Linköpings tekniska högskola, ISY, Fordonssystem

Formelsamling
Elektriska drivsystem TSFS04

Linköping 2018
Innehåll

1 Magnetiska Kretsar och Material ... 7
 1.1 Storheter, enheter och konstanter 7
 1.1.1 Storheter .. 7
 1.1.2 Konstanter .. 8
 1.2 Ekvationer och samband .. 8
 1.2.1 Amperes kretslag .. 8
 1.2.2 Flöde, flödestäthet och fältstyrka 8
 1.2.3 Reluktans .. 8
 1.2.4 Magnetisk motsvarighet till KCL och KVL 8
 1.2.5 Faradays lag, sammanlänkat flöde och induktans 9
 1.2.6 Sammanlänkat flöde i kretsar med fler spolar 9
 1.2.7 Induktans och ömseinduktans för enkel magnetisk krets . 10
 1.2.8 Effektivvärde för sinusformat flöde 10

2 Transformatorn ... 11
 2.1 Beteckningar och nomenklatur 11
 2.1.1 Exempel på beteckningar för effektivvärde, toppvärde och
 komplex representation 11
 2.1.2 Benämningar på transformatorns lindningar 11
 2.2 Ekvationer och samband .. 12
 2.2.1 Transformator utan last 12
 2.2.2 Omsättning .. 12
 2.2.3 Ekvivalent impedans 12
 2.3 Transformatormodell .. 13
 2.3.1 Approximativ transformatormodell 13
 2.3.2 Impedans vid kortslutningsprov, sett från primärsidan 13
 2.3.3 Impedans för tomgångsprov, sett från primärsidan 13
 2.3.4 Parametersättning .. 14
 2.3.5 Förlusteffekter ... 14
3 Elektromekaniska Energiöverföringsprinciper 15
 3.1 Grundläggande ekvationer .. 15
 3.1.1 Moment .. 15
 3.1.2 Lorentz kraftlag .. 15
 3.2 Moment från energibetraktelse 15
 3.2.1 Kraft och moment från energi 15
 3.2.2 Kraft och moment från komplementenergi 16
 3.2.3 Energi och komplementenergi för system med två spolar ... 17

4 Grundläggande Principer för Elmaskiner 19
 4.1 Elektriska och Mekaniska vinkelsvinkelstörheter 19
 4.2 MMK och magnetfält för cylindrisk rotor 19
 4.3 Spännings- och ström-samband 21
 4.3.1 Inducerad spänning vid ström i fältlinning 21
 4.3.2 Spännningar över stator och rotor 21
 4.4 Momentsamband .. 22
 4.4.1 Cylindrisk rotor (non-salient), kretsresonemang 22
 4.4.2 Cylindrisk rotor (non-salient), fältresonemang 22

5 Likströmsmotorer 23
 5.1 MMK och magnetfält .. 23
 5.2 Modell .. 23
 5.2.1 Spännings- och moment-samband för likströmsmotorn 23
 5.2.2 Effektsamband .. 25
 5.2.3 Inverkan av stora ankarströmmar 25
 5.2.4 Likströmsmotorer med permanentmagnet 26
 5.3 Varvtalsstyrning av DC-motorer 26
 5.4 Effektivitet ... 27

6 Synkronmaskiner med Cylindrisk Rotor 29
 6.1 MMK och magnetfält .. 29
 6.2 Modell .. 29
 6.2.1 Samband mellan moment, flöden och spännningar 29
 6.2.2 Ekvivalent krets för synkronmotor 30
 6.2.3 Effektvinkelkaraktäriskt vid jämvikt 30
 6.2.4 Driftskaraktäriskt vid jämvikt 30
 6.2.5 Karaktäriskt för öppen och kortsluten krets 31
 6.3 Varvtalsstyrning av synkronmotor 31
 6.4 Effektivitet ... 31

7 Asynkronmaskinen / Induktionsmaskinen 33
 7.1 Modell .. 33
 7.1.1 Frekvenssamband .. 33
 7.1.2 Ekvivalent kretsschema 33
 7.1.3 Momentsamband .. 34
 7.1.4 Arbetsgång för bestämning av modellparametrar 34
 7.2 Momentsamband vid konstant V/Hz reglering 35
7.3 Effektivitet ... 35

A Matematiska Samband 37
 A.1 Trigonometriska relationer 37
Kapitel 1

Magnetiska Kretsar och Material

1.1 Storheter, enheter och konstanter

1.1.1 Storheter

<table>
<thead>
<tr>
<th>Storhet</th>
<th>Beteckning</th>
<th>Enhet (ex.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetiskt flöde</td>
<td>ϕ</td>
<td>[Wb] eller [Vs]</td>
</tr>
<tr>
<td>Magnetisk flödestäthet</td>
<td>B</td>
<td>[Wb/m2] eller [T]</td>
</tr>
<tr>
<td>Magnetisk fältstyrka</td>
<td>H</td>
<td>[A/m]</td>
</tr>
<tr>
<td>Reluktans</td>
<td>\mathcal{R}</td>
<td>[A-varv / Wb]</td>
</tr>
<tr>
<td>Resistans</td>
<td>R</td>
<td>[Ω]</td>
</tr>
<tr>
<td>Induktans</td>
<td>L</td>
<td>[H], [Wb/A], [Ωs] eller [Vs/A]</td>
</tr>
<tr>
<td>Reaktans</td>
<td>X</td>
<td>[Ω]</td>
</tr>
<tr>
<td>Impedans</td>
<td>Z</td>
<td>[Ω]</td>
</tr>
<tr>
<td>Sammanlänkat flöde</td>
<td>λ</td>
<td>[Wb-varv]</td>
</tr>
<tr>
<td>Magnetomotorisk kraft</td>
<td>\mathcal{F}</td>
<td>[A-varv]</td>
</tr>
<tr>
<td>Strömtäthet</td>
<td>J</td>
<td>[A/m2]</td>
</tr>
</tbody>
</table>

Alternativ för engelska storhetsbeteckningar

Magnetisk flödestäthet, B T.ex. *magnetic flux density, magnetic induction och magnetic field.*

Magnetisk fältstyrka, H T.ex. *magnetic field intensity, magnetic field strength, auxiliary magnetic field och magnetizing field.*
1.1.2 Konstanter

<table>
<thead>
<tr>
<th>Storhet</th>
<th>Beteckning</th>
<th>Värde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetisk vakuum permeabilitet</td>
<td>(\mu_0)</td>
<td>(4\pi \cdot 10^{-7})</td>
</tr>
<tr>
<td>Relativ magnetisk permeabilitet</td>
<td>(\mu_r)</td>
<td>-</td>
</tr>
<tr>
<td>Magnetisk permeabilitet</td>
<td>(\mu)</td>
<td>-</td>
</tr>
<tr>
<td>Järnkärnans tvärsnittsarea</td>
<td>(A_c)</td>
<td>-</td>
</tr>
<tr>
<td>Järnkärnans medellängd</td>
<td>(l_c)</td>
<td>-</td>
</tr>
<tr>
<td>Luftgapslängd</td>
<td>(g)</td>
<td>-</td>
</tr>
<tr>
<td>Lindningsvarv</td>
<td>(N)</td>
<td>-</td>
</tr>
</tbody>
</table>

1.2 Ekvationer och samband

1.2.1 Amperes kretslag

\[
\oint_C \vec{H} \, dl = \int_S \vec{J} \, d\vec{a} \tag{1.1}
\]

där \(\oint_C \vec{H} \, dl \) ofta förenklas till \(\sum_i H_i l_i \) medan den magnetomotoriska kraften \(\mathcal{F} \) ofta förenklas till \(\mathcal{F} = Ni \) vilket ger

\[
\sum_i H_i l_i = \mathcal{F} = Ni \tag{1.5, 1.21}
\]

1.2.2 Flöde, flödestäthet och fältstyrka

\[
\phi = \int_S \vec{B} \, d\vec{a} \tag{1.3}
\]

vilket ofta förenklas till \(\phi = BA \)

\[
B = \mu H = \mu_r \mu_0 H \tag{1.7}
\]

1.2.3 Reluktans

För en förenklad magnetisk krets med olika segment i olika material gäller

\[
\mathcal{F} = Ni = \sum_i H_i l_i = \phi \sum_i \frac{l_i}{A_i \mu_i} \tag{1.21}
\]

och vi definierar reluktansen \(R \) för respektive segment \(i \) enligt

\[
R_i = \frac{l_i}{A_i \mu_i} \tag{1.13, 1.14}
\]

1.2.4 Magnetisk motsvarighet till KCL och KVL

Kirchhoffs ström- och spänningslagar för elektriska kretsar kan översättas till en magnetisk motsvarighet enligt nedan (Tänk: flöde \(\phi \leftrightarrow \) ström \(I \), samt magnetomotorisk kraft \(\mathcal{F} \leftrightarrow \) spänning \(U \))
Totala flödet in i en punkt är alltid 0.
\[\sum_i \phi_i = 0 \] (1.24)

Summan av magnetomotorisk kraft i en sluten slinga är alltid 0.
\[\sum_i F_i = 0 \] (1.21)

1.2.5 Faradays lag, sammanlänkat flöde och induktans
\[\oint_C \vec{E} \cdot d\vec{s} = -\frac{\delta}{\delta t} \int_S \vec{B} \cdot d\vec{a} \] (1.25)
där \(\oint_C \vec{E} \cdot d\vec{s} \) ofta förenklas till spänningen \(-e\) och \(-\frac{\delta}{\delta t} \int_S \vec{B} \cdot d\vec{a} \) ofta förenklas till \(N\frac{d\phi}{dt} \) med \(\phi \) som tidsvarierande flöde. I sambandet som följer så definieras sammanlänkat flöde, \(\lambda \), så att vi får
\[e = N \frac{d\phi}{dt} = \frac{d\lambda}{dt} \] (1.26)
där alltså
\[\lambda = N\phi \] (1.27)
definerar sammanlänkat flöde. För en magnetisk krets uppbryggd av linjära material eller med dominerande luftgap definieras sedan induktans \(L \) och reaktans \(X \) enligt
\[L = \frac{\lambda}{i} \text{ och } X = wL \] (1.28)
där \(w \) är strömmens frekvens i radianer per sekund.

1.2.6 Sammanlänkat flöde i kretsar med fler spolar
Sammanlänkat flöde för spole \(k \) givet ett magnetiskt flöde genom grenen som spolen omsluter skrivs
\[\lambda_k = N_k \phi_k \]
där alla källor till flödet \(\phi_k \) räknas med. Speciellt har vi för ett enkelt system med två spolar på en slinga med dominerande luftgap
\[\lambda_1 = N_1 \phi = N_1^2 \frac{\mu_0 A_c}{g} i_1 + N_1 N_2 \frac{\mu_0 A_c}{g} i_2 = L_{11} i_1 + L_{12} i_2 \] (1.33, 1.34)
\[\lambda_2 = N_2 \phi = N_2^2 \frac{\mu_0 A_c}{g} i_2 + N_2 N_1 \frac{\mu_0 A_c}{g} i_1 = L_{22} i_2 + L_{21} i_1 \] (1.37, 1.38)
1.2.7 Induktans och ömseinduktans för enkel magnetisk krets

För en magnetisk krets med en spole och dominerande luftgap fås
\[
L = \frac{N^2 \mu_0 A_g}{g} \quad (1.30)
\]

För en enkel magnetisk krets med två spolar på en slinga med dominerande luftgap fås
\[
L_{11} = \frac{N_1^2 \mu_0 A_g}{g} \quad (1.35)
\]
\[
L_{12} = \frac{N_1 N_2 \mu_0 A_g}{g} \quad (1.36)
\]
\[
L_{21} = L_{12}
\]
\[
L_{22} = \frac{N_2^2 \mu_0 A_g}{g} \quad (1.39)
\]

1.2.8 Effektivvärde för sinusformat flöde

\[\varphi = \phi_{\text{peak}} \sin \omega t \Rightarrow e_{\text{rms}} = \frac{1}{\sqrt{2}} \omega N \phi_{\text{peak}} = \sqrt{2} \pi f N \phi_{\text{peak}} \quad (1.47, 1.51)\]
2.1 Beteckningar och nomenclatur

2.1.1 Exempel på beteckningar för effektivvärde, toppvärde och komplex representation

Oftast gäller

\[U = U_{\text{rms}} \]

För sinusformad spänning gäller

\[U_{\text{peak}} = \sqrt{2}U_{\text{rms}} \]

\[\hat{U} = U e^{j\varphi} = U (\cos(\varphi) + isin(\varphi)) \]

Oftast gäller

\[U = U_{\text{rms}} \]

Notera att beteckningarna används för att förtydliga om det rör sig om vektorer eller absolutbelopp för ström och spänning medans det för kretselementen, \(X, R \) och \(Z = R + jX \), är underförstått att \(Z \) alltid representerar den komplexa vektorn.

2.1.2 Benämningar på transformatorns lindningar

2.2 Ekvationer och samband

2.2.1 Transformator utan last

Antag att strömmen i genom primärspolen ger ett sinusformat flöde $\varphi = \phi_{\text{max}} \sin(\omega t)$ då blir spänningen på primärsidan

$$e_1 = \frac{d\lambda_1}{dt} = N_1 \frac{d\varphi}{dt} = N_1 \omega \phi_{\text{max}} \cos(\omega t) \quad (2.1, 2.4)$$

och på sekundärsidan

$$e_2 = \frac{d\lambda_2}{dt} = N_2 \frac{d\varphi}{dt} \quad (2.9)$$

För en spänning med effektivvärdet E_1 på primärsidan och sinusformat flöde gäller att

$$\phi_{\text{max}} = \frac{E_1 \sqrt{2}}{N_1 \omega} = \frac{E_1}{\sqrt{2} \pi f N_1} \quad (2.6)$$

2.2.2 Omsättning

Omsättningen eller *turns ratio*, t.ex. här betecknad k_{oms}, kopplar spänningar och strömmar på primär och sekundärsidan enligt

$$\frac{V_1}{V_2} = \frac{N_1}{N_2} = k_{\text{oms}}, \quad \frac{i_1}{i_2} = \frac{N_2}{N_1} = k_{\text{oms}}^{-1} \quad (2.10, 2.13)$$

2.2.3 Ekvivalent impedans

För en ideal transformator kan en last Z på sekundärsidan ersättas med en ekvivalent last på primärsidan eller tvärtom enligt

$$Z'_2 = \left(\frac{N_1}{N_2} \right)^2 Z_2 \quad \text{och} \quad Z'_1 = \left(\frac{N_2}{N_1} \right)^2 Z_1 \quad (2.19)$$

där Z_1 härstammar från primärsidan och Z_2 från sekundärsidan. Konceptet kan användas för att helt eliminera en ideal transformator ur en krets genom att även ersätta spänning och strömmar enligt

$$V'_2 = \frac{N_1}{N_2} V_2 \quad (2.28)$$

$$I'_2 = \frac{N_2}{N_1} I_2 \quad (2.23)$$
2.3 Transformatormodell

Transformatorn brukar modelleras enligt följande kretsschema

\[
\begin{align*}
&\hat{I}_1 &\vdots & R_1 & X_{l1} & X'_{l2} & R'_{2} \\
&\vdots & & & & & \\
&\hat{V}_1 & \vdots & R_c & X_m & & \\
&\hat{I}_2 & \vdots & & & & \\
&\hat{V}_2' & \vdots & & & & \\
\end{align*}
\]

där alltså omsättningsförhållandet har använts för att eliminera den ideala transformatorn ur kretsen.

2.3.1 Approximativ transformatormodell

Beroende på driftstillstånd kan man approximera transformatormodellen med kretsar enligt

\[
\begin{align*}
&\hat{V}_1 &\vdots & R_{eq} & X_{eq} & \hat{V}_2' \\
&\vdots & & & & & \\
&\hat{V}_1 & \vdots & R_c & X_m & & \\
&\hat{V}_2' & \vdots & & & & \\
\end{align*}
\]

där \(X_{eq} = X_{l1} + X'_{l2}\) och \(R_{eq} = R_1 + R'_{2}\).

2.3.2 Impedans vid kortslutningsprov, sett från primärsidan

Eftersom \(Z_\varphi = R_c/X_m\) är stor i förhållande till \(Z_2 = R_2 + jX_{l2}\) så gäller att

\[
Z_{sc} = R_1 + jX_{l1} + \frac{Z_\varphi (R_2 + jX_{l2})}{Z_\varphi + R_2 + jX_{l2}} \approx R_1 + jX_{l1} + R_2 + jX_{l2} \quad (2.29, 2.30)
\]

vilket alltså svarar mot kortslutning av den högra kretsen ovan.

2.3.3 Impedans för tomgångsprov, sett från primärsidan

Eftersom \(Z_\varphi = R_c/X_m\) är stor i förhållande till \(Z_1\) så blir spänningsfallet över \(Z_1\) litet så att effekten \(P_{oc}\) i princip motsvarar järnöverföringarna. Därför gäller att

\[
Z_{oc} = R_1 + jX_{l1} + Z_\varphi \approx Z_\varphi \quad (2.34)
\]

vilket alltså svarar mot en öppen variant av den vänstra kretsen ovan.
2.3.4 Parametersättning

Parametrarna för transformatormodellen bestäms enligt

\[R_c = \frac{V_{oc}^2}{P_{oc}} \]
(2.36)

\[R_{eq} = \frac{P_{sc}}{I_{sc}^2} \]
(2.32)

\[|Z_{eq}| = \frac{V_{sc}}{I_{sc}} \]
(2.31)

\[X_{eq} = \sqrt{|Z_{eq}|^2 - R_{eq}^2} = \sqrt{(V_{sc}/I_{sc})^2 - (P_{sc}/I_{sc}^2)^2} \]
(2.33)

\[X_m = (|Z_\phi|^2 - R_c^{-2})^{-1/2} = ((V_{oc}/I_{oc})^{-2} - (V_{oc}^2/P_{oc}^{-2})^{-1/2}) \]
(2.37, 2.38)

där \(Z_\phi \) är parallellkopplingen mellan \(R_c \) och \(X_m \).

I de fall där \(X_{l1}, X_{l2}, R_1 \) och \(R_2 \) behövs så brukar man anta

\[R_1 = R_2 = \frac{1}{2} R_{eq} \] samt \[X_{l1} = X_{l2} = \frac{1}{2} X_{eq} \]

men eftersom \(R_1 \) och \(R_2 \) är direkt mätbara så kan man även använda dessa värden direkt.

2.3.5 Förlusteckter

\[P_{\text{winding}} = R_{eq,H} I_H^2 \]
\[P_{\text{core}} = \frac{V_H^2}{R_{c,H}} \]

där alla storheter refererats till högspänningssidan.
Kapitel 3
Elektromekaniska Energiöverföringsprinciper

3.1 Grundläggande ekvationer

3.1.1 Moment

Momentet kring en axel definieras som en vektor i axelns riktning. Positivt moment i axelns riktning för ett högersystem avser moment moturs enligt följande

\[\bar{T} = \bar{r} \times \bar{F} \]

3.1.2 Lorentz kraftlag

\[\bar{F} = q(\bar{E} + \bar{v} \times \bar{B}) \quad [N] \] (3.1)

vilket ofta förenklas enligt

\[\bar{F}_v = \bar{J} \times \bar{B} \quad [N/Volymsenh] \quad \text{eller} \]
\[\bar{F}_l = \bar{I} \times \bar{B} \quad [N/m] \] (3.6)

3.2 Moment från energibetraktelse

3.2.1 Kraft och moment från energi

Eftersom \(\lambda \) och \(x \) är tillståndsvariabler kan vi skriva

\[dW_{\text{fil}} = \left(\frac{\partial W_{\text{fil}}}{\partial \lambda} \right)_x d\lambda + \left(\frac{\partial W_{\text{fil}}}{\partial x} \right)_\lambda dx \quad \text{eller} \]
\[dW_{\text{fil}} = i \lambda - f_{\text{fil}} dx \] (3.22)

Energin kan därmed skrivas som

\[W_{\text{fil}}(\lambda, x) = \int_0^\lambda i(\lambda', x)d\lambda' \] (3.18)
För linjära system, tex system med dominerande luftgap gäller som vi vet att
\[\lambda = L(x)i \] och vi kan därför skriva
\[W_{\text{fld}}(\lambda, x) = \frac{\lambda^2}{2L(x)} = \frac{1}{2} L(x) i^2 \] (3.19)

Uttryck för kraft och moment

För roterande system kan \(x \) och \(f_{\text{fld}} \) ersättas med \(\theta \) och \(T_{\text{fld}} \) i uttrycken nedan. Antag att vi har ett uttryck för \(W_{\text{fld}} \). Vi kan då använda att
\[f_{\text{fld}} = - \frac{\partial W_{\text{fld}}}{\partial x} \Bigg|_{\lambda} \quad \text{och} \quad i = \frac{\partial W_{\text{fld}}}{\partial \lambda} \Bigg|_{x} \] (3.25, 3.26)

och för linjära system får vi då
\[f_{\text{fld}} = - \frac{\partial}{\partial x} \left(\frac{1}{2} \frac{\lambda^2}{L(x)} \right) \Bigg|_{\lambda} = \frac{\lambda^2}{2L(x)^2} \frac{dL(x)}{dx} = \frac{i^2}{2} \frac{dL}{dx} \] (3.27, 3.28)

Det är av yttersta vikt att \(x \) och \(\lambda \) hålls konstanta i respektive uträkning av de partiella derivatorna ovan. Detta är svårare än många tror och det kan därför finnas anledning att istället titta på komplementenergi.

3.2.2 Kraft och moment från komplementenergi

Komplementenergi definieras
\[W'_{\text{fld}} = i\lambda - W_{\text{fld}} \] (3.34)

och vi får därmed
\[dW'_{\text{fld}} = \lambda di + f_{\text{fld}} dx \] (3.37)

Komplementenergin beräknas analogt med energin enligt
\[W'_{\text{fld}}(i, x) = \int_{0}^{i} \lambda(i', x) di' \] (3.41)

vilket för linjära system förenklas till
\[W'_{\text{fld}}(i, x) = \frac{1}{2} L(x) i^2 \quad (= W_{\text{fld}}) \] (3.42)

Uttryck för kraft och moment

För roterande system kan \(x \) och \(f_{\text{fld}} \) ersättas med \(\theta \) och \(T_{\text{fld}} \) i uttryckten nedan. På samma sätt som tidigare kan komplementenergins differential uttryckas enligt
\[dW'_{\text{fld}} = \frac{\partial W'_{\text{fld}}}{\partial i} \Bigg|_{x} \quad di + \frac{\partial W'_{\text{fld}}}{\partial x} \Bigg|_{i} \quad dx \] (3.38)
och vi kan identifiera

$$f_{\text{fld}} = \frac{\partial W'_{\text{fld}}}{\partial x} \bigg|_i \quad \text{och} \quad \lambda = \frac{\partial W'_{\text{fld}}}{\partial i} \bigg|_x \quad (3.39, 3.40)$$

Det är av yttersta vikt att i och x hålls konstanta i resp uträkning av de partiella derivatorna ovan. Detta är dock betydligt enklare än att hålla x och λ konstanta i motsvarande uttryck för energi.

3.2.3 Energi och komplementenergi för system med två spolar

För en enkel magnetisk krets med två spolar på en slinga fås följande energiuttryck

$$dW_{\text{fld}}(\lambda_1, \lambda_2, \theta) = i_1 d\lambda_1 + i_2 d\lambda_2 - T_{\text{fld}} d\theta$$

vilket ofta integreras enligt

$$W_{\text{fld}}(\lambda_1, \lambda_2, \theta) = \int_0^{\lambda_2} i_2(\lambda'_1 = 0, \lambda'_2, \theta' = \theta) d\lambda'_2 + \int_0^{\lambda_1} i_1(\lambda'_1, \lambda'_2 = \lambda_2, \theta' = \theta) d\lambda'_1 \quad (3.56)$$

och motsvarande uttryck för komplementenergien blir

$$dW'_{\text{fld}}(i_1, i_2, \theta) = \lambda_1 di_1 + \lambda_2 di_2 + T_{\text{fld}} d\theta$$

vilket ofta integreras enligt

$$W'_{\text{fld}}(i_1, i_2, \theta) = \int_0^{i_2} \lambda_2(i'_1 = 0, i'_2, \theta' = \theta) di'_2 + \int_0^{i_1} \lambda_1(i'_1, i'_2 = i_2, \theta' = \theta) di'_1 \quad (3.69)$$

För linjära system, typiskt med dominerande luftgap, blir uttrycket för komplementenergi speciellt enkelt

$$W'_{\text{fld}}(i_1, i_2, \theta) = \frac{1}{2} L_{11}(\theta) i_1^2 + L_{12}(\theta) i_1 i_2 + \frac{1}{2} L_{22}(\theta) i_2^2 \quad (3.70)$$
Kapitel 4
Grundläggande Principer för Elmaskiner

4.1 Elektriska och Mekaniska vinkelstörheter

\[\theta_{ae} = \left(\frac{\text{poles}}{2} \right) \theta_a \] där \(\theta_a \) mäts i förhållande till statorn \hspace{1cm} (4.1)

\[f_e = \left(\frac{\text{poles}}{2} \right) \frac{n}{60} \] elektrisk frekvens med varvtal \(n \) i rpm \hspace{1cm} (4.2)

\(\omega_e \) elektrisk vinkelhastighet

\[\omega_s = \left(\frac{2}{\text{poles}} \right) \omega_e \] synkron vinkelhastighet \hspace{1cm} (4.42)

\[n_s = \frac{120}{\text{poles}} f e \] [rpm] \hspace{1cm} (4.44)

\[\omega_{me} = \left(\frac{\text{poles}}{2} \right) \omega_m \] mekanisk rotorhastighet i elektriska [rad/s]

4.2 MMK och magnetfält för cylindrisk rotor

Grundton för luftgaps-MMK hos koncentrerade och distribuerade lindningar

\[F_{ag1} = \frac{4}{\pi} \left(\frac{Ni}{2} \right) \cos(\theta_a) \] för koncentrerad lindning med två poler \hspace{1cm} (4.4)

\[(F_{ag1})_{\text{peak}} = \frac{4}{\pi} \left(\frac{Ni}{2} \right) \] \hspace{1cm} (4.5)

\[F_{ag1} = \frac{4}{\pi} \left(\frac{k_w N_{ph}}{\text{poles}} \right) i_a \cos \left(\frac{\text{poles}}{2} \theta_a \right) \] för distribuerad lindning med generellt poltal \hspace{1cm} (4.6)

Här är \(k_w \) är lindningsfaktor, \(N_{ph} \) är varv per fas och \(i_a \) är strömmen i lindningen.

19
Luftgapsmagnetfält för utbredd lindning, cylindrisk rotor

\[
H_{ag1} = \frac{F_{ag1}}{g} = \\
= / \text{tvåpolig} / = \frac{4}{\pi} \left(\frac{N_i}{2g} \right) \cos(\theta_a) \\
= / \text{generell} / = \frac{4}{\pi} \left(\frac{k_w N_{ph}}{g \cdot \text{poles}} \right) i_a \cos \left(\frac{\text{poles}}{2} \theta_a \right)
\]

(MMK-våg för 1-fas sinusformad ström)

När \(i_a = I_a \cos(\omega_e t) \) sätts in i (4.17) erhålls

\[
F_{ag1} = \frac{4}{\pi} \left(\frac{k_w N_{ph}}{\text{poles}} \right) I_a \cos \left(\frac{\text{poles}}{2} \theta_a \right) \cos(\omega_e t) = \\
= F_{\text{max}} \left(\frac{1}{2} \cos (\theta_{ae} - w_e t) + \frac{1}{2} \cos (\theta_{ae} + w_e t) \right) \\
= F^+_{ag1} + F^-_{ag1}
\]

\[
F^+_{ag1} = \frac{1}{2} F_{\text{max}} \cos (\theta_{ae} - w_e t) \\
F^-_{ag1} = \frac{1}{2} F_{\text{max}} \cos (\theta_{ae} + w_e t)
\]

(MMK-våg 3-fas sinusformad ström)

För 3-fas 120° med strömmarna \(i_a = I_m \cos(\omega_e t) \), \(i_b = I_m \cos(\omega_e t - 120°) \) och \(i_c = I_m \cos(\omega_e t + 120°) \) fås

\[
F_{a1} = \frac{1}{2} F_{\text{max}} \left(\cos (\theta_{ae} - w_e t) + \cos (\theta_{ae} + w_e t) \right) \\
F_{b1} = \frac{1}{2} F_{\text{max}} \left(\cos (\theta_{ae} - w_e t) + \cos (\theta_{ae} + w_e t + 120°) \right) \\
F_{c1} = \frac{1}{2} F_{\text{max}} \left(\cos (\theta_{ae} - w_e t) + \cos (\theta_{ae} + w_e t - 120°) \right)
\]

vilket ger en roterande MMK våg enligt

\[
F(\theta_{ae}, t) = \frac{3}{2} F_{\text{max}} \cos \left(\frac{\text{poles}}{2} \theta_a - w_e t \right)
\]
4.3 Spännings- och ström-samband

4.3.1 Inducerad spänning vid ström i fältlindning

Magnetflöde för cylindrisk rotor med ström i fältlindning

\[B = H_{ag} \mu_0 = B_{\text{peak}} \cos \left(\frac{\text{poles}}{2} \theta \right) = \frac{4 \mu_0}{\pi} \left(\frac{k_f N_f}{\text{poles}} \right) I_f \cos \left(\frac{\text{poles}}{2} \theta \right) \]
\hspace{1cm} (4.45 - 4.46)

\[\Phi_p = \text{flux per pole} = l \int_{-\pi/\text{poles}}^{+\pi/\text{poles}} B_{\text{peak}} \cos \left(\frac{\text{poles}}{2} \theta \right) d\theta = \left(\frac{2}{\text{poles}} \right) 2B_{\text{peak}} l \text{ sett från rotern} \]
\hspace{1cm} (4.47)

Detta ger ett sammanlänkat flöde och spänning enligt

\[\lambda_a = k_w N_{\text{ph}} \Phi_p \cos \left(\frac{\text{poles}}{2} \omega_m t \right) = k_w N_{\text{ph}} \Phi_p \cos(\omega_m t) \]
\hspace{1cm} (4.48)

\[e_a = \frac{d\lambda_a}{dt} = k_w N_{\text{ph}} \frac{d\Phi_p}{dt} \cos(\omega_m t) - \omega_m k_w N_{\text{ph}} \Phi_p \sin(\omega_m t) \]
\hspace{1cm} (4.49)

\[e_a = -\omega_m k_w N_{\text{ph}} \Phi_p \sin(\omega_m t) \text{ för konstant luftgapsflöde} \]
\hspace{1cm} (4.50)

Notera att uttrycket för \(\lambda_a \) förutsätter att strömmen i statorn är noll.

4.3.2 Spänningar över stator och rotor

Samband mellan strömmar och sammanlänkade flöden är:

\[\begin{bmatrix} \lambda_s \\ \lambda_r \end{bmatrix} = \begin{bmatrix} L_{ss} & L_{ss}(\theta_{me}) \\ L_{sr}(\theta_{me}) & L_{rr} \end{bmatrix} \begin{bmatrix} i_s \\ i_r \end{bmatrix} \]
\hspace{1cm} (4.60)

Spänningarna över lindningarna ges av

\[v_s = R_s i_s + \frac{d\lambda_s}{dt} \]
\hspace{1cm} (4.61)

\[v_r = R_r i_r + \frac{d\lambda_r}{dt} \]
\hspace{1cm} (4.62)

Eliminering av de sammanlänkade flödena ger

\[v_s = R_s i_s + L_{ss} \frac{di_s}{dt} + \frac{d}{dt} L_{sr}(\theta_{me}) i_r \]
\hspace{1cm} (4.63)

\[v_r = R_r i_r + L_{rr} \frac{di_r}{dt} + \frac{d}{dt} L_{sr}(\theta_{me}) i_s \]
\hspace{1cm} (4.64)
4.4 Momentssamband

4.4.1 Cylindrisk rotor (non-salian t), kretsresonemang

\[
W'_{\text{fld}} = \frac{1}{2} L_{ss} i_s^2 + \frac{1}{2} L_{rr} i_r^2 + L_{sr} i_s i_r \cos \theta_{\text{me}} = \\
= \frac{1}{2} L_{ss} i_s^2 + \frac{1}{2} L_{rr} i_r^2 + L_{sr} i_s i_r \cos \left(\frac{\text{poles}}{2} \theta_m \right)
\] (4.66)

\[
T = \frac{\partial W'_{\text{fld}}}{\partial \theta_m} \bigg|_{i_s,i_r} = \frac{\text{poles}}{2} \frac{\partial W'_{\text{fld}}}{\partial \theta_{\text{me}}} \bigg|_{i_s,i_r} = \\
= - \left(\frac{\text{poles}}{2} \right) L_{sr} i_s i_r \sin(\theta_{\text{me}})
\] (4.67)

4.4.2 Cylindrisk rotor (non-salian t), fältresonemang

\(F_s \) och \(F_r \) är längden på vektorerna \(F_s \) och \(F_r \) som representerar MMK-vågorna \(\mathcal{F}_s \) och \(\mathcal{F}_r \). Vinklarna \(\delta_{sr} \), \(\delta_s \) och \(\delta_r \) representerar riktningen på dessa vektorer.

\[
W'_{\text{fld}} = \frac{\pi D l \mu_0}{4g} \left(F_s^2 + F_r^2 + 2 F_s F_r \cos \delta_{sr} \right)
\] (4.73)

\[
T = - \left(\frac{\text{poles}}{2} \right) \left(\frac{\mu_0 \pi D l}{2g} \right) F_s F_r \sin(\delta_{sr}) \quad \text{uttryckt i } F_s \text{ och } F_r
\] (4.75)

\[
T = - \left(\frac{\text{poles}}{2} \right) \left(\frac{\pi D l}{2} \right) B_{sr} F_r \sin(\delta_r) \quad \text{uttryckt i } B_{sr} \text{ och } F_r
\] (4.80)

Med \(\Phi_p = \left(\frac{2 D l}{\text{poles}} \right) B_{\text{peak}} \) från (4.47) fås

\[
T = - \frac{\pi}{2} \left(\frac{\text{poles}}{2} \right)^2 \Phi_{sr} F_r \sin \delta_r
\] (4.81 - 4.83)
Kapitel 5
Likströmsmotorer

5.1 MMK och magnetfält

Toppvärde för MMK-våg, såg坦d respektive dess grundton

\[(F_{ag})_{\text{peak}} = \left(\frac{C_a}{2m \text{ poles}} \right) i_a = \left(\frac{N_a}{\text{ poles}} \right) i_a \quad (4.10 - 4.11)\]

\[(F_{ag1})_{\text{peak}} = \frac{8}{\pi^2} \left(\frac{N_a}{\text{ poles}} \right) i_a \quad \text{för grundtonen} \quad (4.12)\]

där \(C_a\) är antal ledare i ankarlindningen, \(N_a\) antal ledare i serie och \(m\) antalet parallella vägar genom lindningen.

5.2 Modell

5.2.1 Spännings- och moment-samband för likströmsmotorn

Flödena i en likströmsmotor är i princip ortogonala och man definierar fältens riktningar enligt kvadratur respektive direkt axel för ankar- respektive fält-lindningarna. Vi har att

\[\Phi_d = \Phi_p \quad \text{flöde per pol från fältlindningen, dvs i direkt-axelns riktning} \]

\[\Phi_d = R_d^{-1} \sum N_f i_f \quad \text{där endast inverkan av fältströmmen tagits med} \quad (7.12) \]

Momentsamband

\[T_{\text{mech}} = K_a \Phi_d (I_f) I_a \quad \text{med} \quad K_a = \frac{\text{poles} C_a}{2\pi m} \quad (7.5, 7.6) \]
Spänningsamband

Medelvärdesskilda (4.50) över en halv period ger

\[E_a = \frac{1}{\pi} \int_{0}^{\pi} \omega_{me} N \Phi_p \sin(\omega_{me} t) d(\omega_{me} t) = \frac{2}{\pi} \omega_{me} N \Phi_p = \begin{cases} \text{med } N = N_a \text{ och } \\
\text{för multipol fas} \end{cases} \]

\[= \left(\frac{\text{poles}}{2\pi} \right) \left(\frac{C_a}{m} \right) \Phi_p \omega_m = \left(\frac{\text{poles}}{60} \right) \left(\frac{C_a}{m} \right) \Phi_p n \]

(4.53 - 4.55)

När konstruktionskonstanterna klumpas ihop och \(\Phi_d \) används för att understryka riktningen på flödet \(\Phi_p \) kan vi därför skriva

\[E_a = K_a \Phi_d(I_f) \omega_m \quad \text{med } K_a = \frac{\text{poles} C_a}{2\pi m} \]

(7.6, 7.7)

För ett givet \(\Phi_d(I_f) \) och ett \(E_{a0} \) uppmätt vid varvtalet \(\omega_{m0} \) fås därmed

\[E_a = \left(\frac{\omega_m}{\omega_{m0}} \right) E_{a0} \]

(7.10)

Samband för det linjära området

I det linjära området för en likströmsmotor kan man sätta \(K_a \Phi_d(I_f) = K_f I_f \) så att

\[E_a = K_a \Phi_d(I_f) \omega_m = K_f I_f \omega_m \]

\[T_{\text{mech}} = K_f I_f I_a \]
Likströmsmotorns ekvivalenta krettschema

5.2.2 Effektsamband

Kombineras uttryckena för spänning och moment så inses att följande gäller

\[E_a I_a = K_a \Phi_d(I_f) I_a \omega_m = T_{\text{mech}} \omega_m \]
(7.19)

vilket ger effektsbandet

\[P_{\text{mech}} = E_a I_a \]

5.2.3 Inverkan av stora ankarströmmar

En typisk magnetiseringskurva ger ett samband mellan fältström och elektromotorisk kraft enligt

\[E_a = \left(\frac{\omega_m}{\omega_m^0} \right) E_{a0}(I_f) \quad \text{där} \quad E_{a0}(I_f) = K_a \Phi_d(I_f) \omega_m^0 \]

Med användning av begreppet *shunt-ekvivalent fältström*, här kallat \(I_{f,\text{net}} \), för att fånga samverkan mellan serie-lindning och shunt-lindning samt tillägg av påverkan av ankarström får vi

\[I_{f,\text{net}} = I_{f,\text{shunt}} + \frac{N_{\text{serie}}}{N_{\text{shunt}}} I_{f,\text{serie}} \]
(7.24)

\[E_a = \left(\frac{\omega_m}{\omega_m^0} \right) E_{a0}(I_{f,\text{net}}, I_a) = K_a \Phi_d(I_{f,\text{net}}, I_a) \omega_m \]

vilket t.ex. kan modelleras enligt

\[E_a = \left(\frac{\omega_m}{\omega_m^0} \right) E_{a0}(I_{f,\text{eff}}) = K_a \Phi_d(I_{f,\text{eff}}) \omega_m \quad \text{med} \]

\[I_{f,\text{eff}} = I_{f,\text{net}} - f(I_a) \quad \text{eller} \quad I_{f,\text{eff}} = I_{f,\text{net}} - f(I_a, I_{f,\text{net}}) \]
5.2.4 Likströmsmotorer med permanentmagnet

När fältlindningen ersätts med en permanentmagnet så kan flödet Φ_d baka ihop med konstanten K_a till $K_m = K_a \Phi_d$. Detta kan skrivas

$$\Phi_d \text{ konst.} \implies /\text{med } K_m = K_a \Phi_d / \implies$$

$$E_a = K_m \omega_m$$

$$T_{\text{mech}} = \frac{E_a I_a}{\omega_m} = K_m I_a$$

5.3 Varvtalsstyrning av DC-motorer

Varvtalsformeln för linjär motor ($T_{\text{mech}} = K_f I_f I_a = \frac{E_a I_a}{\omega_m}$) blir

$$\omega_m = \frac{(V_a - I_a R_a)}{K_f I_f} = \frac{(V_a - \frac{T_{\text{load}} R_a}{K_f I_f})}{K_f I_f}$$

(10.4)

där typiskt $I_a R_a = \frac{T_{\text{load}} R_a}{K_f I_f}$ är liten i förhållande till V_a.

- Fältstyrning sker genom att ändra v_f och därmed i_f

För switch med tillslagstid D fås

$$V_f = D V_{dc} \text{ och } I_f = \frac{V_f}{R_f} = D \left(\frac{V_{dc}}{R_f}\right)$$

- Styrning med hjälp av ankarresistans sker genom att ändra R_a. Det är lätt att inse att man för stora R_a får ett kraftigt lastberoende varvtal.

- Styrning med hjälp av ankarspänning sker genom att ändra V_a, med samma typ av krets som för fältstyrning där v_f ändras. Med en switchad H-brygga kan vi för en given likspänning V_{dc} uppnå $-V_{dc} \leq V_a \leq V_{dc}$.
5.4 Effektivitet

Effektiviteten ges av

\[\eta = \frac{P_{ut}}{P_{in}} = \frac{P_{\text{mech}} - P_{\text{rot}}}{V_a I_a + V_f I_f} \]
6.1 MMK och magnetfält

Sammanlänkade flöden

\[
\begin{align*}
\lambda_a &= L_a i_a + L_{af} i_f \\
\lambda_f &= L_{fa} i_a + L_{fb} i_b + L_{fc} i_c + L_{ff} i_f \\
L_s &= \frac{3}{2} L_{ao} + L_{a1}, \quad L_{af} = L_{fa} = L_{af} \cos (\omega_c t + \delta_c)
\end{align*}
\]

(5.18, 5.5, 5.10, 5.17)

6.2 Modell

6.2.1 Samband mellan moment, flöden och spänningar

Från (4.81) fås att

\[
T = \frac{\pi}{2} \left(\frac{\text{poles}}{2} \right)^2 \Phi_R F_f \sin \delta_{RF}
\]

(5.1)

där

\[
\begin{align*}
\Phi_R &= \text{resulterande luftgapsflöde per pol} \\
F_f &= \text{mmk för dc-lindningen} \\
\delta_{RF} &= \text{elektrisk fasvinkel mellan axlarna för } \Phi_R \text{ och } F_f
\end{align*}
\]

Vi har även att

\[
\Phi_R \propto \frac{E_R}{\omega} \iff \text{luftgapspåningen genereras av den resulterande luftgapsvägen}
\]
6.2.2 Ekvivalent krets för synkronmotor

Ekvivalent krets, motorreferensriktning

\[
\begin{align*}
V_a &= R_a I_a + jX_{al} I_a + \dot{E}_{af} \quad (5.25) \\
\dot{E}_{af} &= j \left(\frac{\omega_L I_f}{\sqrt{2}} \right) e^{j\delta_0} \quad (5.24) \\
\dot{E}_R &= \dot{V}_a - I_a (R_a + jX_{al}) \\
X_s &= X_{al} + X_{\phi} \quad (5.26)
\end{align*}
\]

Här är \(X_{al} = \omega L_{al} \) läckreaktansen och \(X_{\phi} = \omega \left(\frac{3}{2} L_{aa0} \right) \) är magnetiseringsreaktansen medan \(\dot{E}_R \) är luftgapsspänningen.

6.2.3 Effektvinkelkaraktäristik vid jämvikt

Överförd effekt mellan två 3-faskällor \(\dot{E}_1 \) och \(\dot{E}_2 \) vid induktiv koppling är

\[
P_1 = P_2 = 3 \frac{E_1 E_2}{X} \sin(\delta) \quad (5.45)
\]

\[
P_{1,max} = P_{2,max} = 3 \frac{E_1 E_2}{X} \quad (5.44)
\]

där \(\delta \) är fasvinkeln mellan \(\dot{E}_1 \) och \(\dot{E}_2 \) med \(\delta \) positiv om \(\dot{E}_1 \) ligger före \(\dot{E}_2 \). Tillämpat på en 3-fasig synkronmaskin kopplad till ett nät med induktansen \(X_{EQ} \) och spänningen \(\dot{V}_{EQ} \) fas

\[
P = 3 \frac{E_{af} V_{EQ}}{X_s + X_{EQ}} \sin(\delta) \quad (5.47)
\]

vilket kallas effektvinkelkaraktäristiken för en synkronmaskin och \(\delta \) för effektvinkeln.

6.2.4 Driftkaraktäristik vid jämvikt

Effektbegränsningarna för en synkronmaskin kan tecknas som

\[
S = \sqrt{P^2 + Q^2} \quad - \text{skenbara effekten begränsas av ankarlindningen} \quad (5.48)
\]

\[
P^2 + \left(Q + \frac{V_a^2}{X_s} \right)^2 = \left(\frac{V_a E_{af}}{X_s} \right)^2 \quad - \text{begränsning från fältlindningen} \quad (5.51)
\]

Ofta specificeras märkeffekten som fasvinkel och skenbar effekt där de två kurvorna möts.
6.2.5 Karaktäristik för öppen och kortsluten krets

Vi har att

\[X_{s,u} = \frac{V_{a,ag}}{I_{a,sc}} \] \hspace{1cm} (5.29)

\[X_s = \frac{V_{a,\text{rated}}}{I_a^*} \] \hspace{1cm} (5.30)

\[\text{SCR} = \frac{\text{AFNL}}{\text{AFSC}} = \frac{1}{X_s} \text{ med } X_s \text{ i per unit} \] \hspace{1cm} (5.34, 5.36)

där

- \(X_{s,u} \) - Unsaturated synchronous reactance
- \(X_s \) - Saturated value of synchronous reactance at rated voltage, \(V_{a,\text{rated}} \)
- \(V_{a,ag} \) - Spänning från air gap conditions
- \(I_{a,sc} \) - Ström från short circuit conditions
- \(I_a^* \) - Ankarström vid kortslutning som motsvarar den fältström som ger \(V_{a,\text{rated}} \) för öppen krets
- \(\text{SCR} \) - Short circuit ratio
- \(\text{AFNL} \) - Amperes Field No Load, den fältström som ger \(V_{a,\text{rated}} \) för öppen krets
- \(\text{AFSC} \) - Amperes field short circuit, den fältström som ger \(I_{a,\text{rated}} \) vid kortslutning

6.3 Varvtalsstyrning av synkronmotorn

Frekvensberoendet hos flödestätheten och dess inverkas på lämplig spänning och ström ges av

\[B_{\text{peak}} = \left(\frac{f_{\text{rated}}}{f_e} \right) \text{B}_{\text{rated}} \text{ om } V_a = V_{\text{rated}} \] \hspace{1cm} (10.11)

\[V_a = \left(\frac{f_e}{f_{\text{rated}}} \right) V_{\text{rated}} \text{ för } f_e \leq f_{\text{rated}} \text{ ger } B_{\text{peak}} = B_{\text{rated}} \] \hspace{1cm} (10.12)

\[I_a = I_{a,\text{rated}} \text{ dvs strömmen } I_a \text{ kan väljas till } I_{a,\text{rated}} \]

Typiskt ger detta att maxmomentet bibehålls för \(f_e \leq f_{\text{rated}} \) medan istället max-effekten bibehålls för \(f_e \geq f_{\text{rated}} \).

6.4 Effektivitet

Effektiviteten bestäms av

\[\eta = \frac{P_{\text{out}}}{P_{\text{in}}} = \frac{P_{\text{in}} - P_{\text{loss}}}{P_{\text{in}}} = \frac{P_{\text{in}} - P_{\text{Ra}} - P_{\text{stray}} - P_{R_f} - P_{\text{fric}} - P_{\text{core}}}{P_{\text{in}}} \]

där
P_{in} - Total ineffekt, till både fält och ankar

P_{R_a} - Förluster i ankarlindningen, typiskt $R_a \cdot I_a^2$

P_{R_f} - Förluster i fältlindningen, typiskt $R_f \cdot I_f^2$

P_{stray} - Förluster i ankarlindningen på grund av skin-effekt och virvelströmmar, typiskt $R_{\text{stray}} \cdot I_a^2$, temperaturoberoende

P_{fric} - Totala friktionsförluster, typiskt ωT_{fric}

P_{core} - Järnförluster för ommagnetisering av järnet i statorn, typiskt $\propto V_t^2$ men egentligen mer korrekt $\propto E_R^2$

Ibland slår man ihop effektförlusterna för skin-effekt och virvelströmmar samt för ankarresistansen enligt

\[
R_{a,\text{eff}} = \frac{P_{\text{loss,sc,load}}}{I_{a,\text{sc}}^2}, \quad (5.40)
\]

\[
P_{R_{a,\text{eff}}} = R_{a,\text{eff}} I_a^2
\]
Kapitel 7

Asynkronmaskinen / Induktionsmaskinen

7.1 Modell

7.1.1 Frekvenssamband

Både magnetfältet från statorn och rotorn roterar i det synkrona varvtalet.

\[w_s = \frac{2\pi f_e}{\text{poles}/2} \quad \text{den synkrona vinkelhastigheten som funktion av elektrisk frekvens} \]

\[s = \frac{\omega_s - \omega_m}{\omega_s} \quad \text{slippet är skillnaden i vinkelhastighet delat med den synkrona vinkelhastigheten} \quad (6.1) \]

\[\omega_m = (1 - s)\omega_s \quad \text{mekaniska hastigheten på rotorn} \quad (6.2, 6.3) \]

\[\omega_r = s\omega_s \quad \text{relativa hastigheten mellan statorvåg och rotor} \]

\[f_r = s f_e \quad \text{frekvensen på den i rotorn inducerade spänningen} \quad (6.4) \]

7.1.2 Ekvivalent kretsschema

(a) Ekvivalent kretsschema

(b) Theveninekvivalent kretsschema
Samband mellan spänningarna och kretselementens storlekar för de två varianterna är

\[
\hat{V}_{1,eq} = \frac{jX_m}{R_1 + j(X_1 + X_m)}
\]

\[
Z_{1,eq} = \frac{jX_m(R_1 + jX_1)}{R_1 + j(X_1 + X_m)} = R_{1,eq} + jX_{1,eq}
\]

(6.32, 6.33, 6.34)

7.1.3 Momentssamband

Momentet kan uttryckas som funktion av theveninekvivalenta spänningar och kretselement enligt

\[
T_{\text{mech}} = \frac{1}{\omega_s} \left[\frac{n_{ph} V_{1,eq}^2 (R_2/s)}{(R_{1,eq} + (R_2/s))^2 + (X_{1,eq} + X_2)^2} \right]
\]

\[
T_{\text{max}} = \frac{1}{\omega_s} \left[\frac{0.5 n_{ph} V_{1,eq}^2}{R_{1,eq} + \sqrt{R_{1,eq}^2 + (X_{1,eq} + X_2)^2}} \right] \text{ och fås vid}
\]

\[
s_{\text{max}} T = \frac{R_2}{\sqrt{R_{1,eq}^2 + (X_{1,eq} + X_2)^2}}
\]

(6.36, 6.39, 6.38)

7.1.4 Arbetsgång för bestämning av modellparametrar

i) Utför tomgångsprov och prov med låst rotor. Måt \(P_{\text{nl/bl}}, V_{\text{a,nl/bl}} \) och \(I_{\text{1,nl/bl}} \). Måt sedan \(R_1 \) medan motorn är varm.

ii) Räkna ut \(P_{\text{rot}} = P_{\text{nl}} - n_{ph} R_1 I_{\text{1,bl}}^2 \)

iii) Räkna ut \(Q_{\text{nl/bl}} \) enligt \(S = n_{ph} U_{\text{F}} I_{\text{L}} \) och \(S^2 = P^2 + Q^2 \)

iv) Räkna ut motorparametrar enligt

\[
X_{\text{nl}} = \frac{Q_{\text{nl}}}{n_{ph} f_{\text{1,bl}}}, \quad X_{\text{bl}} = \frac{Q_{\text{bl}}}{n_{ph} f_{\text{1,bl}}}, \quad f_{\text{rated}} = \frac{P_{\text{bl}}}{n_{ph} I_{\text{1,bl}}^2}
\]

(6.48, 6.52, 6.53)

v) Sätt i det \(k \) som svarar mot motortyp och lösnar \(X_1 \) och \(X_2 \) enligt

\[
X_2 = (X_{\text{bl}} - X_1) \frac{X_{\text{nl}} - X_1}{X_{\text{nl}} - X_{\text{bl}}}, \quad X_1 = kX_2
\]

(6.61)

vi) Använd slutligen lösningen för att räkna ut de sökta storheterna

\[
X_m = X_{\text{nl}} - X_1, \quad R_2 = (R_{\text{bl}} - R_1) \left(\frac{X_2 + X_m}{X_m} \right)^2
\]

(6.59, 6.62)
7.2 Momentsamband vid konstant V/Hz reglering

Generellt beteende för momen tkurv an då frekvensen ändras vid konstant V/Hz reglering fås genom att församma R_1. Detta ger

$$T_{\text{mech}} = \frac{n_{\text{ph}} [(V_{1,eq})_0]^2 (R_2/\Delta \omega)}{\left(\frac{2 \omega_0}{\text{poles}} (R_2/\Delta \omega) \right)^2 + [(X_{1,eq} + X_2)_0]^2}$$ \hspace{1cm} (10.52)

där $\Delta \omega = \omega_s - \omega_m$ och $(V_{1,eq})_0$ och $(X_{1,eq} + X_2)_0$ fås ur

$$\hat{V}_{1,eq} = \left(\frac{\omega_e}{\omega_{e0}}\right) (\hat{V}_{1,eq})_0$$ \hspace{1cm} (10.50)

$$X_{1,eq} + X_2 = \left(\frac{\omega_e}{\omega_{e0}}\right) (X_{1,eq} + X_2)_0$$ \hspace{1cm} (10.48)

$$\hat{V}_{1,eq} = \hat{V}_1 \left(\frac{X_m}{X_1 + X_m}\right)$$ \hspace{1cm} (10.45)

$$X_{1,eq} = \frac{X_m X_1}{X_1 + X_m}$$ \hspace{1cm} (10.47)

7.3 Effektivitet

Den totala verkningsgraden utgörs av den avgivna effekten i förhållande till den instoppade effekten. Följande samband beskriver effektförlusterna på vägen från instoppad till uttagen effekt.

\[\begin{align*}
P_{\text{in}} &= n_{\text{ph}} U_F I_L \cos \varphi & \text{Tillförd elektrisk } n_{\text{ph}}\text{-fas} \text{effekt} \\
P_{\text{stator}} &= n_{\text{ph}} R_1 I_1^2 & \text{Kopparförluster i statorn} \\
P_{\text{gap}} &= P_{\text{input}} - P_{\text{stator}} = n_{\text{ph}} I_2^2 \frac{R_2}{s} & \text{Överförd luftgapseffekt} \\
P_{\text{rotor}} &= n_{\text{ph}} I_2^2 R_2 = s P_{\text{gap}} = \frac{s}{1-s} P_{\text{mech}} & \text{Kopparförluster i rotern} \\
P_{\text{mech}} &= P_{\text{gap}} - P_{\text{rotor}} = (1-s) P_{\text{gap}} & \text{Mekanisk effekt innan friktion} \\
P_{\text{shaft}} &= P_{\text{mech}} - P_{\text{rot}} & \text{Avgiven mekanisk effekt efter friktion} \\
\eta &= \frac{P_{\text{shaft}}}{P_{\text{input}}} = \frac{P_{\text{input}} - P_{\text{stator}} - P_{\text{rotor}} - P_{\text{rot}}}{P_{\text{input}}} \\
&= (6.17, 6.19, 6.22, 6.30)
\end{align*}\]
A.1 Trigonometriska relationer

\[
\begin{align*}
\sin(x + y) &= \sin(x) \cos(y) + \cos(x) \sin(y) \\
\cos(x + y) &= \cos(x) \cos(y) - \sin(x) \sin(y) \\
\cos(2x) &= \cos^2(x) - \sin^2(x) \\
\sin(2x) &= 2 \sin(x) \cos(x) \\
\sin(x + \frac{\pi}{2}) &= \cos(x) \\
\cos(x + \frac{\pi}{2}) &= -\sin(x) \\
\sin(x + \pi) &= -\sin(x) \\
\cos(x + \pi) &= -\cos(x)
\end{align*}
\]