon. This

ode implements many of the strategies described for ODE%s in [36]. Some

initial experiences with the code are described in [204].

s‘;_e;r sli'zzalifybxgszo;e that Skjellum et al.[232] have recently implemented a
") i
e OT use on massively parallel computers, called Concurrent

138 CHAPTER 5. SOFTWARE FOR DAE’S

5.3.4 Determining Consistent Initial Conditions

Often the most difficult part of solving a DAE system in applications is to
determine a consistent set of initial conditions with which to start the compu-
tation. More precisely, we formulate this problem as follows. Given informa-
tion about the initial state of the system which is sufficient, in a mathematical
sense, to specify a unique solution to the DAE, determine the complete ini-
tial state {y{to),y'(to)) corresponding to this unique solution. Tor example,
the user may specify information about the solution and/or its derivatives at
the initial time, and the problem is to determine the remaining values of the
solution and its derivatives, In this subsection we describe a newly developed
general algorithm for finding consistent initial conditions for index one and
semi-explieit index two DAE systems. This work is described in more detail
in Leimkuhler et al.[162].

For a simple algorithm, one might consider substituting ¥ = ¥, ¥ = ¥p
and solving the resulting system, together with the user defined initial data,
for yo and y5. For example, for an ODE ¢ = Ay together with user defined
information Cyp + Dyo = go at the initial point, we have

FHEN

which we can solve uniquely for yp and yf provided the left hand matrix is
of full rank and gq is in the range of the matrix CA + D. In this case, these
are the same conditions which the matrices D and ' must satisfy to ensure
that the user has given enough information about the initial state to specify
a unigue solution to the mathematical problem.

On the other hand, consider the index one DAE given by

Yo = ol (5.3.5)

To specify a unigue solution to the DAE, it is sufficient to give the value of
either ¥ or Y] at tg, because ¥, and Y] must satisly the constraint and the
derivative of the constraint, However, evaluating Y7, Y/, Ya, and ¥ at time
1o in (5.3.5), it is apparent that it is not possible to obtain ¥;{tg) uniquely if
only Y{(to) is specified since ¥Y;(to) is unknown. Thus this simple algorithm
Fails to give the solution, although the user has given enough information to
specify a unigue solution to the original problem.

Clearly the difficulty with the above procedure for equations (5.3.5) is

that the simple algorithm has no way of obtaining the information about
the derivative of the constraint which is inherent in the system. In the fully-
implieit index one problem it is not in general possible to isolate the constraints
and differentiate them, Thus we are led to consider the following algorithm,

motivated by the definition of global index given in Chapter 2. We assume

that the DAE system (5.3.1) has index ».

_ 1ank deficiency of the Jacobian. Using the strue

_ problem converges to the correct

8.3 OBIAINING NUMERICAL SOLUTIONS

Solve
F(tﬂy Yo, y:}) = 0
dF
o) = 0 {5.3.6)
d“F
— 10, 50,95, ., ¥y = o
coupled with the user defined information
Blio, y0, 1) = 0. (5.3.7)

It i§ easy to show that if the user defined information (5.3.7) is sufficient to
determine a unique solution to the DAE, then (5.3.6), {5.3.7) have a solution
(yf,, Yoo, y({,"“)), in which the first two components yp, y5 are uniquely det
mined and are the solution to the DAE at ty. Note that’ tlge higherqcieriyvat' s
of y are not determined uniquely by this algorithm, o

Since it is frequently not practical to obtain the derivatives of F anal ti-
Faiiy, we are led to consider approximating the derivatives of I Becdusg F
is possibly only defined for ¢ > lg, it is natural to comsider usix'lg one sided
differences.. For example, the simplest one sided difference is given by

Dok = Tt + hygo + hyp, 6 + hyl)) — Flto, yo, ul)
- .

We can define higher order difference approximations by

1] s
DiF =3 [Z“*F (to-+ hes o + hestly i+ el - (za.-) Flto,to, ya>J
1]

1=1
by choosing the constants oy, ¢ : i i o)
is Ci appropriately. The higher derivati

can be approximated similarly. ¢ e ot F
N ’I‘he aigo.mhr.n obtained by replacing the consistency equations (5.3.6) by

eit approximations (‘5.3.8), coupled with the user defined information {5.3.1)
prm‘iuces a rank deficient over-determined nonlinear system. Unlike the anj
alyt:? consistency equations, the approximate system may not have an exact
solu.tlon because some of the derivative approximations to F may be approxi-
mating user defined information. Thus the approximate system is solved in a
least squares sense. However, the solution of this system is complicated by the
ture of the system, it is pos-
1 o this nonlinear least squares
solution as the approximations 17, b

» become

more accurate. One can also formulate a scheme for replacing the system with
a full ‘rank sy.stem which has the same solution for Yo, ¥5. Numerical results
for this technique appear to be promising,

sible to show that the minimum norm solution t

139

140 CHAPTER 5. SOFTWARE FOR DAE’S

In other approaches to the consistent initialization problem. tjo.r I.)A}:?.’S,
Berzins, Dew and Furzeland [16], in their code SPRINT, use"the initialization
method in DASSL to approximate the derivatives, and then improve thesef by
also attempting to satisfy a difference approximation to.the first tn_me deriva-
tive of the DAE. The algorithm that we have described in this section can be
considered to be a generalization of this idea. Pantelides '[199} uses a graph
theoretic algorithm to determine the minimal set of equat;on_s to be d;ﬂ'ex_'en-
tiated in order to solve for the consistent initial vah}e.s. Mrziglod [190] gives
an algorithm which is based on a thorough decomposition of tEwte system st.ruc~
ture. These latter two algorithms require knowledge of analytical expressions
for.various derivatives of the problem, which is a drawback for large scientific
problems. ‘ .

To our knowledge, no general purpose software for solving the consistent
initialization problem is available at this time.

5.4 Solving Higher Index Systems

5.4.1 Alternate Forms for DAE Systems

In this subsection we consider some techniques for rewriting a DAE system
in an alternative form that may be easier to solve numerical.iy.‘ All of the
different forms of the equations that we consider are equivalent in the sense
that, given a consistent set of initial conditions, different forms of a system
have the same analytical solution. Computationally, however, some for.ms of
the equations may have much different properties t_h_an of:he_rs. ’We discuss
some of the advantages and disadvantages of rewriting a high index DAE
system in a different form. '

As an example, let us consider some different ways to solve the constrained
mechanical system given by

M{gy"
%{q)

Here, the mass matrix M is nonsingular almost everywhere, A is the Lagrange
multiplier vector, and 8%/8q = G7. '
We can attempt to solve the system in its original, inc‘lex t}.lree form, using
an implicit numerical method such as BDF, This techmqrze is actually us?d
in some codes [197] for solving mechanical systems. Solving the problem in
this way has the advantages that it is easy to formulate the sy'stem, as we do
not have to differentiate the constraints or rewrite the system in any way, the
sparsity of the system is preserved, and the constraints are sa,n_sﬁe.d exgctiy
on every step. The disadvantage is that there are several dlfﬁculitses in using a
variable stepsize BDT code for solving systems in this form, which we descml')e
in detail in Section 5.4.2. Many of the difficulties can be circu{nvented,'but in
general it is not a simple matter to obtain an accurate numerical solution for

i

g(q,Q’st) +Glg)A, (5.4.1)

o mm e ek e mmdeat At A Ard od & A A LAV i41

the Lagrange multipliers A. For BDF methods, A and ¢’ must be filtered out of
the error estimate. A code based on this strategy does not always give reliable
results for the variables which are filtered out of the estimate. In particular,
results are likely to be unreliable in situations where there are steep gradients
or discontinuities in the velocities. This type of error control strategy can also
give incorrect solutions when the initial conditions are improperly specified in
the sense that the algebraic constraint is satisfied but the derivative of the
constraint is not. It may be possible to reliably solve systems in the index
three form with methods other than BDF, such as extrapolation or defect
correction, by controlling errors on the velocities as well as the positions, but
we are not aware of any further work in this area.

A second way of solving (5.4.1) is to differentiate the constraint oge or
more times and solve the resulting lower index system. Except for the index
zero system, there are still numerical difficulties, but they are less severe for
the lower index systems. It should be noted that this type of lower index
formulation of a problem does not force the constraints to be satisfied on every
step, and there may be a tendency for the amount by which the constraint
is not satisfied to increase from step to step, In Chapter 6 the *drift’ in the
algebraic constraints is demonstrated in numerical experiments with DASSL
on an index three pendulum problem when it is reformulated as an index one
problem. By using small stepsizes, or in an automatic code by keeping the
error tolerances fairly stringent, we cam usually keep small the amount by
which the constraint is not satisfied. Whether this is a serious problem or
rot depends on the application, although clearly it could be troublesome if
the solution is desired over a long interval in time. In a recent paper, Fihrer
and Leimkuhler [108] have shown by example that differentiating a nonlinear
constraint can be dangerous in the sense that the stability properties of the
new system will not be the same as the stability properties of the original
system. Thus this approach should he used only with caution.

Another alternative is to use the index reduction techniques of Gear [118],
which were described in Section 2.5.3, (see also Section 6.2} to rewrite the
system as a lower index system. This approach requires differentiating the
constraints and adding additional {algebraic) variables which act as Lagrange
mudtipliers. This process can be performed repeatedly, to yield a semi-explicit
index two system. The solution of this system satisfies both the constraints
and the derivatives of the constraints. Because the solutions for the algebraic
variables of this system are zero, the resulting system can be solved by quite
general multistep methods, as described in Gear [117]. Another possibility for
the constrained mechanical systems is to do the differentiation only once, and
add the extra Lagrange multipliers. While the resulting system is a simpler
index two system, not all of the algebraic variables are zero now. Therefore
BDF methods, or appropriate implicit Runge-Kutta methods, can be used to
solve the system. In the next section this promising approach using the BDF
methods is pursued further, Another possibility suggested by Gear {118] for

J A ¥ e maE e

reducing the index in semi-explicit systems z' = f(.z,), 0= g_(:c, ¥, t}), is 1.;0
replace the undifferentiated variables y by w'. While the rfasultmg system in
z,‘ w, t is one index lower, the solution of this new system yields only = and w
so it is still necessary to differentiate the computed w to obtain Y- ‘

Yet another strategy, which is dependent upon knowing more mformatfon
about the structure of the problem, and is used in some codes for sol\'zm‘g
mechanical systems (see Section 6.2), is to eliminate the .‘La.gra-mge multipli-
ers analytically using methods in analytical mechanics to obtain a standard
form ODE system. The system of ODE’s is assembled from a data st-ructulte
describing the mechanical system. If the resulting problem is not st{ff', this
approach has the advantage that the system can be solved by an explicit ny-
merical method. The number of unknowns after this type of transformﬁition
usually is smaller, but the sparsity of the system has declrea.sed, ‘which is an
important consideration if the problem happens to be stiff. Agan'f., we mL}St
be very careful that the initial conditions satisfy both the constraint and its
derivative, or we will obviously obtain a solution which is nonsense. A‘ con-
straint corresponding to an eliminated Lagrange multiplier is automatically
satisfied in the chosen representation of the mechanical system. As an exam-
ple, consider solving the equations of a pendulum in Cartesian coordinates,
The system is written as

¥ = Az,
= Ay—9¢, {5.4.2)

1
0 = 5(3"2 + yZ - LZ)!
where g is the gravity constant and L is the length of the bar. Let
= Lsing, y = —Lcosg

Then the algebraic constraint of constant length is fulfilled and the well-known

ODE is g
¢ — «Esinqb: 0.

This approach may be difficult to implement in general or for very large sys-
tems. Finally, we note that Fithrer and Leimkuhler [108] have recently studied
the implications of the various formulations for mechanical syst.ems. See also
Section 6.2 for a Turther discussion on the formulation and solution of systems
describing constrained mechanical systems. ‘

A different way of dealing with the high index systems is througi'l th'e uge
of penalty functions or regularizations. We loosely define the regular‘:zatzon'of
a DAE to be the introduction of a small parameter into the DAE in such a
way that the solution of the perturbed system approaches the SOl\ltiOl'l of the
unperturbed system as the parameter tends to zero. B.a.umgarte [14] djscu'f:ges
a technigue for circumventing the problem of ‘drifting oﬂfl’ t.he constr'amts
®(q) by adding to the original equations an equation consisting of a linear

Ut VALY LAY SRATINESL LIYASEIA O3 T O E SVES 143

combination of ®, d®/d? and d*®/dt?. The linear combination is chosen so
that the resulting system damps errors in satisfying the constraint equation.
This idea was used successfully by Adjerid and Flaherty [1] to stabilize the
constraint in the solution of partial differential equations by adaptive moving
mesh methods. The stabilization approach is similar, but not identical, to
penalty function methods (Létstedt [165], Sani et al. [219]). Depending on
the choice of the parameters in the linear combination, we may see any of the
difficulties discussed earlier. This technique introduces extraneous eigenvalues
into the system, which may or may not cause difficulties. Finally, the penalty
techniques have the disadvantage that if the initial conditions are not posed
correctly, they introduce a nonphysical transient into the problem {219]. Mirz
[183] gives a regularization for the semi-explicit index two system so that the
regularized system is index one. In recent experiments, Knorrenschild [153]
reports that DASSL solves some regularized semi-explicit index two systems
much more efficiently than systems which are not regularized. The regular-
ization which Knorrenschild nses is motivated by physical considerations from
circujt analysis applications but can be applied to general problems. We feel
that at this time the results on regularization as a general technique for solv-
ing higher index systems are inconclusive. However, approaches based on some
form of regularization have definitely proven successful in some applications.
Regularization is discussed in more detail for multistep methods in Section
3.3, and for Runge-Kutta methods in Section 4.5.

Before leaving the subject of alternate forms for DAE systems, there is one
more aspect of this problem that we wish to consider. Sometimes there is a

choice of which variables to use for solving a problem. For example, in the
system

f

o= v,
vo= f(u,0,1) + Gu)), (5.4.3)
GTv = ¢

we could have replaced v in the constraint by ' to obtain

+

U = v,
Vo= flu,v,1) + Glu)d, (5.4.4)
GTe' = 0.

In implementing these systems, the question naturally arises, are there any
advantages in writing the system in one form over the other? Using BDF
methods combined with Newton iteration for linear problems in exact arith-
metic, the two forms of the equations give identical solutions. This is because
Newton’s method is exact in one iteration for linear systems, and because the
equations which result from discretizing both systems by BDF are identical.
This last fact is obviously true for nonlinear systems too. For nonlinear sys-
tems in exact arithmetic we know of no reasons why Newton’s method would

144 CHAPTER b, SUFTWAKE FOR DRSS

be more likely to converge for one form of the equations than the other. Both
forms of the system may lead to very poorly conditioned iteration matrices. In
the next section we will suggest scaling techniques to overcome this difficulty.
These techniques are directly applicable to systems such as {5.4.3) which are
in Hessenberg form, but not to systems such as (5.4.4) which are not in any
standard recognizable form. Equation (5.4.3) may be preferred for just this
reason. This question of which variables to use in writing a system may seem
like 2 minor point, but in adaptive moving mesh calculations for partial dif-
ferential equations we found that the formulation of the problem in this sense
was crucial [203]. Sometimes, as happened in this application, a variation in
the problem formulation which is equivalent in exact arithmetic to the orig-
inal formulation can drastically change the condition of the iteration matrix
and dramatically affect the reliability and efficiency of the calculation. We
will investigate this adaptive moving mesh example further in Chapter 6. In
general, we recommend jnvesting some time into the problem formulation step
of the sotution process, keeping in mind the standard forms which have so far
proven so the most successful.

5.4.2 Solving Higher Index Systems Directly

Although convergence rates are known for BDF and implicit Runge-Kutta
methods applied to some forms of semi-explicit higher index systems, the im-
plementation of codes based on these methods for solving higher index systems
is not straightforward. Here we examine some of the difficulties and suggest
some remedies.

Matrix ill conditioning is a problem for numerical methods when applied
to DAE systems, and especially to higher index systems. We specifically study
the conditioning of the iteration matrices corresponding to the BD¥ methods
and useful (i.e., efficiently implementable} IRK methods, such as the SIRK’s
or DIRK’s. It is not practical to consider general IRK methods where the
stage equations cannot be uncoupled, either naturally or via transformations
in the case of SIRK’s, due to the high cost of solving large nonlinear systems.
Even so, the iteration matrices for general TRK methods will contain blocks
with a structure resembling the one studied below. Hence their conditioning
is expected to be very similar. From Theorem 2.3.4 we have

Theorem 5.4.1 The condition number of the iteration matrix for a system
with (local) index of v is O(h™").

1t is often possible to reduce the condition number by scaling the DAE
system appropriately. This is especially true for semi-explicit systems

.’1’," f(ﬂ'.‘,y,t)
0 g(z,y,1).

8

#

 [198] describes difficulties due to ill conditionin

For these systems, the iteration matrix is written as

) 3
b, = | 20T k3E “hgﬁ}.

hge hiE

We consider two cases: semi-explicit index one systems, and semi-explicit
index two systems with the property that dg/dy = 0. Scaijng for index Ehr;ae
systems arising in constrained mechanical problems is discussed in [205]

' Ca‘f{e I. When the index is one, we have that 3g/8y is nonsingular sc‘) hi
is nonst‘nguiar as b — 0 if we scale the rows corresponding to thé ai ebrair(;
constraints by 1/h. Since we are not scaling variables, but enly equat:iois the
effect of this scaling should be to improve the accuracy of the solution f, h
linear system, for all variables. o

5 gasi II. For thi.s case, we will assume that the index is two, and that
9/0y = 0. By explicitly computing (hJ,)"! we find that the orders of the

blocks of the inverse are
1 1/h
1/h 1/h?

where the elements in the first row correspond to x and those in the second
row to y. Roundoff errors proportional to ufh and u/h® are introducec(l) Iiin
z and y, respectively, while solving this unscaled linear system. See Ltstedt
and Petzold [205] for a more detailed explanation. If we scale th;s bottom rows

of hJy {corresponding to the ‘al ic’ i
/ gebraic’ constraints) b)
matrix can be written as *) by 17k, then the sealed

hi, = apl ~ h*g'x{ mhg—;f }

g 0

xr
With this scaling the roundoff errors are O(u) in z and O(ufh) in y. As
h—0 t%iese errors can begin to dominate the solution y. In this ca,se. the
error es‘tlmates and convergence tests in an automatic code may ex‘peri,ence
difficulties due to these growing rounding errors. These difficulties, aJon wit!;
what can be done to minimize their effects, will be described in g;ea.tergdetail
later. For now, we merely note that the effect of the proposed scalil;x is to
con'sr‘ol the size of the roundoff errors in z which are introduced in sgélvin
the linear system. At the same time, the algebraic variables y may contaizgl
errors proportional to u/h. However, since the values of y do not affect th
s.ta,te of the system directly (that is, how the system wil] respond at futu .
times), we may be willing to tolerate much larger errors in y than in z. In v
case, this scaling is a significant improvement over the original scalin .Fo ::iy
scaled system, the errors are considerably diminished, and roms ane

: the largest errors are
confined to the variables which are in some sense the leas

t important. Painter

] ; g for solving incompressible
Navier-Stokes equations and employs essentially the same scaling that we have

suggested here to solve the problem. These difficulties are most severe when

an automatic code is using a very small stepsize, as in starting a problem or
passing over a discontinuity in some derivative.

We further note that if we are using Gaussian elimination with partial
pivoting, we do not need any column scaling. The solution will be the same
without this scaling, because il does not affect the choice of pivots [235].
What the analysis shows is that the errors which are due to ill conditioning
are concentrated in the algebraic variables y of the system and not in the
differential variables z. Thus, we must be particularly careful about using the
“algebraic” variables in other tests in the code which might be sensitive to the
errors in these variables.

There is a simple way to implement row scaling in a general DAFE code,
which unfortunately requires a minor change to DASSL. By modifying the
argament list for the RES routine to include the stepsize h, the user can
scale DELTA inside this subroutine. This way, the scaling costs virtually
nothing. An alternative idea is to provide an option to automatically do row
equilibration, or to use linear system solvers which perform row scaling, as
suggested by Shampine [222] for stiff ODE systems.

“ven after scaling, for high index systems there are relatively large errors
in some of the algebraic variables, Since these variables do not determine
the future state of the system, the errors are in some sense tolerable. For an
auntomatic code we must have some criterion for deciding when to terminate the
corrector iteration. It is shown in Petzold and Lotstedt [205] that to maintain
the global order of accuracy of the state variables of the system, it is sufficient
to terminate the Newton iteration based on the errors of the scaled variables
for the column scaling which would bring the condition number of the system
to (1), For the index two system where dg/dy = 0, the iteration error of hy,
rather than y, would be required to be less than a prescribed tolerance. If y
needs to be known very accurately, this strategy is not appropriate.

It remains to examine the integration error tests which are used to control
the stepsize in an automatic code. For index one systems and for index two
systems where dg/3y = 0, the errors in the algebraic variable y on previous
time steps do not directly influence the errors in any of the variables at the
current time [205]. Therefore, we can consider deleting these variables from the
error estimate in order to promote the smooth operation of a code. Consider
first the case of solving semi-explicit index one systems. Suppose, for example,
that on one step we make a fairly large mistake by terminating the Newton
iteration before it has really converged, and that on this step the value of y
that should have been computed has a large error in it, but that based on the
incorrect value it passes the error test anyway. If we base the error test on g,
then a bigger problem may arise on the next step because the new value of y
does not approach the old {incorrect) value of y, so that their difference, and
hence the error estimate, does not approach zero as A — 0. For this reason
we feel that it is probably wise to leave y out of the error control decisions in
semi-explicit index one systems. The main drawback in this strategy is that if

:;i :e:;li totfcnc‘)w th}:e v;;(iiues of y at interpolated points {between mesh points)
© stepsize should be based in part on the val ; ’
; : : ues of y, Fo 2

systems, th;e stepsize control strategy in an automatic BDF !::Od(? ;1!1]; cI'::i‘:l ti"::

reasons explained in Petzold {200], unless the i i are ,

. ; , alge

from the integration error test. Bebraic variables v are excluded
Another possibility for BDF codes is to construct an error estimate which

automatically “filters’ errors corres i
‘ / : ponding to the algebraj i
estimate, an idea introduced in [179] and [229 ineas constany oot the

: :] for linear constant coeffici
systems of arbitrary index v. Thig filtering approach has been studied furcti;:z:

for more general index one and two systems in [160,205). A similar strategy is

applied to contro] the errors i : .
[217,224]. ® In the solution of stiff problems by Sacks.Davis

To motivate the estimate of interest here for index one

index two systems, consider applying the implicit E o e xplct

uler method to the system

Az’ + Bx = f(1).

(5.4.5)
Taking one step, we obtain
:r St
A g1 Ty
(hn+]) + B(Iln.}.; = f(tn—f-l)- (5.4.6)
The true solution to (5.4.5) satisfies
he
A | Hnsn) = #(t,) — Z2agvg
Il’ﬂ+i + Baf(tn+;) = f(fn+]) (5.4.7}
Subtracting (5.4.7) from (5.4.6), we obtain
Enti — €n "fﬁﬁz"(f)
hn+[+ B€n+1 = {, (5.4.8}

wher = - i
€ Ent1 = Tngy ~ 2(tuyq). Solving for €541, we have

ntt = (A+hoy1 BY Ao, — (4 4+ b1 BY 1A (f-’zl:tl) z"(£)
5 :

Thus the cortribution to the global error from the current step is given by

Clocal = (A + hn+3}})M1ATé’te; (5‘4 9)

;yht;:fa Ttie is the local truncation error in the current step. A simil
lor higher order BDF gives {5.4.9) as the contribution to the
the current step, where (A+h

Here, ap is a constant depend
filtering idea to other methods

ar argument
global error from
‘nﬂﬁ) has been replaced by (A + hnprooB).
mg on the method, The application of this

1s not advised without an error expression to

justify it. It can cause asymptotically incorrect estimates if it is carelessly
used in combination with other types of methods and local truncation error
estimates.

It is useful to reflect on the effects of the filtering for some systems of inter-

wst. For index one systems, the filter has the effect of removing the components
of the local truncation error corresponding. to the algebraic variables from the
error estimate because multiplying by the matrix A kills these components,
For implicit ODE systems { A nonsingular), the filter tends to the identity as
hns1 — 0, giving the usual estimate. For semi-explicit index two systems with
dg/0y = 0, the filtering yields an estimate for the kih order BDF which is
O(h*+1) for the differential variables and O(h*) for the algebraic variables,
thereby correctly reflecting the behavior of the local error. On DAE’s with in-
dex greater than two, it is quite likely that DASSL {or any other BDF code for
DAE’s) will fail even when this filter is applied. A stronger filter or a different
strategy altogether may be required to control the errors in these high index
DAE’s. In [205] Petzold and Létstedt suggest a strategy for error control of
index three mechanical systems.

Finally, the estimate (5.4.9) is easily computed in a code like DASSL. The
matrix {A -+ hni18) is the iteration matrix used in the solution of the corrector
equation. Hence it is already available in factored form. The term Arpy, can
be approximated by noting that for F(i,y,v) = 0, A = 0F/dy’ and 74, is the
usual local truncation error estimate. Then (3F/8y)7, can be approximated
by

%5';7_&5 = F(tayg y’ + Tlts) e F(t3 U, yf)
Even more simply for semi-explicit systerns, the quantity Ary, is a vector
composed of the local truncation errors corresponding to the differential vari-
ables z and zeros corresponding to the algebraic variables y. The filter is used
in the decision on whether to accept or reject the step. The order selection
remains unchanged as it is based on a comparison of relative magnitudes of
terms in a Taylor series, rather than on relative magnitudes of local errors.

Berzins {17] has recently reported good success in applying part of the filter

{namely, the matrix A) also in the order selection process. This approach has

the disadvantage that the order selection is not then independent of scalings

of the system. This latter point is rot an issue for semi-explicit systems.
The filtered estimate is also advantageous for stiff systems which experience

frequent steep transients of small magpitude, For example, in the solution:of
partial differential equations by operator splitting techniques or with adaptive’
mesh methods, there is a discontinuity and a steep transient after every rezone
of the mesh. The filtered estimate allows the code to take relatively large steps®

through the transient, which would not be allowed using the usual estimaté
The filtered estimate has been shown to be quite effective {16,204] in reducing
the number of time steps without sacrificing accuracy in experiments wit}
adaptive grid solutions of partial differential equations.

Chapter 6

Applications

6.1 Introduction

glAC‘]é}’laiter 1 we bri(eiﬂy discussed a number of scientific disciplines in which
5§ have occurred. Now we consider some of the in o

‘ : ~ : : some 28e areas in more depth

in order to discuss several issues which are critical to the mumerical soiut!;on

pfrtocess. F-or exam?le, determining consistent initial values for a DAF. system

? er; requ;res special problem-dependent techniques, There are often alterna-

ve formulations of the DAF for a particular icati — ‘

: 2 application. The performa; 1

a numerical method can be influenced d i : bl
fluenc ramaticaily by the choice of proble

+ Bl * i i m

fc}fmtzia.tlon1 Our fo:cus in this chapter is to examine these issues as ti}:ey per-

dam t.o:ipemﬁfc applications, rather than to give a comprehensive and general

escription of all the various techni ising in th

ques. Examples arising in the simulati

. . s ion

of rtr)ziecha,mcal syste'ms, e}ec;tfxcal systems, trajectory prescribed path control

p;fi;. ems, and the. discretization of partial differential equations by the methoﬂ

% ines (MOL) will be used to illustrate these ideas and techniques

N tilsto;tcaﬂ;;, tD:;&.E’s have been sclved indirectly by requiring the system
relormulated as an explicit ODE system, f; i “

» for which there are man
softw;s:re p;:;:icages. Often, the reduction of a DAE to an ODE system reqairez
complicated problem-specific manipulati ; i *

puiations of the equations, incorporati

er ' > ion

2; (li)g)t;n'dary cc:lldxtions into the system equations and simp};ﬁcatioi of the
Hrdeniymg problem. This process slows the stud

: S study of more complex systems

ﬁec%tase it ofter has to be repeated when the model is altered, PTh@ :ase of

setting up and altering DAE models is a major factor in the large a £ f

current interest in them, 5 mounk o

There are often several natural ways to formulate a given application. Dif-

gerentt _formuihations may affect the behavior of the numerical solution process
vbmetimes there are choices in both the select] i .
_ Hection of the equations to be |
-posed and the variables. In man i i cing the
] . ¥ cases, there is the option of reducing th
. - i e
index of the system being considered. But it is not always apparent whither

he reduced index formulation of a problem will yield a better implementation

I the numerical solution is obtained by solving a reduced index problem, the
, the

149

