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Deterministic Dynamic Programming – Basic algorithm

J(x0) = gN(xN) +
N−1∑
k=0

gk (xk ,uk )

xk+1 = fk (xk ,uk )

Algorithm idea:
Start at the end and proceed backward in time to evaluate the
optimal cost-to-go and the corresponding control signal.
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Deterministic Dynamic Programming – Basic
Algorithm

Graphical illustration of the solution procedure
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Examples of Short Term Storage Systems Pneumatic Hybrid Engine System
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Parallel Hybrid – Modes and Power Flows
The different modes for a parallel hybrid

u ≈ Pbatt/Pvehicle

Battery drive mode (ZEV)

P M TB V

E

Parallel Hybrid

ZEV mode, u=1

Battery recharge mode

P M TB V

E

Parallel Hybrid

Battery recharging mode, u<0

Power assist mode

P M TB V

E

Parallel Hybrid

Power assist mode, 0<u<1

Regenerative braking mode

P M TB V

E

Parallel Hybrid

Regenerative braking mode, u=1

Conventional vehicle

P M TB V

E

Parallel Hybrid

Conventional vehicle mode, u=0



Control algorithms

I Determining the power split ratio u

uj(t) =
Pj(t)

Pm+1(t) + Pl(t)
(4.110)

I Clutch engagement disengagement Bc ∈ {0,1}
I Engine engagement disengagement Be ∈ {0,1}

Strategies for the Parallel Hybrid

Power split u, Clutch Bc , Engine Be

Mode u Be Bc
1 ICE 0 1 1
2a ZEV 1 0 0
2b ZEV 1 0 1
3 Power assist [0,1] 1 1
4 Recharge < 0 1 1
5a Regenerative braking 1 0 0
5a Regenerative braking 1 0 1

All practical control strategies have engine shut off when the
torque at the wheels are negative or zero; standstill, coasting
and braking.

Classification I of Supervisory Control Algorithms

I Non-causal controllers
I Detailed knowledge about future driving conditions.
I Position, speed, altitude, traffic situation.
I Uses:

Regulatory drive cycles, public transportation, long haul
operation, GPS based route planning.

I Causal controllers
I No knowledge about the future...
I Use information about the current state.
I Uses:

“The normal controller”, on-line, in vehicles without planning

Classification II of Vehicle Controllers

I Heuristic controllers
–State of the art in most prototypes and mass-production.

I Optimal controllers
–Inherently non-causal

I Sub-optimal controllers
–Often causal

Some Comments About the Problem

I Difficult problem
I Unsolved problem for causal controllers.
I Rich body of

engineering reports and
research papers on the subject
–This can clearly be seen when reading chapter 7!
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Heuristic Control Approaches

Operation usually depends on a few vehicle operation
I Rule based:

Nested if-then-else clauses
if v < vlow then use electric motor (u=1).
else. . .

I Fuzzy logic based
Classification of the operating condition into fuzzy sets.
Rules for control output in each mode.
Defuzzyfication gives the control output.

Heuristic Control Approaches

I Parallel hybrid vehicle (electric assist)

I Determine control output as function of some selected
state variables:
vehicle speed, engine speed, state of charge, power
demand, motor speed, temperature, vehicle acceleration,
torque demand.



Heuristic Control Approaches – Concluding Remarks

I Easy to conceive
I Relatively easy to implement
I Proper tuning can give good fuel consumption reduction

and charge sustainability
I Result will depend on the thresholds
I Performance will vary with cycle and driving condition

–Not robust.
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Consider a driving mission

I Variables.
Control signal – u(t), System state – x(t), State of charge -
q(t) (is a state).

Formulating the Optimal Control Problem
–What is the optimal behaviour? Defines Performance index J.

I Minimize the fuel consumption

J =

∫ tf

0
ṁf (t ,u(t))dt

I Balance between fuel consumption and emissions

J =

∫ tf

0

[
ṁf (t ,u(t)) + αCOṁCO(x(t),u(t))+

αNOṁNO(x(t),u(t)) + αHCṁHC(x(t),u(t))
]
dt

I Include driveability criterion

J =

∫ tf

0
ṁf (t ,u(t)) + β

(
d
dt

a(t)
)2

dt

First Solution to the Problem

I Minimize the fuel consumption

J =

∫ tf

0
ṁf (t ,u(t))dt

Including constraints
I Hard or soft constraints

min J(u) =
∫ tb

ta
L(t ,u(t))dt

s.t . q(0) = q(tf )

min J(u) = φ(q(tf )) +
∫ tb

ta
L(t ,u(t))dt

I How to select φ(q(tf ))?

φ(q(tf )) = α (q(tf )− q(0))2

penalizes high deviations more than small, independent of
sign

φ(q(tf )) = w (q(0)− q(tf ))

penalizes battery usage, favoring energy storage for future
use

I One more feature from the last one

Including constraints

I Including battery penalty according to

φ(q(tf )) = w (q(0)− q(tf )) = w
∫ tf

0
q̇(t)dt

enables us to rewrite

min J(u) =
∫ tb

ta
L(t ,u(t)) + w q̇(t)dt

Constraints That are Also Included

I State equation ẋ = f (x) is also included – From Lecture 6
I Consider hybrid with only one state SoC

min J(u) = φ(q(tb), tb) +
∫ tb

ta
L(t ,u(t))dt

s.t .
d
dt

q = f (t ,q(t),u(t))

u(t) ∈ U(t)
q(t) ∈ Q(t)
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Analytical Solutions to Optimal Control Problems
I Core of the problem

min J(u) = φ(q(tb), tb) +
∫ tb

ta
L(t ,u(t))dt

s.t . q̇(t) = f (t ,q(t),u(t))

I Solution (theory from chapter 9)

u(t) = arg min
u

H(t ,q(t),u(t), µ(T ))

with

H(t ,q(t),u(t), µ(T )) =L(t ,u(t)) + µ(t) f (t ,q(t),u(t))

µ̇(t) =− ∂

∂q
f (t ,q(t),u(t))

q̇(t) =f (t ,q(t),u(t))

If ∂
∂q f (t ,q(t),u(t)) = 0 the problem becomes simpler. µ

becomes a constant µ0, search for it when solving.

Analytical Solutions to Optimal Control Problems

I µ0 depends on the (soft) constraint

µ0 =
∂

q(tf )
φ(q(tf )) = /special case/ = −w

I Different efficiencies

µ0 =
∂

∂q(tf )
φ(q(tf )) =

{
−wdis, q(tf ) > q(0)
−wchg , q(tf ) < q(0)

I Introduce equivalence factor (scaling) by studying battery
and fuel power

s(t) = −µ(t) HLHV

Vb Qmax

ECMS – Equivalent Consumption Minimization Strategy

Determining Equivalence Factors I

Constant engine and battery effi-
ciencies

sdis =
1

ηe ηf

schg =
ηe

ηf

Determining Equivalence Factors II

I Collecting battery and fuel energy data from test runs with
constant u gives a graph

I Slopes determine sdis and schg .

ECMS On-line Implementation

Flowchart

There is also a T-ECMS (telemetry-ECMS)
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