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Hybrid Electrical Vehicles — Parallel
» Two parallel energy paths
gl =
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Standard model

Simple model for the battery
—Open circuit voltage Uy
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Qutline

Repetition

Hybrid Electrical Vehicles — Serial

» Two paths working in parallel
» Decoupled through the battery

Component modeling

» Model energy (power) transfer and losses
» Using maps n = f(T,w)

Combustion engine map Electric motor map

» Using parameterized (scalable) models
—Willans approach

Voltage and SOC
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Typical characteristics. Can extract inner resistance, and
capacity.
(Source: batteryuniversity.com)



Model implemented in QSS Qutline

Conventional powertrain “Traditional” Optimization

Problem motivation
Different Classes of Problems
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Efficient computations are important
—For example if we want to do optimization and sensitivity
studies.
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Problem motivation Optimization — Linear Programming
What gear ratios give the lowest fuel consumption for a given
drivingcycle?

—Problem presented in appendix 8.1 » Linear problem
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Problem characteristics About the word Programming

Countable number of free variables, ig;, j € [1,5] —The solution to a problem was called a program
A “computable” cost, my(- - -)

A “computable” set of constraints, model and cycle

The formulated problem
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min Me(lg 1,192,193, lg.4,1g5
oy Tt s) (lg,1:1g,2:ig 3, ig.aslg.5)

s.t. model and cycle is fulfilled

Optimization — Non-Linear Programming Mixed Integer and Combinatorial Optimziation

» Non-linear problem

» Problem
: min (X, )
mn ) st gx,y) = 0
st. g(x) = 0 X > 0
x >0 y e Z*
» For convex problems » Inherently non-convex y
—Much analyzed: existence, uniqueness, sensitivity Generally hard problems to solve.
—Many algorithms » Much analyzed
» For non-convex problems —Existence, uniqueness, sensitivity
—Some special problems have solutions —Many ty.pes of problgms
—Local optimum is not necessarily a global optimum —Many different algorithms
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Some comments on problem solver Qutline

» Find the “right” problem formulation Optimal Control
» Use the right solver for the problem Problem Motivation
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Optimal Control — Problem Motivation
Car with gas pedal u(t) as control input:

How to drive from A to B on a given time with minimum fuel
consumption?
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Infinite dimensional decision variable u(t).
Cost function ./g’ me(t)at

Constraints:
» Model of the car (the vehicle motion equation)

megv(t) = F(v(t). u(t) —(Fa(v(t) + Fr(v() + Fg(x(t)))

v(t)

f(v(t), u(t))

» Starting point x(0) =
» End point x(t/) = B

> Speed limits v(t) < g(x(t))

> Limited control action 0 < u(t) < 1

Difficult (impossible) problem to solve analytically

gx(0)
my¢

Optimal Control — Historical Perspective

v

v

Old subject
Rich theory
» Old theory from calculus of variations

» Much theory and many methods were developed during

50's-70’s

» Theory and methods are still being actively developed
Dynamic programming, Richard Bellman, 50’s.
A modern success story:
—Model predictive control (MPC)
Now a new interest for collocation methods:
—A few during 1990’s
—Much interest 2000—

= TSRT08 Optimal Control

Dynamic programming — Problem Formulation
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Optimal control problem
min J() = S(X(t), 1) + / L(x(2), u(t), ot

s.t. %x = f(x(t), u(t),t)

X(ta) = Xa
u(t) € U(t)
x(t) € X(t)

x(t), u(t) functions on t € [ta, tp)
Search an approximation to the solution by discretizing

> the state space x(t)
» and maybe the control signal u(t)

in both amplitude and time.
The result is a combinatorial (network) problem

DDP — Basic Algorithm
N—1
J(x0) = gnOXN) + Y Gk(Xk, U)
k=0

Xyt = fx(Xi, Ug)

Bellman’s Theory and Algorithm:

—Start at the end and proceed backward in time
—Determine the optimal cost-to-go

—Store the corresponding control signal
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General problem formulation

Dynamic Programming (DP) —

» Performance index
ty
J(W) = ox(to) 1) + [ LOx(O), (). et
ta

» System model (constraints)

d
g = @ u®). 1), x(ta) = xa

» State and control constraints
u(t) € U(¢)
x(t) € X(t)

Qutline

Deterministic Dynamic Programming
Problem setup and basic solution idea
Cost Calculation — Two Implementation Alternatives
The Provided Tools

» Find the optimal control sequence
7%(x0) = {uo, U1, ..., Uy_1} minimizing:
N—1
J(x0) = gN(XN) + > Gr(Xk, Uk, W)
k=0

> subject to:

Xk1 = Fie(Xic, Ui, Wi)
Xo = x(t=0)
Xk € Xk
Uy € Uk

» Disturbance wy
» Stochastic vs Deterministic DP

DDP — Basic algorithm

N—1

J(x0) = OnOXN) + Y Gr(Xk, UK)
k=0

Xk1 = Te(Xk, Uk)
Algorithm:

1. Set k = N, and assign final cost Jy(Xxn) = gn(Xn)
2. Setk=k—-1

3. For all points in the state-space grid, find the optimal cost

to go

Jk() = min gi(Xk, Ug) + k1 (Fe(Xk; U))

Uk € Uk (xc)

4. If k = 0 then return solution
5. Go to step 2

Problem Formulation
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Deterministic Dynamic Programming — Basic
Algorithm

Graphical illustration of the solution procedure
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Pros and Cons with Dynamic Programming

Pros

» Globally optimal, for all initial conditions

» Can handle nonlinearities and constraints

» Time complexity grows linearly with horizon

» Use output and solution as reference for comparison
Cons

» Non causal

» Time complexity grows “exponentially” with number of
states, curse of dimensionality

» 2-3 states are often at the limit.
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The Provided Tools for Hand-in Assignment 2

Task:
Investigate optimal control of one parallel and one series hybrid
configuration in different driving profiles.
» Some Matlab-functions provided
» Skeleton file for defining the problems
» 2 DDP solvers, 1-dim and 2-dim.

» 2 skeleton files for calculating the arc costs for parallel and
serial hybrids
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Parallel Hybrid Example

» Fuel-optimal torque split factor u(SOC, t) = T;;ZZ’
» ECE cycle
» Constraints SOC(t = t;) > 0.6, SOC € [0.5,0.7]
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Arc Cost Calculations

There are two ways for calculating the arc costs

» Calculate the exact control signal and cost for each arc.
—Quasi-static approach

» Make a grid over the control signal and interpolate the cost
for each arc.
—Forward calculation approach

Matlab implementation — it is important to utilize matrix
calculations

» Calculate the whole bundle of arcs in one step
» Add boundary and constraint checks
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Calculation Example

v

Problem 200s with discretization At = 1s.

Control signal discretized with 10 points.

Statespace discretized with 1000 points.

One evaluation of the model takes 1us

» Solution time:

» Brute force:
Evaluate all possible combinations of control sequences.
Number of evaluations, 102%° gives ~ 3 - 108 years.

» Dynamic programming:
Number of evaluations: 200 - 10 - 1000 gives 2 s.
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(Example contributed by ETH)
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Qutline

Case Studies
Energy Management of a Parallel Hybrid
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Parallel Hybrid Example

» Fuel-optimal torque split factor u(SOC, t) = %
» NEDC cycle
» Constraints SOC(t = t) = 0.6, SOC < [0.5,0.7]
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