\[i(t) = I_{\text{peak}} \sin(\omega t + \varphi) \]

\[V(t) = V_{\text{peak}} \sin(\omega t + \varphi) \]

Effektivvärde

\[I_{\text{rms}} = \frac{I_{\text{peak}}}{\sqrt{2}}, \quad V_{\text{rms}} = \frac{V_{\text{peak}}}{\sqrt{2}} \]

jw-metoden

\[X(t) = X_{\text{peak}} \sin(\omega t + \varphi) \quad \leftrightarrow \quad X = X_{\text{peak}} e^{j\varphi} \]

\[X = X_{\text{rms}} e^{j\varphi} \quad \text{effektivvärdeskalan} \]

\[R \quad \rightarrow \quad R \]

\[C \quad \rightarrow \quad \frac{1}{j\omega C} \]

\[L \quad \rightarrow \quad j\omega L \]
Induktiv last

\[V(t) \]

\[+ R \quad L > 0 \]

\[i(t) \]

\[Z = R + jwL = |Z| e^{j\theta} \quad \text{där} \quad 0 < \theta \leq \frac{\pi}{2} \]

Välj \(\psi_i \) som rikeläs, dvs \(\psi_i = 0 \), \(\hat{I} = I_{\text{rms}} \)

\[\hat{V} = Z \cdot \hat{I} = |Z| \cdot I_{\text{rms}} e^{j\theta} = V_{\text{rms}} e^{j\theta} \]

\[\Theta = \phi_v - \psi_i \] kallas för effektfaktorvinkel

Där \(\phi_v > \psi_i \) är strömmen efter spänning (lagging)
Effekt

\[\mathbf{V} = \mathbf{R} \mathbf{I} + \mathbf{V}_R + \mathbf{jV}_X - \mathbf{jI} \]

Momentum effekt: \(p(t) = v(t) \cdot i(t) \) \[[\text{W}]\]

Aktiv effekt = **Netto effekt** = \(P = \frac{1}{T} \int_0^T p(t) \, dt \Rightarrow \)

\[P = R I_{\text{rms}}^2 = V_{\text{rms}} I_{\text{rms}} \cos \theta \quad \text{[W]} \]

Effektfaktor

Reaktiv effekt: \(Q = X I_{\text{rms}}^2 = V_{\text{rms}} I_{\text{rms}} \sin \theta \quad \text{[VAR]} \)

Skönhet effekt: \(S = V_{\text{rms}} I_{\text{rms}} \quad \text{[VA]} \)

Effektmängeln:

\[S^2 = P^2 + Q^2 \]
Trefassystem

Y-koppling (Δ-koppling)

In linjeström

huvudspänning V_{ab}
(line-to-line)

Symmetriskt trefassystem

$V_a = V_b = V_c$

Huvudspänning:

$V_{ab} = V_a - V_b = \sqrt{3} V_e \frac{\pi}{3}$

$\hat{I}_a + \hat{I}_b + \hat{I}_c = 0$ \hspace{1cm} (\hat{V}_a + \hat{V}_b + \hat{V}_c = 0)$
Beräkning av symmetriskt belastade trefasystem

Pålana per ele. Y- fas (fadspännning)

\[I_a = I_p \]

\[V_a = V_{L-N} \]

Trefas effekt

\[P = 3 \cdot V_{L-N, \text{rms}} \cdot I_p, \text{rms} \cdot \cos \Theta \]

\[Q = 3 \cdot V_{L-N, \text{rms}} \cdot I_o, \text{rms} \cdot \sin \Theta \]

\[S = 3 \cdot V_{L-N, \text{rms}} \cdot I_p, \text{rms} \]

Märkdata

Motor 8,3 kVA 400V 12A

- Effekt: 3-fas effekt P
- 3-fas skenbar effekt S
- Spännning: huvudspännings effektvärde V_{L-N, \text{rms}}
- Ström: linjeshömmetus effektvärde I_{p, \text{rms}}

Ex beräkna märkströmmen för en trefaslast med märkdata 9 kVA, 400V.

\[S = 3 \cdot V_{L-N, \text{rms}} \cdot I_{p, \text{rms}} \]

\[I_{p, \text{rms}} = \frac{S}{3 \cdot V_{L-N, \text{rms}}} = \frac{9000}{3 \cdot 400 \cdot \frac{1}{\sqrt{2}}} \approx 13 \text{ A} \]
Ideal transformator

\[W = \frac{N_1}{N_2} \]
ommaskningstalet

\[
\begin{align*}
V_1 &= \frac{d\lambda_1}{dt} = N_1 \frac{d\phi}{dt} \\
V_2 &= \frac{d\lambda_2}{dt} = N_2 \frac{d\phi}{dt}
\end{align*}
\]
\[\Rightarrow \begin{cases}
\frac{V_1}{V_2} = \frac{N_1}{N_2} = w \\
\frac{i_1}{i_2} = \frac{N_2}{N_1} = \frac{1}{w}
\end{cases} \]

\[P_1 = V_1 i_1 = W \cdot V_2 \cdot \frac{1}{W} i_2 = V_2 i_2 = P_2 \]

All energilagring som pågår har försumma.

\[Z' = \frac{\frac{V_1}{I_1}}{\frac{V_2}{I_2}} = w^2 \frac{V_2}{I_2} = w^2 Z \]

Anläggnings

Förlossning

\[\mu \to \infty \]
Icke-ideal transformator

Modellerade effekter

- Resistiva förluster i linjeringar, Pwinding
- Järnförluster Pcore (hysteres i virvelströmst.)
- Läckflock
- Magnetsising

Modell

\[P_1 \text{ resistiv förlust i primärlindlingen} \]

\[R_1, X_2 - läckreaktans \]

\[+ \]

\[V_1 \]

\[\text{inducerad spänning} \ E_1 \]

\[I_p \text{ - tomgångs- } \]

\[\text{ström} \]

\[X_m \text{ - magnet. kapac.} \]

\[I_m \text{ - magnet. ström} \]

\[P_{core} = \text{järnförluster} \]

\[P_{winding} = P_1 + P_2 \]

T-ekivalent krets

Sätt \[Z_1 = R_1 + jX_1, Z_2 = R_2 + jX_2, Z_4 = R_0 \parallel jX_m \]

\[+ \]

\[Z_1 \]

\[Z_2 \]

\[\text{där } Z_2' = w^2 Z_2, \quad V_2' = w V_2 \]

Vanhjutvis är \[Z_1 = Z_2' \text{ och } |Z_1| < |Z_2'|. \]
Uppskattning av förlusteffekter

Kortslutningsprov för lindningsförluster

\[V_{sc} \text{ ställs in så att } I_{sc} \text{ antar } \text{märkström} \]

\[P_{sc} = 0 \]

\[|Z_2'| << |Z_4| \Rightarrow I_p \approx 0 \Rightarrow P_{core} = 0 \Rightarrow \]

\[P_{sc} = \left(R_1 + R'_2 \right) I_{sc,rms}^2 = P_1 + P_2 = P_{winding} \]

Tomgångspröv för järnförluster

\[|Z_1| << |Z_5| \Rightarrow E_l \approx V_{oc} \Rightarrow P_{winding} \approx 0 \]

\[P_{oc} = \frac{V_{oc,rms}^2}{R_c} = P_{core} \]