Vehicle Propulsion Systems Lecture 2

Fuel Consumption Estimation & ICE

Lars Eriksson Professor

Vehicular Systems Linköping University

March 25, 2019

well-to-tank

"tank-to-vehicle

Ô

Energy Consumption of a Driving Mission The Vehicle Motion Equation Losses in the vehicle motion

Energy Demand of Driving Missions

Primary sources

Different options for on-

Powertrain energy conver-

Driving mission has a minimum energy requirement.

board energy storage

sion during driving

Cut at the wheel!

Energy System Overview

9

nergy

nergy torage

Outline

Outline

Repetition

Energy Consumption of a Driving Mission The Vehicle Motion Equation Losses in the vehicle motion Energy Demand of Driving Missions

Energy den

Energy demand and recuperation Sensitivity Analysis

ward and Inverse (QSS) Models

IC Engine Models

2 / 47

4 / 47

6 / 47

Normalized Engine Variables Engine Efficiency

3 / 47

W2M – Energy Paths

5 / 47

Energy Consumption of a Driving Mission

- Remember the partitioning
 - -Cut at the wheels.
- How large force is required at the wheels for driving the vehicle on a mission?

7 / 47

9 / 47

Repetition – Work, power and Newton's law

Translational system - Force, work and power:

$$W = \int F \, dx, \qquad P = rac{d}{dt}W = F \, v$$

Rotating system – Torque (T = F r), work and power:

$$W = \int T \, d\theta, \qquad P = T \, \omega$$

Newton's second law:

TranslationalRotational $m \frac{dv}{dt} = F_{driv} - F_{load}$ $J \frac{d\omega}{dt} = T_{driv} - T_{load}$

The Vehicle Motion Equation Newton's second law for a vehicle

$$m_{v}\frac{d}{dt}v(t) = F_{t}(t) - (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$

- \blacktriangleright F_t tractive force
- ► F_a aerodynamic drag force
- ► *F_r* rolling resistance force
- F_g gravitational force
- ► F_d disturbance force

Aerodynamic Drag Force - Loss

Aerodynamic drag force depends on:

Frontal area A_f , drag coefficient c_d , air density ρ_a and vehicle velocity v(t)

$$F_{a}(t) = \frac{1}{2} \cdot \rho_{a} \cdot A_{f} \cdot c_{d} \cdot v(t)^{2}$$

Approximate contributions to F_a

- 65% car body.
- 20% wheel housings.
- 10% exterior mirrors, eave gutters, window housings, antennas, etc.
- ▶ 5% engine ventilation.

10 / 47

Gravitational Force

Gravitational load force
 –Not a loss, storage of potential energy

Up- and down-hill driving produces forces.

 $F_g = m_v g \sin(\alpha)$

Flat road assumed $\alpha = 0$ if nothing else is stated (In the book).

12 / 47

Vehicle Operating Modes

The Vehicle Motion Equation:

$$m_{v}\frac{d}{dt}v(t) = F_{t}(t) - (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$

- F_t > 0 traction
- $F_t < 0$ braking
- $F_t = 0$ coasting

$$\frac{d}{dt}v(t) = -\frac{1}{2m_v}\rho_a A_f c_d v^2(t) - g c_r = -\alpha^2 v^2(t) - \beta^2$$

Coasting solution for v > 0

$$v(t) = \frac{\beta}{\alpha} \tan\left(\arctan\left(\frac{\alpha}{\beta} v(0)\right) - \alpha \beta t\right)$$

14 / 47

Driving profiles

Driving profiles in general

- ▶ First used for pollutant control now also for fuel consumption.
- Important that all use the same cycle when comparing.
- Different cycles have different energy demands.

Rolling Resistance Losses

Rolling resistance depends on: load and tire/road conditions

The velocity has small influence at low speeds. Increases for high speeds where resonance phenomena start. Assumption in book: c_r – constant

 $F_r = c_r \cdot m_v \cdot g$

Inertial forces - Reducing the Tractive Force

Variable substitution: $T_w = \gamma T_e$, $\omega_w \gamma = \omega_e$, $v = \omega_w r_w$

Tractive force:

$$F_{t} = \frac{1}{r_{w}} \left[(T_{e} - J_{e} \frac{d}{dt} \frac{v(t)}{r_{w}} \gamma) \cdot \gamma - J_{w} \frac{d}{dt} \frac{v(t)}{r_{w}} \right] = \frac{\gamma}{r_{w}} T_{e} - \left(\frac{\gamma^{2}}{r_{w}^{2}} J_{e} + \frac{1}{r_{w}^{2}} J_{w} \right) \frac{d}{dt} v(t)$$

The Vehicle Motion Equation:

$$\left[m_v + \frac{\gamma^2}{r_w^2} J_e + \frac{1}{r_w^2} J_w\right] \frac{d}{dt} v(t) = \frac{\gamma}{r_w} T_e - (F_a(t) + F_r(t) + F_g(t) + F_d(t)$$

13 / 47

11 / 47

How to check a profile for traction?

The Vehicle Motion Equation:

$$m_{v}\frac{d}{dt}v(t) = F_{t}(t) - (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$
(1)

- Traction conditions:
- $F_t > 0$ traction, $F_t < 0$ braking, $F_t = 0$ coasting Method 1: Compare the profile with the coasting solution

over a time step
$$v_{coast}(t_{i+1}) = rac{eta}{lpha} \tan\left(\arctan\left(rac{lpha}{eta} v(t_i)
ight) - lpha eta \left(t_{i+1} - t_i
ight)
ight)$$

• Method 2: Solve (1) for F_t

$$F_{t}(t) = m_{v} \frac{d}{dt} v(t) + (F_{a}(t) + F_{r}(t) + F_{g}(t) + F_{d}(t))$$

Numerically differentiate the profile v(t) to get $\frac{d}{dt}v(t)$. Compare with Traction condition.

15 / 47

Driving profiles – Another example

Velocity profile, European MVEG-95 (ECE*4, EUDC)

No coasting in this driving profile.

Mechanical Energy Demand of a Cycle

Only the demand from the cycle

The mean tractive force during a cycle

$$\bar{F}_{trac} = \frac{1}{x_{tot}} \int_0^{x_{tot}} \max(F(x), 0) \, dx = \frac{1}{x_{tot}} \int_{t \in trac} F(t) v(t) \, dt$$

where $x_{tot} = \int_0^{t_{max}} v(t) dt$.

- ▶ Note $t \in trac$ in definition.
- Only traction.
- Idling not a demand from the cycle.

18 / 47

Evaluating the integral

Tractive force from The Vehicle Motion Equation

$$F_{trac} = \frac{1}{2} \rho_a A_f c_d v^2(t) + m_v g c_r + m_v a(t)$$

$$F_{trac} = F_{trac,a} + F_{trac,r} + F_{trac,m}$$

Resulting in these sums

$$\bar{F}_{trac,a} = \frac{1}{x_{tot}} \frac{1}{2} \rho_a A_f c_d \sum_{i \in trac} \bar{v}_i^3 h$$
$$\bar{F}_{trac,r} = \frac{1}{x_{tot}} m_v g c_r \sum_{i \in trac} \bar{v}_i h$$
$$\bar{F}_{trac,m} = \frac{1}{x_{tot}} m_v \sum_{i \in trac} \bar{a}_i \bar{v}_i h$$

20 / 47

Approximate car data

 $\bar{E}_{\text{MVEG-95}} \approx A_f c_d 1.9 \cdot 10^4 + m_v c_r 8.4 \cdot 10^2 + m_v 10 \qquad kJ/100 km$

	SUV	full-size	compact	light-weight	PAC-Car II
$A_f \cdot c_d$	1.2 m ²	0.7 m ²	0.6 m ²	0.4 m ²	.25 · .07 m ²
Cr	0.017	0.017	0.017	0.017	0.0008
m _v	2000 kg	1500 kg	1000 kg	750 kg	39 kg
P _{MVEG-95}	11.3 kW	7.1 kW	5.0 kW	3.2 kW	
P _{max}	155 kW	115 kW	77 kW	57 kW	

Average and maximum power requirement for the cycle.

22 / 47

Outline

Repetition

Energy Consumption of a Driving Mission The Vehicle Motion Equation Losses in the vehicle motion

Energy demand

Energy demand and recuperation Sensitivity Analysis

Forward and Inverse (QSS) Models

C Engine Models Normalized Engine Variable Engine Efficiency

Evaluating the integral

Discretized velocity profile used to evaluate

$$\bar{F}_{trac} = rac{1}{x_{tot}} \int_{t \in trac} F(t) v(t) dt$$

here $v_i = v(t_i)$, $t_i = i \cdot h$, i = 1, ..., n. Approximating the quantites

$$ar{v}_i(t)pprox rac{v_i+v_{i-1}}{2}, \qquad t\in[t_{i-1},t_i)$$
 $ar{a}_i(t)pprox rac{v_i-v_{i-1}}{h}, \qquad t\in[t_{i-1},t_i)$

Traction approximation

$$ar{F}_{trac} pprox rac{1}{x_{tot}} \sum_{i \in trac} ar{F}_{trac,i} \, ar{v}_i \, h$$

19 / 47

 $\bar{E}_{MVEG-95} \approx A_f c_d 1.9 \cdot 10^4 + m_v c_r 8.4 \cdot 10^2 + m_v 10$ kJ/100 kmTasks in Hand-in assignment

21 / 47

Energy System Overview

Primary sources

Different options for onboard energy storage

Powertrain energy conversion during driving

Cut at the wheel!

Driving mission has a minimum energy requirement.

23 / 47

Energy demand again - Recuperation

- Previously: Considered energy demand from the cycle.
- Now: The cycle can give energy to the vehicle.

Recover the vehicle's kinetic energy during driving.

Perfect recuperation

- Mean required force $\bar{F} = \bar{F}_a + \bar{F}_r$
- Sum over all points

$$\bar{F}_a = \frac{1}{x_{tot}} \frac{1}{2} \rho_a A_f c_d \sum_{i=1}^N \bar{v}_i^3 h$$
$$\bar{F}_r = \frac{1}{x_{tot}} m_v g c_r \sum_{i=1}^N \bar{v}_i h$$

26 / 47

Perfect recuperation - Numerical values for cycles

$$\bar{X}_{a} = \frac{1}{x_{tot}} \sum_{i} \bar{v}_{i}^{3} h =$$

$$\bar{X}_{r} = \frac{1}{x_{tot}} \sum_{i} \bar{v}_{i} h =$$

$$\{363, 100, 515\}$$

$$\bar{X}_{r} = \frac{1}{x_{tot}} \sum_{i} \bar{v}_{i} h =$$

$$\{1, 1, 1\}$$

 $\bar{E}_{\text{MVEG-95}} \approx A_f \, c_d \, 2.2 \cdot 10^4 + m_v \, c_r \, 9.81 \cdot 10^2$ kJ/100km

27 / 47

Comparison of numerical values for cycles

Without recuperation.

$$\begin{split} \bar{X}_{trac,a} = & \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i^3 h = \\ \bar{X}_{trac,r} = & \frac{1}{x_{tot}} \sum_{i \in trac} \bar{v}_i h = \\ \bar{X}_{trac,m} = & \frac{1}{x_{tot}} \sum_{i \in trac} \bar{a}_i \bar{v}_i h = \\ \end{split}$$

With perfect recuperation

$$\bar{X}_{a} = \frac{1}{x_{tot}} \sum_{i} \bar{v}_{i}^{3} h =$$
 {363, 100, 515}
$$\bar{X}_{r} = \frac{1}{x_{tot}} \sum_{i} \bar{v}_{i} h =$$
 {1, 1, 1}

28 / 47

Sensitivity Analysis

Cycle energy reqirement (no recuperation)

 $\bar{E}_{MVEG-95} \approx A_f c_d 1.9 \cdot 10^4 + m_v c_r 8.4 \cdot 10^2 + m_v 10$ kJ/100 km

Sensitivity analysis

30 / 47

Vehicle mass and fuel consumption

Perfect and no recuperation

Mean force represented as liter Diesel / 100 km.

29 / 47

Sensitivity Analysis

31 / 47

Realistic Recuperation Devices

Vehicle Mass and Cycle-Avearged Efficiency

34 / 47

Two Approaches for Powertrain Simulation

Dynamic simulation (forward simulation)

Cycle Driver Engine Transm. Wheel Vehicle

- "Normal" system modeling direction -Requires driver model
- Quasistatic simulation (inverse simulation)

Cycle Vehicle Wheel Transm. Engine

-" Reverse" system modeling direction -Follows driving cycle exactly

Model causality

36 / 47

Quasistatic approach

- Backward simulation
- $\mathsf{Driving \ cycle} \Rightarrow \mathsf{Losses} \Rightarrow \mathsf{Driving \ force} \Rightarrow \mathsf{Wheel \ torque} \Rightarrow$ Engine (powertrain) torque $\Rightarrow \ldots \Rightarrow$ Fuel consumtion.
- Available tools are limited with respect to the powertrain components that they can handle. Considering new tools such as Modelica opens up new possibilities.
- See also: Efficient Drive Cycle Simulation, Anders Fröberg and Lars Nielsen (2008) ...

38 / 47

Causality and Basic Equations

Outline

Forward and Inverse (QSS) Models

35 / 47

Dynamic approach

- Drivers input u propagates to the vehicle and the cycle
- $\mathsf{Drivers\ input} \Rightarrow \ldots \Rightarrow \mathsf{Driving\ force} \Rightarrow \mathsf{Losses} \Rightarrow \mathsf{Vehicle}$ $\mathsf{velocity} \Rightarrow \mathsf{Feedback} \text{ to driver model}$
- Available tools (= Standard simulation) can deal with arbitrary powertrain complexity.

37 / 47

Outline

IC Engine Models

Normalized Engine Variables Engine Efficiency

39 / 47

Engine Efficiency Maps

Measured engine efficiency map - Used very often

-What to do when map-data isn't available?

Engine Geometry Definitions

Definition of MEP

See whiteboard.

43 / 47

Normalized Engine Variables

• Mean Piston Speed $(S_p = mps = c_m)$:

$$c_m = \frac{\omega_e S}{\pi}$$

• Mean Effective Pressure (MEP= p_{me} ($N = n_r \cdot 2$)):

$$p_{me} = rac{N \, \pi \, T_e}{V_d}$$

- Used to:
 - Compare performance for engines of different size
 Design rules for engine sizing. At max engine power: c_m ≈ 17 m/s, p_{me} ≈ 1e6 Pa (no turbo)
 - ⇒ engine size▶ Connection:

 $P_e = z \frac{\pi}{16} B^2 p_{me} c_m$

44 / 47

42 / 47

Torque modeling through – Willans Line

Engine Efficiency – Map Representation

46 / 47