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Prerequisites on Probability Theory

In this chapter we review some standard results and definitions from probabil-
ity theory. The reader is assumed to have had some contact with probability
theory before, and the purpose of this section is simply to brush up on some
of the basic concepts and to introduce some of the notation used in the later
chapters. Sections 1.1-1.3 are prerequisites for Section 2.3 and thereafter, Sec-
tion 1.4 is a prerequisite for Chapter 4, and Section 1.5 is a prerequisite for
Chapter 6 and Chapter 7.

1.1 Two Humwmﬁmg.?mm on Probability Theory

In many domains, the probability of seeing a certain outcome of an experiment
can be interpreted as the relative frequency of seeing this particular outcome
in all of the experiments performed. For instance, if you throw a six-sided die,
then you would say that the probability of obtaining a three is 1/6, because
if we throw this die a large number of times we would expect to see a three in
approximately 1/6 of the throws. Along the same line of reasoning, we would
also say that if we randomly draw a card from a deck consisting of 52 cards,
then the probability that it will be a spade is 13/52. This interpretation of
probability rests on the assumption that there is some stochastic process that
can be repeated several times and from which the relative frequencies can be
counted. On the other hand, we often talk about the probability of seeing
a certain event although we cannot specify a frequency for it. For example,
I may estimate that the probability that the Danish soccer team will win
the World Cup in 2010 is p. This probability is my own personal judgment
of how likely it is that the Danish team will actually win, and it is based
on my belief, experience, and current state of information. However, another
person may specify another probability for the same event, and it has no
meaning to look for ways of determining which of us is right, if either. These
probabilities are referred to as subjective probabilities. One way to interpret
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my subjective probability of Denmark winning the world cup in 2010 is to
imagine the following two wagers:

1. If the Danish soccer team wins the world cup in 2010, I will receive $100.

2. 1 will draw a ball from an urn containing 100 balls out of which n are
white and 100 — n-are black. If the ball drawn is white then I will receive
$100 in 2010.

If all the balls are white then I will prefer the second wager, and if all the
balls are black then I will prefer the first. However, for a certain n between 0
and 100 T will be indifferent about the two wagers, and for this n, n/100 will
be my subjective probability that the Danish soccer team will win the World
Cup.

1.2 Fundamentals of Probability Theory

For both views on probability described above, we will refer to the set of
possible outcomes of an experiment as the sample space of the experiment.
Here we use the somewhat abstract term “experiment” to refer to any type
of process for which the outcome is uncertain, e.g., the throw of a die and the
winner of the World Cup. We shall also assume that the sample space of an
experiment contains all possible outcomes of the experiment, and that each
pair of outcomes are mutually exclusive. These assumptions ensure that the
experiment is guaranteed to end up in exactly one of the specified outcomes
in the sample space. For instance, for the die example above, the sample space
would be § = {1,2,3,4,5,6}, and for the soccer example the sample space
would be § = {yes,no}, assuming that I am interested only in whether the
Danish team will win; both of the sample spaces satisfy the assumptions above.
A subset of a sample space is called an event. For example, the event that
we will get a value of three or higher with a six-sided die corresponds to the
subset {3,4,5,6} C {1,2,3,4,5,6}, and the event will occur if the outcome
of the throw is an element in the set. In general, we say that an event A is
true for an experiment if the outcome of the experiment is an element of A.
When an event contains only one element, we will also refer to the event as
an outcome.

To measure our degree of uncertainty about an experiment we assign a
probability P(A) to each event A C §. These probabilities must obey the
following three axioms:

The event & that we will get an outcome in the sample space is certain to
occur and is therefore assigned the probability 1.

Axiom 1 P{S) = 1.
Any event A must have a nonnegative probability.

Axiom 2 For oll AC S it holds that P(A) > 0.
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~ If two events A and B are disjoint (see Figure 1.1(a)), then the probability
of the combined event is the sum of the probabilities for the two individual
events:

Axiom 3 If ACS, BCS and ANB =10, then P(AU B) = P(A) + P(B).

mdw exarmple, the event that a die will turn up 3, B = {3}, and the event that

the die will have an even number, A = {2,4,6}, are two disjoint events, and
the probability that one of these two events will occur is therefore

P(AUB) = P(A) + P(B) =

P

(a) (b)

Fig. 1.1. In figure (a) the two events A and B are digjoint, whereas in figure (b),
COANB#D.

On the other hand, if A and B are not disjoint (see Figure 1.1(b)), then
it can easily be shown that

P(AUB) = P(4) + P(B) — P(ANB),

where A N B is the intersection between A and B and it represents the event

that both A and B will occur. Consider again a deck with 52 cards. The event

A that I will draw a spade and the event B that I will draw a king are clearly
" not disjoint events; their intersection specifies the event that I will draw the
~ king of spades, AN B = {king of spades}. Thus, the probability that I will
. draw either a king or a spade is

13 4 1 16
P{AUB)=P(A)+ P{B) - P(ANB) = ORI lr e
Notation: Sometimes we will emphasize that a probability is based on a
frequency (rather than being a subjective probability}, in which case we will
use the notation P#. If the event A contains only one outcome a, we write
P(a) rather than P{{a})}.
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1.2.1 Conditional Probabilities

Whenever a statement about the probability P(A4) of an event .4 is given,
then it is implicitly given conditioned on other known factors. For example, a
statement such as “the probability of the die turning up 6 is w: usually has
the unsaid prerequisite that it is a fair die, or rather, as long as I know nothing
further, I assume it to be a fair die. This means that the statement should be
“given that it is a fair die, the probability ....” In this way, any statement on
probabilities is a statement conditioned on what else is known. These types of
probabilities are called conditional probabilities and are generally statements

of the following kind:
“Given the event B, the probability of the event A is p.”

The notation for the preceding statement is P(A}B) = p. It should be
stressed that P(A[B} = p does not mean that whenever B is true, then the
probability of A is p. It means that if B is true, and everything else is irrelevant
for A, then the probability of A is p.

Assume that we have assigned probabilities to all subsets of the sample
space S, and let A and B be subsets of § (Figure 1.1(b)). The question is
whether the probability assignment for S can be used to calculate P(A|B). If
we know the event B, then all possible outcomes are elements of 3, and the
outcomes for which 4 can be true are AN B. So, we look for the probability
assignment for A M B given that we know B. Knowing B does not change the
proportion between the probabilities of AN B and another set C N B (if, for
example, I will bet twice as much on AN B as on C N B, then after knowing
B, T will still bet twice as much on AN B as on €N B). We can conclude that
the proportions P(A N B)/P(C N B} and P(A|B)/P{C|B) must be the same.
Setting C = B, and since we know from Axiom 1 that P(B|B) = 1, we have
justified the following property, which should be considered an axiom.

Property 1.1 {(Conditional probability). For two events A and B, with P{B) >
0, the conditional probability for .4 given B is

P(ANB)
P(A|B) = ~PB)

For example, the conditional probability that a die will come up 4 given
that we get an even number is P(4 = {4} |B = {2,4,6}) = P({4})/P({2,4,
6}), and by assuming that the die is fair we get W\PM =3

(bviously, when working with conditional probabilities we can also con-
dition on more than one event, in which case the definition of a conditional

probability generalizes as

PANBNC)

PAIBNC) = =5z
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- 1.2.2 Probability Calculus

The expression in Property 1.1 can be rewritten so that we obtain the so-called

fundemental rule for probability calcutus:

_&WmOHmE 1.1 (The fundamental rule).

 P(A|B)P(B) = P(ANB). (1.1)

: .. That is; the fundamental rule tells us how to calculate the probability of
seeing both A and B when we know the probability of 4 given B and the

L P(A|BNC)P(BiICYy=P(ANB|C).
. Since P(ANB) = P(BN.A) (and also P(ANB|C) = P(BNA|C)}, we get

‘that P(A|B)P(B) = P{ANB) = P(B| A)P(A) from the fundamental rule.

This yields the well-known Bayes’ rule:

..%&mon.ma 1.2 (Bayes’ rule).

P(B|A)PA)

P(A|B) = —"F 5

" ‘Bayes’ rule provides us with a method for updating our beliefs about an
“event A given that we get information about another event B. For this reason
'P(A) is usually called the prior probability of A, whereas P(A|B} is called

"the posterior probability of A given B; the probability P(B1A) is called the

"~ likelihood of A given B. For an explanation of this strange use of the term,
- see Example 1.1.

Finally, as for the fundamental rule, we can also state Bayes’ rule in a

t C:
context C P(B| A,C)P(A|C)
PBlC) -

P(A|B,C) =

Ezample 1.1. We have two diseases a1 and ag, both of which can cause the
symptom b. Let P(b{ay) = 0.9 and P(b|ay) = 0.3. Assume that the prior
probabilities for a; and as are the same (P{a1) = P(az2)). Now, if b oceurs,
Bayes’ rule gives

Plar 1) = TR _ 9. Zlor),
muﬁgm_evn.ﬂ%no.w. WAMWV.

Even though we cannot calculate the posterior probabilities, we can conclude
that a; is three times as likely as ag given the symptom b.
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If we furthermore know that a; and a, are the only possible causes of b,
we can go even further (assuming that the probability of having both diseases
is 0). Then P(a; |b) + P(az[b) = 1, and we get

.TTS.V .NUTHMU 1 P

P() P  00+03 12’

P{ay |b) = 0.9/1.2 = 0.75, and P(as |b) = 0.3/1.2 = 0.25.

1.2.3 Conditional Independence

Sometimes information on one event B does not change our belief about the
occurrence of another event 4, and in this case we say that A and B are
independent,

Definition 1.1 (Independence). The cvents A and B are independent if
P(A|B) = P(A).

For example, if we throw two fair dice, then seeing that the first die turns
up 2 will not change our beliefs about the outcome of the second die.

This notion of independence is symmetric, so that if A is independent of
B, then B is independent of A:

_ PANB) _ PAIBIP(B) _ PLAPE)
PEIN=~F5m ~— B - pa ~F®

The proof requires that P(A) > 0, so if P(A4) = 0, the calculations are not
valid. However, for our considerations it does not matter; if A is impossible
why bother considering it?

When two events are independent, then the fundamental rule can be
rewritten as

P(AN B) = P(A| B)P(B) = P(A4) - P(B).

That is, we can calculate the probability that both events will occur by mul-
tiplying the probabilities for the individual events.

The concept of independence also appears when we are conditioning on
several events. Specifically, if information about the event B does not change
our belief about the event A when we already know the event C, then we say
that A and B are conditionally independent given C.

Definition 1.2 (Conditional independence). The events A and B are
conditionally independent given the event C if

P(A|BNC) = P{A|C).

L0 FTODabDLITY Lalculus 1or Variables 7

Similar to the situation above, the conditional independence statement is
symmetric. If A is conditionally independent of B given C, then B is condi-

- “tionally independent of A given C:

P(ANB|C)P(C) _ P(AIBNC)P(BIC) _ P(A|C)P(B|C)

P(BANC) = -

" FAIOPE) P(A]0) P(ATC)
o =P(BlO)

: ..”_.m‘ru.wmmiﬁo.umwéwmb two events are conditionally independent, then we can

“use a multiplication rule similar to the one above when calculating the prob-

ability that both of the events will occur:
_ P(ANBIC) = P(A|C)- P(BIC).

Note that when two events are independent it is actually a special case of

_conditional independence but with C = §.

‘1.3 Probability Calculus for Variables

2" 8o far we have talked about probabilities of simple events and outcomes with

respect to a certain sample space. In this book, however, we will be working

" with a collection of sample spaces, also called variables, and we will now extend
-~ the concepts above to probabilities over variables. A variable can be considered
'an experiment, and for each outcome of the experiment the variable has a

corresponding state. The set of states associated with a variable A is denoted

by sp(4) = (a1,02,...,ax), and similar to the sample space these states

should be mutually exclusive and ezhaustive. The last assumption ensures that
the variable is in one of its states (although we may not know which one}, and

. the first assumption ensures that the variable is in only one state. For example,
_if we let D be a variable representing the outcome of rolling a die, then its

state space would be sp(D) = (1,2,3,4,5,6). We will use uppercase letters
for variables and lowercase letters for states, and unless otherwise stated, a
variable has a finite number of states.

For a variable A with states ai, ..., an, we express our uncertainty about
its state through a probability distribution P(A) over these states:

n
ﬁmkv“ﬁ.ﬂf...fﬁﬁvm z; 2 0; MHMH”HHL:.Z'THQQHH_

i=}
where z; is the probability of A being in state a;. A distribution is called

uniform (or even) if all probabilities are equal.

Notation: In general, the probability of A being in state o; is denoted by
P(A = a;), and denoted by P{a;) if the variable is obvious from the context.
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As we talked about conditional probabilities for events, we can also talk
about conditional probabilities for variables: If the variable B has states
b1,...,bm, then P(A|B) contains n - m conditional probabilities Pla; | b;)
that specify the probability of seeing a; given b;. That is, the conditional
probability for a variable given another variable is a set of probabilities {usu-
ally organized in an n.x m table) with one probability for each configuration of
the states of the variables involved (see Table 1.1 for an example). Moreover,
since P(4|B) specifies a probability distribution for each event B = b;, we
know from Axiom 1 that the probabilities over A should sum to 1 for each
state of B:

Y P(A=0;|B=5;) =1 for each b;.

t=1

b1 b bs
a110.4 0.3 0.6
a2{0.6 0.7 0.4

Table 1.1. An example of a conditional probability table P(4 | B} for the binary
variable A given the ternary variable B. Note that for each state of B the probabil-
ities of A sum up to 1.

The probability of seeing joint outcomes for different experiments can be
expressed by the joint probability for two or more variables: For each config-
uration (as, b;) of the variables 4 and B, P(A, B) specifies the probability of
seeing both A = a; and B = b;. Hence, P(A, B) consists of n-m numbers,
and, similar to P{A] B), P(4, B) is usually represented in an n x mn table (see
Table 1.2 for an example). Note that since the state spaces of both A and B
are mutually exclusive and exhaustive, it follows that all combinations of their
states (the Cartesian product) are also mutually exclusive and exhaustive, and
they can therefore be considered a sample space. Hence, by Axiom 1,

P(A, B) nWWan?muﬁuw

i=1 j=1

by b2 b3
41{0.16 0.12 0.12
03(0.24 0.28 0.08

Table 1.2. An example of a joint probability table P(4, B) for the binary variable
A and the ternary variable B. Note that the sum of all entries is 1.

1.3 Probability Calculus for Variables 9

When the fundamental rule {equation (1.1)) is used on variables A and B,
the procedure is to apply the rule to each of the n - m configurations (a;, b;)
-of the two variables:

Plai|b;)P(b;) = Plas, by).

This means that in the table P(A|B), each probability in P(A|b;) is multi-

lied. by P(b;} to obtain the table P(A,b;), and by doing this for each b; we
get P(A, B). If P(B) = (0.4,0.4,0.2), then Table 1.2 is the result of using the
fundamental rule on Table 1.1 (see also Table 1.3).

L B 9 @u @u F. @u @m
P(A,B)={01/04-040.3-0.406-0.2|=[a;]0.16 0.12 0.12
. 02/0.6-0.40.7-0.40.4-0.2 a2(0.24 0.28 0.08

Table 1.3. The joint probability table P(A, B) in Table 1.2 can be found by mul-
tiplying P(B) = (0.4,0.4,0.2) by P(A|B) in Table 1.1.

When applied to variables, the fundamental rule is expressed as follows:

Theorem 1.3 (The fundamental rule for variables).

P(4,B) = P(A| B)P(B),

“and conditioned on another variable C we have
P(4,B|C)=P(A|B,C)P(B| C).

From a joint probability table P(4, B), the probability distribution P(A)

-can be calculated by considering the outcomes of B that can occur together

- with each state a; of A. There are exactly m different outcomes for which A

-is in state a;, namely the mutually exclusive outcomes (@i, b1), ..., (@i, bm).
Therefore, by Axiom 3,

ngmv = M .Nuﬁm.p.u @uv
i=1

- This calculation is called marginalization, and we say that the variable B ig
- marginalized out of P(4, B) (resulting in P(A)}. The notation is

P(A)=)"P(4,B).
B

By marginalizing B out of Table 1.2, we get

P(A) = (0.16 +0.12 + 0.12,0.24 + 0.28 + 0.08) = (0.4, 0.6),
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and by marginalizing out 4 we get . say that A and C are marginally independent or just independent (written as
P(A|C) = P(A)).
. When two variables A and C are conditionally independent given B, then

‘the fundamental rule (Theorem 1.3) can be simplified:
“  P(4,C|B) = P(A|B,C)P(C|B) = P{A| B)P(C | B).

in he .o.%ﬁa.mw.mwou above, we multiply two conditional probability tables over
ifferent domains. Fortunately, the method for doing this multiplication is a
traightforward extension of what we have done so far:

Plai, e | b;) = Plai | b;)Plex | by).

o.H...mmeEP by multiplying P{A|B) and P{C| B) (specified in Table 1.1 and
Table 1.5, respectively) we get the joint probability P(A,C'| B) in Table 1.6.

P(B) = (0.16 +0.24,0.12 + 0.28,0.12 + 0.08) = (0.4, 0.4,0.2).

That is, the marginalization operation allows us to remove variables from s
Jjoint probability distribution.

Bayes’ rule for events (Theorem 1.2) can also be extended to variables, by
treating the division in the same way as we treated multiplication above.

Theorem 1.4 (Bayes’ rule for variables).

_P(A|B)P(B) _ P(4,B)
PO = =50 = T, P@By

and conditioned on another variable C we have

_ P(A|B,C)P(B|C) _ P(A,B|C)
PBIAG) = ——54T6) ~S.PAF0)

b b2 b3
c1{02 09 0.3
c210.05 0.05 0.2
¢3[0.75 0.05 0.5

‘Table 1.5. The conditional probability table P(C|B) for the ternary variable C
given the ternary variable B.

Note that the two equalities in the equations follow from (1) the fundamental
rule and (2) the marginalization operator described above.

By applying Bayes' rule using P(A), P(B), and P(A|B) as specified
above, we get P(B| A4) shown in Table 1.4.

a1 a2 ay oz o
04-03 0.6:.0.4 .
P(B|A) = EABEE -0 g (B =2 02 04 | P(A,C|B) = P(A| B)P(C| B)
b 0882 0db2| 3 l03 013 . ™ 5 »

s

c:| (0.2-0.4,02-06) (09-0.3,00.0.7) (0.3-06,0.3-0.4)
€2((0.05 - 0.4,0.05 - 0.6) (0.05-0.3,0.05-0.7) (0.2-0.6,0.2 - 0.4)
¢3](0.75 - 0.4,0.75 - 0.6) (0.05-0.3,0.05-0.7) (0.5-0.6,0.5 - 0.4)

Table 1.4. The conditional probability P{B|A) obtained by applying Bayes' rule
to P(A| B)in Table 1.1, P(A) = {0.4,0.6), and P{B) = (0.4,0.4,0.2). Note that the
probabilities over B sum to 1 for each state of A.

b b b3
¢:|(0.08,0.12) {0.27,0.63) (0.18,0.12)
2{{0.02,0.03) (0.615,0.035) (0.12, 0.08)
3] (0.3,0.45) (0.015,0.035) (0.3,0.2)

8

The concept of (conditional) independence is also defined for variables.

w

Definition 1.3 (Conditional independence for variables). Two vari-
ables A and C are said to be conditionally independent given the wariable
B if

Table 1.6. If A and C are conditionally independent given B, then P(A,C|B)
can be found by multiplying P(A|B) and P(C|B) as specified in Table 1.1 and

Pla;| ek, b;) = Pla; | b;) Table 1.5, respectively.

for each a; € sp(A), b; € sp(B), and ¢, € sp(C).
As a shorthand notation we will sometimes write P(A|C, B) = P{A| B).
This means that when the state of B is known, then no knowledge of

C will alter the probability of A. Observe that we require the independence
statement to hold for each state of B; if the conditioning set is empty then we

1.3.1 Calculations with Probability Tables: An Example

To illustrate the theorems above, assume that we have three variables, A, B,
and C, with the probabilities as in Table 1.7. We receive evidence A = a5 and
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C' = ¢; and we would now like to calculate the conditional probability table
P(B|az,c1).

b1 b b
a1((0, 0.05, 0.05) (0.05, 0.05, 0) (0.05, 0.05, 0.05)
a5) (01,01,0) (01,0,01) (02,0, 0.05)

Table 1.7. A joint probability table for the variables A, B, and C. The three
numbers in each entry correspond to the states ¢y, ca, and cs.

First, we focus on the part of the table corresponding to A = gy and
C == ¢, and we get

P(ag, B,c1) = (0.1,0.1,0.2). (1.2)
To calculate P(B|az,¢;), we can use Theorem 1.4:
P
P(Blag,c;) = DeaBia) | _Plas, Boey) (1.3)

.ﬁmﬁw,n: a MUN wmaw“mgopv.

By marginalizing B out of equation (1.2) we get
.ﬁﬁ@m, D.v =0.1+0.1 +0.2=0.4.
Finally, by performing the division in equation (1.3) we get

0.1 0.1 0.2
NUmm _ Qa, OHV = AO%V av Olmv = AOMW“DMP Dm&
Another way of doing the same is to say that we wish to transform P(ay, B,¢y)
into a probability distribution. Because the numbers do not add up to one,
we normalize the distribution by dividing each number by the sum of all the
numbers.

Suppose now that we were given only the evidence A = aq, and we want
to calculate P(B|ay, C). The calculation of this probability table follows the
same steps as above, except that we now work with tables during the calcula-
tions. As before, we start by focusing on the part of P(A, B, C) corresponding
to A = ay and we get the result in Table 1.8.

To calculate P(B|az,C) we use

.muﬁgmn.m,hwv _ .ﬂvﬁgmu.qugv
.muﬁgw“muv MWMUAQNTW.QV.

The probability P{ay, C) is found by marginalizing B out of Table 1.8:

.mum.w_ﬁquv”

(1.4)

Plaz,C) = (0.14+0.1+0.2,0.1+0+0,0+0.1+0.05) = (0.4,0.1,0.15), (L.5)

and by inserting this in equation (1.4) we get the result shown in Table 1.2.
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b b b3
0.1 0.1 0.2
(01 0 0
ST sl 0 0.10.05
Hm.—...mm 1.8.. The probability table P(ag, B,C) that corresponds to the part of the
probability table in Table 1.8 restricted to A4 = as.

b1 by ba by by b3

(e [T 22732 [510.25 0.25 0.5

P(Blas,0)=| 181 % Of =00 P T
0,1 N

ol &1 s c| 0 2/31/3

-
n

— B
A ety
N
=
=

i
Table 1.9. The calculation of P{B

az,C) using P(az, B,C) (Table 1.1) and
“P(az,C) {equation (1.5)).

1.4 An Algebra of Potentials

'Below we list some properties of the algebra of multiplication and marginal-
- ization of tables. The tables need not be (conditional) probabilities, and they
“are generally called potentials.

. A potential ¢ is a real-valued function over a domain of finite variables X'

¢ :sp{X) — R

- The domain of a potential is denoted by dom (¢). For example, the domain
~ of the potential P(A, B|C) is dom (P(4, B|C)) = {4, B, C).

Two potentials can be multiplied, denoted by an (often suppressed) dot.
Multiplication has the following properties:

dom (¢162) = dom (¢1) U dom (¢2).
The commutative law: ¢;¢2 = ¢2¢;.

The associative law: A%HﬁMvﬁm = ﬁuﬁﬁm&wV.
Existence of unit: The unit potential 1 is a potential that contains only

s and is defined over any domain such that 1-¢ = ¢, for all potentials ¢.

~ The marginalization operator defined in Section 1.3 can be generalized to po-
tentials so that ), ¢ is a potential over dom(¢)\ {A}. Furthermore, marginal-
ization is commutative:

2.2.¢=239
A B B A
For potentials of the form P(A | V), where V is a set of variables, we have

5. The unit potential property: }_, P(A|V) = 1.
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For marginalization of a product, the following holds
6. The distributive law: If A ¢ dom(¢1), then 3~ , ¢y = ¢y PIPR-Y

The distributive law is usually known as ab -+ ac = a(b + ¢), and the
preceding formula is actually the same law applied to tables. To verify it,
consider the calculations in Tables 1.10~1.14. Here we see that Table 1.12 and

Table 1.14 are equal and correspond to the left-hand and right-hand sides of
the distributive law.

.W/\»QHQM W/Qnunm
bi lz1zaf| b1 (e
b I3 Ta bo U3 Ua

Table 1.10. ¢1(A, B} and ¢2(C, B).

m/xu._. ai as

by AHHS,&HSV Aam@reu@_&
bz |(ways, zaya) (Lays, Taya)

Table 1.11. ¢1{A, B) - ¢2(C, B). The two numbers in each entry correspond to the
states ¢; and cp.

B / A [#3] az _
b1 T + 21y2 T2y + oy
bz |Zays + Fays Tays + Taya

Table 1.12. 3", ¢1(4, B) - ¢2(C, B).

B
by +ys
bo|ys + a4

Table 1.13. . ¢2(C, B).

frt

We also use the term projection for marginalization. For example, if A
and B are marginalized out of ¢(4, B,C), we may say that ¢ is projected
down to C, and we use the notation ¢*“. With this notation, the properties
of marginalization look as follows {V and W denote sets of variables):
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.m /u& a1 a2
bi |z + y2) z2{tn + y2)
ba |xalys + ya) we(ys + ya)

Table 1.14. ¢1(A, B) 3 62(C, B).

.H_rm ooﬁ_gﬁemﬂaﬁ law: @t&:é (v,
H__um mnm&u:uﬁ?m law: If dom(¢;) C V, then (¢1¢2)Y = ¢ (¢5¥).

H%ngoﬁ_ Variables

mﬁ % Uo a sample space. A random variable is a real-valued function on S;
V.S — R. I for example, you throw a die, and you win $1 if you get 4 or
m.uoﬁm and you lose §1 if you get 3 or below, then the corresponding random
vatiable is a function with value —1 on {1,2,3} and 1 on {4,5, 6}.

_H_Wm mean value of a random variable V on 8 is defined as

u(V) = 3 V(s)P(s).

sES

(1.6)

i For the example above, the mean value is IH +— H + - H +1 + 5t3 L=p
ﬁvaoﬁmma that the die is fair). The mean value is mwmo omﬁ_ma _&m aa,umnmm& e&zm

- A measure of how much a random variable varies between its values is the
variance, o*. It is defined as the mean of the square of the difference between

value and mean:
: =3 (V(s) = u(V))2P(s).
FES

(1.7)

For the example above we have
2 21 21
o =3(-1-0) w+wﬁ|8 5=

...H...m.u Continuous Distributions

‘Consider an experiment, where an arrow is thrown at the {0, 1} x [0, 1] square.
The possible outcomes are the points (z,y) in the unit square. Since the
“probability is zero for any particular outcome, the probability distribution
is assigned to subsets of the unit square. We may think of this assignment
- as a process of distributing a probability mass of 1 over the sample space.
‘We may, for example, assign a probability for landing in the small square
[z, z+¢€] % [y, y+¢]. To be more systematic, let n be a natural number, then the
unit square can be partitioned into small macmamm of the type [, &) [L, L]

. Tt
and we can assign probabilities P([£, Z&1]x[L, Z¥1]) ¢o these mﬂzmwmm with area
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2. Now, if P([, 21] x [£ 1)) = 2 then you can say that the probability

mass  is distributed over the small square with an average density of n’z,
and we define the density function (also called the frequency function) f(z,y)

% (RER

In general, if S is a continuous sample space, the density function is a

flz,y) = lim n°P

n—0oo

nonnegative real-valued function f on 8, for which it holds that for any subset

Aof &,

.\ f(8)ds = P{A).
A

In particular,

.\m.l&% =1.

When S is an interval {a, b] {possibly infinite), the outcomes are real num-
bers (such as height or weight), and you may be interested in the mean (height
or weight). It is defired as

b
p@= .\ zf(z)dz,

and the variance is given by

b
ot = [ w-2P sy

Mathematically, the mean and variance are the mean and variance of the

identity function I(z) = x, but we use the term “mean and variance of the
distribution.”

1.6 Exercises

Exercise 1.1, Given Axioms 1 to 3, prove that
P(AUB) = P(A)+ P(B)— P(ANB).

Exercise 1.2. Consider the experiment of rolling a red and a blue fair six-
sided die. Give an example of a sample space for the experiment along with
probabilities for each outcome. Suppose then that we are interested only in
the sum of the dice (that is, the experiment consists in rolling the dice and
adding up the numbers}. Give another example of a sample space for this
experiment and probabilities for the outcomes.
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. Exercise 1.3, Consider the experiment of flipping a fair coin, and if it lands
heads, rolling a fair four-sided die, and if it lands tails, rolling a fair six-sided
die.-Suppose that we are interested only in the number rolled by the die,
mmm_ ‘a'sample space Sy for the experiment could thus be the numbers from
to 6. Another sample space could be Sp = {t1,...,t6,h1,..., h4}, with for
example t2 meaning “tails and a roll of 2” and h4 meaning “heads and a roll
.” Choose either §4 or Sp and associate probabilities with it. According
0 your saimple space and probability distribution, what is the probability of
olling ‘either 3 or 5.

mwﬁw&mm ..H.h. Draw a Venn diagram (like that in Figure 1.1} over Sg defined
n Exercise 1.3. The diagram should show the events corresponding to “rolling
a 3," “flipping tails,” and “fipping tails and rolling a 3.”

Exercise 1.5. Let Sg be defined as in Exercise 1.3, but with a loaded coin
and loaded dice. A probability distribution is given in Table 1.15. What is
the probability that the loaded coin lands “tails”? What is the conditional
probability of rolling a 4, given that the coin lands tails? Which of the loaded
dice has the highest chance of rolling 4 or more?

1% 1t6 [
2 |
t3 w%mw
t4| 55 awm
awm hd| &

Table 1.15. Probabilities for Sg in Exercise 1.5.

Exercise 1.6. Prove that
PAIBUC)P(BIC)=P(ANB|C).

- Exercise 1.7. A farmer has a cow, which he suspects is pregnant. He admin-
isters a test to the urine of the cow to determine whether it is pregnant. There
- are four outcomes in this experiment:

1. The cow is pregnant and the test is positive.
-~ .2. The cow is pregnant, but the test is negative.
3. The cow is not pregnant, but the test is positive.
4. The cow is not pregnant, and the test is negative.

The prior probability of the event that the cow is pregnant is 0.05, the prob-
ability of the event that the test is positive, when the cow indeed is pregnant,
is 0.98 and the probability that the test is megative, when the cow is not
pregnant, is 0.999. The test turns out to be positive. What is the posterior
probability of the cow being pregnant?
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Exercise 1.8. Consider the following two experiments: One consists in throw-
ing a red six-sided die, and one consists in throwing a blue six-sided die.
We let R be a variable representing the roll of the red die, having a set of
states {rl,r2,r3,r4,75,76}, and B be a variable representing the roll of the
blue die (states {b1, 62, b3, b4, b5, b6}). Assume that the red die is fair so that
PR=rl)= -=PR=r16) = %, and that the variable for the blue
die has probabilities P(B = b1) = P(B = b2) = P(B = #3) = & and
P(B = b4) = P(B = b5) = P(B = b6) = 1. Give an example of a sample
space for an experiment consisting of throwing both the red and the blue die.
Using P(R) and P(B), what is the probability distribution for your sample
space?

Exercise 1.9. Consider the sample space Sg from Exercise 1.3, with probabil-
ity distribution as defined in Table 1.15. Recast the sample space as variables.
What is the probability distribution for each variable?

Exercise 1.10. Prove the fundamental rule for variables:
P(A,B) = P(AIB)P(B).

Exercise 1.11. Calculate P(A4), P(B), P(A| B), and P(B| A) from the table
for P(A, B) (Table 1.16).

bi by by
a310.05 0.10 0.05
a210.15 0.00 0.25
a3|0.10 0.20 0.10

Table 1.16. P(A, B) for Exercise 1.11.

Exercise 1.12. Table 1.17 describes a test T for an event A. The number
0.01 is the frequency of false negatives, and the number 0.001 is the frequency
of false positives.

() The police can order a blood test on drivers under the suspicion of having
consumed too much alcohol. The test has the above characteristics. Expe-
rience says that 20% of the drivers under suspicion do in fact drive with
too much alcohol in their blood. A suspicious driver has a positive blood
test. What is the probability that the driver is guilty of driving under the
influence of alcohol?

(#) The police block a road, take blood samples of all drivers, and use the same
test. It is estimated that one out of 1,000 drivers have too much aleohol
in their blood. A driver has a positive test result. What is the probability
that the driver is guilty of driving under the influence of alcchol?
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A=yes Ad=no
T=vyes| 099 0.001
T=no| 001 0999

Table 1.17. Table for Exercise 1.12. Conditional probabilities P(T| A} character-
izing test T for A.

Exercise 1.13. In Table 1.18, a joint probability table for the binary variables
B, and C is given.

Calculate P(B,C) and P(B).

Are A and C independent given B?

by b
a1((0.006, 0.054) (0.048, 0.432)
22[(0.014, 0.126) (0.032,0.288)

Table 1.18. P(A, B, C) for Exercise 1.13.

—

LX)

.m.“_uw@nnmmm 1.14. Write a short algorithm that given an nx m potential (A, B)
‘calculates »° , ¢. Use your algorithm on the joint probability table P(A, B)
in Table 1.2 and on the conditional probability table P(A|B) in Table 1.1.

. Exercise 1.15. Prove that the associative, commutative, and distributive
laws hold for potentials.

Exercise 1.16. Let ¢(z) = az be a distribution on {0,1]. Determine a. What
are the mean and the variance of ¢?

- Exercise 1.17. Let ¢(z) = asin(z) be a distribution on [0, 7]. Determine o
and the mean of ¢.
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ian Networks

‘this chapter we introduce causal networks, which are the basic graphi-
al feature for (almost) everything in this book. We give rules for reasoning
about relevance in causal networks; is knowledge of A relevant for my belief
about B? These sections deal with reasoning under uncertainty in general.
Neéxt, Bayesian networks are defined as causal networks with the strength of
he causal links represented as conditional probabilities. Finally, the chain
ule for Bayesian networks is presented. The chain rule is the property that
makes Bayesian networks a very powerful tool for representing domains with
nherent uncertainty. The sections on Bayesian networks assume knowledge of
probability calculus as laid out in Sections 1.1-1.4.

wu Reasoning Under Uncertainty

m..w..H Car Start Problem

The following is an example of the type of reasoning that humans do daily,
“In the morning, my car will not start. I can hear the starter turn, but
“nothing Lappens. There may be several reasons for my problem. I can hear
the starter roll, so there must be power from the battery. Therefore, the most-
- 'probable causes are that the fuel has been stolen overnight or that the spark
- plugs are dirty. It may also be due to dirt in the carburetor, a loose connection
© in the ignition system, or something more serious. To find out, I first look at
- the fuel meter. It shows half full, so 1 decide to clean the spark plugs.”
. To have a computer do the same kind of reasoning, we need answers to
questions such as, “What made me conclude that among the probable causes
“stolen fuel”, and “dirty spark plugs” are the two most-probable canses?” or
“What made me decide to look at the fuel meter, and how can an observation
concerning fuel make me conclude on the seemingly unrelated spark plugs?”
To be more precise, we need ways of representing the problem and ways of
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performing inference in this representation such that a computer can simulate
this kind of reasoning and perhaps do it better and faster than humans.

For propositional logic, Boolean logic is the representation framework, and
various derived structures, such as truth tables and binary decision diagrams
have been invented together with efficient algorithms for inference.

In logical reasoning, we use four kinds of logical connectives: conjunction,
disjunction, implication, and negation. In other words, simple logical state-
ments are of the kind, “if it rains, then the lawn is wet,” “both John and Mary
have caught the flu,” “either they stay at home or they go to the cinema,” or
“the lawn is not wet.,” From a set of logical statements, we can deduce new
statements. From the two statements “if it rains, then the lawn is wet” and
“the lawn is not wet,” we can infer that it is not raining,

When we are dealing with uncertain events, it would be nice if we could
use similar connectives with certainties rather than truth values attached, so
we may extend the truth values of propositional logic to “certainties,” which
are numbers between 0 and 1. A certainty 0 means “certainly not true,” and
the higher the number, the higher the certainty. Certainty 1 means “certainly
true,” .

We could then work with statements such as, “if I take a cup of coffee
while on break, I will with certainty 0.5 stay awake during the next lecture” or.
“if I take a short walk during the break, I will with certainty 0.8 stay awake
during the next lecture.” Now, suppose I take a walk as well as have a cup
of coffee. How certain can I be to stay awake? To answer this, I need a rule
for how to combine certainties. In other words, I need a function that takes
the two certainties 0.5 and 0.8 and returns a number, which should be the
certainty resulting from combining the certainty from the two statements.

The same is needed for chaining: “if ¢ then b with certainty z,” and “if b
then ¢ with certainty y.” I know «, so what is the certainty of ¢?

It has turned out that any function for combination and chaining will in
some situations lead to wrong conclusions.

Another problem, which is also a problem for logical reasoning, is abduc-
tion: I have the rule “a woman has long hair with certainty 0.7.” T see a
long-haired person. What can I infer about the person’s sex?

3

2.1.2 A Causal Perspective on the Car Start Problem

A way of structuring a situation for reasoning under uncertainty is to construct
a graph representing causal relations between events.

Example 2.1 (A reduced Car Start Problem).

To simplify the situation, assume that we have the events {yes, no} for
Fuel?, {yes, no} for Clean Spark Plugs?, {full 1, empty} for Fuel Meter, and
{yes, no} for Start?. In other words, the events are clustered around vari-
ables, each with a set of outcomes, also called states. We know that the
state of Fuel? and the state of Clean Spark Plugs? have a causal impact on

2.1 Reasoning Under Uncertainty 25

_the state of Start?. Also, the state of Fuel? has an impact on the state of
. Fuel Meter Standing. This is represented by the graph in Figure 2.1.

Fyel? Clean Spark Plugs
: ;.W.Mux&. Meter ._w_wn:&a.q o Start?

~Fig. 2.1. A causal network for the reduced Car Start Problem.

If we'add a direction from no to yes inside each variable {and from empty to-
;we can also represent directions of the impact. For the present situation,
1t 'say that all the impacts are positive (with the direction); that is, the
ore the certainty of the cause is moved in a positive direction, the more the
rtainty of the affected variable will also be moved in a positive direction. To
dicate this, we can label the links with the sign “+” as is done in Figure 2.2.

Fuel? Clean Spark Plugs
NS
Fuel Meter Standing Start?

m__m 2.2, A causal network for the reduced Car Start Problem with a sign indicating
direction of impact.

~We can use the graph in Figure 2.2 to perform some reasoning. Obviously,
if-1 know that the spark plugs are not clean, then the certainty for no start
will increase. However, my situation is the opposite. I realize that I have a
‘start problem. As my certainty on Stert? is moved in a negative direction, I
“find the possible causes (Clean Spark Plugs? and Fuel?) for such a move more
‘certain; that is, the sign “+” is valid for both directions. Now, because the
certainty on for Fuel? = no has increased, I will have a higher expectation
“that Puel Meter Standing is in state empty.

The movement of the certainty for Fuel Meter Standing tells me that by
-reading the fuel meter I will get information related to the start problem. I
“read the fuel meter, it says w, and reasoning backward yields that the certainty
.on Fuel? is moved in a negative direction.

So far, the reasoning has been governed by simple rules that can easily
-~ be formalized. The conclusion is harder: “Lack of fuel does not seem to be
- the reason for my start problem, so most probably the spark plugs are not
‘~clean.” Is there a formalized rule that allows this kind of reasoning on a causal
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network to be computerized? We will return to this problem in Section 2.2.

Note: The reasoning has focused on changes of certainty. In certainty calculus,
if the actual certainty of a specific event must be calculated, then knowledge
of certainties prior to any information is also needed. In particular, prior
certainties are required for the events that are not effects of causes in the
network. If, for example, my car cannot start, the actual certainty that the
fuel has been stolen depends on my neighborhood.

2.2 Causal Networks and d-Separation

A causal network consists of a set of varichles and a set of directed links
(also called arcs) between variables. Mathematically, the structure is called a
directed graph. When talking about the relations in a directed graph, we use
the wording of family relations: if there is a link from A to B, we say that B
is a child of A, and A is a parent of B.

The variables represent propositions (or sample spaces), see also Sec-
tion 1.3. A variable can have any number of states (or outcomes). A vari-
able may, for example, be the color of a car (states blue, green, red, brown),
the number of children in a specific family (states 0, 1, 2, 3, 4, 5, 6, > 6), or
a disease (states bronchitis, tuberculosis, lung cancer). Variables may have a
countable or a continuous state set, but we consider only variables with a
finite number of states (we shall return to the issue of continuous state spaces
in Section 3.3.8).

In a causal network, a variable represents a set of possible states of affairs.
A variable is in exactly one of its states; which one may be unknown to us.

As illustrated in Section 2.1.2, causal networks can be used to follow how
a change of certainty in one variable may change the certainty for other vari-
ables. We present in this section a set of rules for that kind of reasoning. The
rules are independent of the particular calculus for uncertainty.

Serial Connections

Consider the situation in Figure 2.3. Here A has an influence on B, which in
turn has an influence on C. Obviously, evidence about 4 will influence the
certainty of B, which then influences the certainty of C. Similarly, evidence
about C will influence the certainty of A through B. On the other hand, if
the state of B is known, then the channel is blocked, and A and C' become
independent; we say that A and C are d-separated given B. When the state
of a variable is known, we say that the variable is instantiated.

We conclude that evidence may be transmitted through a serial connection
unless the state of the variable in the connection is known.
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g, 2.3. Serial connection. When B is ingtantiated, it blocks communication be-

SEm m w m,ym.E,m w» mwoém a causal model for the relations between
infall {no, light, medium, heavy), Water level (low, medium, high), and
ding @mm. 3& If I have not observed the water level, then knowing that
Wmm been a flooding will increase my belief that the water level is high,
ich - in“turn will tell me something about the rainfall. The same line of .
oning holds in the other direction. On the other hand, if T already know
vater level, then knowing that there has been flooding will not tell me
nything new about rainfall.

Water level Flooding

i m‘.mm. 2.4. A causal model for Rainfall, Water level, and Flooding.

Diverging Connections

he ..mmgmaon in Figure 2.5 is called a diverging connection. Influence can
ass between all the children of A unless the state of A is known. That is,
,C, ..., E are d-separated given A.

MS%;R may be transmitied through o diverging connection unless it is

. ﬁamnp:?pnm&

...m,mm. 2.5. Diverging connection. If A4 is instantiated, it blocks communication be-
‘tween its children.

Ezample 2.3. Figure 2.6 shows the causal relations between Sez (male, female),
length of hair (long, short), and stature {<168 cm, >168 cm).
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G O
Gorterg s>

Fig. 2.6. Sex has an impact on length of hair as well as stature.

If we do not know the sex of a person, seeing the length of his/her hair will
tell us more about the sex, and this in turn will focus our belief on his/her
stature. On the other hand, if we know that the person is a man, then the
length of his hair gives us no extra clue on his stature.

Converging Connections

A description of the situation in Figure 2.7 requires a little more care. If
nothing is known about A4 except what may be inferred from knowledge of
its parents B,..., E, then the parents are independent: evidence about one
of them cannot influence the certainties of the others through A. Knowledge
of one possible cause of an event does not tell us anything about the other
possible causes. However, if anything is known about the consequences, then
information on one possible cause may tell us something about the other
causes. This is the ezplaining away effect illustrated in the car start problem:
the car cannot start, and the potential causes include dirty spark plugs and
an empty fuel tank. If we now get the information that there is fuel in the
tank, then our certainty in the spark plugs being dirty will increase (since this
will explain why the car cannot start}. Conversely, if we get the information
that there is no fuel on the car, then our certainty in the spark plugs being
dirty will decrease (since the lack of fuel explains why the car cannot start).
In Figure 2.8, two examples are shown. Observe that in the second example
we observe only A indirectly through information about F, knowing the state
of F" tells us something about the state of E, which in turn tells us something
about A.

Fig. 2.7. Converging connection. If A changes certainty, it opens communication
between its parents.
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F ...mq.m. ..Mx.mivpmm.wu which the parents of A are dependent. The dotted lines
ate insertion of evidence.

.H&m conclusion is that evidence may be transmitted through a converging
connection only if either the variable in the connection or one of its descen-
dants has received evidence. ‘

Remark: Evidence about a variable is a statement of the certainties of its
states. If the variable is instantiated, we call it hard evidence; otherwise, it is
called soft. In the example above, we can say that hard evidence about the
variable F provides soft evidence about the variable A. Blocking in the case
of serial and diverging connections requires hard evidence, whereas opening
n the case of converging connections holds for all kinds of evidence.

Mam&,i.m 2.4. Figure 2.9 shows the causal relations among Salmonella infec-
tion, flu, nausea, and pallor.

Salmonella e

Fig. 2.9. Salmonella and flu may cause nausea, which in turn causes pallor.

If we know nothing of nausea or pallor, then the information on whether
7 the person has a Salmonella infection will not tell us anything about flu.

- However, if we have noticed that the person is pale, then the information
that he/she does not have a Salmonella infection will make us more ready to
* believe that he/she has the flu.
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2.2.1 d-separation

The three preceding cases cover all ways in which evidence may be transmitted
through a variable, and following the rules it is possible to decide for any
pair of variables in a causal network whether they are independent given the
evidence entered into the network. The rules are formulated in the following
definition.

Definition 2.1 (d-separation). Two distinct varigbles A and B in a causal

network are d-separated (“d” for “directed graph”) if for all paths between A -

and B, there is an intermediate variable V (distinct from A and B) such that
either

— the connection is serial or diverging and V is instantiated
or

— the connection is converging, and neither V nor any of Vs descendants
have received evidence.

If A and B are not d-separated, we call them d-connected.,

Figure 2.10 gives an example of a larger network. The evidence entered
at B and M represents instantiations. If evidence is entered at A, it may
be transmitted to D. The variable B is blocked, so the evidence cannot pass
through B to E. However, it may be passed to H and K. Since the child M
of K has received evidence, evidence from H may pass to I and further to
E.C,F,J and L,sothepasth A-D-H-K-I-E—-C—-F—J—Lisa
d-connecting path. Figure 2.11 gives two other examples.

Note that although A and B are d-connected, changes in the belief in
A will not necessarily change the belief in B. To stress this difference, we
will sometimes say that A and B are structurally independent if they are
d-separated (see also Exercise 2.23).

In connection to d-separation, a special set of nodes for a node A is the
so-called Markov blanket for A:

Definition 2.2. The Markov blanket of a variahle A is the sei consisting of
the parents of A, the children of A, and the variables sharing a child with A.

The Markov blanket has the property that when instantiated, A is d-
separated from the rest of the network (see Figure 2.12).

You may wonder why we have introduced d-separation as a definition
rather than as a theorem. A theorem should be as follows.

Claim: If A and B are d-separated, then changes in the certainty of 4 have
no impact on the certainty of B.

However, the claim cannot be established as a theorem without a more-
precise description of the concept of “certainty.” You can take d-separation as
a property of human reasoning and require that any certainty caleulus should
comply with the claim. _
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m.,mm.”. 2.10. A causal network with M and B instantiated. The node A is d-separated

from G only.

(@ (®)

“Fig. 2.11. Causal networks with hard evidence entered (the variables are instan-

tiated). (a) Although all neighbors of E are instantiated, it is d-connected to B,

- and A. (b) F is d-separated from the remaining uninstantiated variables.
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Fig. 2.12. The Markov blanket for I is {C, E, H, K, L}. Note that if only I's neigh-
bors are instantiated, then J is not d-separated from 1.

From the definition of d-separation we see that in order to test whether
two variables, say A and B, are d-separated given hard evidence on a set
of variables C you would have to check whether all paths connecting A and
B are d-separating paths. An easier way of performing this test, without
having to consider the various types of connections, is as follows: First you
construct the so-called ancestral graph consisting of A, B, and C together
with all nodes from which there is a directed path to either A, B, or C (see
Figure 2.13(a)). Next, you insert an undirected link between each pair of nodes
with a common child and then you make all links undirected. The resulting
graph (see Figure 2.13(b)) is known as the moral graph for Figure 2.13(a). The
moral graph can now be used to check whether A and B are d-separated given
C: if all paths connecting A and B intersect C, then 4 and B are d-separated
given C.

The above procedure generalizes straightforwardly to the case in which we
work with sets of variables rather than single variables: vou just construct the
ancestral graph using these sets of variables and perform the same steps as
above: A and B are then d-separated given C if all paths connecting a variable
in A with a variable in B intersect a variable in C.

2.3 Bayesian Networks

2.3.1 Definition of Bayesian Networks

Causal relations also have a quantitative side, namely their strength. This can
be expressed by attaching numbers to the links.
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R ()] _ (&)
fig.2 2,18, To test whether A is d-separated from F given evidence on B and M
in Figure 2.10, we first construct the ancestral graph for {A, B, F, M} (fgure (a)).
ext we add an undirected link between pairs of nodes with a common child and
en the direction is dropped on all links (figure (b)). In the resulting graph we have
that the path A— D~ H — K — I — E — C — F does not intersect B and M, hence
‘and F are d-connected given B and M.

Let A be a parent of B. Using probability calculus, it would be natural to
st P(B| A) be the strength of the link, However, if C is also a parent of B,
then the two conditional probabilities P(B | A) and P(B|C) alone do not give
any clue about how the impacts from A and C interact. They may cooperate
o counteract in various ways, so we need a specification of P(B|A,C).

. It may happen that the domain to be modeled contains causal feedback
cycles (see Figure 2.14).

. Feedback cycles are difficult to model quantitatively. For causal networks,
no calculus has been developed that can cope with feedback cycles, but certain
noncausal models have been proposed to deal with this issue. For Bayesian
-networks we require that the network does not contain cycles.

”. Definition 2.3, A Bayesian network consists of the following:

—.:A set of variables! and a set of directed edges between variables.

< Each variable has o finite set of mutually exclusive states.

— The variables together with the directed edges form an acyclic directed
graph (traditionally abbreviated DAG); o directed graph is acyclic if there
is no directed path Ay ~+ -+ — A, so that A] = A,,.

- ! When we wish to emphasize that this kind of variable represents a sample space
we call it a chance variable.
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Fig. 2.14. A directed graph with a feedback cycle. This is not allowed in Bayesian-

networks.

— To each variable A with parents By, .
P{A|By,...,By) is attached.

Note that if A has no parents, then the table reduces to the unconditional

probability table P(A). For the DAG in Figure 2.15, the prior probabilities
P(A) and P(B) must be specified. It has been claimed that prior probabilities
are an ynwanted introduction of bias to the model, and calculi have been
invented in order to avoid it. However, as discussed in Section 2.1.2, prior
probabilities are necessary not for mathematical reasons but because prior
certainty assessments are an integral part of human reasoning about certainty
(see also Exercise 1.12).

Fig. 2.15. A directed acyclic graph {DAG). The probabilities to specify are P{A)
P(B), P(C|A,B), P(E|C), P(D|C), P(F|E), and P(G| D, E, F).

b

The definition of Bayesian networks does not refer to causality, and there is
no requirement that the links represent causal impact. That is, when building
the structure of a Bayesian network model, we need not insist on having the

, Br, o conditional probability table
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WEWm go in a causal direction. However, we then need to check the model’s
lmmvmﬁmﬁos properties and ensure that they correspond to our perception
‘the world’s conditional independence properties. The model should not
ude conditional independences that do not hold in the real world.

This also ‘means that if A and B are d-separated given evidence e, then
.o.._u..mmEJ. calculus used for Bayesian networks must yield P(A|e) =
mv ﬁmmm mmoﬁow 2.3. B

mple: 2. 3 Q wp@mmsz :mm,soln b,.oﬂ the Car Start Problem,).
Hw.m.wm%mmumw network for the reduced Car Start Problem is the one in

Fig. u wm Hrm causal network for the reduced car start problem. We have used
he abbreviations Fu (Fuel?), SP (Clean Spark Plugs?), St (Start?), and FM (Fuel
Meter Standing).

" For the quantitative modeling, we need the probability assessments P(Fu),
P(SP), P(5t| Fu, SP), P(FM| Fu). To avoid having to deal with numbers that
are too small, let P(Fu) = (0.98,0.02) and P(SP) = (0.96,0.04). The re-
maining tables are given in Table 2.1. Note that the table for P(FM| Fu)
reflécts the fact that the fuel meter may be malfunctioning, and the table for
P(St| Fu, SP) leaves room for causes other than no fuel and dirty spark plugs
by assigning P(St = no| Fu = yes, SP = yes) > 0.

.3.2 The Chain Rule for Bayesian Networks

Let U = {Ay,..., An} be a universe of variables. If we have access to the joint
probability table P({} = P(Ai,...,An), then we can also calculate P(Ay)
~as well as P(A;|e), where ¢ is mS@muom about some of the variables in the
Bayesian network (see, e.g., Section 1.3.1). However, P(U{) grows exponen-
tially with the number of variables, and I/ need not be very large before the
.\n.m.Eo becomes intractably large. Therefore, we look for a more compact rep-
resentation of P(U), i.e., a way of storing information from which P(If) can
be calculated if needed.

- Let BN be a Bayesian network over I, and let P(U) be a probability dis-
“tribution reflecting the properties specified by BN: (i) the conditional prob-
abilities for a variable given its parents in P(I{) must be as specified in BN,
~-and (44} if the variables A and B are d-separated in BN given the set C, then
A and B are independent given C in P(U).



« waldsdl dallld Dayesian INetworks

[ [Fu = yes Fu= no|
FM = full 0.39  0.001
FM=1 060 0.001
FM = empty 0.01  0.998

P(FM| Fu)

Fu=yes Fy = no
Sp = yes|(0.99, 0.01) (0,1)
Sp = n0(0.01, 0.99) {(0,1)

P(St| Fu, Sp)

Table 2.1. Conditional probabilities for the model in Figure 2.16. The numbers
(z,y) in the lower table represent (St = yes, St = no).

Based on these two properties, what other properties can be deduced about
P(U)? If the universe consists of only one variable A, then BN specifies P{A),
and P{lf) is uniquely determined. We shall show that this holds in general.

For probability distributions over sets of variables, we have an equation

called the chain rule. For Bayesian networks this equation has a special form.
First we state the general chain rule:

Proposition 2.1 (The general chain rule)., LetlY = {41,...,A.} be a
set of variables. Then for any probability distribution P(U) we have

PU) = P(An] A1, An)P(Ancr [ Ar,. . Anss). . P(Ay | 41)P(A4y).

Proof. TIterative use of the fundamental rule:

MUQ\D ”Muﬁkﬁﬁﬁkﬁwu...utb.qulyvmuﬁ\:,...ukﬁﬂiuvu
LUA;L.T...T&..:IHV ”.MUT&..:IH mkﬁuv....kﬁalwvwmxﬁ:...u.\&.ﬁlwv._

P(A1,43) = P(A, | A1)P(A;).

Theorem 2.1 (The chain rule for Bayesian networks). Let BN be ¢
Bayesian network over I = {A1,..., A}, Then BN specifies a unique joint

probability distribution P(U) given by the product of all conditional probability
tables specified in BN:

P =[] P4 pa(as),
i=1
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- where pa{4;) are the parents of A; in BN, and P(U) reflects the properties

Proof. . First we should show that P(U} is indeed a probability distribution.
That is, we need to show that Axioms 13 hold. This is left as an exercise (see
Exercise 2.15).

Next"we prove that the specification of BN is consistent, so that P(i()
flects the properties of BN. It is not hard to prove that the probability
distribution specified by the product in the chain rule reflects the conditional
probabilities from BN (see Exercise 2.16). We also need to prove that the
product reflects the d-separation properties. This is done through induction
in the number of variables in BN.

..4.5.55 BN has one variable, it is obvious that the d-separation properties
specified by BN hold for the product of all specified conditional probabilities.

Assume that for any Bayesian network with 7 — 1 variables and a distri-
bution P(U) specified as the product of all conditional probabilities, it holds
hat if A and B are d-separated given C, then P(A|B,C) = P{A]|C). Let
BN .v.m.m Bayesian network with n variables {A44,..., An}. Assume that 4,,
1as no children and let BN’ be the result of removing A, from BN. Clearly
BN’ is a Bayesian network with the same conditional probability distribu-
ions as BN (except for A,,) and with the same d-separation properties over
A1,..., An_1} as BN. Moreover,

A i=1

S PUN{4}) =3 P =Y [T P(A: pa(ay)
: : Ay

i

n—1
1T P(Ai1 pa(4i)) 3 P(A, | pa(a,))
Ap

fu=]

i=]

n—1 n—1
=1

-and by the induction hypothesis P(U/ \ {Ay}) reflects the properties of BN'.
Now, if 4 and B are d-separated given C in BN, then they are also d-separated
in BN, and therefore P(A|B,C) = P(A|C). To prove that it also holds for
--d-separation properties involving An, we consider the case in which 4, € C
and the case in which 4 = A,. For the first case we have that since A,
participates only in a converging connection, it holds that if 4 and B are
‘d-separated given C, then they are also d-separated given C\ {4,} and we get
- the situation above. For the second case, we first note that

P(An[B,C)= )" P(An|B,C,pa(4,))P(pa(A,)| B,C).
pa{A,)

Now, if A, and B are d-separated given C, then pa(Ay)-and B are also d-
-separated given C, and since A, is not involved, we have P(pa(A,)| B,C)
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P(pa(An)|C). So we need to prove only that P(A, | B,C,pa(A,)) = P(A, |
pa({A;)). Using the fundamental rule and the chain rule, we get

_ P{A,, B,C,pa(4,)) Yu {An.B.C.pa(a,} £ U)
PAn|B.C.pa(4n)) = —pip3 o S = szm_pi%:vwﬁs
2 U\{A,, B Cpoian)t Lima P(Ai | pa(4s))

2 (B.C pacany Hier P4 | pa(4y))
P(An | pa(An)) (4,5, pa(anyy [ict P{A: | pa(A:))
YU\ { An,B,Cpaianyy Llimy P(A:] pa(4i)) 3, P(An| pa(4s))
P(An | pa(4s)) MSQEPPBE:; TT:5 P(As| pa(4:))

U\ {An B Cpaanyy oot P(Ai] pa(A))n
= P(An ! pa(4,)).

To prove uniqueness, let {4,,... s An} be a topological ordering of the
variables. Then, for each variable A; with parents pa(A;) we have that A,
is d-separated from {Ay,..., Ai_1}\ pa(4;) given pa(4;) (see Exercise 2.11}.
This means that for any distribution P reflecting the specifications by BN
we must have P(A;|A1,..., Aim1) = P(A;| pa(A;). Substituting this in the
general chain rule yields that any distribution reflecting the specifications by
BN must be the product of the conditional probabilities specified in BN. O

The chain rule yields that a Bayesian network is a compact representation
of a joint probability distribution. The following example illustrates how to
exploit that for reasoning under uncertainty.

Example 2.6 (The Car Start Problem revisited).

In this example, we apply the rules of probability calculus to the Car
Start Problem. This is done to illustrate that prebability calculus can be used
to perform the reasoning in the example, in particular, explaining away. In
Chapter 4, we give general algorithms for probability updating in Bayesian
networks. We will use the Bayesian network from Example 2.5 to perform the
reasoning in Section 2.1.1.

We will use the joint probability table for the reasoning. The joint proba-
bility table is calculated from the chain rule for Bayesian networks

P(Fu, FM, SP, §t) = P(Fu) P(SP)P(FM| Fu)P(St| Fu, SP).

The result is given in Tables 2.2 and 2.3.
The evidence 5t = no tells us that we are in the context of Table 2.3. By
marginalizing M and Fy out of Table 2.3 {(summing each row), we get

P(SP, 5t = no) = (0.02864, 0.03965).
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FM=full FM=3: FM=empty
Sp = yesj (0.363,0) (0.559,0) (0.0093,0)
Sp = ne [(0.00015, 0) (0.00024, 0) (3.9-107%,0)

Table 2.2. The joint probability table for P{Fu, FM, 5P, 5t = yes).

: .. .m..?ﬂﬂ full - FM= 'S FM = empty
="yes|{0.00367, 1.0 - 10° ) (0.00564, 1.9- 10~ °) (9.4-10~7,0.0192)
= rio] (0.01514,8-10"7)  (0.0233,8-10~7) (0.000388, 0.000798)
3. The joint probability table for P(Pu, FM, 8P, St = no).
in the table represent (Fu = yes, Fu = no).

The numbers

e ..mmw?m conditional probability P(SP| St = no) E.\ dividing by P(St=
This is éasy, since P(St = no) = P(SP = yes, 5t = no) + P(SP = no, St =
= 0:02864 + 0.03965 = 0.06829, and we get

o _£0.02864 0.03965
- P(SP|St=no)= m@.cmmw@. 0.06829

v = (0.42,0.58).

ther way of saying this is that the distribution we end up with will be a
f numbers that sum to 1. If they do not, normalize by dividing by the

n the same way, we get P(Fu| St = no) = (0.71,0.29).
ext, we get the information that FM = 1, and the context for caleulation
limited to the part with FM = % and St = no. The numbers are given in

Py=yes Fu= no
0.00564 1.9-10°°
0.0233 8-1077

Table 2.4, P(Fu, 8P, St = no, FM = 1).

Sp = yes
8p = no

By marginalizing Sp out and normalizing, we get P{Fu|St = no, FM =
=(0.999,0.001), and by marginalizing Fu out and normalizing we get
(SP|St = no, FM = ) = (0.196,0.804). The probability of SP = yes in-
reased by observing FM = 1, so the calculus did catch the explaining away
fect.

(

3.3 Inserting Evidence

w@mmmms networks are used for calculating new probabilities when you get new
information. The information so far has been of the type “A = a,” where A is
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a variable and a is a state of A. Let A have n states with P{A) = (1,...,2Zn), 2.3.4 Calculating Probabilities in Practice
and assume that we get the information e that A4 can be only in state ¢ or j.
This statement expresses that all states except ¢ and j are impossible, and we
have the probability distribution P(A,e} = (0,...,0,z;,0,.. 0,25,0,...,0).
Note that P(e), the prior probability of e, is obtained by marginalizing 4
out of P(A, e). Note also that P(A,¢) is the result of multiplying P(A4) by -

(0,...,0,1,0,...,0,1,0,.. -,0), where the 1’s are at the i'th and 7th places.

As described in Section 2.3.3 and illustrated in Example 2.6, probability up-
dating in Bayesian networks can be performed using the chain rule to calculate

@c, the joint probability table of the universe. However, I/ need not be large
before P(I) becomes intractably large. In this section, we illustrate how the
oﬁmﬁpﬁonm can be performed without having to deal with the full joint ta-
n.Chapter 4, we give a detailed treatment of algorithms for probability

updating.... .. . .
onsider the Bayesian network in Figure 2.17, and assume that all vari-
Have ten states. Assume that we have the evidence e = {D=d,F=f}

nd-we wish to calculate P(A]e).

Definition 2.4. Let A be a variable with n states. A finding on A is an n-
dimensional table of zeros and ones.

To distinguish between the statement e, “A is in either state i or 4" and
the corresponding 0/1-finding vector, we sometimes use the boldface notation
e for the finding. Semantically, a finding is & statement that certain states of
A are impossible.

Now, assume that you have a joint probability table, P(i{), and let e be
the preceding finding. The joint probability table P(i, ) is the table obtained
from P(U) by replacing all entries with 4 not in state i or J by the value zero
and leaving the other entries unchanged. This is the same as multiplying P(l4)
by e,

Fig. 2.17. A Bayesian network.

PU,e) = PU) -e.

Note that P(e) = 3, P(U,e) = > u(PU) - ). Using the chain rule for
Bayesian networks, we have the following theorem.

Theorem 2.2. Let BN be a Bayesion network over the universe i, and let N ‘.

. From the chain rule we have
€1,..., ey, be findings. Then -
P{U,e)= P(4,B,C,4, f,G, H)

Pe)= [] P(Alpa(4)) [ e
= P(A)P(H)P(B| A, H)P(C | A)P(d| B, H)P(f | B,C)P(G|C),

Acl je=]

and for A € U we have where for example P(d| B, H) denotes the table over B and H resulting from

fixing the D-entry to the state d. We say that the conditional probability table
has been instantiated to D = d. Notice that we need not calculate the full
table P(U} with 107 entries. If we wait until evidence is entered, we will in
this case need to work with a table with only 10° entries. Later, we see that
we need not work with tables larger than 1000 entries.

;- To calculate P(A,e), we marginalize the variables B .C,G, and H out of
P(A,B,C,d, f, G, H). The order in which we marginalize does not affect the
result (Section 1.4), so let us start with G that is, we wish to calculate

Pl = Z@ LS

Some types of evidence cannot be represented as findings. You may, for
example, receive a statement from someone that the chance of A being in
state a; is twice as high as for ap. This type of evidence is called likelihood
evidence. It is possible to treat this kind of evidence in Bayesian networks.
The preceding statement is then represented by the distribution (0.67,0.33),
and Theorem 2.2 still holds. However, because it is unclear what it means that
a likelihood statement is true, P(e) cannot be interpreted as the probability
of the evidence, and P(l, e) therefore has an unclear semantics. We will not

S P(4,B,C,4,£,G,H)
deal further with likelihood evidence. G

=Y P(A)P(H)P(B| A, H)P(C| A)P(d| B, H)P{f | B, Q:u@ 1c).
G
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In the right-hand product, only the last table contains & in its domain
and due to the distributive law (Section 1.4) we have

>N P(4,B,C.d,1,G,H)
G

= P(A)P(H)P(B| A, H)P(C| A)P(d| B, H)P(f| B,C) Mu PG __9 -
[

and we need only calculate 3", P(G | C). Actually, for each state ¢ of C, we
= 1; hence no calculations are necessary. We therefore get

have 3" P(G|c)

P(4,B,C,d,f,H)=) P(A,B,C,d, G H)
G

= P(A)P(H)P(B| A, H)P(C | A)P(d| B, H)P(f| B, C).

Next, we marginalize H out. Using the distributive law again, we get

> P(A,B,Cd, f,H)
H
= P(A)P(C|A)P(f|B,C)Y  P(H)P(B|A,H)P(d|B, H).
H

We multiply the three tables P(H), P(B| A, H), and P(d | B,H), and we

marginalize H out of the product. The result is a table T(d, B, A), and we
have

P(A,B,C,d, f) = P(A)P(C| A)P(f| B,C)T(d, B, A).

Finally, we calculate this product and marginalize B and C out of it.

Notice that we never work with a table of more than three variables (the
table produced by multiplying P(H), P(B| A, H), and P(d| B, H)) compared
to the five variables in P(A, B,C,d, f,G, H).

The method we just used is called variable elimination and can be de-
scribed in the following way: we start with a set 7" of tables, and whenever we
wish to marginalize a variable X, we take from 7 all tables with X in their
domains, calculate the product 0m them, marginalize X out of it, and place
the resulting table in 7T,

2.4 Graphical Models — Formal Languages for Model
Specification

Irom a mathematical point of view, the basic property of Bayesian networks
is the chain rule: a Bayesian network is a compact representation of the joint

H
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probability table over its universe. In this respect, a Bayesian network is one
type of compact representation among many others. However, there is more to
it-than this: From a knowledge engineering point of view, a Bayesian network
a.type of graphical model. The structure of the network is formulated in
‘a mﬁmﬁwﬁa communication language for which the language features have a
EB@F semantics, namely causality. This does not mean that “causality”
i easy concept. It may be very difficult to experience causality, and philo-
] 8.:% the concept is not fully understood. However, most often humans
communicate sensibly about causal relations in a knowledge domain. Fur-
rmore, the graphical specification also specifies the requirements for the
titative part of the model (the conditional probabilities). In Chapter 3,
extend the modeling language, and in Part IT we present other types of
Ho& models.
As Emﬁﬁwosma graphical models are communication languages. They con-
ist of a'qualitative part, where features from graph theory are used, and a
antitative part consisting of potentials, which are real-valued functions over
ets-of nodes from the graph; in Bayesian networks the potentials are condi-
1 bm._ probability tables. The graphical part specifies the kind of potentials
d their domains.
Qn@@?om_ models can be used for interpersonal communication: The
.mmmugo& specification is easy for humans to read, and it helps focus attention,
or example in a group working jointly on building a model. For interpersonal
ommunication, the semantics of the various graph-theoretic features must be
rather welldefined if misunderstandings are to be avoided.
- The next step in the use of graphical models has to do with communication
0 a computer. You wish to communicate a graphical model to a computer,
and the computer should be able to process the model and give answers to
various queries. In order to achieve this, the specification language must be
moﬂ.Emm% defined with a well-defined syntax and semantics.
~The first concern in constructing a graphical modeling language is to en-
sure that it is sufficiently welldefined so that it can be communicated to a
computer. This covers the m._.monmH part as well as the specification of po-
tentials. The next concern is the scope of the language: what is the range of
domains and tasks that you will be able to model with this language? The
final concern is tractability: do you have algorithms such that in reasonable
time the computer can process a model and query to provide answers?
 The Bayesian network is a sufficiently welldefined language, and behind
the graphical specification in the user interface, the computer systems for
- processing Bayesian networks have an alphanumeric specification language,
~ which for some systems is open to the user. Actually, the language for Bayesian
‘networks is a context-free language with a single context-sensitive aspect (no
‘directed cycles).
. The scope of the Bayesian network language is hard to define, but the
mmeEmm in the next chapter show that it has a very broad scope.
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Tractability is not a yes or no issue. As described in Chapter 4, there are
algorithms for probability updating in Bayesian networks, but basically prob-
ability updating is NP-hard. This means that some models have an updating

time exponential in the number of nodes.

On the other hand, the running times of the algorithms can be easily
calculated without actually running them. In Chapter 4 and Part II, we treat

complexity issues for the various graphical languages presented.

2.5 Summary

d-Separation in Causal Networks

Two distinct variables A and B in a causal network are d-separated if for all

paths between A and B, there is an intermediate variable ¥ (distinct from A
and B) such that either

¢ the connection is serial or diverging, and V is instantiated, or

» the connection is converging, and neither V nor any of V’s descendants
have received evidence.

Definition of Bayesian Networks

A Bayesian network consists of the following:

¢ There is & set of variables and a set of directed edges between variables.

® Fach variable has a finite set of mutually exclusive states.

¢ The variables together with the directed edges form an acyclic directed
graph (DAG).

» To each variable A with parents B,
probability table P(A| By,..., B,).

..., By, there is attached a conditional

The Chain Rule for Bayesian Networks

Let BN be a Bayesian network over If = {A1,...,Az}. Then BN specifies a
unique joint probability distribution P(i{) given by the product of all condi-
tional probability tables specified in BN:

PY) = Ewaﬂ | pa(4s)),

where pa(A;} are the parents of 4; in BN, and P(U) reflects the properties
of BN,

Admittance of d-Separation in Bayesian Networks

If A and B are d-separated in a Bayesian network with evidence e entered,
then P(A|B,e) = P(Ale).

Exercises 45

Hbmmnism Evidence

gt-e1,...,en be findings, and then

P(t,e) = [] P4s] pa(40) [T e
i=1 i=1
MQ{T& PU,e)

P(Ale) = P .

__Hw_m.w:omwmﬁrmnm_ Notes

he connection between causation and conditional independence was studied

Spohn (1980}, and later investigated with special focus on Bayesian net-
s.in (Pearl, 2000). The concepts of causal network, d-connection, and the
definition in Section 2.2.1 are due to Pearl (1986) and Verma (1987). A proof
at Bayesian networks admit d-separation can be found in (Pearl, 1988) or
(Latritzen, 1996). Geiger and Pearl (1988) proved that d-separation is the
trect criterion for directed graphical models, in the sense that for any DAG,
 probability distribution can be found for which the d-separation criterion is
und ‘and complete. Meek (1995) furthermore proved that for a given DAG,
the set of discrete probability distributions for which the d-separation cri-
on is not complete has measure zero. That is, given a random Bayesian
twork, there is almost no chance that it contains conditionally independent
ariables that cannot be read off the graph by d-separation. The method for
iscovering d-separation properties using ancestral graphs was first presented
n (Lauritzen et ol., 1990).

‘Bayesian networks have a long history in statistics, and can be traced
back at least to the work in (Minsky, 1963). In the first half of the 1980s
hey were introduced to the field of expert systems through work by Pear]
1982} and Spiegelhalter and Knill-Jones {1984). Some of the first real-world
pplications of Bayesian networks were Munin (Andreassen et al., 1989, 1992)
and Pathfinder (Heckerman et al., 1992). The basis for the inference method
resented in Section 2.3.4 originates from (D'Ambrosio, 1991) and was mod-
ed to the presented variable elimination in (Dechter, 1996). The fact that
nference is NP-hard was proved in (Cooper, 1987).

.7 Exercises

..m..u_mmwommm 2.1. To illustrate that simple rules cannot cope with uncertainty
reasoning, consider the following two cases:
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(i) I have an urn with a red ball and a white ball in it. If I add a red ball
and shake it, what is the certainty of drawing a red ball in one draw? If I
add a white ball instead, what is the certainty of drawing a red ball? If I .
combine the two actions, what is the certainty of drawing a red ball?

(ii) When shooting, I am more certain to hit the target if T close the left eye.
I am also more certain to hit the target if I close the right eye. What is
the combined certainty if I do both?

Exercise 2.2. Construct a causal network and follow the reasoning in the
following story. Mr. Holmes is working in his office when he receives a phone
call from his neighbor, who tells him that Holmes’ burglar alarm has gone off:
Convinced that a burglar has broken into his house, Holmes rushes to his car
and heads for home. On his way, he listens to the radio, and in the news it
is reported that there has been a small earthquake in the area. Knowing that
earthquakes have a tendency to turn on burglar alarms, he returns to work. .

" Fig. 2.19. Figure for Exercise 2.4.

Exercise 2.6. Consider the network in Figure 2.20. What are the minimal
t(s) of variables required to d-separate C and E (that is, sets of variables
for which no -proper subset d-separates C and E)? What are the minimal
s) of variables required to d-separate A and B? What are the maximal

set(s) of variables that d-separate C and E (that is, sets of variables for which
no proper superset d-separates C and E)? What are the maximal set(s) of

variables that d-separate A and B?

Exercise 2.3. Consider the Car Start Problem in Section 2.1.1 with the
causal network in Figure 2.1, and the following twist on the story: “I dis-
tinctly remember visiting the pump last night, so the fuel meter should be
reading full. Since this is not the case, either there must be a leak in the tank,
someone has stolen gasoline during the night, or the fuel meter is malfunc-
tioning. Sniffing the air I smell no gasoline, so I conclude that a thief has been
visiting last night or that the fuel meter is malfunctioning.” Alter the causal
network in Figure 2.1 to incorporate the above twist on the story. .

Exercise 2.4. In the graphs in Figures 2.18 and 2.19, determine which Swi-.
ables are d-separated from A.

Fig. 2.20. A causal network for Exercise 2.6.

Exercise 2.7. Consider the network in Figure 2.20. What is the Markov blan-
et of each variable? _

‘Exercise 2.8. Let A be a variable in a DAG. Assume that all variables in
‘s Markov blanket are instantiated. Show that A is d-separated from the
emaining uninstantiated variables.

Fig. 2.18. Figure for Exercise 2.4.

Exercise 2.9. Apply the procedure using the ancestral graph given in Sec-
tion 2.2.1 to determine whether A is d-separated from ¢ given B in the
‘network in Figure 2.19.

Exercise 2.5. For each pair of variables in the causal network in Figure 2.1,
state whether the variables can be d-separated, and if so which set(s) of vari-
ables that allow this.
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Exercise 2.10. Let Dy and D be DAGs over the same variables. The graph
Dy is an I-submap of Dy if all d-separation properties of D; also hold for Ds.
If D3 is also an I-submap of Dy, they are said to be I-equivalent. Which of
the four DAGs in Figure 2.21 are I-equivalent?

Fig. 2.21. Figure for Exercise 2.10.
Exercise 2.11, Let {A;,.

in a Bayesian network, and consider variable 4; with parents pal4;). Prove
that A; is d-separated from {A;,..., A;_1} \ pa(A;) given pa(A;)

Exercise 2.12. Consider the network in Figure 2.20. Which conditional prob-

ability tables must be specified to turn the graph into a Bayesian network?

Exercise 2.13. In Figure 2.22 the structure of a simple Bayesian network
is shown. The accompanying conditional probability tables are shown in Ta-
bles 2.5 and 2.6, and the prior probabilities for 4 are 0.9 and 0.1. Are 4 and
€' d-separated given B? Are A and C conditionally independent given B?

Fig. 2.22. A simple Bayesian network for Exercise 2.13.

A= a1 A= as
B=0nK 0.3 0.6
B=b 0.7 0.4

Table 2.5. P(B| A).

An} be a topological ordering of the variables
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A= a1 A= anz
B=n{{01;09) (0.1; 09
B =150(02; 0.8) {0.2; 0.8)

Table 2.6. P(C| A, B).

H..Bm.o_...wh.p. Consider the network in Figure 2.20. Using the chain rule, es-
tablish an expression for the joint distribution over the universe {4, B, C, D, E,
Use this expression to show that B and D are conditionally independent
mn& Q

ercise m Hm Prove that the probability distribution P(U) defined by the
aim’ HEm moH Bayesian networks is indeed a probability distribution.

E mH.Qmm > 2.16. Prove that the probability distribution P(I/) defined by the
hain rule for a Bayesian network BN reflects the conditional probabilities
et Hmma in BN.

Mxmwo—mm 2.17. Consider the Bayesian network from Exercise 2.13 and the
finding-e = (0,1) over A. What is P(B,C,e)?

%w?ﬁ% 2.18. What steps would be taken if variable elimination were used
o caleulate the probability table P(F | C = ¢1) for the network in Figure 2.207
Assuming that each variable has ten states, what is the maximum size of a
wEm ‘during the procedure?

Mxmwn_mm 2.19. Consider the DAG (a) in Exercise 2.10.

”.mrcé that P(B|A,C) = P(B| A).
"‘We have P(A) = (0.1,0.9) and the conditional probability tables in Ta-
‘ble 2.7. Calculate P(4, B,C).

ay 4z a1 a2
b1(0.2 0.3 |c1[0.5 0.6
bs (0.8 0.7| |c210.5 0.4
P(B[A) P(C|A)

Table 2.7. Conditional probability tables for Exercise 2.19.

m.qu.&.nmmm 2.20. ¥ Install an editor for Bayesian networks (a reference to a
list of systems can be found in the preface).

.m_.u.nmu.ommm 2.21. £ Construct a Bayesian network for Exercise 1.12.

-Exercise 2.22. £ Construct a Bayesian network to follow the reasoning from
Exercise 2.2. Use your own estimates of probabilities for the network.
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Exercise 2.23. £ Consider the Bayesian network in Figure 2.23 with condi-

tional probabilities given in Table 2.8. Use your system to investigate whether
A and C are independent.

OO0

Fig. 2.23. Figure for Exercise 2.23,

A=yes A=mno
b| 08 0.2 b1 by by By
b2| 0.1 0.5 C = yes|0.8 0.8 0.2 0.2
bs| 0.2 0.1 C=n0|0.2020808
bs| 0.1 0.2
P(B| A) P{C|B)

Table 2.8. Tables for Exercise 2.23.

Exercise 2.24. £ Use your system and Section 2.5 to perform the reasoning
in Section 2.1.2.

Building Models

he framework of Bayesian networks is a very efficient language for building
models of domains with inherent uncertainty. However, as can be seen from the
culations inSection 2.6, it is a tedious job to perform evidence transmission
even for very simple Bayesian networks. Fortunately, software tools that can
d w.”o. calculational job for us are available. In the rest of this book, we
assume that the reader has access to such a system (some URLs are given in
e vuomm.omv Therefore, we can start by concentrating on how to use Bayesian
networks in model building and defer a presentation of methods for probability
pdating to Chapter 4.
In Section 3.1, we examine through examples the considerations you may
o through when determining the structure of a Bayesian network model.
ction 3.2 gives examples of estimation of conditional probabilities. The ex-
Emm cover theoretically well-founded probabilities as well as probabilities
n WQS databases and purely subjective estimates. Section 3.3 introduces
us modeling tricks to use when the quantity of numbers to acquire is
rwhelming. Finally, Section 3.4 considers other types of queries that can
be answered by Bayesian networks besides standard probability updating.

3.1: Catching the Structure

The first thing to have in mind when organizing a Bayesian network model
is'that its purpose is to give estimates of certainties for events that are not
&Hmoz% observable (or observable only at an unaceeptable cost), and the pri-
mary task in model building is to identify these events. We call them hypothesis
events. The hypothesis events detected are then grouped into sets of mutually
exclusive and exhaustive events to form hypothesis variable.

. The next thing to have in mind is that in order to come up with a cer-
tainty estimate, we should provide some information channels, and the task
is'to identify the types of achievable information that may reveal something
about the hypothesis variables. These types of information are grouped into
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information variables, and a typical piece of information is a statement that a
certain variable is in a particular state, but softer statements are also allowed.

Having identified the variables for the model, the next thing will be to
establish the directed links for a causal network.

3.1.1 Milk Test i E m_.mm. 3.2. A m.mdmu,am.% model for the milk test.

Milk from a cow may be infected. To detect whether the milk is in-
fected, you have a test, which may give either a positive or a negative
test result. The test is not perfect. It may give a positive result on
clean milk as well as a negative result on infected milk.

Hm we wsoé that the milk on day four is infected, then this can be used
.moH.mom.mﬁ the probability that the milk will be Emmoﬁma on day five. This
scast will not be improved by knowing that the milk was not infected on
three. For various diseases, such an assumption will not be valid. Some
&mmm.mmm have a natural span of time. For example, if I have the flu today but
w Fm@:w% yesterday, then I will most probably have the flu the day after
morrow. On the other hand, if I have had the flu for four days, then there
mooa ‘chance that I will be cured the day after tomorrow. If the Markov
Eovmﬁ% of Figure 3.2 does not reflect reality, the model should be changed.
For example, it may be argued that you also need to go an extra day back,
and the model will be as in Figure 3.3.

T o e D
D @ @ @ B @ 6

Fig. 3.3. A seven-day model with a two-day memory of infection.

We have two hypothesis events: milk infected and milk not infected, and be-
cause they are mutually exclusive and exhaustive, they are grouped into the
variable Infected? with the states yes and no. A possible information source is
the test results, which can be either positive or negative. For this, we establish
the variable Test with states pos and neg. .

The causal direction between the two variables is from Infected? to Test

(see Figure 3.1).

Fig. 3.1. The Bayesian network for the milk test.

Warning: Certainly, no sensible person will claim that a positive test result
may infect the milk. However, our reasoning is often performed in the diagnos-
tic direction, and in more complex situations you may therefore be tempted
to wrongly direct the link from “symptom” to “disease.”

From one day to another, the state of the milk can change. Cows with
infected milk wilt heal over time, and a clean cow has a risk of having infected
milk the next day. Now, imagine that the farmer performs the test each day.
After a week, he has not only the current test result but also the six previous
test results. For each day, we have a model like the one in Figure 3.1. These
seven models should be connected such that past knowledge can be used
for the current conclusion. A natural way would be to let the state of the
milk yesterday have an impact on the state today. This yields the model in
Figure 3.2.

The model in Figure 3.2 contains a set of r&ams assumptions, which can
be read from the d-separation properties.

First, the model assumes the Markov property: if we know the present,
then the past has no influence on the future. In the language of d-separation,
the assumption is that, for example, Inf;_, is d-separated from Inf,,; given

Notice that although we in practice will never know the state of the in-
+ fection nodes, it makes a difference whether the memory links are included.
~In the reasoning, we cannot exploit knowledge of the exact state of the previ-
“ous infection node, but we may use a probability distribution based on a test
“result,
. The second hidden assumption has to do with the test. Any two test
nodes are d-separated given any infection node on the path. This means that
“the fault probability of the test is independent of whether it was previously
“correct. In other words, the fact that the test was wrong yesterday has no
" influence on whether the test will be correct today. If this does not reflect the
" behavior of the test, you may, for example, include its performance yesterday
~in the model. This is done in Figure 3.4.
B " A minor digression on modeling of tests: It is good to have as a rule that
“no test is perfect. Unless you explicitly know otherwise, a test should always
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Fig. 3.4. A seven-day model with two-day memory for infection and a one-day -
memory of correctness of test.
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- 'Here we have five hypothesis events Cold? {no, yes} and Angina? {no, mild,
evere}. The hypothesis events must be organized into a set of variables with
.Eagm,:% exclusive and exhaustive states. We may use the variables indicated
teviously, but we may also use only one variable Sick? with states {no, cold,
:& angina, severe angina}. In the latter case, suffering from both cold and
angina is excluded as a possibility. We choose to use the two variables Cold?
:.ﬁﬁam

e information variables are Sore Throat? {no, yes}, See Spots? {no,
mﬁa “Fever? {no, low, high}. The variable Fever? causes a problem be-
ause it .HmmE\ is cohtinuous. In Section 3.3.8, we give methods on how to deal
continilous variables.

Now it is time to consider the causal structure between the variables. We
need niot ‘worry about how information is transmitted through the network.
.H_Wo_ o&% thing to worry about is which variables have a direct causal impact
on other variables.

n this example, we have that Cold? has a causal impact on Sore Throat?
d Fever? while Angina? has an impact on all information variables. The

be given a positive probability of false positives as well as false negatives.
This is not all, though. You should also take the mechanism for false test -
results into account. Consider for example an HIV test with a probability of
false positives of 107°, and assume that a person has received a positive test
result. Now, you may rmam the option of repeating the test, but will this be
of any help? It will depend on the mechanisms that cause the test to give
a wrong result. If a test is positive because this particular person’s blood is
composed so that it will produce a positive test result regardless of a positive -
HIV infection, then a repeated test will not provide new information. If, on
the other hand, the experiment is such that it now and then goes wrong, then
a repeated test may be worthwhile and it will be advisable to repeat the test
before the “verdict” is passed (in case the second test result is negative, a third
test may be advisable}. Models for these two types of failure mechanisms are
shown in Figure 3.5.

(a} (b)
Fig. 3.5. Model (a) illustrates the scenario in which a repeated test may provide

new information, and model (b) shows the situation in which repeating a test always
produces the same result.

Sore Threat?

See Spots?

Fig. 3.6. A model for Cold? or Angina?.

-~ The next thing to check is whether the conditional independences laid
down in the model correspond to reality. For example, the model in Figure 3.6
yields that if we know the state of Angina?, then seeing spots will not have
an‘impact on the expectation either for Fever? or for Sore Throat?. If we do
1ot agree, we may introduce a link from See Spots? to, for example, Fever?.
m.oH now, we accept the conditional independences given by the model.

wHw Insemination

. Six weeks after insemination of a cow, you can perform two tests to

. determine whether the cow is pregnant: a blood test and a urine test.

ina?
3.1.2 Cold or Angina? Following the method from Section 3.1.1, we construct a model as in Fig-

ure 3.7. The variable Pr {yesno} represents a possible pregnancy, and BT
{pos,neg} and UT {pos,neg} represent the results of the blood test and the
urine test, respectively.

- Next, we will analyze the conditional independences stated by the model.
ém ask the expert whether it is correct that the outcomes of the two tests

I wake up in the morning with a sore throat. It may be the beginning
of a cold or I may suffer from angina (inflammation of the throat), If
it is severe angina, I will not go to work. To gain more insight, I can
take my temperature, and I can look down my throat for yellow spots.
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%Emm are not (conditionally) independent as opposed to the situation in
e current model. Some standard situations are illustrated in Figure 3.9.

Fig. 3.7. A model for pregnancy.

are independent given Pr. More specifically, assume that we know the cow is
pregnant. From this, we infer some expectations for the test results. N ow, if we
get a negative test result from the blood test, will this change our expectation
for the urine test? The experts say that it will, and we must conclude that
the model is not a proper reflection of reality. .
There are several ways to change the model. You might, for example,
introduce a link between the two test nodes, but there is no natural direction.
To find out what to do, you must study the process more carefully, and it turns
out that what the two tests actually do is to trace indications of hormonal
changes in the cow. A more-refined mode will involve a variable H. o, reflecting
whether hormonal changes have taken place in the cow, and the model will

be as in Figure 3.8.

Fig. 3.8. A more correct model for pregnancy. Both the blood test {BT) and the
urine test (U/T) measure the hormonal state {Ho).

F @.”..mxmavmmm in which an intermediate variable C “resolves” undirected de-
encies. In examples (a) and (b), A and B are not independent, whereas A and
¢ ot independent given D in examples (¢) and {d).

ﬁ..P Simplified Poker Game

[ this poker game, each player receives three cards and is allowed
wo rounds of changing cards. In the first round, you may discard any
nimber of cards from your hand and get replacements from the pack
of cards. In the second round, you may discard at most two cards.
After the two rounds of card changing, I am interested in an estimate
‘of my opponent’s hand.

he hypothesis events are the various types of hands in the game. They may
¢ ‘classified in the following way {in increasing rank): nothing special, 1 ace,
f the same value, 2 aces, flush (3 of a suit), straight (3 of consecutive
alue), 3 of the same value, straight flush. Ambiguities are resolved according
rank. This is, of course, a simplification, but it is often necessary to do so
‘modeling. The hypothesis events are collected into one hypothesis variable
H: (opponent’s hand) with the preceding classes as states.
The only information to acquire is the number of cards the player discards
‘the two rounds. Therefore, the information variables are FC (first change)
with states 0, 1, 2, 3 and SC (second change) with states 0, 1, 2. By saying
his; we are making an approximation again. The information on the cards
you have seen is relevant for your opponent’s hand. If, for example, you have
en three aces, then he cannot have two aces.
A causal structure for the information variables and the hypathesis variable
ould be as in Figure 3.10. However, this structure will leave us with no clue
a5 to how to specify the probabilities.

For the model in Figure 3.8, it does not hold that BT and /T are indepen-
dent given Pr. The model states that BT and UT are independent given Ho
{which should be checked). If the model in Figure 3.7 is used for diagnosing a
possible pregnancy, a negative outcome of both the blood test and the urine
test will be counted as two independent pieces of evidence and therefore over-
estimate the probability for the insemination to have failed (see Exercise 3.8).

In the model in Figure 3.8, we have introduced the variable Ho, which is
neither a hypothesis variable nor an information variable. Such variables are
called mediating variebles. Mediating variables are often introduced when two
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Fig. 3.10. An oversimplified structure for the poker game. The variables are FC
{first change}, SC (second change), and OH {opponent’s hand).

What we need are mediating variables describing the opponent’s hands in'
the process: the initial hand OH@ and the hand OHI after the first nrmEWm of.

cards. The causal structure will then be as in Figure 3.11.

e

Fig. 3.11. A structure for the poker game. The two mediating variables QOH and
OH1 are introduced. OH2 is the variable for my opponent’s final hand.

To deterntine the states of OHO and OHI, we must produce a classification
that is relevant for determining the states of the children (FC and OH1I,
say). We may let OHO and OHI have the states nothing special, 1 ace, 2
of consecutive value, 2 of a suit, 2 of the same value, 2 of a suit and 2 of
consecutive value, 2 of a suit and 2 of the same value, 2 of consecutive value
and 2 of the same value, flush, straight, 3 of the same value, straight flush.

We defer further discussion of the classification to the section on specifying
the probabilities (Section 3.2).

3.1.5 Naive Bayes Models

In the previous sections we saw examples of Bayesian networks that were
designed to capture the independence properties in the domains being mod-
eled. However, the first Bayesian diagnostic systems were actually constructed
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..wmmmm on much simpler models, namely so-called naive Bayes models. In a

naive Bayes model the information variables are assumed to be independent
givén the hypothesis variable (see Figure 3.12).

Fig. 8.12. A naive Bayes model.

Using this assumption, the conditional probability distribution for the hy-
pothésis variable given the information variables is very easy to caleulate, and
o<mam.z process (from model specification to probability updating) can be
mmEEmENma as follows:

.ro_“ gm possible diseases be collected into one hypothesis variable H with
- prior probability P(H).

For all information variables I, acquire the conditional probability distri-
“bution P(I| H) (the Lkelihood of H given I).

‘For any set of observations fy,..., f, on the variables I, ..., I,, calculate
- the product P(f1,...,fn|H) = P(fi|H) - P(f21 H)--- P{(fn| H). This
' product is also called the likelihood for H given f1,..., f». The posterior
" probability for H is then calculated as

P(Hf1y.. ., fn) = uP(H)P(f1,..., fa| H)

= uP(H) [] P(5:] ),

i=1

(3.1)

- where p=1/P(f1,...,fa) is a normalization constant.

” What is particularly attractive with the calculation in equation (3.1) is that
“the time complexity is linear in the number of information vartables, and that

each term in the product involves only two numbers (assuming that the hy-
pothesis variable is binary), one for P(f;| H = y) and one for P(f;| H = n).

~On the other hand, as we also saw from the insemination example, the in-
~dependence assumption need not hold, and if the model is used anyway, the
..conclusions may be misleading. However, in certain application areas (such as
" diagnosis) the naive Bayes model has been shown to provide very good per-
- formance, even when the independence assumption is violated. This is partly
- due to the fact that for many diagnostic problems we are interested only in

identifying the most probable disease. In other words, if the conditional ihde-

- pendence assumption does not change which state has the highest probability,

then the naive Bayes model can be used without affecting the performance of

- the system. We shall return to these models in Section 8.1.
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3.1.6 Causality

In the examples presented in the previous section, there was no problem in
establishing the links and their directions. However, you cannot expect this
part of the modeling always to go smoothly.

First, causal relations are not always obvious — recall the debates on
whether smoking causes lung cancer or whether a person’s sex has an im-
pact on his/her ability in the technical sciences. Furthermore, causality is not
a well-understood concept. Is a causal relation a property of the real world,
or rather, is it a concept in our minds helping us to organize our perception of
the world? For now, we make only one point about this issue, namely that in
some situations you may be able to infer information about causality based on
actions that change the state of the world. For example, assume that you are
confronted with two correlated variables A and B, but you cannot determine
a direction. If you observe the state of A, you will change your belief of B
and vice versa. A good test then is to imagine that some outside agent fizes
the state of A. If this does not make you change your belief of B, then A is
not a cause of B. On the other hand, if this imagined test indicates no causal

arrow in any direction, then you should look for an event that has a caunsal

impact on both A and B. If € is such a candidate, then check whether 4 and
B become independent given C (see Figure 3.9). We shall briefly return to the
issue of discovering causal relations in Section 7.1, where we discuss methods
for learning Bayesian networks from data.

3.2 Determining the Conditional Probabilities

The numbers {conditional probabilities) that you need to specify for a Bayesian -

network are called the parameters of the network. The basis for the conditional
probabilities can have an epistemological status ranging from well-founded
theory over frequencies in a database to subjective estimates. We will give
examples of each type.

3.2.1 Milk Test

For the milk test in Figure 3.1, we need P(Infected?) and P(Test| Infected?).
The retailer of the test should provide P(Test| Infected?). Any producer of
such kinds of tests is supposed to have performed a series of tests yield-
ing the relevant numbers, namely the frequency of false positives, P(Test
pos| Infected? = no), and the frequency of false negatives, P(Test = neg| In-
fected? = yes). Let both numbers be 0.01.

The numbers provided by the retailer are not sufficient for the user of the
test. In the case of a positive test result, the milk may still be clean, and to
come up with a probability we need the prior probabilities P(Infected?).
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_An estimate of the prior probability would in this case be the daily fre-
ﬁmsou\ X of infected milk for each cow at the particular farm. Estimating A
1ay be a bit tricky because the farmer may have no experience with actually
ing the milk from each specific cow with a perfect test. Assume that this
icular farm has 50 cows, and that the milk from all cows is poured into
co A..m:wmn ‘and transported to the dairy, which tests the milk with a very
.wwmﬁmm test. The farmer’s experience is that on average the dairy reports his
milk to be infected once a month.

Now we must make various assumptions. The first assumption could be
that the daily X is the same for all cows. The next assumption could be that
Emm&m of infected milk for the cows in the farm are independent. This
elds & ooE-ﬂOmmEm model with P(Infected? = yes) = A. The information we
we is that if we toss fifty coins at the same time, the frequency of at least
one of %@B coming up with Infected? = yes is 1 out of 30. That is, in 29 days
out 6f 30, nione of the cows are infected and the probability that all the cows
are clean on a given day is therefore 29/30. Moreover, from the assumption of
utbreaks being independent we also have that the probability of all 50

cows ,UmEm clean on a given day is (1 — A)°0:
_.Hﬁ.%mOV = A”_. - vﬁv mee AH - \/SV = ﬁ_. - ,yumc.

Combining all this, we now have

P(Inf,,.

29

3380 _
(1-2) =30’

dimnr wmem the estimate

0.0N
»L.. ﬂwv no.%oﬂ

" This completes the model, and next you can use a computer system to
caleulate posterior probabilities. The interesting question for this situation
ie, if we get a positive test result, what is the probability that the milk is
infected? This is left as an exercise (see Exercise 3.5).

' For the seven-day model in Figure 3.2, we also need P(Inf;,, | Inf;). There
are two numbers to estimate: she risk of becoming infected and the chance of
being cured. These numbers must be based on experience. For the sake of the
example, let the risk of becoming infected be 0.0002 and the chance of being
«cured 0.3. This gives the numbers in Table 3.1.

" For the seven-day model with a two-day memory of infection (Figure 3.3),
we need P(Inf,., | Inf;, Inf;_,). If we assume that the risk of being infected is
‘the same as before, that the infection always lasts at least two days, and that
after this the chance of being cured is 0.4 each of the following days, then the
‘numbers are as in Table 3.2 (see Exercise 3.10).
. For the seven-day model with two-day memory of infection as well as
correctness of test (Figure 3.4}, we furthermore need P(Test;+: | Inf;, Infiy,
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Inf,
yes no
yes! 0.7 0.0002
s 1503 0.9998

Table 3.1. P(Inf,,, | Inf).

Inf,_,

yes no

yes| 0.6 1
Infi o 10,0002 0.0002

Table 3.2. P(Inf,,, = yes| Inf;, Inf,_,).

Test;). If we assume that a correct test has a 99.9% chance of being correet-

next time, and an incorrect test has a 90% risk of also being incorrect next
time, we can calculate all required numbers for the four-dimensional table,
However, by introducing mediating variables, Cor;, the specification of num-
bers could be easier, and the tables would be smaller. Figure 3.13 shows how
the model could be simplified.

Fig. 3.13. A seven-day model with a two-day memory for infection and a one-day
memory of correctness of test.

With the preceding assumptions, the required tables are as in Table 3.3.

3.2.2 Stud Farm

The stallion Brian has sired Dorothy on the mare Ann and sired Eric
on the mare Cecily. Dorothy and Fred are the parents of Henry, and
Eric has sired Irene on Gwenn. Ann is the mother of both Fred and
Gwenn, but their fathers are in no way related. The colt John with
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Inf. Cori_1

yes no yes no

_ pos| 1 O yes|0.999 0.1
Testi regl 0 11 |™ 1o |0.001 0.0

Em..u.w.. The conditional probability distributions P{Cor; = yes| Inf,,
nd P(Test; = pos| Inf;, Cori—1).

the parents Henry and Irene has been born recently; unfortunately, it
urns out that John suffers from a life-threatening hereditary disease
carried by a recessive gene. The disease is so serious that John is
displaced instantly, and since the stud farm wants the gene out of
sroduction, Henry and Irene are taken out of breeding. What are the

robabilities for the remaining horses to be carriers of the unwanted
ene?

(=gl

o_mm.wm&omu.n& structure for the horses is given in Figure 3.14.

Fig. 3.14. Genealogical structure for the horses in the stud farm.

" The only information variable is John. Before the information on John is
acquired, he may have three genotypes: he may be sick {0a), a carrier (ad),
or he may be pure (A4). The hypothesis events are the genotypes of all other
horses in the stud farm.,
The conditional probabilities for inheritance are both empirically and the-
oretically welistudied, and the probabilities are as shown in Table 3.4,

- The inheritance tables could be as in Table 3.4. However, for all horses
except John, we have additional knowledge. Since they are in production,
they cannot be of type aa. A way to incorporate this would be to build a
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aa aAd AA
aa | (1,0, 0) (0.5, 0.5, 0) {0, 1, 0)
aA {(0.5, 0.5, 0) (0.25, 0.5, 0.25) (0, 0.5, 0.5)
AA| (0,1, 0) (0, 0.5, 0.5) (0,0,1)

Table 3.4. P{Child| Father, Mother) for genetic inheritance. The numbers (a
are the child’s probabilities for {(aa, ad, 4A).

s,

t]

Bayesian network in which all inheritance is modeled in the same way and
afterward enter the findings that all horses but John are not aa. It is also
possible to calculate the conditional probabilities directly. If we first consider

inheritance from parents that may be only of genotype AA or a4, we get
Table 3.5.

aA AA
aA |(0.35, 0.5, 0.25) (0, 6.5, 0.5)
AAl (0,05, 0.5) 0,0,1)

Table 3.5. P(Child| Father, Mother) when the parents are not sick.

The table for John is as in Table 3.5. For the other horses, we know
that as is impossible. This is taken care of by removing the state ee from
the distribution and normalizing the remaining distribution. For example,
P(Child| aA, aA) = (0.25,0.5,0.25), but since aa is impossible, we get the dis-
tribution (0, 0.5,0.25), which is normalized to (0,0.67,0.33). The fina] result
is shown in Table 3.6.

ad AA
aA }{0.67, 0.33) (0.5, 0.5)
AAl (05,05) (0,1)

Table 3.6. P(Child| Father, Mother} with ea removed.

In order to deal with Fred and Gwenn, we introduce the two unknown
fathers I and K as mediating variables and assume that they are not sick.
For the horses at the top of the network, we specify prior probabilities. This
will be an estimate of the frequency of the unwanted gene, and there is no

theoretical way to derive it. Let us assume that the frequency is such that the

prior belief of a horse being a carrier is 0.01.
In Figure 3.15, the final model with initial probabilities is shown; Fig-
ure 3.16 gives the posterior probabilities given that John is ag; and in Fig-

")
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ure 3.17 you can see the posterior probabilities with the prior beliefs at the
8@ ‘changed to 0.0001. Note that the sensitivity to the prior beliefs is very
3 mz for the horses whose posterior probability for carrier is much greater
in-0, for instance in the cases of Ann and Brian.
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Fig. 8.15. The stud farm model with initial probabilities.
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Fig. 3.16. Stud farm probabilities given that John is sick.
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.- These strategies seem to be the most rational. However, deterministic
strategies in games do not always work, since they give your opponent valuable
information about your hand. A good strategy should therefore be random
wther than deterministic. Sometimes you may, for example, change nothing
go:mw you have a weak hand. Some people call it bluff, but it is really a

i B Ann I . grian ] gy 4

3 Carner TORGOUHES 3G Cueveer SR 37,48 Carrier Q.02 Carrier
i Pure . WERED 37D Pueg 0 HEUHORNNZ.S4 Pure T Py SRS Sure

’ / i:Mww.ii/ s \.
N ﬁﬁ

B /- B oty EA g W Q
S R TR R e 35 wwﬁ_z ay of increasing your opponent’s uncertainty no matter what you do.
/ ‘ AN The" remaining probabilities to specify are P{OH0), P(OHI| OHO, FC),
\ | N and P(OH?2 | OH1, 5C).
— E,Q%iémw EEE S )

RS Carer
800 Purs

he Huuo_um_un;w. Distribution P(OHO0)

m.mawﬁm_m are (no, 1 a, 2 cons, 25, 2 v, fl, st, 8 v, sfl}, and through various

- m.moﬁgmﬁm& combinatorial calculations, the prior probability distribution
8 Eﬁm mm wﬂé und to be P(OHO) = (0.1569,0.0765,0.0635, 0.4447, 0.1694, 0.0494, 0.0353,

.0024,0.0024). For example, in order to determine the probability P{OH0 =
we first caleulate the number of different ways in which we can obtain a
straight: by disregarding permutations of the three cards, we get 52-4 -4 by
stting ka2 be a straight. However, since we do not want to include straight
flushes, we subtract the number of ways (52) in which we can obtain a straight
flush (again disregarding permutations), and finally we divide by the number
f ways to draw three cards out of 52 cards (the latter is equal to the binomial

Fig. 3.17. Stud farm probabilities with prior probabilities for top variables changed
to (0.0001, 0.9999}.

3.2.3 Poker Game

In the stud farm example, the conditional probabilities were established
mainly through theoretical considerations. This should also be attempted for
the model of the poker game developed in Section 3.1.4, but it cannot be
carried through entirely.

Consider for example P{FC| OH(). It is not possible to give probabilities
that are valid for any opponent. It is heavily dependent on the opponent’s
insight, psychology, and game strategy. We will assume the following strategy:

5244~ 52
(3

"he Probability Distribution P(OH1} OHO, FC)

P(OHO = st) = = 0.0353.

Due to the logical links between OHO and FC, it is sufficient to consider only
nine out of the possible 36 parent configurations, namely (no, 3}, ({ a, 2),
(2 cons, 1), (25, 1), (2v, 1), (A, ), (st, 0), (3 v 0), (sf, ). The last four
are obvious. In Table 3.7, the results of the approximate combinatorial calcu-
lations are given.

.. The probabilities for the remaining parent configurations may be whatever
-is convenient, so put, for example, P(OHI| 8 v, 1} =(1,0,...,0).

s If nothing special (no), then change 3.

e If1ace (1 a), then keep the ace.

o If 2 of consecutive value (2 cons), 2 of a suit (2 s), or 2 of the same value
(2 v), then discard the third card.

¢ If 2 of a suit and 2 of consecutive value, then keep 2 of a suit (this strategy
could be substituted by a random strategy for keeping either 2 of a suit
or 2 of consecutive value).

e If 2 of a suit and 2 of the same value or 2 of consecutive value and 2 of
the same value, then keep the 2 of the same value.

o If flush (fi), straight (s}, 3 of the same value (& v), or straight flush (sfl)
then keep it.

The Probability Distribution P(OH2| OH1, SC)

‘First, a table P(OH2' | OH1, SC) similar (but not identical in the numbers)
‘to Table 3.7 can be calculated. However, the states of OH?2' are not the ones
we are interested in. We are interested in the walue of the hand, and a state
such as 2 cons is of no value unless one of them is an ace. Therefore, the
probabilities for the states of OH?2' are transformed to probabilities for OH2.
For the transformation, the following rules are used:

Based on the preceding strategy, a logical link between FC and OHO is estab-
lished. Note that the strategy makes the states for combined hands redundant.
They play no role, and therefore we remove them.

The strategy for P(SC} OHI) is the same except that in the case of no
only 2 cards are discarded.

3



(OHO, FC)

(no, 3) (1 a, 2) (2 cons, 1) (2, 1) (2 v, 1)

no 0.1583 0 0 0 0
la 00534 0.1814 0 0 0
2 cons| 0.0635 0.0681 0.3470 0 0
2s 104659 04796 0.3674 0.6224 0
OH12v [0.1694 0.1738 0.1224 0.1224 0.9592
fi 0.0494 0.0536 0 02143 0
st 0.0353 0.0383 0.1632 0.0307 0
3v 10,0024 0.0026 0 0 0.0408
sfl 0.0024 0.0026 0 0.0102 0

Table 3.7. P(GHI| OHO, FC) for the nonobvious parent configurations.

1
la=1a+ m@ cons + 2 8),

no = ne + mmw cons + 2 s).

The probabilities of 2 ¢ are calculated specifically. The resulting probabilities

are given in Table 3.8.

{OH1, Sc)

(no, 2) (1a, 2) (2cons, 1) {25, 1) (2, b))

no | 0.5613 0 0.5903 0.5121 0

I a| 0.1570 0.2425 0.1181 0.1024 o
22101757 0.0667 0.1154 0.1154 0.8838
OHEZ 2 o} 0.0055 (.1145 0.0096 0.0096 0.0736
Al 10.0559 0.0559 0 0.2188 0

st 10.0392 0.0392 0.1666 0.0313 0

& 2] 0.0027 0.0027 0 0 0.0426

sfl 10.0027 0.0027 0 0.0164 0

Table 3.8. P(OH2| OH1, SC) for the nonobvious configurations.

Using a model such as the one in Figure 3.11 and with the conditional
probability tables specified in this section, we have established a model for
assisting a (novice) poker player. However, if my opponent knows that I use
the system, he can change cards in such a way that affects my estimate of his
hand.

3.2.4 Transmission of Symbol Strings

A language L over 2 symbols (a, b) is transmitted through a channel.
Each word is surrounded by the delimiter symbol e. In the transmis-
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- -sion some characters may be corrupted by noise and be coufused with
-others,
A five-letter word is transmitted. Give a model that can determine the
‘probabilities for the transmitted symbols given the received symbols.
m_"nﬂo.mﬂw hypothesis variables T, ... , L5 with states a, b and five informa-
variables Ry,..., Rs with states a, b, ¢. There is a causal relation from T;

Furthermore, there may also be a relation from TitoTip{i=1,...,4)
ding that ‘certain pairs of symbols are more likely to occur than oth-
rs; You could also consider more-involved relations from pairs of symbols to
mbols, - but for now we refrain from doing that. The structure is given in

pure 3.18.

g. 3.18. A model for symbol transmission. 7}
he symbols received.

are the symbols transmitted; R;

”H..mm conditional probabilities can be established through experience. The
babilities P(R; | 7;) will be based on statistics describing the frequencies
onfusion. Let Table 3.9 be the result.

T=gT=b
0.80 0.15
0.10 0.80
0.10 0.05

=i i

Il
O o8

Table 3.9. P(R|T) under transmission.

You may obtain the probabilities P(Ti+1|T;) by investigating the five-
etter words in L. What is the frequency of the first letter? What is the
requency of the second letter given that the first letter is a? You continue to
lo this for each letter. You can refine this frequency analysis by also taking
the frequencies of the words into consideration. Let Table 3.10 be the result
f a frequency analysis.
~“You can calculate the required probabilities from Table 3.10 using the
fundamental rule. The prior probabilities for T} are (0.5, 0.5), and P(T3,T;) is
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First 2 Last 3 letters

letters| aaa aab aba abb baa bab bba bbb
aa [0.017 0.021 0.019 0.019 0.045 0.068 0.045 0.068
ab [0.033 0.040 0.037 0.038 0.011 0.016 .010 0.015
ba 10.011 0.014 0.010 0.010 0.031 0.046 0.031 0.045
bb |0.050 0.060 0.656 0.057 0.016 0.023 0.015 0.023

8.2.5 Cold or Angina?

The:estimation of the conditional probabilities for the example introduced
n mmoSon 3.1.2 has a very subjective flavor based on my own experience
colds -and anginas. I estimate the following probabilities: P(Cold?),
P({Angina?), P(See Spots?| Anginaf), P(Fever?| Cold?, Angina?), P(Sore Th
Cold?, Angina?).

Because in the morning I do not recall having been chilly yesterday, the
prior waov.mg:s% P(Cold?) and P(Angina?) are my subjective recollections of
s often I wake up in the morning with a cold or with an angina. Because cold
nore frequent than angina, I put P(Cold?) = (0.97,0.03) and P({Angina?) =
0.993,0.005, 0. 002); the order of the states are taken from Section 3.1.2.
Without angina or with mild angina, I will not see spots. With severe
gina, I sﬁzE expect to see spots, but I may not. I put P(See Spots?| An
ml severe) = (0.1,0.9).

Table 3.10. Frequencies of five-letter words in L. The word abaab, for mHmHsEm
has frequency 0.040.

achieved by adding the elements in each row. Table 3.11 gives two oozmm.aoum
probabilities.

a b a b
0.6 04| |ai0.24 0.74
0.4 0.6| [b/0.76 0.26
P2 |Th) P(T3|T2)

o £

guffer from neither a cold nor angina, I have a background probability
ofi0.05 of having a sore throat in the morning; this background probability
covers everything other than cold and angina that may result in a sore throat.
“cold as well as angina may give me a sore throat. If I only have a cold, the
probability of a sore throat is 0.4. If I have mild angina, the probability of a
sore throat is 0.7, and in the case of severe angina, I will certainly have a sore
hroat. What if I have both a cold and mild angina? I do not have sufficient
xperience to come up with a reliable estimate. Instead, I can use the two
onditional probabilities from before: out of 100 mornings, I will wake up five
mornings with a “background produced” sore throat. Qut of the remaining 95
mornings, the cold yields a sore throat in 40% of them, that is, 38 mornings.
ut of the remaining 57 mornings, mild angina will cause a sore throat in
ﬂoﬁu of them: 39.9 mornings. In total, if I have both mild angina and a cold, I
il have a sore throat in 82.9 mornings out of 100. The number 82.9 indicates
n unjustified precision, and for psychological reasons we set the probability
0 0.85. In Section 3.3.2 on “noisy-or,” we give a systematic treatment of this
method of estimating probabilities. The full table for P(SoreThroat? | Cold?,
ham@;a ?) is given in Table 3.12. It is left as an exercise to complete the Bom&

Table 3.11. Two conditional probabilities for five-letter words in L.

An alternative model would be to have a hypothesis variable, Word, wit
32 states and with Table 3.10 as prior probabilities (see Figure 3.19).

Fig. 3.19. An alternative model for symbol transmission. Weord is the set of possible’
transmitted words.

This is manageable because of the small number of five-letter words over’
{a,b}; but if the alphabet had 24 symbols, and if six-letter words were con-
sidered, the number of states in Word would become intractably large. On
the other hand, the model of Figure 3.18 may be too simple to catch the”
dependencies in Table 3.10, so the task really is to analyze the table in order’
to find the simplest structure describing it. There are methods for doing this,
and we return to this topic in Chapter 7.

Angina? = no Angina? = mild Angina? = severe
Cold? = no 0.05 0.7 1
Cold? = yes 0.4 0.85 1

Table 3.12. P(Sore Throat? = yes| Cold?, Anginaf).
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3.2.6 Why Causal Networks?

As mentioned previously, the structure of a Bayesian network need not reflect
cause-effect relations. The only requirement is that the d-separation proper-
ties of the network hold for the domain modeled. There are, however, good

reasons to strive for causal networks. The model in Figure 3.20 can be used:

to illustrate some of the points. We have a disease Dis and two tests, Ts and

Tt

Fig. 3.20. A model for a disease with two tests.

When diagnosing, you usually reason opposite to the directions of the

arrows in Figure 3.20, and trained physicians are usually inclined to provide

conditional probabilities in the diagnostic direction. A model reflecting ﬂEm

might look like the one in Figure 3.21 a).

&

Fig. 3.21. Diagnostic models for the situation in Figure 3.20: {a) with a wrong
independence, (b) with no (conditional) independence.

The model in Figure 3.21(a) is not correct. According to this model,
and Tt are independent (which is not the case in Figure 3.20), and there is
no way to correct it by specifying the potentials in a sophisticated manner.
To correct the model, you must add some extra structure making Ts and Tt
dependent. You may, for example, introduce a link from Ts to T%, as is done
in Figure 3.21(b). Therefore, to get a correct model, it is not sufficient to
acquire P(Dis| T's, Tt} together with the “priors” P(Ts) and P(Tt). This also
illustrates another point, namely that a correct model of a causal domain is
minimal with respect to links. In other words, if for some reason you wish to

Ts .
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‘epresent a causal relation with a link directed opposite to the causal direction,
hen the total number of links can not decrease, and most likely it will increase.
The model in Figure 3.20 has another advantage over the models in Fig-
321, namely that the conditional probabilities P (Ts| Dis) and P(Tt| Dis)
iore stable than the conditional probabilities specified for the models in
¢3.21. The conditional probabilities for Figure 3.20 reflect general prop-
5 of the relation between diseases and tests, and they are the ones that
a1 ﬁmmogwma of nmmﬂm can wsvwmw whereas ﬁﬁ ng&ﬁow& ﬁﬂovwgvﬂmm for

&EmEm Assume, mOa example, gmﬁ for the model in Figure 3.20, we can
ire oE% the potentials P(Dis| Ts), P(Dis| Tt), P(Ts), and P(Tt). Us-
ayes’ rule on P(Dis| Ts) and P(Ts), we get P(Dis) and P({Ts| Dis}). The
same can be done with P(Dis| Tt) and P(Tt). If the two calculations of P(Dis)
give the same result, we have the required potentials. If, on the other hand,
the two calculations disagree, there is no safe way to solve the conflict. It can
happen in many different situations that you have a set of potentials, but the
model requires another set and there is no safe way of inferring the needed
potentials. It is a lively area of research to construct engineering methods for
getting the best out of what you have.

. In Chapter 9, we deal with inferventions. They provide another good rea-
son for constructing causal models. An intervention is an action that has an
impact on the state of certain variables. The impact of an intervention will
spread in the causal direction, but not opposite to the causal direction. If the
miodel does not reflect causal directions, it cannot be used to simulate the
impact of interventions. ‘

3.3 Modeling Methods

Tuch skepticism of Bayesian networks stems from the question of where the
numbers come from. As shown in the previous section, they come from many
different sources. If you are building a model over a domain in which experts
actually do take decisions based on estimates, why should you not be able
.8 make your Bayesian network estimate at least as well as the experts? You
can, for example, use the technique described in Section 1.1 to acquire the
.vmogwb_ﬁmm from the experts. The acquisition of numbers is, of course, not
rithout problems, and in this section we give some methods that can help
you in this job. Also, we provide some modeling tricks.

..w..w.H Undirected Relations

.Hﬁ..Em% happen that the model must contain dependence relations among vari-
ables A, B, C, say, but it is neither desirable nor possible to attach directions
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to them.? The relation may, for example, be a description of possible configu-
rations. This difficulty may be overcome by using conditional dependence as
described in Section 2.2.1 (converging influence).

Let R{A, B, C) describe the relation using the values 0 and 1; R(4, B,C) =

1 for all valid configurations of A, B, and C. Add a new variable D with two -

states y and n and let A, B, and C be parents of D (see Figure 3.22). Assign D
the deterministic conditional probability table given as P(D =y{ 4, B,C)-

i,

R(A,B,C) (and P(D=n|A,B,C)=1-R(A, B,C)) and enter the evidence

D = y. The variable D is called a constraint variable, and by entering D
we are basically forcing the relation/constraint to hold.

y

Fig. 3.22. A way to introduce undirected relations among A, B, and C.

Erample 3.1. If we want to model that A, B, and C are always in the same

state, then we can assign D the conditional probability table given in Ta-
ble 3.13 (assuming that A, B, and C are binary).

C=y
B=yB=n

1 i} 0 0

0 0 0 1

Table 3.13. The conditional probability distribution P{D = y| A, B,() for the
constraint variable I modeling that A, B, and C' are always in the same state.

C=n
B=yB=n

A Y

n

Ezample 3.2. 1 have washed two pairs of socks in the washing machine. The
washing has been rather hard on them, so they are now difficult to distin-
guish. However, it is important for me to pair them correctly. To classify the
socks, I have pattern and color. A classification model may be like the one
in Figure 3.23. The variables S; have states ¢; and t2 for the two types, the

! In that case, the model is called a chain graph. A chain graph is an acyclic graph
with both directed and nondirected links, where acyclic means that all cycles
consist of only nondirected links.
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variables P; have two pattern types, and the variables C; have two color types.
he constraint that there are exactly two socks of each type is described in

Constraint = y

..H.,mm.. w.uw. A model for classifying pairs of socks.

S1thtitititititititatatatotatata ta
Setititititatatatots ity by tatatatn
Sstititatoty tytatats brtataty £y bt
Sstytatitatitatitaty fot1 toty oty £
POOO0O1011001101000

H,mEm w 14, The table for P = P(Constraint = y| 51, Sz, S3, 81); t1 and t are the
(¥ wﬁmﬂmm of 51,82, 53, S4.

The situation is more subtle if the relation R{A, B, C} is of probabilistic
re. If A, B, and C have no parents, R(A, B, C) can be a joint probability
.mEm On the other hand, if A has a parent, then R(A, B, C) may be considered
representing a mmmavmow cycle. We shall not deal with this problem but refer
he reader to the literature on chain graphs.

3.3.2 Noisy-Or

When a variable A has several parents, you must specify P(4]c) for each
configuration ¢ of the parents. If you take the distributions from a database,
the-number of cases for each configuration may become too small. Also, the
configurations may be too specific for any expert. You may also be in the
situation that you have reasonable estimates of P(4|B) and P(4|C), but
you require P{A|B,C). Then, you should look for assumptions that reduce
ﬁwm number of distributions to specify.

Consider in Section 3.2.5 the conditional probability table for P(Sore Th
Ea.m | Cold?, Angina?). It was possible to get estimates of P(Sore Throat?|
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. wwmmwonamﬂ. Moreover, if we marginalize out the variables STa, STz, and
ST, we end up with the conditional probability table in Table 3.15 (see also
Exercise 3.20).

Cold?) and P(Sore Throat?| Angina?), but is there a general way to describe
how they then combine into P(Sore Throat?| Cold?, Angina?)? The mo:oéEm :
is a way of describing it. ..

There are three events causing me to have a sore throat in the morning:

o the “background event,” which in 5% of the mornings yields a sore throat;

¢ cold, which causes a sore throat with probability 0.4;

e angina, which when mild causes a sore throat with probability 0.7, mba
when it is severe it certainly caunses a sore throat.

The preceding uncertainty can be interpreted as follows. If any of the
causes are present, then I have a sore throat unless something has prevented
it. In other words, if I have mild angina, then I have a sore throat unless soms¢
other circumstances prevent it, and there is a 30% chance that it is prevente
In the same way, there is a 60% chance that some inhibitor prevents me from
having a sore throat although I have a cold, and the background event is
prevented with probability 0.95.

Now, if we assume that the preventing factors are independent, then the
combined probabilities are easy to calculate as one minus the product of the
appropriate probabilities for the inhibitors (note that the background event:
is always a fact). The probabilities are given in Table 3.15. .

Fig.'3.24. Figure {a) shows the model structure for P(ST|C, A), and figare (b)
.mwoﬂ..m. the model structure that explicitly represent the independence assumption
bout the inhibitors.

Angina? = no Angine? = mild Angina? = severe
Cold? = no 0.05 1-095-03 1
7= - . - -0.3-
Cold? =yes|1—-0.95-06 1-085-0.3-0.6 1 3 B
Table 3.15. Calculation of P{Sore Throat? = yes| Cold?, Anginaf). Note that some no mild severe yes
numbers are slightly different from the corresponding numbers in Table 3.12 STa V& 01-03 1 STgs yes|1 —0.95
o 4 noll 03 0 no| 0.95
P(ST4| A) P(S8Ts | B)
Another way to view the calculations above is to make the wﬂmvmsmmmom.w C
assumptions explicit in the model. Consider the model shown in Figure 3.24(a): no  yes
and introduce an intermediate node ST between Sore Throat (ST') and Cold?. 5T, Ve 01-06
(C) as well as an intermediate node ST4 between Sore Throat? and Angina noj1l 0.6
P(STc|C)

(A). The node ST captures the effect that Cold? has on Sore Throat? (i.e., it
represents a “cold-induced” sore throat), whereas 574 represent an “angina-
induced” sore throat. In order to model the “background event” we introduce"
two additional nodes B and ST'g, where B represent the “background event,”
and ST’p plays the same role as ST and ST4 above. The three nodes STy,
STg, and §T¢ also represent the inhibitors, and they are assigned the condi--
tional probability tables shown in Table 3.16; the numbers have been deduced
from the itemized list above. Finally, since we will have a sore throat no mat-.
ter whether it is induced by cold, angina, or something else, we assign ST
a conditional probability distribution that corresponds to a logical-or. The
resulting model is shown in Figure 3.24(b), where the variables STy, ST,
and ST are independent, reflecting the assumption that the inhibitors are

H_m_zm 3.16. The conditional probability tables P(STa|A), P(S5Ts|B), and
P(STc|C).

. The preceding construction is an example of the simplifying assumption
“called a noisy-or. In what follows we put this assumption into a more general
ooa@a albeit only with binary variables.

Let Ai,..., A, be binary variables listing all the causes of the binary
variable B. Mmbw event A; = y causes B = y unless an inhibitor prevents it,
and the probability for that is g; (see Figure 3.25).
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Fig. 3.25. The general situation for noisy-or. Here ¢; is the probability E.Eﬂ arm
impact of A; is inhibited,

In other words, P(B = n|A; = y) = ¢;. We assume that all inhibitors mm.,.a
independent. Then P(B =n|A;, Ag,..., A,) = Eh_.m_\ g¢;, where Y is the set
of indices for variables in the state y. For example,

w um U_nmnﬁ anmrwm of a noisy-or gate. Here P(B:|A:) is the original
B|A;), and P(B|By,..., B,) is logical or.

PB=ylAi=y, A=y, Az =---= A, =n) sk ah ad .Om you. Either you need to ask the experts on the distribution of
=]1-PB=n|lA1=y, 4=y, A3 = = A, =n) n very specific parent configurations or, if the table must be extracted
=1—q g ‘a database, you need a very large set of cases. The following example

mamm ‘the problem.

By assuming “noisy-or,” the number of probabilities to estimate grows lin-

early with the number of parents nSEm 3.8 (Granting a loan). A bank will decide on a mortgage loan for a

ﬁoEm_. who wishes to purchase a house. The customer is asked to fill in a
‘giving information on various financial and personal matters together
h various key information on the house. The answers are used to estimate
he probability that the bank will get its money back.

The information can be the following: type of job, yearly income, other
nancial commitments, number and types of cars in the family, number of
vious addresses during the last five years, number of children in the family,
umber of divorces, size and age of the house, price of the house, and type of

Note 1. We require P(B = y|A; = --- = A, = n) to be 0. This may seem
to restrict the applicability of the approach. However, as in the preceding ex-
ample, if P(B = y) > 0 when none of the causal events in the model are on

then introduce a background event that is always on. :

Note 2. The complementary construction to neisy-or is called noisy-and. A
set of causes should all be “on” in order to have an effect. However, the causes :

have random inhibitors, which are mutually independent. e . - . .
3 i ’ v incependen n principle, each slot in the form represents & variable with a causal im-

act-on the variable Money back?. If we assume that each parent variable
a5 five states, we have already listed a parent space with 51! ~ 5,000,000
onfigurations. For each configuration, we request a distribution for 4. No
erson can estimate that number of distributions, nor can he or she estimate
distribution for a divorced businesswoman with a yearly income of $50,000,
aving loans of $70,000 already, one car, three previous m&%mmmmm two chil-
dren; wanting to purchase a gmﬂ@-%mmw-oﬁ house of 150 m? at the price of
$200,000 in a farming area. Also, if the distributions are to be taken from a
..amnmvmmm_ the bank will need at least 50,000,000 cases that may not be more
than 10 vears old.

Note 3. As in Figure 3.24(b), noisy-or can be modeled directly without per-
forming the calculations (see Figure 3.26). This highlights the assumptions
behind the noisy-or gate. If a cause is on, then its effect may be prevented by
an inhibitor, and the probabilities for the inhibitors to be present are inde-
pendent.

Note 4. The noisy-or model has been generalized to variables having more
than two states, and in this form it is called a noeisy-maz; in this Eo&m_ we
assume that the states of B are ordered. .

" To handle this kind of task, we divorce the parents. The set of parents
Ay,..., A; for B is divorced from the parents A;yq,..., A, by introducing a
o&mﬂwm variable C, making C a child of 4;,...,A; and a parent of B (see
igure 3.27).

3.3.3 Divorcing

Let Ay,..., An be a list of variables all of which are causes of B. If you wish to
specify P(B|Ay,...,A,), you might have a very large knowledge acquisition
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Fig. 3.27. Parents A; and Az are divorced from Az and A4 by introducing 25
variable C.
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of independence can be described as follows: if the headache is at level I, and
‘add an extra cause for headache, then the result is a headache at Hmﬁ& q
%muamuﬁ of how the initial state has been caused.

Assume that we can estimate conditional probabilities of type P(Ha| C),
d we want to combine the effects of the various causes. For this, we can imag-
wmﬁ ém mimhr a number 3 the mﬁmﬁmm of Ha: no— o S@& — H moderate —

”. The assumption behind divorcing is the following (with reference to m.um-
ure 3.27).

The set of configurations {A4;, 45) can be partitioned into the sets ¢1,.
¢m such that whenever two configurations (a1, az) and (a}, a5) are elements in
the same ¢;, then P(B|a},a), A3, A4) = P(Blay,az, As, As). The %4085@
variable then has ¢;,..., ¢ as states.

In the example of %mmﬂsm a loan, it is impossible to perform an analysis as
before, and you will group the variables based on another type of insight into
the domain. For example, the variables about the house can be grouped and
given a commen child variable describing how safe the mortgage will be, the -
financial variables may be grouped for a variable describing the applicant’s |
financial abilities; and the remaining variables may describe the applicant’s
stability.

In connection to the example of granting a loan, it should be noted that if
we only want to perform a classification, then we need not build a Bayesian
network. Other techniques such as statistical classifiers and classification trees :
(see Section 8.4) may be more adequate. However, if we also wish to calculate
decision recommendations, we will need the posterior probabilities provided -
by a Bayesian network. We will deal further with this in Chapter 9.

m.._.”m.mm. A model for causes of headache. The bottom node adds up the effects.

H_wm hidden assumption behind this method of adding up is that the effect
om any cause is independent of the current state of headache, and it is
thully reflected in the numbers attached to the headache states. To make
‘explicit in the model, we can give each headache node a child with numbers
s states, these nodes are given a common child that adds the numbers, and
ew node translates the numbers to Ha states (see Figure 3.29).

Now, for P(Nu-Ha| Nu-Ot, Nu-Fe, Nu-Ho, Nu-Fb, Nu-Bt) we can perform
ivorcing, we can add ore number at a time (see Figures 3.30 and 3.31), or
e can represent the function in any other kind of compact way.

H?m effect of aspirin can be included in two different ways. Either it sub-
acts a number from the sum or it has a direct effect on the headache state.

3.3.4 Noisy Functional Dependence

»

There are ways of directing the divorcing., “Noisy-or” and “noisy-and” are
examples of a general method called noisy functional dependence.

Ezample 3.4 (Headache). Headache (Ha) may be caused by fever {Fe), hang- -5 Expert Disagreements

over (Ho), fibrositis (Fb), brain tumor (Bt), and other causes {(Of), and you
may choose to soothe it with aspirin (As) (we ignore the effect aspirin has on
fever). Let Ho have the states no, mild, moderate, severe. The various causes
support each other in the eflect. If, for example, Ho = y or Fb = y is present,
then it may yield a mild He, but if both are present, then the Ha would be
moderate. Furthermore, if also As = y, then Ha may drop to no or mild. Al
though the various parents of He combine in a rather involved manner, we
still have the feeling that the impacts of the causes are independent. This kind

It ‘may happen that we are in a situation in which the experts disagree on
conditional probabilities for a model. Consider the model in Figure 3.32,
and assume that we have three experts who agree on P(B) and P(C| A), but
they disagree on P(A4) and P(D| B, C). For the three experts, we have P(A=
y) = (0.1,0.3,0.4), and the table for P(D|B, () can be seen in Teble 3.17.

- If you have equal confidence in the three experts, you can take the mean of
zﬂm three numbers. If your confidence in the experts varies, you may incorpo-
rate this and calculate a weighted average. For example, you may give the first
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Fig. 3.29. A model that adds the headache states by transforming to numbers
adding, and transforming back to headache states again.

Fig. 3.30. The adder represented through divorcing.

W Lol

Fig. 3.31. The adder represented through adding one number at a time.
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B

] :

1o v|(04,04,06) (07,05, 07)
zhomop oﬁﬁoooq 0.9)

mxvmim a nonmmmbom weight 1 and the third expert a confidence weight
Because the total confidence weight is 4, you get a confidence distribution
0.25,0.25, 0.5), and for A you have P(A = y) = 0.25.0.1+0.25-0.34+0.5-0.4 =
.3..The probability P(D| B, C) is shown in Table 3.18.

B

y n
y0.5 0.75
n|0.5 0.85

m.Em 3.18. P(D =y| B, C) weighted with confidence distribution (0.25, 0.25, 0.5).

-The ‘experts can be represented explicitly in the model by introducing a
riable S with states sy, s3, and s3. The variable S has a link to the nodes,
about whose tables the three experts disagree (see Figure 3.33).

“The variable 5 is given the confidence distribution (0.25, 0.25, 0.5) as
before, and the child variables have a conditional probability table for each
expert. The table P(D = y| B, (C, S) is as in Table 3.17.

' By modeling the different expert opinions explicitly, you have prepared
the model for adaptation. Whenever you have a case with evidence e entered
into the model, you will get P(S | e), which is an updated indication of which
expert to believe. That is, you get a new confidence distribution that can be
used for the next case, see also Section 6.3.
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- The occurrence of such repetitive structures can be exploited during model
on.wﬁﬁoﬂon. For example, instead of explicitly specifying the same network
ragment multiple times, we could instead construct a generic network frag-
ent that can be instantiated the required number of times. By borrowing
‘minology from the object-oriented programming paradigm, we call such
generic network fragment a class, and each network fragment that is pro-
ced by instantiating the class is called an object. Figure 3.35 shows a class
escription - (called Class-name) for the duplicated network fragment in Fig-
3.34. In‘order for the class to support the specification of the conditional
robability distribution for A, the class includes an artificial node X (drawn
a dashed node) having the same state space as X; and X2. Note that this
ode does not correspond to an actual variable, but should rather be seen as
laceholder” that simply allows us to specify the probability distribution
for A: The shaded nodes in Figure 3.35 indicate the part of the class/object
that is accessible outside the object; they may be parents of nodes outside

. object. Nodes that are neither dashed nor shaded are encapsulated within

he object, and they may therefore be considered invisible to the rest of the
odel.

Fig. 3.38. The model from Figure 3.32 with the experts represented explicitly b
the node S. .

3.3.6 Object-Oriented Bayesian Networks

Complex Bayesian network models often include copies of almost-identical
network fragments. Consider, for example, the Bayesian network shown in-
Figure 3.34, and assume that X3 and X have the same state space (sp(X;) =,
sp(X5}), and that the conditional probability tables associated with the nodes
labeled A are identical; similarly for the nodes labeled B, C, D, and E. Given"
these two assumptions we see that the network contains four identical copies-
of the same network fragment defined by the five nodes 4, B, C, D, E.

Class-name

S

X

.

oy

m
X

. um 3.35. A class model for the duplicated network fragment in Figure 3.34. Class-
name is the name of the class.

~Given such a class description, we can make an equivalent representation of
the model in Figure 3.34 by instantiating the class four times and connecting
Xi; Xz, Y1, and Y5 to the objects (labeled Inst. 1, Inst. 2, Inst. 3, Inst. 4)
as'appropriate. The resulting model is shown in Figure 3.36 and is called an
object-oriented Boyesian network model (OOBN). The dashed arcs indicate
which node X is a placeholder for in the various objects.

" As implied by the discussion above, an object (or a class) can be seen as a
‘function that given a certain input provides a probability distribution over a

Fig. 3.34. A Bayesian network containing repetitive substructures.
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Fig. 3.86. An object-oriented Bayesian network representation of Figure 3.34.

set of variables. For example, the class shown in Figure 3.35 specifies a proba-
bility distribution over D and E given a state for X. Based on this perspective,
we can partition the elements in an object into three sets: input attributes,
output atiributes, and encapsulated attributes. In the example above, X is an
input attribute, D and E are output attributes, and A, B, and C are encap-
sulated attributes. Following standard programming terminology, the input
attributes in the class description can be seen as the formal parameters of the
corresponding function, whereas the actual parameters passed to an object
are identified as the parents of the input attributes in the surrounding model.
Thus, X can be considered a formal parameter, and X, is the actnal param-
eter passed to the left~most object in Figure 3.36. In general, we also allow
encapsulated attributes and output attributes to be ob jects themselves. How-
ever, input attributes must correspond to variables, since they serve as the
parameters passed to the object. Note that the simplest type of class/object
consists of a single variable, where the input attributes correspond to the
parents of that variable.

The specification of encapsulated attributes is closely related to the con-
cept of information hiding in the object-oriented programming paradigm. By
taking this idea one step further, we obtain a straightforward mechanism for
simplifying the visual representation of a model by abstracting away irrelevant
details. For example, by abstracting away the encapsulated attributes in Fig-
ure 3.36 we obtain the OOBN shown in Figure 3.37. In general, when objects
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are encapsulated within other objects this approach provides us a method for
obtaining a hierarchical representation of the model; each level corresponds
10 a particular level of abstraction revealing the encapsulated attributes for
the current layer of objects.

|4 w..w.w An object-oriented Bayesian network model corresponding to the model
oﬁm.m: Figure 3.36. The encapsulated attributes have been hidden to simplify the
epresentation.

.b...U.n:aﬁ Construction of OOBNs

”szn attributes and the output attributes are also referred to as the
nterface of the object, since instantiating these nodes will d-separate the
nternal part of the object (the encapsulated attributes) from the rest of the
work (the proof is left as an exercise. This property supports a top-down
nodel construction process: you may start constructing the model at a high
evel of abstraction by including only the interfaces of the objects without
pecifying their internal details. Later you can change the abstraction level
nd start specifying/refining the internal class description.
-For example, assume that you should construct a Bayesian network model
for the safety characteristics of a car. We know that the type of car and its
maintenance level influence both the general steering characteristics of the
car as well as its braking capabilities. In turn, these two aspects influence the
steering safety and the braking power of the car.
-We also know that the steering safety and the braking power are influenced
by the grip of the car, and the grip is mainly determined by the tire type
and the tire mileage. However, it may happen that at the time of model
specification we do not know (or do not want to specify) the relationship
between the grip of the car and tire type and mileage. See Figure 3.38 for a
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ho .H_éo possible refinements of the interface for the grip class illustrated in
giire 3 mm Ini the rightmost refinement, we model the grip on each of the tires.

The dashed arrows indicate unspecified parent and child relations.

also called the superclass for C”), then an instance of C' can always be
ubstituted with an instance of class C'. For example, consider again the two
classes in Figure 3.40. We wish for the class Tire grip 2 to be viewed as a
sclass of Tire-grip 1, which means that any instance of Tire-grip 1 can be
mmmcwma with an instance of Tire-grip 2. This example is quite obvious,
since the two classes have the same interface connecting them to the rest of
e model. However, suppose now that we should refine our grip model so
wmﬁ it also covers spm car type; we assume that for a car with front-wheel
ve there is a tendency for the front tires to be more worn than for a car
th rear-wheel drive (conversely for cars with rear-wheel drive). One way
to include these considerations into the model is to construct a class as in
Figure 3.41.

partial Bayesian network representation. We could instead construct a clas
representing the grip of the car with a rudimentary internal structure an
simply include the interface of the class in the model. An example is shown in.
Figure 3.39. Figure 3.40 shows two possible specifications of a class anowum
the tire grip. The leftmost class could serve as an initial approximation to th
more detailed specification shown at the right-hand side of Figure 3.40.
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Fig. 3.39. An object-oriented Bayesian network model of the driving characteristics’
of a car.

~Fig. 3.41. The class Tire-grip-refinement taking the car type into account.

Subclassing and Inheritance

é@ would now like to be able to replace the instance in Figure 3.39 with an

A powerful property of object-oriented modeling is the use of subclassing (o Emﬁmwom of class Tire-grip-refinement. However, this raises a technical question:

inheritance) between classes. When a class C' is a subclass of another class -
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algorithm on the produced network (see Chapter 4). Transforming an OOBN
into a BN is basically a matter of recursively merging each input node with jts
rént in the surrounding model. Methods have also been developed whereby
. keep the OOBN structure and respect the privacy of the encapsulated
.ﬁvﬁmm. The inference method transmits probability distributions only over
he interface nodes between the objects.

If we simply replace the instance in Figure 3.39 without connecting the input
node Cloar type to an actual node in the model, then both Back Grip and
Front Grip would have a parent with an unspecified probability distribution -
(see Figure 3.42). In order to avoid this problem, we associate a so-called .
default potential with each input node in the class; a default potential is’
simply a probability distribution that will be used when an input node is not
connected to a node in the surrounding model. For the example above, wi
could specify the default potential P(Car type) = (0.5,0.5), assuming that
the node is binary. Based on these considerations we require that if a class C
should be a subclass of another class C, then it should hold that:

3 U«Emﬁﬁn Bayesian Networks

en working with domains that evolve over time, you can introduce a dis-
ete time stamp and have a model for each unit of time. We call such a
l'model a time slice. Consider, for example, the model for infected milk
giire 3.43. -

¢ the set of input variables for C is a subset of the input variables for C"
and &
* the set of output variables for ' is a subset of the output variables for €

/. " )y & ooy T e
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e TSl . .
e S Fig. 3.43. A seven-day model with a two-day memory for infection as well as
ety ) e/ corréctness of test.

Fig. 3.42. An object-oriented Bayesian network model of the driving character-’
istics of a car. The input node Car type is associated with the default potential
P(Car type} = (0.5,0.5).

For each time slice ¢, you have three variables Inf;, Test;, and Cor;. The
three variables are connected in a time slice, as shown in Figure 3.44.

Fig. 3.44. A time slice for infected milk.

We can construct additional subclasses of Tire-Grip representing different
aspects of the grip of the car. The classes can be organized in a hierarchy
according to their subclass/superclass relationship. In turn we can view this .
class hierarchy as a model repository that facilitates a quick top-down model .
construction, and for more general settings, we can construct generic reposi-
tories of classes representing common modeling problems.

When we subsequently use the object-oriented Bayesian network model
for answering queries (i.e., doing belief updating), we first observe that an
object-oriented Bayesian network can be seen as a standard Bayesian network
with some extra features for simplifying the model specification. This also
implies that inference in an OOBN can be performed by first transforming
the model into a standard Bayesian network, and then applying any inference
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The time slices are connected through temporal links to constitute a full
model. If the structures of the time slices are identical, and if the temporal
links are the same, we say that the model is a repetitive temporal model. If
the conditional preobabilities are also identical, we call the model a dynemic
Bayestan network model.

The model for transmission of symbeols in Section 3.2.4 can be considered 5
temporal repetitive model, but it is not a dynamic Bayesian network becausé:
the conditional probabilities are not identical. On the other hand, the seve
day model in Figure 3.2 is a dynamic Bayesian network.

A special category of time-stamped model is that of the hidden E@%o.e.
models. They are strictly repetitive models with an extra assumption (the
Markov property): the past has no impact on the future given the present:
The model in Figure 3.2 is an example of a hidden Markov model, but in Fig-
ure 3.43 influence from Inf,_, may flow to Inf,, regardless of our knowledge:
of time slice i. The latter model can, however, be transformed to a hidden
Markov model by introducing a copy Inf of Inf, ; in the ith time slice (see
Figure 3.45).

Fig. 3.45. The model of Figure 3.43 transformed into a hidden Markov model.

Specifying a repetitive temporal model can be eased by introducing a
uple of new features to the specification language. Apart from the structure
of a:time slice, you must specify the number of time slices and the temporal
nks. The number of slices can be written in a special box, and you can
troduce a special kind of arrow to specify temporal links. A number attached
toid temporal link can specify the number of time steps to jump (if no number
specified, the link goes from slice 7 to slice ¢ + 1). In Figure 3.46, we have
7 extended specification language for the model in Figure 3.43.

) @

<D
(cor)
@.\\

Fig. 3.46. A compact specification of the model in Figure 3.43 (an extension of
3.44). The =3 indicates a temporal link. The number “2” attached to one
n specifies that it jumps two time steps {no number attached means a jump
“glice 1 to slice ¢ + 1).

Dynamic Bayesian networks are easily modeled through the object-oriented
proach: the output variables are the variables with a child in later time
e, and the input variables are parents from earlier time slices. In Fig-
re:3.46 the output variables are Inf, and Cory, and the input variables are
13- Inf;_,, and Cory_;.

o from a modeling point of view, it is quite straightforward to work with
me-stamped models. However, they will often yield calculational problems
sec Exercise 3.25 and Chapter 4).

The reason for the term hidden Markov model is that under the surface -
(the test results) there is a hidden activity that cannot be observed (the
infections). .

A Kalman filter is a hidden Markov model in which exactly one variable
has relatives outside the time slice. The model in Figure 3.2 is a Kalman filter.
A Markov chain is a Kalman filter consisting of exactly one variable in each
time slice. Note that a hidden Markov model can be transformed to a Markov
chain by taking the cross product of ali variables in each time slice.

In modeling domains that are evolving over time, there is a distinction be-
tween finite-horizon and infinite-horizon domains. The infected milk problem
is an infinite-horizon domain, and a typical finite-horizon domain is a cornfield
from sowing to harvest. :

.mﬂ.m. How to Deal with Continuous Variables

onsider the Cold or Angina? example from Section 3.1.2, in which the vari-
le Fever? was given a discrete state space with three states (chosen a bit
rbitrarily). A more natural way of representing fever would be to use a con-
tinuous variable (typically drawn using a double circle as in Figure 3.47(a)).
- “With a continuous variable we can no longer encode the uncertainty using a
onditional probability table. Instead we will have to specify a density function
r-each combination of states for the parent variables for Fever?, A typical
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.Hmo called a conditional Gaussian distribution). A possible specification could
be as in Table 3.19.

Cold?
no yes
BT " o |(37°C, 0.25) (37.5°C, 0.75)
o .\»%@.aaw mild | (38°C,0.5) (38.5°C,1)
e d %%aa%ooaigﬂowﬁv
HmEm 3.19. Means and variances for the Fever? variable.

Fig. 3.47. Figure (a) shows the cold and angina model in which Fever? is repr
sented by a continuous variable (drawn as a double circle). In Figure (b} the Somm
is extended with another continucus variable Therm that models the accuracy
the thermometer.

me Eo&mu in Figure 3.47(a) can be extended to also represent the accu-
racy of the thermometer. Specifically, the thermometer that I use is rather
Id with an accuracy corresponding to a variance of 0.25. In addition to this
bhasa ﬁmoc:@w tendency of showing 1°C plus 5% more than the actual tem-
erature. This situation is modeled in Figure 3.47(b). The continuous variable
Therm represents the thermometer, and it is assigned a conditional Gaussian
d g_usﬁou where the variance is set to 0.25 and the mean is specified as a
Ewma ?bnﬁob of Fever?:

density function is the normal distribution (or Gaussian distribution), Q.Eo
is defined by a mean p and a variance o2 {see Figure 3.48 for examples):

)2
\?&H|Hm.mu€ I,.A..alehm.vl .

ETherm = 1.0+ 1.05 - 2 peyere.

.m T T T T T

‘ f@ip=10=0 O_Emw this model, we can now answer queries such as P({Cold| Therm =
fl@)ip=-3,g=2 woO SoreThroat? = yes, SeeSpots? = no) and f{Fever| mﬁmﬂs 39.2°C,

05 fayin=80=05 " 1

oj&.ﬁ@m% = yes, SeeSpots? = no); the latter density is a linear combination
ol ooba_ﬂozmw Gaussian distributions. For example, if we use the probabil-
ies ‘specified in Section 3.2.5 together with the conditional Gaussian dis-
tributions described above we get P(Cold| Therm = 39.2°C, Sore Throat? =
yes, SeeSpots? = no) = (0.13(y),0,87(n)), and for f(Fever| Therm = 39.2°C,
Sore Throat? = yes, SeeSpots? = ne) we get a mean and a variance of 36.67°C
and 0.127, respectively. We will not present the methods for calculating pos-
ﬁmso_; probabilities in networks with continuous variables.

- Bayesian networks containing both discrete and continuous variables are
mwmo called hybrid Bayesian networks. Unfortunately, in order to perform
exact probability updating in these types of networks we need to put some
rather severe constraints on the networks. In general, we require that:

fl=z}

3 10 15 20 Each continuous variable be assigned a (linear) conditional Gaussian dis-
- tribution. That is, for each configuration ¢ of the discrete parents, the
- variance o? is a constant {independent of the continuous parents) and the

. mean . is a linear function of the continuous parents Y1,..., Y.:

Fig. 3.48. Example of normal distributions with different values for the mean and
the variance.

K117
i . : = Gs + Qg\. N
For the example above, we should therefore specify a 4 and a ¢? for each He € M oY

state combination of the variables Cold and Angina (the resulting function is



96 3 Building Models

o No discrete variable have continuous parents.

Note that if a continuous variable does not have any parents, then it is assigned
an unconditional normal distribution.

Whether these two constraints can be met is strongly dependent on the
domain being modeled. For example, you may argue that it is inappropriat:
to assign a conditional Gaussian distribution to the Fever? variable, sine
the distribution is defined over the entire real line and it will therefore alsc
assign a nonzero probability mass to impossible temperature intervals. .0

the other hand, when specifying probabilities you are almost always E@E.@..m.
some kinds of approximations, and the question is then whether the specified.

Gaussian distribution is within an acceptable distance from what you deem th
“correct” distribution. If it is not, you have to look for other ways of specifyin;

the probabilities (an example of this is given below}. The second constraint.

18 more sertous, since it puts restrictions on the structure of the domains

that can be modeled. For instance, if we were to extend the model with a’
child, Headache? (having states yes and no), of Fever?, then the structural’

constraint would be viclated.

If it is not possible to meet the two constraints above, then one vOmmH,UEQ..
would be to approximate by discretizing the continuous variables. Assume that
we have the specification in Table 3.19, and we should now specify intervals for
a finite set of states. For the three states no, low, and high, it would be natural
to use knowledge of fever. In other situations, you would try to determine’

intervals such that for each parent configuration most of the probability mass
is concentrated in a few intervals. This may not be possible, and it will often be

a delicate matter to establish a good set of intervals. In the current situation,”
we define low fever to be in the interval (37.5°C, 38.5°C). Consequently, no is’

(—00,37.5°C) and high is (38.5°C, 00). Next, you use Table 3.19 to calculat
the probability mass for each interval. The result is given in Table 3.20.

Cold?
no " yes
no  |{0.834, 0.165, 0.01} (0.5, 0.376, 0.124)
Angina? mild | (0.24, 052, 0.24)  (0.159, 0.341, 0.5)
severe|(0.042, 0.24, 0.718) (0.037, 0.149, 0.814)

Table 3.20. The result of sampling Table 3.19 to the intervals for no, low, and high.

3.3.9 Interventions

You may wish to incorporate actions that change the state of some vari-
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and enter your cleaning of the spark plugs by entering SP = yes, you get
correct results. The problem is that you may no longer have a start prob-
MQH, and the state of St may be changed due to your action. The problem is
called persistence. You may extend the model in Figure 2.16 with a variable
Nma:w,&:ﬁ then you also must introduce new nodes for the variables that
...mu.w. hange state. Because you have a causal model, the nonpersistent nodes
are the descendants of the nodes affected by the intervention (see Fig. 3.49).
mzmzm Clean? has a special status in the model. It is not meaningful to
¢ it'prior probabilities, and the descendants of the nodes have no meaning
efore a decision on Clean? has been taken. Therefore, it is customary to give
this kind of node a rectangular shape.

Clean

‘Fig. 3.49. A network modeling the effect of cleaning the spark plugs.

- The conditional probabilities for new nodes are natural. If Clean? = no,
then SP-C'is in the same state as SP, and if Clean? = yes and SP = yes,
erms the probability that SP-C = no is the probability that you can clean the
ark plugs properly. For St-C, you still have a start problem unless it was
asm 8 dirty spark plugs and they have been properly cleaned.

w&. | Special Features

A Bayesian network model is primarily used for belief updating. However, you
may request other kinds of information from a model. This section outlines
some types of requests. Chapter 5 gives 2 more detailed presentation. To
illustrate the features in this section, we use the sore throat example from
Section 3.1.2 (see Figure 3.50). However, we change the potentials slightly:

~when I suffer from mild angina, I will see yellow spots with probability 0.01,

and it also happens with probability 0.001 that I have severe angina without

_a sore throat, provided that I do not have a cold. The rest of the potentials
can be found in Sections 3.2.5 and Section 3.3.8.

We use the evidence e = {Fever? = no, SoreThroat? = no, See m_.,a&m.m =
yes} (do not ask why I looked down my throat).

ables. You may, for example, wish to model the result of cleaning the spark
plugs in the car start problem. If you use the model in Figure 2.16 directly
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n other words, in the light of neither fever nor sore throat, it is very likely
that the evidence See Spots? = yes is faulty. It would be nice if the system by
self could raise a flag indicating that the evidence does not seem coherent.
o investigate coherence of the evidence, a conflict measure is defined. The
hind the measure is that correct findings from a coherent case covered
iodel support each other, and therefore we will expect them to be pos-
y noﬁ_ lated. For example, if e; and €y are two pieces of evidence, then we
Id expect- Ple; | ea) > Ple1) and therefore Pey,ez) = Pe, fea)Ples) >

Ples). Let €= {ey,...,em} be a set of findings. Based on the intuition
he conflict measure on e is defined as

See Spots?

Fig. 3.50. The sore throat model.

3.4.1 Joint Probability Tables

Pler)- Plem)

Because it is not unusual to suffer from both cold and angina, it may vm_oﬂ P2

interest to use the model in Figure 3.50 to calculate the joint probability table
P(Angina?, Cold?|e). This can be done by use of the fundamental rule

conf(e} = log,

1¢ conflict measure is easy to calculate because P(e) is communicated
e system (see Example 3.9) and P(e;) can be read from the model in its
| state. If conf(e) is positive, the findings are not positively correlated,
-can take this as an indication that the evidence is conflicting. To be
accurate, a high conflict measure is an indication that there is discrep-
7 between model and evidence. This may be due to flawed findings, it may
e because we are faced with a very rare case, or the situation may not be
overed by the model. This is discussed in more detail in Section 5.5.

P(Angina?, Cold?|e) = P(Angina?| Cold?,e)P(Cold?!e).

Read P(Cold?|e) from the system; then enter and propagate first Cold? = yes
and then Cold? = no to get P(Angina?} Cold?, ). .

This method is conceptually easy, but if you request the joint table for
many variables, it is computationally very time-consuming. Other methods
are presented in Chapter 5. :

3.4.2 Most-Probable Explanation 4 Sensitivity Analysis

I M&S analysis refers to analyzing how sensitive the conclusions (the prob-
ties of the hypothesis variables) are to minor changes. The changes may
iriations of the parameters of the model or may be changes of the evi-
e (SE analysis). In general, sensitivity analysis is rather technical and in
section we only give some hints. It is treated in more detail in Chapter 5.
Consider the angina example. The conclusion is P(Angina?|e) = (0,0.98,
02)::SE analysis consists in answering questions such as,- “what are the
crucial findings?”, “what if one of the findings was changed or removed?” or
what set of findings would be sufficient for the conclusion?” If we consider
the conclusion to be that I suffer from mild angina, we see that the finding
See Spots? = yes is not sufficient in itself because it indicates severe angina,
nor is any of the other findings. Instead, See Spots? = yes together with
Sore Throat = no is sufficient, and with these two findings fixed, the conclusion
insensitive to any finding on Fever?.

Now consider the parameters t = P(SoreThroat? = no|Angina? =

severe, Cold? = no} and s = P(See Spots = ves| Angina? = mild). The ini-

Instead of requesting the full joint probability table, I may request the most-
probable configuration of Cold? and Angina? This can be achieved much’
faster than by calculating P{Cold?, Angina?|e) and picking the state with
highest probability.

In general, you have a set of instantiated variables and you request gm.
most-probable configuration of the remaining variables. This is also called the
most-probable ezplanation, MPE. MPE can be calculated similarly to proba-
bility updating (see Section 2.3.4 and Chapter 4). The only difference is that
instead of marginalizing by summing out, you take the maximum. The dis-
tributive law for max reads max{ab, ac) = amax(b,c). In the general form, it
says

If A¢dom(ey), %msgm.x D190 = 1 max @2.

Most Bayesian network systems have a special feature for calculating MPE.

al vilues of ¢ and s are 0.001 and 0.01, respectively. What we might look
or is a functional expression for P(Angine? = mild| e)(t) and P(Angina? =
mild| e){s). This is called one-way sensitivity analysis. We might also request
Wo-way Sensitivity analysis by establishing P(Angina? = mild | €)(t, s).

3.4.3 Data Conflict

Although the evidence ¢ yields posterior probabilities for Cold? as well as for
Angina?, it is more likely that I have misinterpreted what I saw in the throat.
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It follows from a general theorem that P(e)(t) as well as P(Angina? = hen, Aj,...,A; can be divorced from A4y, ..., A, by introducing a medi-
mild, e)(t) are linear expressions (see Section 5.7), and hence P{Angina? = ing variable C with states ¢1,. .., ¢m, making C a child of A;,...,A; and a
mild|e)(t) is a quotient of two linear expressions. From the initial propa
gation, we can acquire P(e){0.001) and P{Angina? = mild}e)(0.001). B
changing ¢ to 0.002 and propagating, we get P(e)(0.002) and P(Angina?
mild | €){0.002). These four values are sufficient for determining the mo:ﬂ.og
stants in the functional expression for P(Angina? = mild|e)(t).

rec a ﬂ&nﬁoam —in ﬁm._.,ﬂoﬁmﬁ logical constraints — can be modeled by
ducing a dummy child of the constrained variables and letting its poten-
eflect. ﬁrm 35305

3.5 Summary v.o.n.m.mnmﬁ.wo.u _mwmdmmm for ﬂmﬁmm&:@ structures, see Figure 3.51.

Types of Variables in Building a Bayesian Network Model

Hypothesis variables: Variables with a state that is asked for. They are, wo
ever, either impossible or too costly to observe directly.
Information variables: Variables that can be observed.
Mediating variables: Variables introduced for a special purpose. It may be
to properly reflect the independence properties in the domain, to facili
“tate the acquisition of conditional probabilities, to reduce the numbers
distributions to acquire for the network, or for other purposes.

Warning: It is tempting to introduce mediating variables in order to have
more refined model of the domain; however, if they do not serve any othe
purpose you should get rid of them. They jeopardize performance.
Acquiring Conditional Probabilities ig. 3.51. A compact specification of a repeating structure with 7 slices. The =t
ndicates a temporal link. The number “2” attached to one of them specifies that it

Theoretically well founded probabilities as well as frequencies and purely sub- mps two time steps (no number attached mesns & jump from slice  £o slice i+ 1).

jective estimates can be used in the same network. .
If the number of distributions is too large for a reasonable estimation,:

simplifying assumption can reduce it. m.n%m& disagreemnents on potentials can be represented in a Boa& by intro-

ducing a node representing the experts.
Noisy-or: Let B have the parents A,,..., A, (all variables binary). Suppos

that A; = y causes B = y unless it is inhibited by an inhibitor @); that _m
active with probability g;. Assume that the inhibitors are independent. Then

MUA.WHE‘WDH,..JDHV” m@.u
JEY

Qnm&.agoﬁm varighles can be represented in the model if:

they do not have any discrete children, and
-‘they are assigned a linear conditional Gaussian distribution.

‘these two conditions cannot be met, an alternative is to transform them

‘where Y is the set of indices for the states y. nto variables with a finite number of states.

Divorcing: Let B have the parents 4,,..., A,. Assume that the set of config
urations of (Ay,..., A;) can be partitioned into the sets ¢y, ..., &, such that
whenever two configurations aj and a$ of (A41,...,A4;) are elements in th
same c;, then :

w..m Bibliographical Notes

meﬁw Bayes was used by de Dombal et al. {1972) and can be traced back
at least to Minsky (1963). Noisy-or was first described by Pearl (1986); di-

P(B|aj, Aixx,...,An) = P(Blaj, Ait1,. .., An). vorcing was used in MUNIN {Andreassen et al., 1989). Exercise 3.27 is based
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. Fiber-eating habits, with states lots of fiber and not much fiber.
Drinking habits, with states never alcohol, wine once in a while, often wi-
ne, and wine every day.

on (Cooper, 1990). Chain graphs are treated in depth in {(Lauritzen, 1996).
Dynamic Bayesian networks are described in {Kjeerulff, 1992). The compact
representation of repetitive structures was suggested by Bangse and Waillemin
(2000). Andreassen (1992) discusses various ways of transforming conditional:
Gaussian variables into finite variables. A method not described in this chap
ter is similarity networks (Heckerman, 1990). The method helps in elicit
ing the conditional probabilities. Other elicitation methods can be found
(Druzdzel and van der Gaag, 1995). Object oriented Bayesian networks wer
introduced in (Koller and Pfeffer, 1997); the version presented here is the on
from (Bangsg and Wuillemin, 2000). References for the special features i
Section 3.4 are given in Section 5.9. S

0 ﬁ..o.”noumﬁcoﬁ a Bayesian network incorporating the above variables ac-
rding to your perception of the world. What are the d-separation properties
he network you constructed?

Exercise 3.5 Construct a model for a single milk test (Section 3.2.1).
at is the probability of infected milk given a positive test result?

xercise :3.6. £ Ground meat purchased in the supermarket may be in-

ected. ‘On average, it happens once out of 600 times. A test with results

positive and negative can be used. If the meat is clean, the test result will be

niegative in 499 out of 500 cases, and if the meat is infected, the test result will
e positive in 499 out of 500 cases.

Construct a Bayesian network and use a software system to calculate the

bability of infected for meat with a positive test result.

3.7 Exercises

Exercise 3.1. Peter is currently taking three courses on the topics of proba
bility theory, linguistics, and algorithmics. At the end of the term he has to°
take an exam in.two of the courses, but he has yet to be told which ones. Pra:
viously he has passed a mathematics and an English course, with good grades
in the mathematics course and outstanding grades in the English course. At
the moment, the workload from all three courses combined is getting too big
so Peter is considering dropping one of the courses, but he is unsure how this ”
will affect his chances of getting good grades in the remaining ones. What are
reasonable variables of interest in assessing Peter’s situation? How do they.
group into information, hypothesis, and mediating variables?

MMm.nmmmm 3.7.F Complete the Bayesian network for Cold or angina? and
erform a self-diagnosis. ,

: u_m_m_.&mm 3.8. ¥ Consider the insemination example from Section 3.1.3. Let
he probabilities be as in Table 3.21 (Ho = Yy means that hormonal changes
ve taken place) P(Pr) = (0.87,0.13).

Pr=yPr=n Ho=y Ho=n
Ho=y|l 09 001 |[BT=y| 07 0.1
Ho=mn| 01 099 {|IBT=n| 0.3 0.9

Exercise 3.2. Assume that three mornings in a row I wonder whether m
sore throat is due to cold or angina. Construct a model.

Ho=yHo=mn
U=y 038 0.1
Ul'=n| 0.2 0.9

Table 3.21. Tables for Exercise 3.8.

Exercise 3.3. Construct a model extending the model in Section 3.1.3 E#r :
a scanning test. :

Exercise 3.4. Consider the following variables relating to a single household
consisting of a couple and possibly some children:

o fliness at the moment, with states severe tllness, minor illness, and no 4L
ness. :

* History of illness, with states cases of severe illness, often minor illness-
es, and rarely minor illness.

e Number of children, with states none, one, two, three, and four and up,

o Working parents, with states both, father, mother, and none.

® Religion, with states Christianity, Judaism, Islam, Buddhism, Atheism,
and other. o

o Household income, with states $0-$50000, $50000-8100000, and $100000-
and up.

¢ Fish-cating habits, with states often fish and rarely fish.

(i) What is P(Pr| BT = n, UT = n)? :

(ii) Construct a naive Bayes model. Determine the conditional probabilities
- for the model using the model above. What is P(PriBT =n,UT=n}in
- this model?

- Exercise 3.9. £ Use the model from Exercise 3.8 to calculate P(UT =
% BT = y). Enter the two pieces of evidence into the model and prompt your
system to update probabilities. As a side effect, the system computes P{e),
the probability of the evidence entered. Find out how your system provides
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Exercise 3.10. © “the naive Bayes model. What is P(OH2|FCl = 1,FC2 = 2) using the

odel from Exercise 3.147 What is P(OH2|FC1 = 1, FC2 = 2) using the
(i) Implement the seven-day model in Figure 3.13. Are the initial probabilities . A | ) g

stable over time?

(ii) Consider the conditional probability tables P{Inf,| Inf;} and P(Inf;)
(0.0007, 0.9993) and assume that the risk of becoming infected is 0.0002.
We require that the initial probabilities be stable: P(Inf,} = P(Inf))
(0.0007,0.9993). Show that the chance of being cured must be 2/ 7.

{iii} Consider the conditional probabilities P(Inf;,, | Inf,, Inf.,,), and assum
that the risk of being infected is the same as above. We require stable
initial probabilities. Show that the chance of being cured for a more tha
one day infection must be 0.4. :

i

a_mm w 16. You are confronted with three doors, A, B, and C. Behind
‘one of the doors there is $10,000. When you wmé pointed at a door,
ial 'will open another door with nothing behind it. After he has aosm
u Hm.m:oéma. to alter your choice. Should you do that?

se w Hﬂ demnm the model in Figure 3.23 to incorporate constraints
olor mua Humgmg for the same sock.

e w Hm The drive in golf is the first shot in playing a hole. If you
vith a. 3-wood (a ﬁmﬁ_ﬁmmﬂ type of golf ctub), there is a 2% Emw of a
bad mnév and % 3 of the good drives have a length of 180 m, u are 200
H have a length of 220 m. You may also use a driver (another type of
EE This will on average increase the length by 10%, but you will also
3 times as high a risk of a miss. Both wind and the slope of the hole may
ot the result of the drive. Wind doubles the risk of a miss, and the length
affected by 10% {longer if the wind is from behind and shorter otherwise).
downhill slope yields 10% longer drives, and an uphill slope decreases the
ngthof the drive by 10%.

stimate the probabilities for miss and length given the various factors.

Exercise 3.11. Show that the procedure described in Section 3.1.5 is equi:
alent to updating in the modelin Figure 3.12. .

Exercise 3.12. ¥ Consider the stud farm example in Section 3.2.2 and let
the prior probability for aA be 0.005.

(i) Enter the model into your Bayesian network system.
(ii) Add to the model the frequency 0.001 for mutation of the gene from A to.
9- . -

(iii) Construct a model for the situation in part (i), but for a recessive gene
borne by the female sex chromosome. (Note that horses with the disease®

are taken out of production.)

ise 3.19. The putt is (usually) the last shot on a golf hole. My ball is
Im away from the hole, and under normal circumstances I will miss 1
tt otit of 10. However, when it rains, I miss 1 out of 7; if it is windy, I miss

©of 4; if the green is curved, I miss 1 out of 3; and if I am putting for a
irdie Aoum under par), I miss 1 out of 2.

stimate the probabilities for success and failure given the various factors.

Exercise 3.13. £ Consider the transmission example from Section 3.2.4.

(i) From Table 3.10, calculate the remaining conditional probabilities for the”

model in Figure 3.18.

(ii) Implement the model. :

(iii) The sequence baaca is received. What is the most-probable symbol trans-:

mitted according to the model in Figure 3.187 What is the most-probable -
word?

(iv) What is the most-probable word according to the model in Figure 3.197

..x.w_.,n.mmm 3.20. Show that the model in Figure 3.26 corresponds to the one
Figure 3.25.

Exercise 3.21. £ Show that noisy or may be modeled as described in Fig-
res 3.30 and 3.31. Apply this model to the putting problem of Exercise 3. 18,

Exercise 3.14. £ Consider the simplified poker game in Sections 3.1.4° nd compare the number of quantities to specify.

and 3.2.3. o 3.29
xercise 3.22.

(i) Implement the system. e

(ii) Extend the system with a facility giving the chances that your hand is

”.”..Ooﬁvwmﬁm the mode! in Section 3.3.4.
better than your opponent’s hand. :

P(Ha) = P(Ha| Ot = ) = (0.93,0.04,0.02,0.01),
. P(Ha|Fe=1y) = P(Ha| Ho=y) = P(Ha| Fb = y) = (0.1,0.5,0.1,0),
. P(Ha|Bt=1y) = (0.3,0.2,0.2,0.3).

Exercise 3.15. £ Construct a naive Bayes model of the simplified poker game
example in Sections 3.1.4 and 3.2.3 with OH2 being the class variable. Use your
implemented model from Exercise 3.14 to calculate the needed probabilities
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As\ Har| mo mild moderate severe ‘poor team is 0.5. What is the probability of a poor team making it to the final?
Y (1,0,0,0) (0.7, 0.3, 0, 0) (0.1, 0.7, 0.2, 0) {0, 0.1, 0.7, 0.2) Hint: For each match, generate a variable that represents the winner (with
L 1,0,6,0) (0,1,00) (0,010 (0,0,0,1) t, es poor tearn and good tearn), and variables that represent each contestant

Table 3.22. P(Ha|Hai, As) for Exercise 3.22. he opening matches (with states poor team and good team). Finally, use

snstraint nodes to ensure compliance with the restrictions in the exercise.)

.Moa..n.._mm '3.27. ¥ The following relations hold for the Boolean variables
(i} Include aspirin in the basis of Table 3.22, .
AVSBVOIA(BYCV-D)A(-CVEY-F)AN(-AVDVF)A

Exercise 3.23. Specify the model in Figure 3.4 as an OOBN. m<t_Qu A(~BV-CVD)A{CV-EVF)A(AV-DVF)

s there a truth value assignment to the variables making the expression
rue? (Hint: Represent the expression as a Bayesian network.}

i) We receive the evidence that A is false and B is true. Is there a truth
value assignment to the other variables making the expression true?
The satisfiability problem for propositional calculus is, given a Boolean
expression E (over n Boolean variables), is there a truth-value assignment
40 the variables that makes E true?

how that a method for calculation of probabilities in Bayesian networks
...mm.im a method for solving the satisfiability problem for propositional
alculus. (Hint: Assume that E is in conjunctive normal form.)

/) Show that probability caleulation in Bayesian networks is NP-hard.

Exercise 3.24. Construct an OOBN model for the stud farm in wmoﬂoa. 3.2.2
Use default potentials for horses with parents outside the model. .

Exercise 3.25. £ Consider the model in Figure 3.52. All variables havet
states. .

xercise 3.28. You have the model 4 — B and P(4) = (0.7,0.3). Two
experts give the tables in Table 3.23, and you have no reason to believe more
one expert than in the other.

: You receive the evidence A = y. What are the posterior probabilities for
:B-and the experts?

Fig. 3.52. A compact representation of a dynamic Bayesian network for .Mx.m_....

cise 3.25. B\A|lyin BNAly | n
y  (0.9]10.4 y {0.6|0.4
n 10.110.6 n |0.4|0.6
Pi(B]A) P:(BlA)

(i) Implement one time slice (with any set of potentials).

(ii) Implement three time slices.
(ili) How many time slices can you implement before your system reports that
it requires extra memory? :

Table 3.23. Table for Exercise 3.28.

Exercise 3.26. F Consider a soccer tournament with 8 teams. Teams 1 to.
4 are poor ones, and Teams 5 to 8 are good ones. Each match is betwee
two teams drawn at random from those that have played the same number of
matches previously in the tournament. The loser of each match is eliminated
from the tournament. The probability of a good team winning a match against
another team is 0.8 if the other team is a poor one, and 0.5 if the other team is
a good one. The probability of a poor team winning a match agains$ another




108 3 Building Models

Exercise 3.29. ¥

(i) Take your model from Exercise 3.7 and enter the evidence e = {Fever? ="
no, Sore Throat? = no, See Spots? = yes}. How does your system react?
Change the potentials such that P(Sore Throat? = no| Angina? = severe
Cold? = no) = 0.001, and P(See Spots?| Angina? == mild) = 0.01.

(ii) Calculate P{Cold?, Angina?|e).
(iii) Calculate MPE(e).
) Calculate conf(e).
(v) Determine P{Angina? = mild|e)(s), where s = P(See Spots? = .emmw
Angina? = mild).

mrmm Updating in Bayesian Networks

this chapter, we present algorithms for probability updating. An efficient
pdating algorithm is fundamental to the applicability of Bayesian networks.
s-shown in Chapter 2, access to P(l{,e) is sufficient for the calculations.
moémqo_., because the joint probability table increases exponentially with the
wumber of variables, we look for more-efficient methods. Unfortunately, no
hod guarantees a tractable calculational task. However, the method pre-
ented here represents a substantial improvement, and it is among the most-
sficient methods known.

"We shall use the framework of potentials. A conditional probability table

P(A]| pa{A)) is a function ¢ : pa(A)U{A} — [0: 1], and we call it a potential.
For the algebra of probability tables we shall for notational convenience use
nctional notation. That is, the product P(A| pa(A)) - P(B| pa(B)) is con-
sidered as a product of two functions ¢ (4, vi&&&imq@mﬁw:. The reader
‘expected to be familiar with Section 1.4.
Sections 4.1-4.6 present the junction tree algorithm, a version of the vari-
able elimination method. Section 4.7 presents an alternative method with
any-space properties, recursive conditicning, and in Sections 4.8 and 4.9 we
oittline different approximation methods.

To repeat the fundamentals from Chapter 2 and for pinpointing the issues in
‘belief updating for Bayesian networks, we consider in this section a simple
éxample. Consider the Bayesian network in Figure 4.1 over the universe .
The potentials specified for BN are ¢1 = P(A41),¢2 = P{A2 | A1),¢3 =
P(Az | A1), 04 = P(A4 | A2),¢5 = P(As | Az, A3), and ¢ = P(Ag | 43).



