Outline

 $1/1$

 $3/1$

 $5/1$

Vehicle Propulsion Systems Lecture 10 Summary of the Course

Lars Eriksson Professor

Vehicular Systems
Linköping University

May 24, 2016

Customers and Legislation as Technology Drivers

Possible Technical Solutions - Engine or Powertrain

– No, already well optimized, can shave off a few percent.

How can we reach the 95 g $CO₂/km$ goals?

 \blacktriangleright Improving vehicle/powertrain efficiencies?

– Yes, but will customers accept new vehicles.

– Yes, the most probable short term solution

–My personal reflection

 \blacktriangleright New vehicles?

– Yes, but not yet ready \blacktriangleright Electrification of vehicles?

 \blacktriangleright Bio fuels?

CO² performance and legislations

Fleet average from manufacturer.

¹³⁰ ^g/km [∼] 0.55 ^l/10 km, 95 ^g/km [∼] 0.4 ^l/10 km

6 / 1

 $2/1$

EU Legislation - ECE R101 rev 3 (12 April 2013) 3.4.2.1. In the case of testing according to paragraph 3.2.3.2.1.:

^M = (*De* · *^M*¹ ⁺ *Dav* · *^M*2)/(*De* ⁺ *Dav*)

Where:

Hybrid

 \blacktriangleright 14, 1.8l, 60 kW (99 hp) \blacktriangleright Electric range $<$ 1.6 km \blacktriangleright Weight > 1440 kg \blacktriangleright 3.9 l, 89 g/km \blacktriangleright 26800 EUR (DE)

- $M =$ mass emission of CO2 in grams per kilometer.
- $M1$ = mass emission of CO2 in grams per kilometer with a fully charged electrical energy/power storage device.
- $M2$ = mass emission of CO2 in grams per kilometer with an electrical energy/power storage device in minimum state of charge (maximum discharge of capacity).
- \triangleright De = vehicle's electric range, according to the procedure described in Annex 9 to this Regulation, where the manufacturer must provide the means for performing the measurement with the vehicle running in pure electric operating state.
- \blacktriangleright Dav = 25 km (assumed average distance between two battery recharges).

Technical Solution – Toyota Prius - PHEV

According to the legislation proposal

CO² Calculations – PHEV

 $PHEV - Electricity$ for charging no $CO₂$ emissions

- $M = (De \cdot M1 + Dav \cdot M2)/(De + Dav)$ Where:
- $M1 0$

Efficiency

 $Dav = 25 km$

Reduction factor

- $F = (De + 25)/25$ reduction factor
- $M = M2 / F$
- \triangleright De = plug-in distance in kilometer
- $M2$ = mass emission of CO2 in grams per kilometer with an electrical energy/power storage device in minimum state of charge. (Normal hybrid mode)

- \blacktriangleright 14, 1.8l, 60 kW (99 hp)
- \blacktriangleright Electric range 25 km

Plug-in

- \blacktriangleright Weight > 1500 kg
- \blacktriangleright 2.1 l, 49 g/km (-45%)
- \triangleright 36550 EUR (DE) (+36%)
	-

 $8/1$

Technical Solutions – Merceces S500 - PHEV

Outline

Outline

Normal

Plug-in

- \blacktriangleright V8, 320 kW \blacktriangleright Electric range 0 km
- \blacktriangleright 210 g/km
- \triangleright V6, 254 kW + 80 kW el
- \blacktriangleright Electric range 30 km \triangleright 69 g/km (-67%)

 $9/1$

 $11/1$

ECE reduction factor

F=(25+30)/25=2.2 (=55% reduction) Side note: S300 BlueTec Hybrid 150 kW (204 hp), 4 cyl, Diesel, 20kW el, 115 g/km

Guest lecturer: Martin Sivertsson

The PHEV benchmark.

Energy System Overview

Outline

Primary sources

Different options for onboard energy storage Powertrain energy conversion during driving

Cut at the wheel!

Driving mission has a minimum energy requirement.

13 / 1

Example of Some Energy Paths

 $14/1$

The Vehicle Motion Equation Newtons second law for a vehicle

$$
m_v \frac{d}{dt}v(t) = F_t(t) - (F_a(t) + F_r(t) + F_g(t) + F_d(t))
$$

₹

- \blacktriangleright *F_t* tractive force
- \blacktriangleright F_a aerodynamic drag force
- \blacktriangleright F_r rolling resistance force
- \blacktriangleright F_g gravitational force
- \blacktriangleright *F*_{*d*} disturbance force

 $16/1$

 $10/1$

 $12/1$

Vehicle Operating Modes

The Vehicle Motion Equation:

$$
m_v \frac{d}{dt} v(t) = F_t(t) - (F_a(t) + F_r(t) + F_g(t) + F_d(t))
$$

- \blacktriangleright $F_t > 0$ traction
- \blacktriangleright $F_t < 0$ braking
- \blacktriangleright $F_t = 0$ coasting

$$
\frac{d}{dt}v(t) = -\frac{1}{2m_v}\rho_a A_f c_d v^2(t) - g c_r = \alpha^2 v^2(t) - \beta^2
$$

Coasting solution for *^v* > ⁰

$$
v(t) = \frac{\beta}{\alpha} \tan \left(\arctan \left(\frac{\alpha}{\beta} v(0) \right) - \alpha \beta t \right)
$$

 $17/1$

Approximate car data

Fuel Consumption Demand $-$ Values for cycles

ECE city o repeat 4 tir Numerical values for MVEG-95, ECE, EUDC

$$
\tilde{F}_{\text{trace},a} = \frac{1}{x_{\text{tot}}} \sum_{i \in \text{trace}} \bar{v}_i^3 \ h = \qquad \qquad \{319,82.9,455\}
$$
\n
$$
\tilde{F}_{\text{trace},r} = \frac{1}{x_{\text{tot}}} \sum_{i \in \text{trace}} \bar{v}_i \ h = \qquad \{.856,0.81,0.88\}
$$
\n
$$
\tilde{F}_{\text{trace},m} = \frac{1}{x_{\text{tot}}} \sum_{i \in \text{trace}} \bar{a}_i \ \bar{v}_i \ h = \qquad \{0.101,0.126,0.086\}
$$

 $\bar{E}_{MVEG-95} \approx A_f c_d 1.9 \cdot 10^4 + m_V c_r 8.4 \cdot 10^2 + m_V 10$ *kJ*/100*km* Tasks in Hand-in assignment

i∈*trac*

Outline

Average and maximum power requirement for the cycle.

19 / 1

Problem Setup

 \blacktriangleright Run a fuel cell vehicle optimally on a racetrack

 \triangleright Start up lap

- \triangleright Repeated runs on the track
- \blacktriangleright Path to the solution
	- \blacktriangleright Measurements Model Simplified model
	- \triangleright Optimal control solutions

 $21/1$

Fuel Optimal Trajectory – Start

Fuel optimal trajectory has 7% lower fuel consumption

Problem Setup – Road Slope Given

 $22/1$

20 / 1

18 / 1

Fuel Optimal Trajectory – Continuous Driving

Fuel optimal trajectory has 9% lower fuel consumption

Vehicle Propulsion Systems

A diversity of powertrain configurations is appearing

- \triangleright Conventional Internal Combustion Engine (ICE) powertrain.
	- Diesel, Gasoline, New concepts
- \blacktriangleright Hybrid powertrains Parallel/Series/Complex configurations
- \blacktriangleright Fuel cell electric vehicles
- \blacktriangleright Electric vehicles

Course goal:

- \blacktriangleright Introduction to powertrain configuration and optimization
- problems ► Mathematical models and ...
► ... methods for
- - \blacktriangleright Analyzing powertrain performance
- \triangleright Optimizing the powertrain energy consumption \blacktriangleright Lectures:
- Broadened perspective about your engineering tasks. Vehicle/Infrastructure/Society/...

25 / 1