Outline

Vehicle Propulsion Systems Lecture 6

Supervisory Control Algorithms

Lars Eriksson Professor

Vehicular Systems Linköping University

April 21, 2016

Repetition

1/39

Hybrid Electrical Vehicles - Parallel

- Two parallel energy paths
- One state in QSS framework, state of charge

4/39

6/39

Optimization, Optimal Control, Dynamic Programming What gear ratios give the lowest fuel consumption for a given

drivingcycle? -Problem presented in appendix 8.1

Problem characteristics

- Countable number of free variables, $i_{g,j}, j \in [1, 5]$
- A "computable" cost, $m_f(\cdots)$
- A "computable" set of constraints, model and cycle
- The formulated problem

 $m_f(i_{g,1}, i_{g,2}, i_{g,3}, i_{g,4}, i_{g,5})$

 $\min_{i_{g,j}, j \in [1,5]}$ model and cycle is fulfilled s.t.

General problem formulation

Performance index

$$J(u) = \phi(x(t_b), t_b) + \int_{t_a}^{t_b} L(x(t), u(t), t) dt$$

System model (constraints)

$$\frac{d}{dt}x = f(x(t), u(t), t), x(t_a) = x_a$$

State and control constraints

$$u(t) \in U(t)$$

 $x(t) \in X(t)$

Hybrid Electrical Vehicles - Serial

- Two paths working in parallel
- Decoupled through the battery
- Two states in QSS framework, state of charge & Engine speed

5/39

3/39

Optimal Control – Problem Motivation

Car with gas pedal u(t) as control input:

How to drive from A to B on a given time with minimum fuel consumption?

- Infinite dimensional decision variable u(t).
- Cost function $\int_0^{t_f} \dot{m}_f(t) dt$
- Constraints:

Model of the car (the vehicle motion equation)

$$\begin{array}{rcl} m_{v} \frac{d}{dt} v(t) &= F_{t}(v(t), u(t)) & -(F_{a}(v(t)) + F_{r}(v(t)) + F_{g}(x(t))) \\ \frac{d}{dt} x(t) &= v(t) \\ \dot{m}_{t} &= f(v(t), u(t)) \end{array}$$

- Starting point x(0) = A
- End point $x(t_f) = B$
- Speed limits $v(t) \leq g(x(t))$
- Limited control action $0 \le u(t) \le 1$

7/39

Dynamic programming – Problem Formulation

Optimal control problem

$$\min J(u) = \phi(x(t_b), t_b) + \int_{t_a}^{t_b} L(x(t), u(t), t) dt$$
s.t. $\frac{d}{dt}x = f(x(t), u(t), t)$
 $x(t_a) = x_a$
 $u(t) \in U(t)$
 $x(t) \in X(t)$

- ▶ x(t), u(t) functions on $t \in [t_a, t_b]$
- Search an approximation to the solution by discretizing ► the state space x(t)
 - and maybe the control signal u(t)
 - in both amplitude and time.
- The result is a combinatorial (network) problem

Deterministic Dynamic Programming - Basic algorithm

$$J(x_0) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$
$$x_{k+1} = f_k(x_k, u_k)$$

Algorithm idea:

Start at the end and proceed backwards in time to evaluate the optimal cost-to-go and the corresponding control signal.

Arc Cost Calculations

There are two ways for calculating the arc costs

- Calculate the exact control signal and cost for each arc. –Quasi-static approach
- Make a grid over the control signal and interpolate the cost for each arc.
- -Forward calculation approach

- Calculate the whole bundle of arcs in one step
- Add boundary and constraint checks

2D and 3D grid examples on whiteboard

12/39

Outline

Repetition

Supervisory Control Algorithms

Heuristic Control Approaches

Optimal Control Strategies

Analytical solutions to Optimal Control Problems ECMS – Equivalent Consumption Minimization Strategy

14/39

Control algorithms

Determining the power split ratio u

$$u_j(t) = \frac{P_j(t)}{P_{m+1}(t) + P_l(t)}$$

• Clutch engagement disengagement $B_c \in \{0, 1\}$

• Engine engagement disengagement $B_e \in \{0, 1\}$

Deterministic Dynamic Programming – Basic Algorithm

Graphical illustration of the solution procedure

11/39

Parallel Hybrid Example

- Fuel-optimal torque split factor $u(SOC, t) = \frac{T_{e-motor}}{T_{enclor}}$
- ECE cycle
- ▶ Constraints $SOC(t = t_f) \ge 0.6$, $SOC \in [0.5, 0.7]$

13/39

Parallel Hybrid – Modes and Power Flows

The different modes for a parallel hybrid

 $u \approx P_{batt}/P_{vehicle}$

Battery drive mode (ZEV)

15/39

Strategies for the Parallel Hybrid

Power split u, Clutch B_c , Engine B_e

	Mode	и	Be	B _c
1	ICE	0	1	1
2a	ZEV	1	0	0
2b	ZEV	1	0	1
3	Power assist	[0,1]	1	1
4	Recharge	< 0	1	1
5a	Regenerative braking	1	0	0
5a	Regenerative braking	1	0	1

All practical control strategies have engine shut off when the torque at the wheels are negative or zero; standstill, coasting and braking.

(4.110)

Classification I - Supervisory Control Algorithms

- Non-causal controllers
 - Detailed knowledge about future driving conditions.
 - Position, speed, altitude, traffic situation.
 - Uses:
 - Regulatory drive cycles, public transportation, long haul operation, GPS based route planning.
- Causal controllers
 - No knowledge about the future..
 - Use information about the current state.
 Uses:
 - "The normal controller", on-line, in vehicles without planning

18/39

20/39

22/39

Some Comments About the Problem

- Difficult problem
- Unsolved problem for causal controllers
- Rich body of
- engineering reports and
- research papers on the subject
- -This can clearly be seen when reading chapter 7!

Classification II - Vehicle Controllers

- Heuristic controllers
- Causal
 State of the art in most prototypes and mass-production
- Optimal controllers
- Often non-causal
 - -Solutions exist for simplifications
- Sub-optimal controllers
- -Often causal

On-going work to include optimal controllers in prototypes

19/39

Outline

Repetition

Supervisory Control Algorithms

Heuristic Control Approaches

Optimal Control Strategies

Analytical solutions to Optimal Control Problems ECMS – Equivalent Consumption Minimization Strategy

21/39

Heuristic Control Approaches

Operation usually depends on a few vehicle operation

- Rule based: Nested if-then-else clauses
 - if $v < v_{low}$ then use electric motor (u=1). else...
- Fuzzy logic based
 Classification of the operating condition into fuzzy sets.
 Rules for control output in each mode.
 Defuzzyfication gives the control output.

Heuristic Control Approaches Parallel hybrid vehicle (electric assist)

$T \qquad 0 < u < 1 \qquad u = 0 \qquad u = 0 \qquad u = 0 \qquad u = 0 \qquad u = 1 \qquad u < 1 = 1 \qquad u < 0 \qquad u = 1 \qquad u < 1 < u < 0 \qquad u = 1 \qquad u < 1 < u < 0 \qquad u = 1 \qquad u < 1 < u < 0 \qquad u = 1 \qquad u < 0 \qquad u = 1 \qquad u < 0 \qquad u = 1 \qquad u < 0 \qquad u < 1 < u < 0 \qquad u = 1 \qquad u < 0 \qquad u <$

 Determine control output as function of some selected state variables: vehicle speed, engine speed, state of charge, power demand, motor speed, temperature, vehicle acceleration, torque demand.

23/39

Outline

Repetition

Supervisory Control Algorithms

leuristic Control Approaches

Optimal Control Strategies

nalytical solutions to Optimal Control Problems ECMS – Equivalent Consumption Minimization Strategy

- Easy to conceive
- Relatively easy to implement
- Result depends on the thresholds
- Proper tuning can give good fuel consumption reduction and charge sustainability

Heuristic Control Approaches - Concluding Remarks

- Performance varies with cycle and driving condition -Not robust
- Time consuming to develop an tune for advanced hybrid configurations

Consider a driving mission

Variables.

Control signal -u(t), System state -x(t), State of charge -q(t) (is a state).

26/39

First Solution to the Problem

Minimize the fuel consumption

$$J = \int_0^{t_f} \dot{m}_f(t, u(t)) dt$$

28/39

30/39

Including constraints

Including battery penalty according to

$$\phi(q(t_f)) = w(q(0) - q(t_f)) = -w \int_0^{t_f} \dot{q}(t) dt$$

enables us to rewrite

min
$$J(u) = \int_0^{t_f} L(t, u(t)) - w \dot{q}(t) dt$$

Formulating the Optimal Control Problem

- -What is the optimal behaviour? Defines *Performance index J*.
 - Minimize the fuel consumption

$$J=\int_0^{u_f}\dot{m}_f(t,u(t))dt$$

Balance between fuel consumption and emissions

$$\begin{aligned} J &= \int_0^{t_f} \left[\dot{m}_f(t, u(t)) + \alpha_{CO} \dot{m}_{CO}(x(t), u(t)) + \alpha_{NO} \dot{m}_{NO}(x(t), u(t)) + \alpha_{HC} \dot{m}_{HC}(x(t), u(t)) \right] dt \end{aligned}$$

Include driveability criterion

$$J = \int_0^{t_f} \dot{m}_f(t, u(t)) + \beta \left(\frac{d}{dt}a(t)\right)^2 dt$$

27/39

Including constraints

Hard or soft constraints

min
$$J(u) = \int_0^{t_f} L(t, u(t)) dt$$

s.t. $q(0) = q(t_f)$

min
$$J(u) = \phi(q(t_f)) + \int_0^{t_f} L(t, u(t)) dt$$

► How to select \u03c6(q(t_f))?

$$\phi(\boldsymbol{q}(t_f)) = lpha (\boldsymbol{q}(t_f) - \boldsymbol{q}(\mathbf{0}))^2$$

penalizes high deviations more than small, independent of sign $\phi(q(t_t)) = w(q(0) - q(t_t))$

$$\psi(q(t_t)) = \psi(q(t_t) - q(t_t))$$

penalizes battery usage, favoring energy storage for future use

One more feature from the last one

Constraints That are Also Included

- State equation $\dot{x} = f(x)$ is also included From Lecture 5
- Consider hybrid with only one state, SoC

$$\min J(u) = \phi(q(t_f), t_f) + \int_0^{t_f} L(t, u(t)) dt$$

$$s.t. \frac{d}{dt}q = f(t, q(t), u(t))$$

$$u(t) \in U(t)$$

$$q(t) \in Q(t)$$

31/39

29/39

Analytical Solutions to Optimal Control Problems

Core of the problem

$$\min J(u) = \phi(q(t_f), t_f) + \int_0^{t_f} L(t, u(t)) dt$$

s.t. $\dot{q}(t) = f(t, q(t), u(t))$

 $H(t, q(t), u(t), \mu(t)) = L(t, u(t)) + \mu(t) f(t, q(t), u(t))$

Outline

Repetition

Supervisory Control Algorithms

Heuristic Control Approaches

Optimal Control Strategies

Analytical solutions to Optimal Control Problems ECMS – Equivalent Consumption Minimization Strategy

Analytical Solutions to Optimal Control Problems

Hamiltonian

 $H(t, q(t), u(t), \mu(t)) = L(t, u(t)) + \mu(t) f(t, q(t), u(t))$

Solution (theory from Appendix B)

$$u(t) = \operatorname*{arg\,min}_{\mu} H(t, q(t), u(t), \mu(t))$$

with

$$\dot{\mu}(t) = -\frac{\partial}{\partial q} f(t, q(t), u(t))$$
$$\dot{q}(t) = f(t, q(t), u(t))$$

► If $\frac{\partial}{\partial q} f(t, q(t), u(t)) = 0$ the problem becomes simpler μ becomes a constant μ_0 , search for it when solving

34/39

Determining Equivalence Factors I

36/39

ECMS On-line Implementation

Flowchart

There is also a T-ECMS (telemetry-ECMS)

38/39

Analytical Solutions to Optimal Control Problems

• μ_0 depends on the (soft) constraint

$$\mu_0 = rac{\partial}{q(t_f)}\phi(q(t_f)) = / ext{special case} / = -w$$

$$\mu_0 = \frac{\partial}{\partial q(t_f)} \phi(q(t_f)) = \begin{cases} -w_{dis}, & q(t_f) > q(0) \\ -w_{chg}, & q(t_f) < q(0) \end{cases}$$

 Introduce equivalence factor (scaling) by studying battery and fuel power

$$s(t) = -\mu(t) rac{H_{LHV}}{V_b \, Q_{max}}$$

ECMS – Equivalent Consumption Minimization Strategy

35/39

Determining Equivalence Factors II

 Collecting battery and fuel energy data from test runs with constant u gives a graph

Slopes determine *s*_{dis} and *s*_{chg}.

37/39