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Hybrid Electrical Vehicles — Parallel

» Two parallel energy paths
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Standard model

Simple model for the battery

—Open circuit voltage Ups(SOC)

—State of charge SOC, (Q/Qmax)
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C-rate, how fast is the battery (pack) charged.
C=1, full capacity in 1 hour.
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Qutline

Repetition
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Hybrid Electrical Vehicles — Serial

» Two paths working in parallel
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Component modeling

» Model energy (power) transfer and losses
» Using maps n = f(T,w)
Combustion engine map Electric motor map

> Using parameterized (scalable) models
—Willans approach
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Voltage and SOC

Legend
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Typical characteristics. Can extract inner resistance, and
capacity.
(Source: batteryuniversity.com)
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Two important battery estimation problems
» SOC - State of Charge. Current and voltage sensing.
» SOH - State of Health. Cycle monitoring, current and
voltage sensing.
» Prolonging life: Temperature monitoring and current limits
important.

Legend
— LiFePO4 1.5An @ BA
—— LiFePO4 1.5Ah @ 12A
LiFePO4 1.5 Ah @ 18A
—— A1231.1 Ah @ BA

Volts

—— A12311 AR @ 12A

—— A1231.1 Ah @ 18A
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“Traditional” Optimization
Problem motivation
Different Classes of Problems
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Optimization — Linear Programming

» Linear problem
min ¢’ x
X
st. Ax = b
x >0

v

Convex problem

v

Much analyzed: existence, uniqueness, sensitivity
Many algorithms: Simplex the most famous

v

v

About the word Programming
—The solution to a problem was called a program
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Mixed Integer and Combinatorial Optimziation

» Problem
min  f(x,y)
st. glx,y) = 0
X > 0
y e Zt

» Inherently non-convex y
Generally hard problems to solve.
» Much analyzed
—Existence, uniqueness, sensitivity
—Many types of problems
—Many different algorithms
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Model implemented in QSS

Conventional powertrain

Vplv  ww—lww  w.gbl—biw b

dw_wi—bdw_w

dw_gb|—pidw_gb  P_ic|

WP T T w

Vehiole i T go—>{T gb Fuel consumption Display
i

Gear box IC engine

Driving profile

Efficient computations are important
—For example if we want to do optimization and sensitivity
studies.

Problem motivation
What gear ratios give the lowest fuel consumption for a given
drivingcycle?
—Problem presented in appendix 8.1
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Problem characteristics
» Countable number of free variables, iy, j € [1,5]
> A “computable” cost, my(---)
> A “computable” set of constraints, model and cycle
» The formulated problem

min my i Rl I'72 13I ,47/ 5
ipj» JEM1 5] (g, ) 19,25 19,3:79,4> 9. )

s.t. model and cycle is fulfilled
Optimization — Non-Linear Programming
» Non-linear problem

mxin f(x)
st g(x)

x
IVl
o

» For convex problems
—Much analyzed: existence, uniqueness, sensitivity
—Many algorithms

» For non-convex problems
—Some special problems have solutions
—Local optimum is not necessarily a global optimum

Some comments on problem solver

» Find the “right” problem formulation
» Use the right solver for the problem
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Optimal Control
Problem Motivation
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General problem formulation

» Performance index
t
J(U) = 6(x(t), ) + /t L(x(t), u(t), tyat

» System model (constraints)

Ix=1fx0.u0.0, ()= xa
» State and control constraints
u(t) € U(t)

x(1) € X(1)
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Deterministic Dynamic Programming
Problem setup and basic solution idea
Cost Calculation — Two Implementation Alternatives
The Provided Tools
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Dynamic Programming (DP) — Problem Formulation

» Find the optimal control sequence

70(x0) = {Uo, U1, ..., Uy_1} minimizing:
N-1
J(X0) = gn(XW) + D Gr(Xks Uk, W)
k=0

» subject to:

Xk1 = T (Xic, Ui, Wi)
X0 = x(t=0)
Xk € Xk
Uk € Uk

» Disturbance wy

» Stochastic vs Deterministic DP
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Optimal Control — Problem Motivation

Car with gas pedal u(t) as control input:
How to drive from A to B on a given time with minimum fuel
consumption?

» Infinite dimensional decision variable u(t).

» Cost function _/g’ my(t)dt

» Constraints:

» Model of the car (the vehicle motion equation)

mav(t) = R(v(t)u(t) —(Fa(v(t) + F(v(t) + Fo(x(1)))
gx(1) V(1)
i F(v(D), u(t))

» Starting point x(0) = A
» End point x(t/) = B
> Speed limits v(t) < g(x(t))
» Limited control action 0 < u(t) <1
» Difficult (impossible) problem to solve analytically
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Optimal Control — Historical Perspective

» Old subject
> Rich theory
» Old theory from calculus of variations
» Much theory and many methods were developed during
50’s-70’s
» Theory and methods are still being actively developed
» Dynamic programming, Richard Bellman, 50’s.

» A modern success story:
—Model predictive control (MPC)

> Now a new interest for collocation methods:
—A few during 1990’s
—Much interest 2000—

= TSRT08 Optimal Control
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Dynamic programming — Problem Formulation

» Optimal control problem
1/
min J(u) = (x(t). ) + [ LKD), u(e) et
Jta

s.t. %x = f(x(t),u(t),t)

X(la) = Xa
u(t) € U(t)
x(t) € X(1)

> x(t), u(t) functions on t € [ts, t)
» Search an approximation to the solution by discretizing

> the state space x(t)
» and maybe the control signal u(t)

in both amplitude and time.
» The result is a combinatorial (network) problem
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DDP — Basic Algorithm

N—1
J(x0) = gn(Xn) + Y Gk(Xk, Uk)
k=0
X1 = fie(Xic, Uk)
Bellman’s Theory and Algorithm:
—Start at the end and proceed backward in time
—Determine the optimal cost-to-go
—Store the corresponding control signal

X
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DDP — Basic algorithm

N—1

J(x0) = On(XN) + Y G (XK, UK)
=0

X1 = Te(Xk, Ux)

Algorithm:
1. Set k = N, and assign final cost Jy(Xxn) = gn(Xn)
2. Setk=k—-1
3. For all points in the state-space grid, find the optimal cost
to go

Jk(Xk) = min ge(Xk, Ug) + k1 (Ffe(Xk, )
k€ U ()

4. If k = 0 then return solution
5. Go to step 2

Arc Cost Calculations

There are two ways for calculating the arc costs

» Calculate the exact control signal and cost for each arc.
—Quasi-static approach

» Make a grid over the control signal and interpolate the cost
for each arc.
—Forward calculation approach
Matlab implementation — it is important to utilize matrix
calculations
» Calculate the whole bundle of arcs in one step
» Add boundary and constraint checks

Calculation Example

Problem 200s with discretization At = 1s.
Control signal discretized with 10 points.
Statespace discretized with 1000 points.
One evaluation of the model takes 1us
Solution time:
> Brute force:
Evaluate all possible combinations of control sequences.
Number of evaluations, 102%° gives ~ 3 - 108 years.
» Dynamic programming:
Number of evaluations: 200 - 10 - 1000 gives 2 s.

vyvyyYyVvYy

(Example contributed by ETH)
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Case Studies
Energy Management of a Parallel Hybrid
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Deterministic Dynamic Programming — Basic
Algorithm

Graphical illustration of the solution procedure
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Pros and Cons with Dynamic Programming

Pros

> Globally optimal, for all initial conditions

» Can handle nonlinearities and constraints

» Time complexity grows linearly with horizon

» Use output and solution as reference for comparison
Cons

» Non causal

> Time complexity grows “exponentially” with number of
states, curse of dimensionality

> 2-3 states are often at the limit

The Provided Tools for Hand-in Assignment 2

Task:

Investigate optimal control of one parallel and one series hybrid

configuration in different driving profiles.
» Some Matlab-functions provided
» Skeleton file for defining the problems
> 2 DDP solvers, 1-dim and 2-dim.
» 2 skeleton files for calculating the arc costs for parallel and
serial hybrids

Parallel Hybrid Example

» Fuel-optimal torque split factor u(SOC, t) = %
» ECE cycle
» Constraints SOC(t = t) > 0.6, SOC < [0.5,0.7]
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Parallel Hybrid Example

» Fuel-optimal torque split factor u(SOC, t) =
» NEDC cycle

Te—motor

Tgearbox

» Constraints SOC(t = t;) = 0.6, SOC < [0.5,0.7]
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