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Energy consumption for cycles

Hybrid Electrical Vehicles — Parallel

v km/h L EUDC highway cycle ]
120k : P - @ Two parallel energy paths
100 - ECE city cycle
U =
S0 L (repeat 4 times)
s A
il Mo \ #
x 4
fil) I :
40 0 100 2000 800 Q) 1000 100 1200

Numerical values for MVEG-95, ECE, EUDC

air drag . > vPh= {319,82.9,455}
Xiot ictrac

rolling resistance :L Z Vih= {.856,0.81,0.88}
Xiot ictrac

kinetic energy :L Z ajvih= {0.101,0.126,0.086}
Xtot ictrac

Ewve-os ~ ArCg1.9-10* + m, ¢, 8410+ m, 10 kJ/100km
b
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Hybrid Electrical Vehicles — Serial Component modeling

@ Two paths working in series @ Model energy (power) transfer and losses
@ Decoupled through the battery @ Using maps n = f(T,w)

Combustion engine map Electric motor map

Map points + BSFC [g/kWh]
R e

Engine load - Tq [Nm]

2500
Engine speed [rpm]

@ Using parameterized (scalable) models
—Willans approach
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Battery — Standard model in this course Voltage and SOC

o
Simple model for the battery R, N _ _ Legend
—Open circuit voltage Uy:(SOC) ' — LiFePO4 1500 @ 6A
—State of charge SOC, (Q/Qmax) ——y Uy 3.0.::__ o Lrepot 1540 124
J— oc 25 T = LiFePO4 1.5 Ah @ 18A
Output voltage —AmnaGe
P 9 a0 /2 ;ﬁ 20— T v\\ 1 — A12311Ah @ 12A
U2 = UoC(SOC) - R,' I2 E = —I2 O 1,54 —— A123 1.1 Ah @ 18A
gl To protect the battery we need to: 101
o impose limits on the current
How fast is the battery (pack) charged. @ avoid emptying the battery completely g5 3 3 3 3“ zH 5 38 2 ¢
S mpHrs
@ C=1, full capacity in 1 hour. ) @ avoid over filling the battery
Typical characteristics. Can extract inner resistance, and capacity.
New lecture on batteries planned after easter — Stay tuned ] (Image source: batteryuniversity.com)
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Two important battery estimation problems

Model implemented in QSS

u Legend Conventional powertrain
—— LiFePO4 1.5Ah @ 6A
—— LiFeP0O4 1.5 Ah @ 12A
= LiFePO4 1.5 Ah @ 18A
a — A1231.1AN@6A vi—P|v wW_wW W W_gb—w|w_gb
E —— A1231.1Ah@ 124 dw_w dw_w
| — A1231.1 Ah @ 18A dw_gb—pdw_gb P_ic—®{P_ic
15 dv—{dv T w p T w ¢ tot 11100 km _—:
1.0 — -
e ) Vehicle i T_gb—» T gb Fuel consumption Display
. ! "
e = & & % % 6o % & & & <= Gear hox IC engine
AmpHrs xJtot
) Driving proﬁe
@ SOC - State of Charge. Current and voltage sensing.
@ SOH - State of Health. Cycle monitoring, current and voltage sensing. Efficient computations are important . .
@ Prolonging life: Temperature monitoring and current limits important. —For example if we want to do optimization and sensitivity studies.
9/45 10/45

Outline

Optimization — Linear Programming

9 “Traditional” Optimization ® Linear problem

: T

@ Different Classes of Problems m" ¢ x

@ An Example Problem stt. Ax = b
x >0

@ Convex problem
@ Much analyzed: existence, uniqueness, sensitivity
@ Many algorithms: Simplex the most famous

@ About the word Programming
—The solution to a problem was called a program

11/45 12/45



Optimization — Non-Linear Programming Mixed Integer and Combinatorial Optimziation

@ Non-linear problem

men f(x) @ Problem
st. gx) = 0 min f(x,y)
x =20 st. glx,y) = 0
@ For convex problems X > 0
—Much analyzed: existence, uniqueness, sensitivity. y € Z*
—Many (fast) algorithms. @ Inherently non-convex y
@ For non-convex problems Generally hard problems to solve.
—Some special problems have solutions @ Much analyzed
—Local optimum is not necessarily a global optimum —Existence, uniqueness, sensitivity
@ As engineers you need a methodology to ensure that you get a good solution. —Many types of problems
—Many algorithms are available
Industry is not always interested in The Optimal solution
—more often a Good Solution is enough. J
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An Example Problem — With Interesting Properties Some comments on practical optimiztion

What gear ratios give the lowest fuel consumption for a given drivingcycle? G I
~Problem presented in appendix 8.1

@ Find the “right” problem formulation
km/h | EUDC highway cycle ] o Model of the system
120 - (repeat once) ° Importapt properties, and your goal .
100 ECEcity cycle o Constraints: What do you want to aviod
0 = : | @ Find and use the right solver for the problem
of | (epents “m:S) rx—\_ @ Analyze the solution and (perhaps) reconsider the problem and iterate )
i M ,/ I\_‘. /) \
SEAVEA BNP. . \
40 0 100 200 800 900 1000 e W @ All optimal solutions are extreme points
§ - 5._2 @ The optimizer (solver) will shamelessly exploit all weaknesses of your model and
i ﬁ = problem formulation
s - T 1 i @ That's why you often need to reconsider the problem formulation ]
Problem characteristics 15/45 16/45

@ Countable number of free variables, iy j, j € [1,5]
@ A “computable” cost, my(---)
@ A “computable” set of constraints, model and cycle
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Outline

e Optimal Control
@ Problem Motivation
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General problem formulation

@ Performance index
t
W) = o(x(to) 1)+ [ LLx(0). (). et

@ System model (constraints)

%x = f(x(t),u(t),t), X(t3) = Xa
@ State and control constraints
u(t) e U(1)
x(t) € X(t)
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Optimal Control — Problem Motivation

Car with gas pedal u(t) as control input:
How to drive from A to B on a given time with minimum fuel consumption?

@ Infinite dimensional decision variable u(t).
@ Cost function fotf me(t)dt

@ Constraints:
e Model of the car (the vehicle motion equation)

Fe(v(t), u(t))  —(Fa(v(t)) + Fr(v(1)) + Fo(x(1)))

v(1)
f(v(t), u(t))

myZv(t)
ax(
ms

Starting point x(0) = A

End point x(t;) = B

Speed limits v(t) < g(x(t))

e Limited control action 0 < u(t) < 1

@ Difficult problem to solve analytically, only some special cases are solvable.

18/45

Optimal Control — Historical Perspective

@ Old subject
@ Rich theory

o Old theory from calculus of variations
@ Much theory and many methods were developed during 50’s-70’s
e Theory and methods are still being actively developed

@ Dynamic programming, Richard Bellman, 50’s.

@ A modern success story:
—Model predictive control (MPC)

@ Now a new interest for collocation methods:
—A few during 1990’s
—Much interest 2000—

Separate Course = TSRT08 Optimal Control J
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Outline Dynamic programming — Problem Formulation

@ Optimal control problem
t
min J(u) = 6(x(te), o) + [ LOx(2). u(t). Dl
ta

d x = f(x(t), u(t), )

s.t. o
X(t3) = Xa
u(t) e U(t)
@ Deterministic Dynamic Programming x(t) € X(t)
@ Problem setup and basic solution idea
@ Cost Calculation — Two Implementation Alternatives

@ x(1), u(t) functions on t € [fa, 1]
@ Search an approximation to the solution by discretizing
o the state space x(f)
e and maybe the control signal u(t)
in both amplitude and time.
@ The result is a combinatorial (network) problem
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Dynamic Programming (DP) — Problem Formulation DDP — Basic Algorithm

@ Find the optimal control sequence 7°(x) = {uo, U1, ..., Uy_1} Minimizing: N—1
N—1 J(X0) = gn(xn) + ; Ik (X, Uk)
=0
J(x0) = gn(xn) + > gk(Xk, Uk, Wk)
kZ:o X1 = fk(Xk, Uk)
@ subject to: Bellman’s Theory and Algorithm:
—Start at the end and proceed backward in time
Xi1 = (X, Uk, Wic) —Determine the optimal cost-to-go
X0 =x(t=0) —Store the corresponding control signal
e SCSSSISISISSSS
Uy € Uk WMM&\

SSoseee
@ Disturbance Wy N N N N N N NS
1 2

@ Stochastic vs Deterministic DP i b
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DDP — Basic algorithm Deterministic Dynamic Programming — Basic Algorithm
N—1 Fundamental idea
J(xo0) = gn(xn) + Z 9k (X, Uk) Construct the Cost-to-go by solving small subproblems.

k=0
Xkt = f(Xk, Ug) Graphical illustration of the solution procedure
Algorithm: x 5 Jg(xw
@ Set k = N, and assign final cost Jy(xn) = gn(Xn) . . . . . . . . o
e’ S;et kv:: kv__ 1 . . . . . . . 4 e 0
© For all points in the state-space grid, find the optimal cost to go . . . . . . . . o1
. [} ] [} ] [ ] ] ] e 2
Ji(Xk) = min " Gie(X, Uk) + Ji1 (Fe(Xk, Uk))
uk€ Uk (xx) . . . . . . . . e3
k=0 1 2 N-1 N
© If k = 0 then return solution : ‘ ‘ ‘ ‘ ‘ ‘ ‘ b
© Gotostep?2
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Arc Cost Calculations Pros and Cons with Dynamic Programming

For an arc
@ You know where you are
@ also know all places you can go to
There are two ways for calculating the arc costs
@ Calculate the exact control signal and cost for each arc

Pros
@ Globally optimal, for all initial conditions
@ Can handle nonlinearities and constraints
@ Time complexity grows linearly with horizon

—Quasi-static approach @ Use output and solution as reference for comparison
@ Make a grid over the control signal and interpolate the cost for each arc Cons
—Forward calculation approach @ Non causal
Matlab implementation — it is important to utilize matrix calculations @ Time complexity grows “exponentially” with number of states, curse of dimensionality
@ Calculate the whole bundle of arcs in one step @ 2-3 states are often at the limit

@ Add boundary and constraint checks
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Calculation Example

@ Problem 200s with discretization At = 1s.
@ Control signal discretized with 10 points.
@ Statespace discretized with 1000 points.
@ One evaluation of the model takes 1us

@ Solution time:

o Brute force:
Evaluate all possible combinations of control sequences.
Number of evaluations, 102% gives ~ 3 - 108 years. (Universe is ~ 13.8 - 10° years.)
@ Dynamic programming:
Number of evaluations: 200 - 10 - 1000 gives 2 s.
(Example contributed by ETH)
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Hand-In Task 2 — Energy Management of Two Hybrids

Optimize the fuel consumption of 2 hybrids over driving cycles, using DDP |

Parallel Hybrid Series Hybrid

One degree of freedom Two degrees of freedom

— SOC, main control variable

— SOC, main control variable

— Engine speed can be freely selected

— Engine speed is given by the cycle
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Outline

© Hand-In Task 2
@ The Provided Tools
@ Case Studies
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The Provided Tools for Hand-in 2 and the Goals

Tasks and Tools
Investigate optimal control of one parallel and one series hybrid configuration in different

driving profiles
@ Some Matlab-functions provided
o Skeleton file for defining the problems

e 2 DDP solvers, 1-dim and 2-dim.
o 2 skeleton files for calculating the arc costs for parallel and serial hybrids

Solve the problems, analyze the solutions, see if they are generalizable

Learning Goals

@ Knowledge about operation modes of different hybrid topologies
@ Experience in modeling of hybrid electric vehicles

@ Experience from working and solving an optimal control problem
@ See the benefits of different hybrid topologies )
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Your Implementation Task 1 — The process of constructing a solution

Problem setup — DDP Solver — Arc Calculator — You will implement the arc cost calculations, for a bundle of arcs.

testHybrids.m dynProglD.m parallelHybrid.m
—Given —Your main
Implementation Task

05
0.495 -
049

soC [

0.485
048
0475
047

L L L L L
o 20 a0 60 80 100 120

Velocity [km/h]

L I I L I I I L L\
o 20 a0 60 80 100 120 140 160 180 200
Time [s]

—Your Analysis Task
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Your Implementation Task 1 — The process of constructing a solution Your Implementation Task 2 — Unwiding the Solution

: , . The functions dynProg1D and dynProg2D returns
Upgrading to Series-Hybrid — 2 DoF

@ The cost to go function values and solution steps
@ Solution: Information about the next step
@ Unwind: Start from the initial value and follow the path to the end

1D arc bundles — 2D arc bundles
soc £n - niy

we P funcbion thal colewdabes <——

al|] are-costs as a 2D-makdi, Fiaishe ol
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Unwiding the Solution - Video Numerical Accuracy

DDP guarantees a global solution — but only within the discretization
More accurate discretization might be needed to see the details in a solution
£ P
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Unwided Solutio ' Numerical Accuracy — Solution time — Parallel Computing in Matlab

Fuel consumption (mass):4.9026L/100km Fuel consumption (mass):4.9019L/100km
0.04 0.04 -
_ 003 = 003 |
2 3
° o
Z I3}
002 [ £ o002 |
> _ =
g _— g
3
oot - / Soot |
0 e —r— . . . . . . ) o . . . ,
0 20 40 60 80 100 120 140 160 180 200 0 50 100 150 200
05 SoC
50 - : XAI /7\\
/ N/ N Y
\ N
\ N J
40~ / \ AN /
/ \ ) 0.495 \ AN
Ea0r f \ / \ & — g
= \ / \ o Q
2 Q o}
8 20 \ i D 049 D049 A SOC=1e-3, M (=5.2196 /100 km, t=10.176 |
g - N y \ A SOC=1e-3,M (=5.2196 /100 km, =0.44175 A SOC-1e-4, M |-4.9221/100 km, 11,1022 \
ol [ \ A SOC=1e-4, M =4.922 /100 km, 1=9.7944 A'SOC=1e-5, M =4.9026 100 km, 1715135 ‘\ /
\ 0485 | A SOC=1e-5, M (=4.9026 /100 km, t-800.6725 \ A SOC=5e-6, M (=4.9019 /100 km, 1=232.2297
\ \ ) ! ! ! ! ! | 1 1 1 | 0485 1 . . A .
/ \ . . . L I . I
% 20 a0 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 0 50 100 150 200
Time [s]
v v
z
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z 7
E 8r E 8f
= >
= .| >




Your Implementation Task 1 — The process of constructing a solution General Advice

Analysis of complexity:

Consider a two dimensional problem that have Ny and N, points in their grids @ Work with arc costs and debug
and N; time points. 5o ; e

@ Use Matlab matrix math
@ Start with a smaller problem to

@ At each time step N; we have to:

@ evaluate all points Ny N,, in the sheet and for each of them

learn
@ all their Ny N, following potential candidates @ Start with a coarser grid and
Lo . then refine
Resulting in a complexity of
) @ When you are convinced that
T = kN NZNj /N | you have the solution ready

So it is quadratic in each dimension

— v then increase the problem size
and linear in time / \

and level of detail
Exponential curse of dimensions (p-dim.) " o \ e ﬁ;t;nﬁzmaglor?oﬂrrne for series

Velocity [km/h]

T =k N?P

we.

R function that colewlates <
all are-costs as o 2D-makrr, Finishedl
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Parallel Hybrid Example Parallel Hybrid Example

. . l- i | lit f; r = Te—motor
@ Fuel-optimal torque split factor u(SOC, t) = TT‘*;"Z’“” @ Fuel-optimal torque split factor u(SOC, 1) Tooarbox
o ECE cycle geamex @ NEDC cycle
. nstrain =1t) = 0.6, .5,0.7
e Constraints SOC(t = t;) > 0.6, SOC € [0.5,0.7] ® Constraints SOC(t = &) = 0.6, SOC € [0.5,0.7]
0.7 pure electric 0.7y pure electric
008§ boost
— t;uretthermal - pure thermal
__'f' 0.65 3 o
§ oo g 0.6
E recharging %m recharging
50.55 b E ossl
%] 3 -
o . fiAnsinge ol 1] standing
time [s] o 600 1000

time [s]
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