
T S F S 0 6 L A B E X E R C I S E 3
Diagnosis of nonlinear systems

May 3, 2019

1 objectives
The objective with this lab exercise is to illustrate diagnosis methods for a non-linear
system. A small, but still complicated enough to include many topics covered in
the course, is a system of two coupled water tanks. A basic physical model is
easily derived, and then a diagnosis system based on this model is to be designed
and evaluated. Faults considered in the process are leakages, actuator, and sensor
faults.

2 requirements
A written report with a clear presentation of how a diagnosis system is designed,
how it is evaluated, and how it fulfills specified performance requirements should
be submitted through email. This memo includes a few short leading questions that
should be used as help in the design process, the report should not be organized as
a series of replies to these questions.

There are two options; a first where a reduced set of faults are considered and a
second where a larger set of faults should be considered. The second is intended
for those who want a more challenging problem. The reduced version is sufficient
to pass the examination. Precise requirements are described in Section 7.

The report is expected to be orderly, coherent, and well-written describing your
work. The text should be independent, meaning that it should be readable without
any other documents, including this memo. It means that used notation should
be described/defined even if they coincide with the course literature. Figures shall
always be commented, and clearly stated what a reader should see in the particular
figure. Do not include figure with only a comment “and this is the result”. Well
thought-out headings are important. Common, but not necessary, components of
a well written report are an introduction, a number of section describing different
parts of the work, a result section, and a conclusion and summary.

3 implementation
The files needed for the implementation can be downloaded from the course web
page and includes the following files:

1. TSFS06Lab3.mdl, Simulink model of the water tank process.

2. lab3init.mat, Matlab files with the parameter values needed to run the Simulink
model.

1

3.1 Preparations 2

3. Skeleton file, labbskal.m, for initiation of variables needed in simulation. In
beginning of this file there is a detailed description of all variables used in the
simulation, see Appendix A.

Important: It is strongly recommended that all Matlab commands used in
your solution is written into this file. then you can easily reproduce, repeat,
and maintain your solution.

4. Function decisioncalc is used to perform single fault isolation according to
Chapter 3 in the course literature.

5. The function tanklinj.m linearizes the upper tank in an operating point given
by the user, watertank.m is an S-function for simulating the water tank system
with given fault modes, and function obsgain.m computes the observer gain
given chosen pole positions.

6. Templates for an observer and a dynamic residual generator based on consis-
tency relations is shown in obs1.m and consrel1.m. See also Appendix B for
more information about these files.

3.1 Preparations

To be able to use the scheduled lab-session efficiently, it is recommended that a few
of the exercises be done in advance. An exercise marked with P is a preparation
exercise.

4 the water tank process
The water tank system is illustrated in Figure 1, with an input signal ure f and four
outputs y1, . . . , y4. Water is pumped into the upper tank (tank 1) and the control
signal u is controlled with respect to the water level in the upper tank. Both tanks
has level measurements y1 and y2, and flow measurements y3 and y4. Table 1

summarizes the faults that can be introduced in the system.

y1

y3

y2

y4

u

FS

FS

Figure 1: A schematic setup of two coupled water tanks. Each tank also has a level sensor
(y1 and y2). The flow out of each tank is measured with a flow sensor (FS) (y3 and
y4).

5 a model of the water tank system 3

Table 1: Possible faults in the water tank system.
Fa Actuator fault n the pump.
Fh1 Fault in sensor 1 measuring the water level h1 in the upper tank, tank 1.
Fh2 Fault in sensor 2 measuring the water level h2 in the lower tank, tank 2.
Ff 1 Fault in sensor 3 measuring the flow f1 between tank 1 and tank 2.
Ff 2 Fault in sensor 4 measuring the flow f2 out of tank 2.
Fl1 Leakage between tank 1 and sensor 3.
Fl2 Leakage between sensor 3 and tank 2.
Fl3 Leakage between tank 2 and sensor 4.
Fc1 Partial obstruction (clogging) in the pipe between tank 1 and tank 2.
Fc2 Partial obstruction (clogging) after tank 2.

5 a model of the water tank system
Let us start with a model of the fault-free case and then introduce models for the
different fault cases.

5.1 Fault-free model

Mass balance for a tank means that a change in volume equals in flow - out flow,
i.e.,

dV
dt

= A
dh
dt

= Qin −Qut (1)

where A is the bottom area of the cylindrical tank, h is the water level, and Qin, Qut
flow in and out of the tank respectively. The flow Qut out of a tank can be described
by Bernoulli’s law as

Qut = a
√

2gh (2)

where a is the efficient flow area and g is the gravity constant. Equations (1) and (2)
then gives that the water level h1 in the upper tank (tank 1) is described by:

dh1

dt
=

1
A1

u− a1

A1

√
2gh1 (3)

and water level h2 in the lower tank (tank 2) by:

dh2

dt
=

a1

A2

√
2gh1 −

a2

A2

√
2gh2 (4)

Introduce the constants ci :=
ai
√

2g
Ai

, and bi := 1
Ai

, where index i indicates tank i. A
model for the tank system in the fault free case is then

dh1

dt
= b1u− c1

√
h1 (5a)

dh2

dt
=

b2

b1
c1
√

h1 − c2
√

h2 (5b)

y =

h1
h2

c1
b1

√
h1

c2
b2

√
h2

 (5c)

5.2 Modelling the fault cases

The different fault modes that can be introduced in the system (see Table 1) can be
modeled in several different ways, e.g., as signals or deviations in constant param-
eters. Here, Fa denotes fault mode and fa denotes the modeled fault, e.g., the fault

6 simulation model 4

signal. Here, actuator and sensor faults are modeled using additive signals, and
remaining fault modes as constant parameters. With different assumptions on how,
e.g., a leak affects the out flow of a tank; there are different fault models. It is here
assumed that a leak do not increase outflow of a tank. The resulting model of the
water tank system is then (compare with the model in the fault-free case (5))

ḣ1 = b1u− c1(1− fc1)
√

h1 + fa (6a)

ḣ2 =
b2

b1
c1(1− fc1)(1− fl1)(1− fl2)

√
h1 − c2(1− fc2)

√
h2 (6b)

y =

h1 + fh1
h2 + fh2

c1(1− fc1)(1− fl1)
b1

√
h1 + f f 1

c2(1− fc2)(1− fl3)
b2

√
h2 + f f 2

 (6c)

To simplify the presentation, we introduce the new parameters d1, . . . , d6 in the
model

ḣ1 = d1u− d2(1− fc1)
√

h1 + fa (7a)

ḣ2 = d3(1− fc1)(1− fl1)(1− fl2)
√

h1 − d4(1− fc2)
√

h2 (7b)

y =

h1 + fh1
h2 + fh2

d5(1− fc1)(1− fl1)
√

h1 + f f 1
d6(1− fc2)(1− fl3)

√
h2 + f f 2

 (7c)

The model (7) then describes the system, including the different fault modes.

6 simulation model
A simulation model is implemented in Simulink in the file TSFS06lab3.mdl. The

TSFS06: Laboration 3

− olinjär diagnos

Treshold

r d

tut

T

res

styr

y

Nonlinear model

with faults

u y_meas
From

Workspace

[t,Uref]

Diagnosis system

y_meas

u

r

Controller

ref

y

u

Clock

0

Figure 2: Simulink model TSFS06Lab3.mdl.

Simulation model in Figure 2 reads the signal Ure f from Matlab workspace, a refer-
ence signal to the water level controller for the upper tank, and a time vector t. The
simulation model produces the following output signals:

6 simulation model 5

tut Time vector for the simulation model.

styr Control signal for the pump.

y Outputs from the water tanks. Includes measurement noise.

res Residual values.

T Thresholded residuals, i.e., 0 or 1 dependent on if the residual is above the
threshold or not.

f Vector with values of the introduced faults.

The block ’Nonlinear model with faults’ simulates the water tank system with
introduced faults and measurement noise. Fault sizes can be modified by double
clicking on the block and specify fault sizes in the dialog window shown in Figure 3.
One introduced fault is shown in Figure 4. A value 0 corresponds to no fault.
The fault is introduced at ’Fault initialization time’ and the parameter ’Fault
ramp duration’ determines how fast the fault is introduces, i.e., how long time it
takes from fault initiation to maximum value. See Figure 4 for the case where this
time is 2 s. Measurement noise can be activated/deactivated with the ’Measurement

noise’.

Figure 3: Dialog window for the simulation model where, e.g., the different fault modes can
be specified and introduced.

The block ’Controller’ is a pre-calibrated PI-controller. The Simulink block ’Diagnosis

system’ contains the residual generators you are designing during the lab exercise.

0 1 2 3 4 5 6 7 8 9 10
−0.05

0

0.05

0.1

0.15

0.2

0.25

Time

f

Figure 4: Example of an introduced fault.

7 diagnosis system 6

7 diagnosis system
When designing the diagnosis system, it is required that test quantities/residuals
are design corresponding to a specified decision structure. In addition, thresholds
has to be selected for each residual. The block ’Diagnosis system’ is implemented
in Simulink as seen in Figure 5. To design residuals, there are many approaches to

Enable

r

1

Observers

u

y_meas

Residuals

Mux

Gain

−K−

Constant

1

Consistency Relations

y_meas

u

r

u

2

y_meas

1

Figure 5: Simulink block Diagnosis System.

apply; mentioned in the course are, e.g., non-linear consistency relations and non-linear
observers, see Chapter 7 in the course literature. Apply both these methods in your
solution, at least one test quantity (in addition to the ones already implemented) of
each method shall be part of your solution.

7.1 Definition of requirements

In Section 2 two options were described; one considering a reduced set of faults
and one considering all faults. In the full version, design a diagnosis system for
all fault modes defined in Table 1 while in the reduced version, only fault modes
Fa, Fh2, Ff 1, Fl2, Fl3, Fc1 need to be considered. Requirements on detectable fault sizes
are given in Table 2. Note that the detection requirements is specified with sensor
noise variances 10−4(5, 0.25, 0.5, 0.5).

Table 2: Performance requirements on fault sizes.
Type of fault Requirement Corresponding fault size
Actuator fault 5% of max value of u 0.5
Sensor fault Deviation of measured value of 0.4 0.4
Leakage 40% of the flow in fault free mode 0.4
Clogging 40% of flow in fault free mode 0.4

For the set of faults you have chosen it is required that

• all faults shall be detectable by your diagnosis system

• all single fault should be isolated as far as possible. For cases where unique
isolation is not possible, convincing argument shall be given in the report.

For every designed residual, the report shall include

• which equations have been used in the derivation

• which fault sensitivity is expected

• the expressions for the residual generators

7.2 Non-linear observers 7

• a verification of the fault sensitivity with suitable plots

In addition, the report shall include an isolability matrix for the model and an
isolability matrix for your developed diagnosis system.

7.2 Non-linear observers

Non-linear observers are useful for generating residuals and the basic principle is
to estimate a specific output signal and compare with the measurement.

Below is illustrated how an observer that is, e.g., sensitive to a fault in level sensor 1

(fh1) can be designed

˙̂x1 = d1u− d2
√

x̂1 + K1(y1 − x̂1) (8a)

r1 = y1 − x̂1 (8b)

The observer estimating x̂1 is used in the residual r1. Te observer feedback gain
K1 should be chosen such that the observer error dynamics is stable. This can, for
example, be achieved by linearizing the system and then choosing a conservative
K1 such that disturbances are not amplified. Two Matlab functions are provided to
help; the function ’tanklinj’ linearizes the system in a selected operating point
and the function ’obsgain’ determines an observer gain based on given pole place-
ment. Section A.1 shows the file labbskal.m that shows how a stabilizing K1 can be
determined for the observer (8).

By considering (7) the hypotheses for the observer (8)

H0
1 :Fp ∈ {NF, Fh2, Ff1, Ff2, Fl1, Fl2, Fl3, Fc2}

H1
1 :Fp ∈ {Fa, Fh1, Fc1}

See Appendix B for information on how such a residual is implemented in Simulink.

Exercise 1 (P). Derive more observers for the water tank system.

Answer:

Exercise 2. Implement your observers in Simulink in the block ’Observers’, see
Figure 6. The observer based residual (8) is already implemented. Use that imple-
mentation as a template for your own observers. See further in Appendix B how to
implement them. Only implement one observer in each m-file.

7.3 Non-linear consistency relations

A non-linear consistency relation g is a relation between an input u and output y
(and possibly derivatives in case of a dynamic system) that is fulfilled in the fault
free case as

g(y, ẏ, ÿ, . . . , u, u̇, ü, . . .) = 0 (9)

7.3 Non-linear consistency relations 8

Residuals

1

Mux1

Mux

Mux

M−file implementation

of observer based

residual generator

obs1

Enable

y_meas

2

u

1

Figure 6: Simulink block Observers.

Exercise 3 (P). Is g a consistency relation if it is fulfilled also when there is a fault?

Answer: .

One example of a consistency relation for the water tank system is

ẏ1 − d1u + d2
√

y1 = 0 (10)

It is derived from (7a) and (7c) and is based on that the level change in tank 1 is re-
lated to the inflow minus the outflow. Determine a residual r1 from this consistency
relation and by considering (7) we can determined the following corresponding
hypotheses for r1

H0
1 :Fp ∈ {NF, Fh2, Ff1, Ff2, Fl1, Fl2, Fl3, Fc2}

H1
1 :Fp ∈ {Fa, Fh1, Fc1}

A residual that is computed directly according to the consistency relation, i.e.,

r = ẏ1 − d1u + d2
√

y1

is implemented in the block ’Consistency relations’ in Figure 5 and is shown
at the top of Figure 7. A problem when using (10) is that it contains the deriva-

r

1

M−file implementation

of consistency relation

with dynamics

consrel1

LP−filter

1

(s+1)

Direct implementation of

consistency relations using approximated

derivatives

f(u)

Approximativ

derivering

y yder

Enable

u

2

y_meas

1

Figure 7: Simulink block Consistency Relations.

tive of the measurement signal y1. A simple way to still use the expression is to
approximate the derivative using a filter s

1−s/s0
.

In this case it is easy to circumvent the derivative estimation since ẏ1 appears lin-
early in the expression. This means that the linear methodology from Chapter 6

in the course literature to avoid estimating derivatives can be used. Thus, intro-
ducing linear residual generator dynamics makes it possible to state the residual in
state-space form. Therefore, compute the residual as

ṙ + αr = ẏ1 − d1u + d2
√

y1

7.4 Normalization of test quantities 9

which, with state variable w = r− y1, results in

ẇ = −α(w + y1)− d1u + d2
√

y1 (11a)

r = w + y1 (11b)

This residual generator is implemented in the lower residual generator block in
Figure 7. See further in Appendix B how this implementation is done. for simplicity
in debugging, implement only 1 consistency relation in each m-file.

Exercise 4 (P). Derive more consistency relations for the water tank system.

Answer:

Exercise 5. Implement your consistency relations in Simulink. do the design both
using derivative estimates and, where so is possible, use the linear methodology as
described in (11) to avoid estimating derivatives.

Hint: If derivative estimates are used, it is suitable to also introduce a LP-filtering
operation, see Figure 7.

Answer:

7.4 Normalization of test quantities

Exercise 6. Determine thresholds Ji such that, in the fault free case, the following
holds:

P(|ri| > Ji) ≈ α

where α = 0.1%, i.e., α is the probability for false alarm.

Compute thresholds and normalize the residuals such that all thresholds can be set
to 1, i.e., Ji = 1. The normalization ensures that the predefined thresholding block
in the Simulink model can be used as is. The normalization is performed using the
variable Jnorm, see Figure 5. The variable Jnorm is defined in the file labbskal.m

and observe that the number of residuals determines the number of elements.

7.5 Decision structure 10

7.5 Decision structure

Exercise 7 (P). Which decision structure corresponds to your test quantities? Moti-
vate your answer. You need only consider single faults.

Answer:

Enter your decision matrices in ’labbskal.m’, see Section A.

Exercise 8 (P). What can be stated about the thresholds if the final diagnosis deci-
sion includes most of the fault modes even in faulty cases?

Answer: .

What can be stated about the thresholds if the diagnosis decision often is the empty
set, i.e., no behavioral mode (including NF) is deemed consistent with the observed
behavior.

Answer: .

Exercise 9. Investigate by simulation that the diagnosis system behaves as expected
and achieves desired detection, isolation, and false alarm performance.

Answer: .

Exercise 10. Implement a CUSUM test in your diagnosis system in Simulink for, at
least, one of your residuals. Compare its detection performance with thresholding
the residual output. Are you able to detect and isolate even smaller faults? What
about false alarm performance?

Answer: .

A appendix 11

a appendix

a.1 labbskal.m

The file labbskal.m is the main skeleton file where you enter suitable code for your
design and evaluation of the diagnosis system.

%% Labbskal för laboration 3 i TSFS06: Diagnos & Övervakning

clear all

%% ==

% Sätt modellparametrar för simulering

% ==

% Parametrar som används för Simulering av vattentanken

% d1--d6 Parametrar som beskriver dynamiken för vattentankssystemet.

% Se labbkompendiet för detaljer.

% Uref Referenssignal till regulator.

% t Tidsvektor för referenssignal.

% h1Init Initialvärde för vattennivå i tank 1. Default är Uref(1).

% h2Init Initialvärde för vattennivå i tank 2. Beräknas utifrån

% stationär punkt med avseende på h1Init.

%

load lab3init

h1Init=Uref(1,1); % Initialnivå i tank 1

h2Init=(d3/d4)^2*h1Init; % Initialnivå i tank 2

d = [d1 d2 d3 d4 d5 d6]; % Spara alla modellparametrar i en vektor

watertankparams.x0 = [h1Init; h2Init]; % Initialnivån i resp. tank

watertankparams.d = d; % Modellparametrar

% Sätt slumptalsfrö och brusintensiteter för simulering av mätbrus

NoiseSeed = floor(abs(randn(1,4)*100));

NoiseCov = 1e-4*[5 0.25 0.5 0.5];

%% ==

% Design av residualgenerator ’obs1’

% via observatörsdesign

% ==

% Linjärisering av vattentankssystemet för h1=4:

Gsys=tanklinj(4, d);

% Anpassa A och C-matrisen så att de passar

A = Gsys.a(1,1);

C = Gsys.c(1,1);

P = [-1]; % Placering av polerna

K1 = obsgain(A,C,P);

% Spara parametrarna som skickas in till observatören i

obs1params.x0 = h1Init; % Initialvärde på observatörens tillstånd

obs1params.K1 = K1; % Observatörsförstärkningen

obs1params.d = d; % Modellparametrar

%% ==

A.1 labbskal.m 12

% Design av residualgenerator consrel1

% via konsistensrelation med dynamik

% ==

% Sätt parametrar för konsistensrelation

c1params.x0 = -h1Init; % Initialvärde för residualgeneratorns tillstånd

c1params.alfa = 2; % Placering av polen i -alfa

c1params.d = d; % Modellparametrar

%% ==

% Tröskelsättning

% ==

Jnorm=ones(1,3); % Default är alla trösklar satta till 1

%% ==

% Simulera systemet

% simuleringen kan antingen göras genom att välja menyn

% Simulation->Start i Simulink fönstret

% eller exekvera nedanstående rad

% ==

sim(’TSFS06Lab3’);

%% ==

% Definiera beslutsstrukturen via s0 och s1

% Felfria fallet NF ska stå först

% ==

% Beslut för residualer under tröskeln

%s0 = ones(3,11);

s0 = ones(3,7); %förenklad variant

% Beslut för residualer över tröskeln

%s1 = zeros(3,11);

s1 = zeros(3,7); %förenklad variant

%% ==

% Beräkna diagnoser under ett enkelfelsantagande

% ==

[S,alarm] = decisioncalc(T,s0,s1);

%% ==

% Plotta resultatet

% ==

% Förslag på plottar

figure(1)

plot(tut, y)

figure(2)

plot(tut, alarm)

figure(3)

plot(tut, res)

figure(4)

B implementation of residual generators using s-functions 13

plot(tut,T)

figure(5)

% Kräver att felmoderna är definierade i samma ordning

% i ’S’ som i ’name’.

name={’NF’, ’Fa’, ’Fh2’, ’Ff1’, ’Fl2’, ’Fl3’, ’Fc1’};

%name={’NF’, ’Fa’, ’Fh1’, ’Fh2’, ’Ff1’, ’Ff2’, ’Fl1’, ’Fl2’, ’Fl3’,...

%’Fc1’, ’Fc2’};

% Plottar diagnosbeslutet för de olika felmoderna enligt S

% och namnger dem efter name.

for n=1:length(name)

subplot(3,3,n)

plot(tut,S(:,n))

title(name{n})

axis([min(tut) max(tut) -0.1 1.1])

end

b implementation of residual generators using
s-functions

This section will describe how residual generators with dynamics can be imple-
mented in Simulink using S-functions. Observe that S-functions should only be
used when the residual generator has dynamics, i.e., have states.

The observer solution (8), illustrated in Figure 6, and the dynamic residual generator
(11), illustrated in Figure 7, are both implemented in a similar way using an S-
function in Simulink. S-functions is an alternative to “drawing” the computation
scheme for the residual generator and instead directly enter the equations. Which
solution that is preferred, is up to you. Below are implementations for both residual
generators (8) and (11) described in detail.

b.1 obs1.m

By double clicking on the block obs1 in Figure 6 raises the dialog window in Fig-
ure 8. Here, two parameters can be entered; a file name (m-file) and parameters to

Figure 8: Dialog window for an S-function.

the S-function. In this case, the m-file is called obs1.m and is included below. The
parameter in this case is obs1params which are set in labbskal.m. In this case is
obs1params a structure with three fields, one initial state x0 for the observer, the ob-
server gain K1, and a vector with the model parameters d1, . . . , d6. It is completely

B.1 obs1.m 14

free to define your own parameters, just add to the parameter structure as shown
in labbskal.m.

Here, 4 parts of the m-file need to be written specifically for each residual generator:

1. numstates

Number of states in the residual generator

2. Function InitConditions

Sets the initial value for the states in the observer.

3. Function Derivative

Define the observers dynamic equations, in this case the single equation (8a).

4. Function Output

Define the output equations, in this case equation (8b).

In these functions the parameters will be directly accessible, in this case the variable
obs1params, using block.DialogPrm(1).Data. Thus, the observer gain K1 equals
block.DialogPrm(1).Data.K1 and corresponding for the initial state x0 and the
vector with model parameters d.

The input signals to the observer, i.e., the observations, is accessed by

u = block.InputPort(1).Data(1);

y1 = block.InputPort(1).Data(2);

y2 = block.InputPort(1).Data(3);

y3 = block.InputPort(1).Data(4);

y4 = block.InputPort(1).Data(5);

The internal state of the observer, in this case x̂1, is accessed by

x1hat = block.ContStates.Data;

If you have more than one state, access them by block.ContStates.Data(1), block.ContStates.Data(2)
and so on.

Below is a full listing of the file obs1.m.

function obs1(block)

setup(block);

function setup(block)

%% ===

% Definiera parametrar för residualgeneratorn

% ===

numstates = 1; % Antal kontinuerliga tillstånd i funktionen

% ===

numparams = 1;

%% Register number of dialog parameters

block.NumDialogPrms = numparams;

%% Register number of input and output ports

block.NumInputPorts = 1;

block.NumOutputPorts = 1;

%% Setup functional port properties to dynamically

%% inherited.

block.SetPreCompInpPortInfoToDynamic;

B.1 obs1.m 15

block.SetPreCompOutPortInfoToDynamic;

block.InputPort(1).Dimensions = 5;

block.InputPort(1).DirectFeedthrough = true;

block.OutputPort(1).Dimensions = 1;

%% Set block sample time to continuous

block.SampleTimes = [0 0];

%% Setup Dwork

block.NumContStates = numstates;

%% Register methods

block.RegBlockMethod(’InitializeConditions’, @InitConditions);

block.RegBlockMethod(’Outputs’, @Output);

block.RegBlockMethod(’Derivatives’, @Derivative);

%endfunction

function InitConditions(block)

%% ===

% Definiera initialtillståndet

% ===

x0 = block.DialogPrm(1).Data.x0;

% ===

block.ContStates.Data = x0;

%endfunction

%% ===

% Definiera utsignalsekvationen

% ===

function Output(block)

x1hat = block.ContStates.Data;

y1 = block.InputPort(1).Data(2);

r = y1-x1hat;

block.OutputPort(1).Data = r;

%endfunction

%% ===

% Definiera de dynamiska ekvationerna

% ===

function Derivative(block)

K1 = block.DialogPrm(1).Data.K1;

d = block.DialogPrm(1).Data.d;

u = block.InputPort(1).Data(1);

y1 = block.InputPort(1).Data(2);

x1hat = block.ContStates.Data;

dx1hat = d(1)*u-d(2)*sqrt(x1hat)+K1*(y1-x1hat);

block.Derivatives.Data = dx1hat;

B.2 consrel1.m 16

b.2 consrel1.m

In Figure 7, equation (11) is implemented in the block consrel1. This block works in
exactly the same was is described above for the observer case in the block obs1. Be-
low is the m-file that implements the residual generator (11) and the only difference
compared to obs1.m is the definitions of functions InitConditions, Derivative and
Output.

function consrel1(block)

setup(block);

function setup(block)

%% ===

% Definiera parametrar för residualgeneratorn

% ===

numstates = 1; % Antal kontinuerliga tillstånd i funktionen

% ===

numparams = 1;

%% Register number of dialog parameters

block.NumDialogPrms = numparams;

%% Register number of input and output ports

block.NumInputPorts = 1;

block.NumOutputPorts = 1;

%% Setup functional port properties to dynamically

%% inherited.

block.SetPreCompInpPortInfoToDynamic;

block.SetPreCompOutPortInfoToDynamic;

block.InputPort(1).Dimensions = 5;

block.InputPort(1).DirectFeedthrough = true;

block.OutputPort(1).Dimensions = 1;

%% Set block sample time to continuous

block.SampleTimes = [0 0];

%% Setup Dwork

block.NumContStates = numstates;

%% Register methods

block.RegBlockMethod(’InitializeConditions’, @InitConditions);

block.RegBlockMethod(’Outputs’, @Output);

block.RegBlockMethod(’Derivatives’, @Derivative);

%endfunction

function InitConditions(block)

%% ===

% Definiera initialtillståndet

% ===

x0 = block.DialogPrm(1).Data.x0;

% ===

B.2 consrel1.m 17

%% Initialize Dwork

block.ContStates.Data = x0;

%endfunction

%% ===

% Definiera utsignalsekvationen

% ===

function Output(block)

w = block.ContStates.Data;

y1 = block.InputPort(1).Data(2);

r = w+y1;

block.OutputPort(1).Data = r;

%endfunction

%% ===

% Definiera de dynamiska ekvationerna

% ===

function Derivative(block)

alfa = block.DialogPrm(1).Data.alfa;

d = block.DialogPrm(1).Data.d;

u = block.InputPort(1).Data(1);

y1 = block.InputPort(1).Data(2);

w = block.ContStates.Data;

dw = -alfa*(w+y1)-d(1)*u+d(2)*sqrt(max(0,y1));

block.Derivatives.Data = dw;

	1 Objectives
	2 Requirements
	3 Implementation
	3.1 Preparations

	4 The water tank process
	5 A model of the water tank system
	5.1 Fault-free model
	5.2 Modelling the fault cases

	6 Simulation model
	7 Diagnosis System
	7.1 Definition of requirements
	7.2 Non-linear observers
	7.3 Non-linear consistency relations
	7.4 Normalization of test quantities
	7.5 Decision structure

	A Appendix
	A.1 labbskal.m

	B Implementation of residual generators using S-functions
	B.1 obs1.m
	B.2 consrel1.m

