Vehicle Propulsion Systems Lecture 9 Fuel Cell Vehicles

Lars Eriksson Associate Professor (Docent)

> Vehicular Systems Linköping University

November 26, 2010

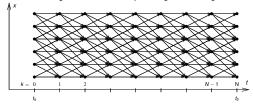
Outline

Repetition

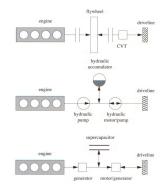
Fuel Cell Basics Fuel Cell Basics Fuel Cell Types

Fuel Cell Modeling

Reformers

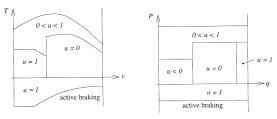

Practical aspects

Deterministic Dynamic Programming – Basic algorithm


$$J(x_0) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$
$$x_{k+1} = f_k(x_k, u_k)$$

Algorithm idea:

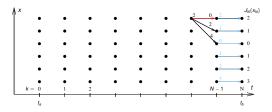
Start at the end and proceed backward in time to evaluate the optimal cost-to-go and the corresponding control signal



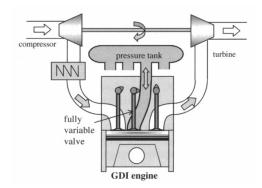
Examples of Short Term Storage Systems

Heuristic Control Approaches

Parallel hybrid vehicle (electric assist)



 Determine control output as function of some selected state variables:


vehicle speed, engine speed, state of charge, power demand, motor speed, temperature, vehicle acceleration, torque demand

Deterministic Dynamic Programming – Basic Algorithm

Graphical illustration of the solution procedure

Pneumatic Hybrid Engine System

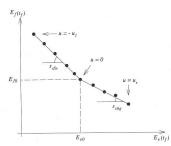
ECMS – Equivalent Consumption Minimization Strategy

• μ_0 depends on the (soft) constraint

$$\mu_0 = rac{\partial}{q(t_f)} \phi(q(t_f)) = / ext{special case} / = -w$$

Different efficiencies

$$\mu_0 = \frac{\partial}{\partial q(t_f)} \phi(q(t_f)) = \begin{cases} -w_{dis}, & q(t_f) > q(0) \\ -w_{chg}, & q(t_f) < q(0) \end{cases}$$

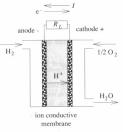

 Introduce equivalence factor (scaling) by studying battery and fuel power

$$s(t) = -\mu(t) rac{H_{LHV}}{V_b Q_{max}}$$

ECMS - Equivalent Consumption Minimization Strategy

Determining Equivalence Factors II

 Collecting battery and fuel energy data from test runs with constant u gives a graph

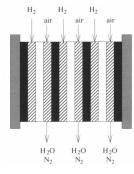


Slopes determine s_{dis} and s_{chg}

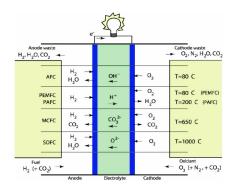
Fuel Cell Basic Principles

- Convert fuel directly to electrical energy
- Let an ion pass from an anode to a cathode
- Take out electrical work from the electrons

Components in a Fuel Cell Stack

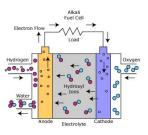


Outline


Fuel Cell Basics Fuel Cell Basics Fuel Cell Types

Fuel Cell Stack

- The voltage out from one cell is just below 1 V. Fuel cells are stacked.



Overview of Different Fuel Cell Technologies

AFC - Alkaline Fuel cell

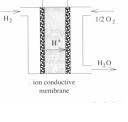
 $\mathbf{O}_{2,\mathrm{out}}$

CGC

CDL

MEM

ADL


AGC

- Among the most efficient fuel cells 70%
- Low temperature 65-220°C
 - Quick start, fast dynamics No co-generation
- Sensitive to poisoning

PEMFC – Proton Exchange Membrane Fuel Cell

- relatively high-power density characteristic
- operating temperature, less than 100°C, which allows rapid start-up
- rapidly change power output, top candidate for automotive power applications
- other advantages relates to the electrolyte being a solid material, compared to a liquid
- disadvantages of the PEMFC for some applications, operating temperature is low
- The electrolyte is required to be saturated with water to operate optimally, careful control of the moisture of the anode and cathode streams is important

DMFC - Direct Methanol Fuel Cell

Basic operation

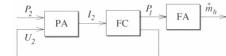
- ► Anode Reaction: $CH_3OH + H_2O \Rightarrow CO_2 + 6H^+ + 6e^-$ ► Cathode Reaction: $3/2O_2 + 6H^+ + 6e^- => 3H_2O$ ► Overall Cell Reaction: $CH_3OH + 3/2O_2 => CO_2 + 2H_2O$
- Main advantage, does not
- Applications outside automotive -battery replacements
- -small light weight
- Low temperature
- Toxicity a problem

The Other Types of Fuel Cells

- Other fuel cell types are
 - MCFC Molten Carbonate Fuel Cell
 - PAFC Phosphoric Acid Fuel Cell
 - SOFC Solid Oxide Fuel Cells
- Hotter cells, slower, more difficult to control
- Power generation through co-generation

Hydrogen Fuel Storage

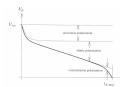
- Hydrogen storage is problematic Challenging task.
- Some examples of different options.
 - High pressure bottles
 - Liquid phase Cryogenic storage, -253°C.
 - Metal hydride
 - Sodium borohydride NaBH4


Outline

Fuel Cell Modeling

O

Quasistatic Modeling of a Fuel Cell


Causality diagram

- Power amplifier (Current controller)
- Fuel amplifier (Fuel controller)
- Standard modeling approach

Fuel Cell Performance - Polarization curve

Polarization curve of a fuel cell Relating current density $ifc(t) = I_{fs}(t)/A_{fc}$, and cell voltage $U_{fc}(t)$

i_f, [A/m²]

Curve for one operating condition

- Fundamentally different compared to combustion engine/electrical motor
- Excellent part load behavior
- -When considering only the cell

Fuel Cell Thermodynamics

Starting point reaction equation

$$H_2 + \frac{1}{2} O_2 \Rightarrow 2 H_2 0$$

$$H = U + pV$$

 Reversible energy – Gibbs free energy G G

$$G = H + TS$$

 ΔH

n_e F

Open circuit cell voltages

$$U_{
m rev} = -rac{\Delta G}{n_e\, F}, \qquad \qquad U_{
m id} =$$

 $= \eta_{id} U_{id}$

F – Faradays constant ($F = q N_0$)

Under load

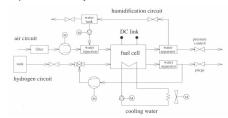
$$P_l = I_{fc}(t) \left(U_{id} - U_{fc}(t) \right)$$

Single Cell Modeling

- Fuel cell voltage
 - $U_{fc}(t) = U_{rev}(t) U_{act}(t) U_{ohm}(t) U_{conc}(t)$
- Activation energy Get the reactions going Semi-empirical Tafel equation

 $U_{act}(t) = c_0 + c_1 \ln(i_{fc}(t)), \text{ or } U_{act}(t) = \dots$

Ohmic – Resistance to flow of ions in the cell


$$U_{ohm}(t) = i_{fc}(t) \tilde{R}_{fc}$$

Concentration, change in concentration of the reactants at the electrodes

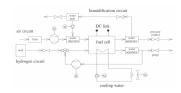
$$U_{conc}(t) = c_2 \cdot i_{fc}(t)^{c_3}$$
, or $U_{conc} = ...$

Fuel Cell System Modeling

A complete fuel cell system

Power at the stack with N cells

$$P_{st}(t) = I_{fc}(t) U_{fc}(t) N$$

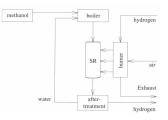

Fuel Cell System Modeling

Describe all subsystems with models

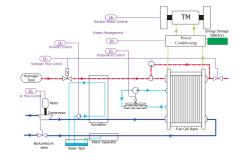
 $P_2(t) = P_{st}(t) - P_{aux}(t)$

 $P_{aux} = P_0 + P_{em}(t) + P_{ahp}(t) + p_{hp}(t) + P_{cl}(t) + p_{cf}(t)$

em-electric motor, ahp – humidifier pump, hp – hydrogen recirculation pump, cl – coolant pump, cf – cooling fan.


Submodels for:

Hydrogen circuit, air circuit, water circuit, and coolant circuit


Reformers

 Fuel cells need hydrogen – Generate it on-board –Steam reforming of methanol.

 $2\,\textit{CH}_3\textit{OH} + \textit{O}_2 \Rightarrow 2\,\textit{CO}_2 + 4\,\textit{H}_2$

Fuel Cell Vehicles

Fuel Cell Vehicle

The Hy.Power vehicle, going over a mountain pass in Switzerland in 2002.

- Technology demonstrator
- Lower oxygen contents, 2005 m
- Cold weather

Outline

Repetition

Fuel Cell Basics Fuel Cell Basics Fuel Cell Types

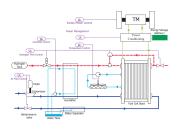
Fuel Cell Modeling

Reformers

Practical aspects

Outline

Repetition

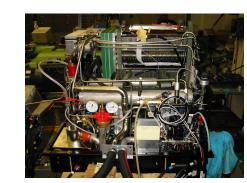

Fuel Cell Basics Fuel Cell Basics Fuel Cell Types

Fuel Cell Modeling

Reformers

Practical aspects

Fuel Cell HEV – Short Term Storage



Short term storage

- 1. Recuperation
- 2. FC has long time constants

Components – Electric Motor

Components – Fuel Supply and Fuel Cell Stack

Components – Fuel Cell Stack and Heat Exchanger

Components - Power Electronics and Super Caps

Components – Fuel Cell Stack, Controller and Heat exchanger

