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Change Detection Algorithms

In this chapter, we describe the simplest change detechimmitims. We consider a sequenceimudepen-
dentrandom variablesy; ), with a probability densitypy(y) depending upon only ongcalar parameter.
Before theunknown change timig, the parametet is equal tddy, and after the change it is equaltp+# 6.
The problems are then to detect and estimate this change patlameter.

The maingoal of this chapter is to introduce the reader to the desigomfine change detection al-
gorithms, basically assuming that the paramétebefore change iknown We start from elementary
algorithms originally derived using an intuitive point aéw, and continue with conceptually more involved
but practically not more complex algorithms. In some casegyive several possible derivations of the same
algorithm. But the key point is that we introduce these atgors within a general statistical framework,
based upon likelihood techniques, which will be used thhowg the book. Our conviction is that the early
introduction of such a general approach in a simple caseheif) the reader to draw up a unified mental
picture of change detection algorithms in more complex £ase the present chapter, using this general
approach and for this simplest case, we describe sevela@aigorithms of increasing complexity. We
also discuss theff-line point of view more briefly. The main example, which is carrilebugh this chapter,
is concerned with the detection of a change in the mean ofdependent Gaussian sequence.

Thetools for reaching this goal are as follows. First, our descriptid all the algorithms of this chapter
is based on a concept that is very important in mathematiatidtics, namely the logarithm of the likelihood
ratio, defined by

s(y) =20 (v) (2.0.1)
P, (y)
and referred to as the log-likelihood ratio. The key statdiproperty of this ratio is as follows : L#,, and
Ey, denote the expectations of the random variables under thelistributionspy, andpy,, respectively.
Then,
Ego(s) <0 and Ey, (s) >0 (2.0.2)

In other words,a change in the parametér is reflected as a change in the sign of the mean value of the
log-likelihood ratia This property can be viewed as a kind of detectability of thange. Because the
Kullback informationK is defined byK (6, 6y) = Ey, (s), we also have that the difference between the
two mean values is

Ey, (s) — Eg,(s) = K(61,00) + K(6p,01) >0 (2.0.3)

From this, we deduce that the detectability of a change csmlzd defined with the aid of the Kullback
information between the two models before and after chahigese concepts are used throughout the book.

Second, even for this simple case, it is of interest to diasdi possible practical problem statements
with respect to two different issues :



26 CHAPTER 2 CHANGE DETECTION ALGORITHMS

e The first possible classification is with respect to assusngtiabout the unknown change titge In
some applications, it is useful to considgras a nonrandom unknown value, or a random unknown
value with unknown distribution. In other words, we dealhwatnonparametric approach as far as this
change time, is concerned. This assumption is useful because very oftgractice, either it is very
difficult to havea priori information about the distribution of the change times,his distribution
is nonstationary. This point of view is taken in sections, 2.2, and 2.4 for on-line algorithms and
in section 2.6 for off-line algorithms. In some applicasoiit is possible to usa priori information
about the distribution of the change time, taking a Bayepint of view. Sucha priori information
can be available from life-time estimations made in religbinvestigations. This point of view is
used in section 2.3.

e The second possible classification of algorithms is witlpeesto the available information about the
value ¢, of the parameter after change, as we discussed in sectiorMe4first consider that this
value is known : This is the case of sections 2.1, 2.2, and Th&. case of unknown value féj is
investigated in section 2.4 for on-line algorithms and ictisa 2.6 for off-line algorithms.

Before proceeding, let us add one comment concerning tHerpegnces of these algorithms and the
detectability of a given change. The criteria for the parfance evaluation of these algorithms were intro-
duced in section 1.4 from an intuitive point of view. The peniances of then-line algorithms presented
in the present chapter are investigated in detail in chapteith the aid of the formal definition of these
criteria, given in section 4.4. These performance evalnatcan be computationally complex, even in the
present simple case. For this reason, it is also of intebesbrisider a kind of weak performance index, the
positivity of which simply states the detectability of a olge (with no more indication on the properties
of the detection). The Kullback information is a good camtiidfor such a weak index, both because of
the above-mentioned inequalities and because, as shovimajrer 4, it is an adequate index of separability
between two probability measures. This mutual informat®rero only when the parameters are equal,
and can be shown to be an increasing function of the Euclidesiance between the parametéssandf,
when this distance is small. This detectability definitisrinivestigated in detail in more complex cases in
chapters 7, 8, and 9.

2.1 Elementary Algorithms

In this section, we describe several simple and well-knolgordhms. Most of the algorithms presented
here work on samples of data witixedsize; only one uses a growing memory. In the next section, we
deal basically with a random-size sliding window algorithmquality control, these elementary algorithms
are usually calledshewhart control chartend finite or infinitemoving average control chartsWe also
introduce another elementary algorithm, callddtared derivativealgorithm, which is often used in image
edge detection. We place these algorithms in our genesiidod framework, and consider the case in
which the only unknown value is the change timge Recall that all the key mathematical concepts are
described in chapters 3 and 4.

2.1.1 Limit Checking Detectors and Shewhart Control
Charts

Let us first introduce the initial idea used in quality cohtinder the name of continuous inspection. Sam-
ples with fixed sizeV are taken, and at the end of each sample a decision rule isutedho test between
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the two following hypotheses about the paraméter

HO RS 90 (211)
H1 : 9 == 91
As long as the decision is taken in favourKf), the sampling and test continue. Sampling is stopped after

the first sample of observations for which the decision istak favor ofH;.
We introduce the following notation, which is used througtis and the subsequent chapters. Let

k
SEo= > s (2.1.2)
i=j
Si — ln pal (yl)
Do, (Yi)

be the log-likelihood ratio for the observations frgmto y,. We refer tos; as thesufficient statistidor
reasons that are explained in section 4.1.

The following statement is a direct consequence of the NaeyRearson lemma, which we recall in
chapter 4. For a fixed sample si2g the optimal decision rulé is given by

- N . -
d:{ 0 if S <h; Hp ischosen (2.1.3)

1 if SN >h; H; ischosen

whereh is a conveniently chosen threshold. The s$ifhis said to be thelecision functionThe decision is
taken with the aid of what is called a stopping rule, whichhiis tase is defined by

te =N -min{K : dg =1} (2.1.9

whered is the decision rule for the sample numi#€r(of size N) andt,, is thealarm time In other words,
the observation is stopped after the first sample of AiZer which the decision is in favor df; .

Example 2.1.1 (Changein mean). Let us now consider the particular case where the distrdsuts Gaus-
sian with mean valug and constant variance?. In this case, the changing parameteis ;.. The proba-
bility density is

N2
po(y) = U\}%e‘% (2.1.5)
and the sufficient statistig; is
e (yi il ;‘“) (2.1.6)
which we shall write as
o = ° ( . M)
o 2
= b (yz — Mo — Z) (2.1.7)
o 2
where
V=1 — Ho (2.1.8)
is thechange magnitudand
p= ML HO (2.1.9)
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is thesignal-to-noise ratioTherefore, the decision function (2.1.2) is

N
S = gz (yi — 10 — g) (2.1.10)

=

The stopping rule for the change detection algorithm is aRif.4), with the decision rule defined by

_fo if SNK)<h
d—{ L it SN(K) > (2.1.11)
where
SY(K) = SN{k 111 (2.1.12)

with S{ defined in (2.1.2). This change detection algorithm is ort@bldest and most well-known algo-
rithms for continuous inspection, and is call&thewhart control chafShewhart, 1931]. For this control
chart, wheru, > ug, the alarm is set the first time at which

g
y(K) > po + k—— 2.1.13
y(K) > po Vi ( )
where
1 NK
g(K):N' >oow (2.1.14)
i=N(K-1)+1

Note that the threshold is related to the standard deviatibthe left side of this inequality. This stopping
rule is standard in quality control, where the name for thghti side of this inequality is thepper control
limit. The tuning parameters of this Shewhart control chartaend N. The behavior of this chart, when
applied to the signal of figure 1.1, is depicted in figure 2.1.
It is often more useful to detect deviations fragin both directions, hamely increases and decreases.

In this case, assume that the mean value after the changihés i = i + v Or i = po — v. Then the
alarm is set the first time at which .

9(K) = ol 2 (2.1.15)
wherepy — n\% is thelower control limit This is depicted in the figure 2.2. The tuning parametergisf t
algorithm arex and NV again. The optimal tuning of these parameters can be obdaivith the aid of an a
priori information concerning the change magnitude

Let us add one comment about a slightly different use of cbatrarts [S.Roberts, 1966]. To prevent
false alarms and to obtain more reliable detection resthiesjntuitive idea consists of deciding a change
when a preassigned number of crossings in (2.1.15) occungus®veral successive data samples of Aize
This idea is known as mun testin quality control, and sometimes asaunterin the engineering literature.
Various types of run tests have been used to supplement @hevaimtrol charts, as explained in [S.Roberts,
1966]. A similar idea is also used for another change deteetigorithm in subsection 2.1.4.

2.1.2 Geometric Moving Average Control Charts

Two key ideas underlie the geometric moving average (GM4&diithm. The first idea is related to the
above-mentioned behavior of the log-likelihood ratio (2)0The second deals with the widespread intuitive
idea of exponential weighting of observations. As usualinstationary situations, because of the unknown
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Figure2.1 A Shewhart control chart corresponding to a change in the mean of a Gassgia@nce with constant
variance.



30

CHAPTER 2 CHANGE DETECTION ALGORITHMS

50

upper control limit

Figure2.2 A two-sided Shewhart control chart.
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change timey, it is of interest to use higher weights on recent obsermatend lower weights on past ones.
Therefore, the following decision function is relevant8berts, 1959, Hines, 1976a, Hines, 1976b] :

Poy (Yr—i)

— 0o .
9k = Limo Ml pGT (2.1.16)
= Zfio YiSk—i
where the weights; are exponential, namely
vi=a(l—a),0<a<l (2.1.17)

The coefficienty acts as a forgetting factor. This decision function can beiten in a recursive manner as
g = (1 — ) g1 +a sk, with: gg=0 (2.1.18)
The alarm time is defined by the following stopping rule :
to = min{k : g, > h} (2.1.19)
whereh is a conveniently chosen threshold.

Example 2.1.2 (Changein mean - contd.). In the case of a change in the mean of an independent Gaus-
sian sequencss, is given by (2.1.6), and the GMA decision function is

gk = (1 — @) gk—1 +a (yg — po), With: go =0 (2.1.20)

whereg and g are related through

2 _
Gp=—0— g, — L0 (2.1.21)
H1 — fho 2

The behavior of this decision function, when applied to tbeas of figure 1.1, is depicted in figure 2.3. In
the corresponding two-sided situation, the stopping rale i

to = min{k : |gx| > h} (2.1.22)

Example 2.1.3 (Changein variance). In the case of a change in the varianeé, which is relevant in
guality control, as explained in example 1.2.1, we have

11 — 1)?
sr=In20 4 (—2 - —2> (o — ) (2.1.23)

o1 op oy 2

Therefore, the relevant decision function can be written as

202052 20202 o

~ 0Y1 oY1 0

g = — 5 9k — 5 In— (2.1.24)
o] — 0§ o] — 05 01

whereg,, is defined in (2.1.18). In a recursive form, this becomes

gr=(1—) g1+ o (yp —p)?, with: go =0 (2.1.25)
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_1 ‘ ‘ ‘ ‘ ‘ ‘ | alarm time
o] 5 10 15 20 25 30 35 40 45 50

Figure2.3 A geometric moving average algorithm corresponding to a change in¢lae of a Gaussian sequence
with constant variance.
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2.1.3 Finite Moving Average Control Charts

A similar idea to the previous control charts consists inaeipg the exponential forgetting operation by
a finite memory one, and thus in using a finite set of weightschviare no longer assumed to form a
geometric sequence. For defining this new detector, whicélisd finite moving average (FMA) algorithm,
let us follow the derivation of the geometric moving averageatrol charts. First, consider the following
variant of the causal filtering (2.1.16) used in these charts

N-1 ( )
9= v In P0CYk—i) (2.1.26)
= oo (Yk—i)

where the weights; are any weights for causal filters. The stopping rule is aseérprevious control chart :
te = min{k : g > h} (2.1.27)

Example 2.1.4 (Change in mean - contd.). In the case of aliincreasan the mean, this stopping rule can
be computed as follows. Using (2.1.6), the decision fungtian (2.1.26) can be expressed as

N—-1
gk =Y Yi(yr—i — o) (2.1.28)
=0
In the two-sided casey, is the same, and the stopping rule is

to = min{k : |gx| > h} (2.1.29)

2.1.4 Filtered Derivative Algorithms

In the case of a change in the mean of a Gaussian sequencétetieel filerivative algorithms are based on
the following very intuitive idea. Ideally, that is, in a n@ise situation, a change in the mean level of a
sequence of observations is locally characterized by d ghesmlute value of the (discrete) derivative of the
sample observations. Because the derivative operatoimegtgery poor manner as soon as noise is present
in observations, a more realistic detector should use aiffiffeperation before derivation. This explains
the title of this subsection. The typical behavior of thigalthm is depicted in figure 2.4 for the ideal and
realistic situations. Now, because of the smoothing omerain the jump, several alarms are to occur in the
neighborhood ofy. An elementary way to increase the robustness of this aetiscto count the number of
threshold crossings during a fixed time interval before diagithe change actually occurred.

Let us now put this intuition-based detector into our momrenfal framework for change detection algo-
rithms. We use again the derivation of the finite moving agereontrol charts :

N-1 ( )
g =Y ~iln 202YEid (2.1.30)
= oo (Yk—i)

where the weights; are again any weights for causal filters, and we considerifoeede derivative ofy, :

Vk =gk — gr—1 (2.1.31)
and the following stopping rule :
N-1
te =min{k: >  livg, .>n >0} (2.1.32)

1=0
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Figure2.4 Ideal (left) and realistic (right) behaviors of a filtered derivative alion corresponding to a change in
the mean of a Gaussian sequence with constant variance : signal (first tangdfsignal (second row), and filtered
and derivate signal (third row).
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wherel{x} is the indicator of evenfz}. In this formula,h is the threshold for the derivative, ands a
threshold for the number of crossings/ofThis threshold) is used for decreasing the number of alarms in
the neighborhood of the change due to the smoothing operatiturns out that, in practice, = 2 is often

a convenient value for achieving this goal.

Example 2.1.5 (Changein mean - contd.). In the case of aincreasen the mean, the decision functigp
corresponding to (2.1.30) can again be taken as

g = Z Yi(Yk—i — tho) (2.1.33)

The stopping rule is as in (2.1.32). In the two-sided caseuwipj in mean in an unknown direction, the

stopping rule is
N-1

to =min{k: > v . >h} > 1} (2.1.34)
=0
Two elementary choices of smoothing filters in (2.1.30) artobows :

e An integrating filter withV constant unit weights;, which results in

VoL =Yk — Yk-nN

e A triangular filter with impulse response of triangular formamelyy,; = v,—; =i for 0 <7 < p,
whereN — 1 = 2p, which results in

2p—1

p—1
Vok=> Yk i— Y Uk i
=0 i=p

In other words, the corresponding stopping rules are bagmihuhe difference between either sample values
or local averages of sample values.

2.2 CUSUM Algorithm

We now introduce the cumulative sum (CUSUM) algorithm, vhhieas first proposed in [Page, 1954a]. We
describe four different derivations. The first is more ititui-based, and uses ideas connected to a simple
integration of signals witladaptive threshold The second derivation is based on a more formal on-line
statistical approach, similar to the approach used befarénfroducing control charts, and based upon a
repeated use of the sequential probability ratio t&dte third derivation comes from the use of the off-line
point of view for amultiple hypotheses testirapproach. This derivation is useful for the introduction of
the geometrical interpretation of the CUSUM algorithm wiitle aid of a V-mask. The fourth derivation is
based upon the concept of open-ended tests.

2.2.1 Intuitive Derivation

As we mentioned in the previous section, the typical behafithe log-likelihood ratiaS;, shows a negative
drift before change, and a positive drift after change, gsctied in figure 2.5, again for the signal of
figure 1.1. Therefore, the relevant information, as far &sdiange is concerned, lies in the difference
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50

: : : : | alarm time :
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-50
o

Figure 2.5 Typical behavior of the log-likelihood rati§), corresponding to a change in the mean of a Gaussian
sequence with constant variance : negative drift before and positivafter the change.
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Figure2.6 Typical behavior of the CUSUM decision functigg.

between the value of the log-likelihood ratio and its curremimum value; and the corresponding decision
rule is then, at each time instant, to compare this diffezdna threshold as follows :
gk = Sk — mg > h (2.2.1)

where

k
Sk = s
i=1

s = InPulw (2.2.2)
p90(yi)

my = min S;
1<j<k

The typical behavior of, is depicted in figure 2.6. The stopping time is
to = min{k : gy > h} (2.2.3)
which can be obviously rewritten as
to = min{k : Sy, > my + h} (2.2.4)

Now it becomes clear that this detection rule is nothing beomparison between the cumulative siSim
and aradaptive thresholdn + h. Because ofny, this threshold not only is modified on-line, but also keeps
completememory of the entire information contained in the past olst@ns. Moreover, it is obvious from
(2.1.6) that, in the case of change in the mean of a Gaussipreisee,S;, is a standardntegration of the
observations.

2.2.2 CUSUM Algorithm as a Repeated Sequential
Probability Ratio Test

Page suggested the use of repeated testing of the two siypi¢hieses :
HO RS 90 (225)
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5 10 15 20 25 30 35 40 45 50

Figure 2.7 Repeated use of SPRT; = 5,12,24, and 30 are the stopping times in each successive cycle, and
d; =0,0,0, andl are the corresponding decision rules.

H1 : 9:91

with the aid of thesequential probability ratio test (SPRT)et us first define a single use of the SPRT
algorithm. The SPRT is defined with the aid of the p@ir7’) whered is the decision rule and’ is a
stopping time, exactly as the Neyman-Pearson rule is defividdthe aid of the decision ruld. The
stopping timeT is the time at which the final decision is taken and thus at wbigservation is stopped.
The definition of the SPRT is thus

o if ST<—¢
d= { it ST (2.2.6)
whereT is the exit time :
T=T .,=min{k:(SF>h)U(SF < —€) (2.2.7)

wheree > 0 andh > 0 are conveniently chosen thresholds. Now, as in sectionn®1yse repeated SPRT
until the decisiond = 1 is taken. The typical behavior of this repeated use of theTSBRiepicted in
figure 2.7, wherdl; = 5,12,24, and30 are the stopping times in each successive cycledard 0,0, 0,
and1 are the corresponding decision rules. The key idea of Pagéomastart the SPRT algorithm as long
as the previously taken decisionds= 0. The first time at which! = 1, we stop observation and do not
restart a new cycle of the SPRT. This time is thendlam timeat which the change is detected.

Using an intuitive motivation, Page suggested that thenmdtivalue of the lower thresholdshould be
zero. This statement was formally proven later [Shirya®§11 Lorden, 1971, Moustakides, 1986, Ritov,
1990] and is discussed in section 5.2. Starting from theatepeSPRT with this value of lower threshold,
the resulting decision rule can be rewritten in a recursia@mmer as

po, (k) o, (Y)
gL = Jk—1 +1n p&(l)(yk) if Jk—1 +ln peégykg >0 (2 2 8)
; Py (YK o
0 if gk—1 + In m S 0

wheregy = 0. Remembering the definition &f; in (2.1.2), this can be compacted into

gk = (ge—1 +s) " (2.2.9)
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where(z)* = sup(0, z). Finally, the stopping rule and alarm time are defined by
to = min{k : g > h} (2.2.10)

whereg; is given in (2.2.9). The typical behavior of this decisiomdtion is depicted in figure 2.6. It is
easy to prove that this form of decision rule is equivalertheother form that we presented in (2.2.4). On
the other hand, it can also be written as

+
g = (S/'E_Nk“) (2.2.11)
where
Ne=Ni1-1g 50 +1 (2.2.12)

1, is the indicator of event, andt, is defined in (2.2.10). In this formuldyj, is the number of observa-
tions after re-start of the SPRT. The formula (2.2.11) camtezpreted as an integration of the observations
over asliding window with random sizeThis size is chosen according to the behavior of the entist p
observations.

2.2.3 Off-line Statistical Derivation

As we discussed in chapter 1, when taking an off-line poini@dy, it is convenient to introduce the follow-
ing hypotheses about the observatigns..., y; :

Hy: 6=06, for 1<:<k
for1<j<k, H;: =06, for 1<i<j—1 (2.2.13)
=60, for j<i:<k

The likelihood ratio between the hypothedds andH; is

TT2=! poo (vi) - T o, (0)

AY() = (2.2.14)
151 poo (v2)
(where[[)_, = 1). Thus, the log-likelihood ratio is
L e (wi)
Sk =3 "In 7 2.2.15
=2 Poo (Yi) ( )

i=j
When the change timgis unknown, the standard statistical approach consiststihating it by using the
maximum likelihood principle, which leads to the followingcision function :

g = max Sy (2.2.16)

This decision function is the same as those obtained in flagn(@2.2.4) and (2.2.9). It can also be written as

= mi : ko>
to = min{k : lréljasxk S; > h} (2.2.17)

Up to now, we have discussed only tetectiorissue in change detection problems. Let us now consider
theestimation of the change timg It follows from equation (2.2.16) that the maximum likedibd estimate
of ¢y after detectioris equal to the timg at which the maximum in (2.2.16) is reached. This estimate ca
be computed using the following formula :

fo=1te— N, +1 (2.2.18)

We discuss this formula in section 2.6.
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Example 2.2.1 (Change in mean - contd.). We now continue the discussion about the simple example of a
change in the mean valye of an independent Gaussian random sequence, with knowaneari?. We

first consider the one-sided case of an increase in the meanelyu; > po. In this case, (2.1.6) holds,
and the decision functiog, introduced in (2.2.1), (2.2.9), and (2.2.16) becomes irfitlseformulation,

g = Slf—lr<r1ji£1k5{ (2.2.19)

J
i _ M1 Ho C p1tpo
Sy = o2 Z (?Jz - 5 )

=1

and in the second formulation,

g = [gkl + R (yk S ”°>] (2.2.20)
o 2
and finally
_ k
gk = lréljasxk S; (2.2.21)

in the third formulation. It is obvious from the formula f&F that the observations are first processed
through an ordinary integration; and then, as stated befam adaptive threshold is used.

2.2.4 Parallel Open-ended Tests

Now let us emphasize the connection between formulas §-2212.17) and an idea due to [Lorden, 1971]
which turns out to be very useful for the design and the aislgk change detection algorithms. The
CUSUM stopping timet, can be interpreted using a set drallel so-called open-ended SPRT, which
are activated at each possible change tjme 1,..., k&, and with upper thresholél and lower threshold
—e = —oo. Each of these SPRT stops at titné, for some; < k, the observationg;, . .. , y; are significant
for accepting the hypothesis about change. Let us formtiigen the following way. Lefl’; be the stopping
time for the open-ended SPRT activated at time

T; =min{k > j : S} > h} (2.2.22)
where we use the convention thaf = oo when this minimum is never reached. Lorden defined the
following extended stopping tinees the minimum of th&; :

T" = min {T}} (2.2.23)
7j=1,2,...

The comparison between (2.2.17) and (2.2.22)-(2.2.23)shbatt, = 7. We continue this discussion
when describing the geometrical interpretation after.

2.2.5 Two-sided CUSUM Algorithm

Let us now investigate further the situation discussed atige 2.1 where the mean value after change is
eitherp| = po + v or u; = po — v, with v known. In this case, it is relevant [Page, 1954a] to use two
CUSUM algorithms together; the first for detecting an inseein the mean, and the second for detecting a
decrease in the mean. The resulting alarm time is

te = min{k: (g} >h)U(g; >h)} (2.2.24)
v\ +
g5 = (9,11 + Y — po — 5)
_ _ v\t
9, = (gk,1 —Yg + Mo — 5)



2.2 CUSUM ALGORITHM 41

In these formulas, we canceled the multiplicative té@g@ﬂ, which can be incorporated in the threshald
in an obvious manner. Formula (2.2.24) corresponds to thiekwewn cumulative sum control chavtidely
used in continuous inspection for quality control.

Let us add some comments about When introducing this chapter, we discussed the avaitiatuif
information aboutd;, or, equivalently from an on-line point of view, about theanlye magnitude. In
most practical cases, little is known about this paramedervever, three possible priori choices can be
made for using the CUSUM algorithm in this case. The first mia®f choosing’ as a minimum possible
magnitude of jump. In the second, we choaggriori the most likely magnitude of jump. The third choice
for v is a kind of worst-case value from the point of view of the aufst nondetected change. In these three
cases, the resulting change detection algorithm is optiarabnly one possible jump magnitude equal to
v. Notice that ara posteriorichoice of the most likely magnitude leads to the GLR alganitiwvhich is
introduced in subsection 2.4.3, and leads to the almosnaptlgorithm in such a case.

From the point of view of minimum magnitude of change, theitlioase isv = 0. In other words,
this situation occurs when all possible jumps are to be tldeavhatever their magnitude. It is useful to
note [Nadler and Robbins, 1971] that, for this situatior, double CUSUM algorithm presented before in
formula (2.2.24) is equivalent to

t, = min{k : R, > h} (2.2.25)
where
J j
Ry = max (yi — po) — min (yi — 1o) (2.2.26)

1=1 =1

2.2.6 Geometrical Interpretation in the Gaussian Case

If we rewrite the decision function (2.2.21), we obtain

k
1%
o= s D (i — 1o - 5) (2.2.27)

In the corresponding decision rule, the alarm is set thetfirgt k& at which there exists a time instajit
such that

k
> (y — 10 — 5) > h (2.2.28)
— 2
=70
At each timek, this can be seen as a SPRT with reverse time and only onerjdpresholdh [Lorden, 1971,
Page, 1954a]. For this purpose, look at figure 2.8 upside doWnis can be geometrically interpreted, as
depicted in figure 2.9. In this figure the cumulative sum

k
St = % > (i — o) (2.2.29)

=1

is plotted in the casg, = 0. Because this cumulative sum does not contain the tefnthe corresponding
threshold is no longer a constant value, but a straight liitke slopew tan(«), wherew is the horizontal
distance between successive points in terms of a unit distan the vertical scale, andis the angle
between this line and the horizontal one. It is obvious that

tan(a) = i (2.2.30)
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Figure2.8 Behavior ofS]’.“ as a SPRT with reverse time (look upside down).
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Figure2.9 The cumulative sun$* intersected by a V-mask, in the cgse= 0,0 = 1.

This defines half a V-mask, as depicted in figure 2.9.d_eth/ tan(«) be the distance between the current
sample pointy, and the vertex of the V-mask plotted forward. Then equatib8.28) can be rewritten in

terms of these parameters :
k

Z[yi — o — wtan(a)] > d tan(«) (2.2.31)
i=Jo
Notice that, because of (2.2.30), the size of the angté the V-mask decreases with the magnitudef
the jump. This concludes the geometrical interpretatiorofe-sided CUSUM algorithms. The geometrical
interpretation of two-sided CUSUM algorithms is obtainedhwthe aid of a symmetry of the previous
picture with respect to the horizontal line, which givesris the so-called V-mask. The decision rule is
then simply to stop when the boundaries of this mask covepaint already plotted.

The geometrical interpretation of the CUSUM algorithm wiigwed as a set of open-ended SPRT is
based on figure 2.10, again for the signal of figure 1.1. Infibisre are depicted the cumulative snﬁ‘ﬁ,
several upper thresholds for the open-ended SPRT, and dastid-mask. Note that the center of local
coordinates for the SPRT beginning at tifhes placed atk — 1,y;_1). It is obvious that the slope of
the upper thresholds of the parallel one-sided SPRT is time s& the slope tan(a) of the V-mask. This
figure shows that the stopping timgin (2.2.17) orT™ in (2.2.23) is attained when the decision function
of the one-sided SPRT reaches the upper threshold or whexuthelative sum in reverse time reaches the
V-mask.

2.3 Bayes-type Algorithms

In this section, we continue to investigate the problem ¢écking a change in the scalar parameter of an
independent random sequence. As stated in the introdyetieliscuss the Bayesian approach in whach
priori information about the distribution of the change time isilatde. We assume that this information is
in the form of ara priori probability distribution for the change timtg. This approach was first investigated
in [Girshick and Rubin, 1952] for continuous inspection deahnological process with known transition
probabilities between the two (normal and abnormal) fumitig modes. The theoretical derivation of opti-
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Figure2.10 The CUSUM algorithm as a set of open-ended SPRT.
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mal Bayesian algorithms for change detection was obtaim¢8hiryaev, 1961]. This pioneering work was
the starting point and theoretical background of a greatbairaf other papers about Bayes-type algorithms.

The main (classical Bayesian) idea consists of decidingahdnange has occurred when th@oste-
riori probability of a change exceeds a conveniently chosenttblgs We assume here that thepriori
distribution of the change timgg is geometric :

Plto=k)=0(1—0)* "t fork>0

We assume that the change frégto 0, in the probability densityy(y,) of our independent sequence can
be modeled by a Markov chain with two statesnd1. The transition matrix of this Markov chain is

- (40 293)- (2 9

wherep(i|j) is the probability of a transition from stageto statei;. The probability of the initial state is
given byp(0) = 1 — w andp(1) = w. Note that the expectation of the change timE(g|ty > 0) = %
Let 7;, be thea posteriori probabilityof statel of this Markov chain. It results from Bayes’ rule that

o k1 Po; (Yk) + (1 — mk_1) 0 Py, (Yx) (2.3.2)
Tr—1 Poy (k) + (1 — mk—1) 0 po, (yk) + (1 — mk—1) (1 — 0) pay (yk) o

For simplicity, we will deal with a monotonic function af;, instead ofr;, alone, because it will be more
convenient for recursive computations. This function is

o = —F (2.3.3)
1—m
The recursive formula fotzy, is
1
W = ——— (w1 + 0) (v:) (2.3.4)
l1—o o, (Yk)
To deal with the log-likelihood ratio as in the previous &ats$, we rewrite this formula as follows :
gr =In(o+ e%=1) —In(1 — p) + In Poy (Yk) (2.3.5)
DPo, (yk)
where
gk = In Wk (236)

The last term is the log-likelihood ratio, which basicallyntains the updating information available at time
k. Becausey is an increasing function ofy, the Bayesian stopping rule becomes :

to = min{k : gp > h} (2.3.7)
exactly as in the previous sections (remember (2.2.10)).

Example 2.3.1 (Changein mean - contd.). Let us return to our basic example. We assume here that the
mean valuesg:, ¢1, and the constant varianag® are known. In this case, the log-likelihood ratio is given
in (2.1.6), and consequently the decision funcigris

[ — o (y _ pot m) (2.3.8)

g = In(o+e%-1) —In(1 — o) + 5
o 2

The behavior of this decision function is depicted in figufEl2again for the signal of figure 1.1. In this
figure, the influence of the choice of the parametef the geometric distribution is emphasized. The solid
line corresponds to the ideal case where we know the trueeald of this parameter. The two other lines
correspond to cases where the tuning value of different from this true value.
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Figure2.11 Typical behavior of a Bayesian decision functiop chosen to be the true valywe= 0.05 (solid line);
noncorrect but acceptable choicegwt 0.001 (dashed line); nonacceptable choicepct 0.9 (dotted line).
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Notice that, in some sense, the Bayesian decision rule i®htite same type as the other ones before,
because it assumes the availability of the parametsfrthe geometria priori distribution of the change
time tg, and of the initial probabilityr which is implicit in gg. For this reason, the practical implementation
of this decision rule is not so simple and requires a prelamjirinvestigation of this question @f priori
information. The effect of the choice of the parameten the behavior of;. is depicted in figure 2.11.

2.4 Unknown Parameter After Change

We now discuss the case where the parantgtafter change is unknown. Without loss of generality in our
on-line framework, the parametéy before change is assumed to be known.

2.4.1 Introduction

It follows from the previous discussion that a sequentiainge detection algorithm can be interpreted as a
set of “parallel” open-ended tests. We begin the presentidigon with these tests.

As explained in [Wald, 1947], two possible solutions existlie present case. The first one consists
of weighting the likelihood ratio with respect to all podsilvalues of the parametéy, using a weighting
function dF'(6), whereF'(6,) may be interpreted as the cumulative distribution functb probability
measure. In the second solution, the unknown parariefereplaced by its maximum likelihood estimate,
which results in the generalized likelihood ratio (GLR)@&ithm. In other words, for know#,, change
detection algorithms are based on the likelihood ratio :

A, = Pyt 0m) (2.4.1)
Poo(Y1,- -+ Yn)

and for unknowrf; we must replace\,, by other statistic. More precisely, the first solution isdzhspon
the weighted likelihood ratio :
Ap = / Po. (W5 ¥n) g (2.4.2)
— oo Pog (yla s ayn)
and the second one uses the GLR :

An _ Supy, Pg, (Y1, Yn) (2.4.3)

p90(y13 v ayn)

We investigate these two solutions in subsections 2.4.2ah8, respectively.

2.4.2 Weighted CUSUM Algorithm

Let us now explain in detail the algorithm resulting from tea of weighting the unknown parameter.

2421 Derivation of the Algorithm

We follow Lorden’s idea introduced before, which explaine CUSUM algorithm as an extended stopping
time associated with a family of open-ended SPRT. The wetyitUSUM algorithm was derived for change
detection in [Pollak and Siegmund, 1975], and is a direceresibn of the CUSUM stopping time. It is
defined as follows. Let

00 PO (Yjs - -+, Yk)
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be the weighted likelihood ratio for the observations frammet;j up to timek. Then the stopping time is

—mi . AR > A4,
to = min{k lrgjagxk InA7 > h} (2.4.5)

Typical choices of the weighting functioR(6) are the following. The most simple choices involve using
the uniform distribution over a specified interval that @ns all possible values of the paramefey or
Dirac masses on some specified values. Another useful ciotbe Gaussian distribution. Note that this
type of algorithmcannotbe written in a recursive manner as the simple CUSUM algori¢R.2.9) that we
describe in section 2.2.

Example 2.4.1 (x2-CUSUM algorithm). Let us now discuss the problem of detecting a change in tha mea
of a Gaussian sequence with known varianéein the special case where the distributiéiif) = F () is
concentrated on two pointgy — v and ug + v. In this case, the weighted likelihood ratio is easily shown
to be

- oo - b :
Ak = /Oo exp [ij —5 -+ 1)] dF (v) (2.4.6)
where
p=Y (2.4.7)
g

is the signal-to-noise ratio, and

~ 1
Sj == 2w = mo) (2.4.8)
i=j
This reduces to
Ak _ h bs«k 7%(k*j+1)
; = cosh(bS}) e
= cosh[b(k — j + 1)x5] e~ 7 k=3t (2.4.9)
where
1 -
k___ — |Gk
= Sk (2.4.10)

Note that]\;? in (2.4.9) is the likelihood ratio for testing the nonceniya parameter of ay? distribution
with one degree of freedom, between the valuasd (k — j + 1) b?. This fact explains the name of the
x2-CUSUM algorithm.

The stopping time is thus

to = min{k : g > h} (2.4.11)
where
-
gk = lrg%xk In cosh (bS}) — E(k —j+1) (2.4.12)

As we said before, this algorithm cannot be written in a retue manner because it is derived from
Lorden’s open-ended test. However, using Page’s and Shityanterpretation of the CUSUM algorithm
as a repeated SPRT with lower threshold equdl smd upper threshold equal toas discussed in subsec-
tion 2.2.2, it is possible to design a slightly modified diecigule which is written in a recursive manner.
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This results in

g = (Sp_n4)" (2.4.13)
S’Ilcc—Nk-i—l = —%Nk b2+lncosh(b§,’§_Nk+1) (2.4.14)
Sk = Sk (2.4.15)
Sy = §k_11{gk,1>0}+y’“;“° (2.4.16)

whereN,, = Nk*11{9k71>0} + 1.
This CUSUM algorithm can be used in the same situations asatbesided CUSUM algorithm. The
multidimensional parameter counterpart of this algoritisrinvestigated in section 7.2, case 3.

24.22 Geometrical Interpretation in the Gaussian Case

We continue to investigate the detection of a change in trenméa Gaussian sequence, and give now the
geometrical interpretation of the weighted CUSUM (2.44) &2-CUSUM (2.4.9) algorithms in this case.
We discuss first a one-sided weighted CUSUM algorithm, aed t two-sided one. We finish with the
geometrical interpretation of thez-CUSUM algorithm.

Let us assume that the probability measélg:) is confined to the intervalug, o). The weighted
CUSUM algorithm is based upon the stopping time :

to = min{k : gy = max, InA¥ > 1} (2.4.17)

where the weighted likelihood ratio is

~ 00 ~ 2
b= / exp [Ks;? — (k- j+ 1)] dF (v) (2.4.18)
0 o 20

Let us define the following function :

00 v 1/2
flz,l) = ln/0 exp (;w — ﬁl> dF(v) (2.4.19)
Becausé” defines a probability measure @R, R), the functionf (z, 1) is an increasing function af. Itis
obvious that the decision rule involves stopping the firsetk at which the cumulative su§i* reaches the
curve line threshold;_ 1, wherec; is the unique positive solution of the equatiffr,!) = h [Robbins,
1970]. This threshold; is the half lower part of the curve in figure 2.12 and is called-mmask. The
geometrical interpretation is now the same as for the CUSUdjgrthm.
If we now assume that’ is a symmetric distribution overoo, oo), then

f(z,0) > h ifand only if |z| > ¢ (2.4.20)

Therefore, the geometrical interpretation of the two-gideighted CUSUM algorithm is obtained from the
one-sided one, with the aid of a symmetry with respect to tirezbintal line drawn at the last observation
point, as depicted in the figure 2.12, and as for the ordin&t$ M algorithm before.

Finally, let us assume thdf is concentrated on two points, which corresponds toxh&€USUM
algorithm. In this case, the functighcan be written as

f(z,1) = Incosh (bz) — [’2—21 (2.4.21)
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Figure2.12 U-mask for the weighted CUSUM algorithm.
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Figure2.13 Mask for they?-CUSUM algorithm.

and we wish to find; such that
flé,l)y=nh (2.4.22)

Forv > 0, the equatiorin cosh |u| = v has a unique positive solution, which is given by
lu| =1In(e’ + Ve —1) =v+In(l + V1 —e ) (2.4.23)

From this solution the boundary is

|5l|=%<h+ln{1+\/1—exp [—2 (h—i—%)]})—i—gl (2.4.24)

Whenl goes to infinity, the two asymptotes of this boundary havestieation

h+ln2 b
cl:j:< +bn +§l> (2.4.25)

This fact is depicted in figure 2.13. From these formulas tifferénce between the boundary and its
asymptotes decreases very quickly wheincreases for all. In other words,

& —c¢ = 0(eh) (2.4.26)

whenh goes to infinity. Therefore, the stopping boundary for ffeCUSUM algorithm is made nearly
of straight lines, and thus is very close to the stopping bawn of the two-sided CUSUM algorithm. We
continue this discussion in section 11.1.

Example 2.4.2 (Change in mean - contd.). Let us again discuss the problem of detecting a change in the
mean of a Gaussian sequence wittit variance, in another special case where the distributiof®) =
F(p) is Gaussian with mean, and known variance?. In this case, the weighted likelihood ratio can be
written as

ik — 1 o0 R 7 _ 2
iy~ exp VS5 — 7(14 —j+1)| exp ~952 dv (2.4.27)



52 CHAPTER 2 CHANGE DETECTION ALGORITHMS

or
2

Ak _ g ~k2_lng _
= e )+ 1) (51) ok =+ 1) +1] (2.4.28)

wheregj.C is defined in (2.4.8). The functigi{z,) can be written as

2

o 1
flz,l) = 50T D) o 5 In(c?l +1) (2.4.29)

and satisfies (2.4.20). The equatiffiz|,!) = h has a unique positive solution from which we deduce that
the boundany; is

& = i\/Z(l +07?) [h + % In(0?l + 1) (2.4.30)

2.4.3 GLR Algorithm

We continue to discuss the case where the pararfietafter change is unknown. The paraméigbefore
change is again assumed to be known. The derivation of the &gdrithm proceeds in the same way as
the third derivation of the CUSUM algorithm. Actually we limlv [Lorden, 1971], except that we use the
widely accepted term “generalized likelihood ratio” (GLIR3tead of “maximum likelihood.”

2.4.3.1 Derivation of the Algorithm

We now describe Wald’s second solution for the case of unknparameter after change. Let us start
from the generalized likelihood ratio given in equatiord(3). As before, the log-likelihood ratio for the
observations from timg up to timek is

sh61) =Y In M (2.4.31)

In the present casé; is unknown; therefore, this ratio is a function of two unkmoimdependent param-
eters : the change time and the value of the parameter atiegeh The standard statistical approach is to
use the maximum likelihood estimates of these two paraseded thus thdoublemaximization :

= Ak = k
gk = lrg]‘c_zgxk In Aj lrg]‘c_zgxk s;llp S5 (61) (2.4.32)

The precise statement of the conditions on the probabigtysdiesp,, under which this double maximiza-
tion can be performed is found in [Lorden, 1971]. Actuallye tdensities should belong to the so-called
Koopman-Darmois family of probability densities :

poly) = T p(y) (2.4.33)

whered is strictly concave upward and infinitely differentiableeoan interval of the real line. This family
is discussed in detail in chapter 4. The corresponding sigppile is the same as in (2.2.10). As we said
before, this algorithm cannot be written in a recursive neann

Now let us discuss further the issue of level of availableriori information about the parameter after
change. In many applications, it is possible to know a mimmmagnitudev,,, of the changes of interest
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in the parametef. In this case, the second maximization in the GLR algoritlam loe achieved using this
minimum magnitude of change as follows :

k
BT i o a3

If information about a maximum possible magnitude of chaisgalso available, the decision function is

modified accordingly in an obvious manner.

Let us now discuss thestimation issueln the present case, two unknown values have to be estimated
after a change has been detected : the changé giarel the magnitude of the junif; —6,). As far asty is
concerned, the estimation is the same as before in the thingation of the CUSUM algorithm, namely the
maximum likelihood estimate which is given by (2.2.18). Toaditional maximum likelihood estimates of
the change magnitude and time are given by

ta )
(7,0,) = arg max sup 3 n o) (2.4.35)

1SISta 91200100 >vim>0 ;= Poy (Vi)

andty = .

Example 2.4.3 (Changein mean - contd.). Let us return to the example of change in the mean of an in-
dependent Gaussian sequence. In this case, the mghefore change is known, and the meanafter
change is unknown. The constant variamceis also known. The corresponding cumulative sum can be
rewritten as

k
— +
D, (yi—’“ “°> (2:4.36)

o Py 2
Let us introduce’ = 1 — pp. Then equation (2.4.34) can be rewritten as
gr = max sup i [M — V—Q] (2.4.37)
02

: 2
LISk vp|2um>0 15 20

In the present independent Gaussian case, the constraiagahization ovew is explicit :

Y Toily — o) V2 24.38
9‘1‘%;}7@2 e (2.4.38)
where the absolute value of thenstrainedchange magnitude estimate is
k +
. 1
il = | ———=> lvi — ol = vm | +Vm (2.4.39)

k—j—i—li:J

and its sign is the same as the sign of the mean vgl%g; ZZ ;(yi — po) of the last centered observations

or “innovations.” Note that the second ter@ﬁ— on the right side of (2.4.37) is nothing but the Kullback
information between the two laws before and after the change
Note also that, when,,, = 0, the decision function is

k

1 1
I =op7 2% L1 z::(yi — o) (2.4.40)
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The above property of explicit maximization over the unknparameterd; after change can be ex-
ploited in more complex situations, as explained in sectiéh4. Furthermore, (2.4.38) can be viewed as
a correlationbetween the innovatiofy; — 1) and the “signature” of the changé;. This correlation
property, which is typical for matched-filtering operatiris recovered in (7.2.118) for the more general
situation of additive changes in state-space models.

Finally, let us comment further on the asymptotic equivedern the Gaussian case again, between the
three algorithms, which we describe for the case of unknoamrpeter after change. As we explain in
the previous subsection, th¢-CUSUM algorithm is asymptotically equivalent to the tvidesl CUSUM
algorithm when the threshold goes to infinity. But it shoutdchkear that the two-sided CUSUM algorithm
is nothing but the GLR algorithm corresponding to the degatieesituation wherg.,; = g + v.

2.4.3.2 Geometrical Interpretation in the Gaussian Case

We describe the geometrical interpretation of the GLR dtlgarin the same way we described the CUSUM
algorithm, namely starting from the reverse time intergien of the decision function. We begin with a

one-sided GLR algorithm, and we use a symmetry with respetiet horizontal line for the two-sided case

as before. From the decision function (2.4.32), it followattthe stopping rule can be rewritten in reverse
time as follows. There exists a time instastuch that the following inequality holds :

l

2
sup Z [l/(yi — o) — V—] > ho? (2.4.41)
viw2>2vm >0 i—1 2
This can be rewritten as
1 : ho v
gl =~ - —1g) > inf = 4= 2.4.42
S o Z(yl po) = u;u§2m>0 v + 2(7l ( )

i=1

Let us now introduce the lower boundaiyfor the cumulative sun$! :
h
&= inf <—" n il) (2.4.43)

and discuss this minimization. We distinguish two situadidor the parameter: v = v, andv > vy,.
For the situation = v,,,, and from the discussion in section 2.2 about the geomkinitzapretation of the
stopping rule in terms of the V-mask, we find that, for latgéhe boundary in (2.4.43) is the straight line
with minimal angle with respect to the horizontal line, apidted in figure 2.14. Far > v,,,, the boundary
is a curve, as we explain now. Let us consider again the revene SPRT with one threshold Because
of the Wald’s identity (which we explain in detail in chap®#y, for a SPRT with threshold, the average
number of samples until the threshold is reached is asyialigt

h
K(v)

E(l) ~ (2.4.44)

whereK is the Kullback information. In the Gaussian case, it is Welbwn thatK(v) = % It follows

that, forl > % the minimum in equation (2.4.43) is then reachedifet v,,. On the other hand, for

small values of, the minimum in equation (2.4.43) is then reachedf@uch that K(v~) = h. Inserting
this value in equation (2.4.43), we obtain

¢ = V2hi (2.4.45)
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Figure2.14 U-mask for the GLR algorithm : boundary with equation (2.4.46).

which is the equation of a parabola, leading to the so-cdlledask depicted in figure 2.14. This parabola
is inscribed in the V-mask discussed before, because tmtspoi tangency between the straight line and
the parabola have the abscigsa 23;’2 as depicted by vertical segments in this figure. In summasgy, t
equation of the boundary is "

V2hl if | < 2o’
: { TS (2.4.46)

“7) ko4l otherwise
The explanation for the upper boundary is the same.

As we explained before, the GLR algorithm is computatignatimplex. Approximations of this algo-
rithm, with lower computational cost, are thus of interest.[Lorden and Eisenberger, 1973], a possible
approximation of the GLR algorithm dealing with the jointeusf two CUSUM algorithms is proposed.
These two algorithms are designed to detect changes wigh Emd small magnitudes, respectively. The

geometrical interpretation of this approximation is thaf-mask can be approximated by the intersection
of two V-masks, as depicted in figure 2.15. This point is farttiscussed in chapter 11.

2.5 Change Detection and Tracking

In this section, we do not introduce any other derivationshainge detection algorithms. Instead we ex-
plain an example of the use of one of the previously descrddgdrithms in the framework of adaptive
identification, for improving the tracking capability of autive identification algorithms.

Let us consider the simple example of a piecewise constajutesee perturbed by a white Gaussian
noisee. In other words, we consider the multiple change times aopart of the above widely discussed
example, modeled as

yr = ek + p(k) (2.5.1)

where (k) is an unknown piecewise constant function of time, as degiat figure 2.16. The standard
recursive estimation of the mean value can be written as

k—1 _

1
Up = ——— UYp_ - 252
Uk o k-1t Uk ( )
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Figure 2.15 Two V-masks (dotted lines) approximating one U-mask (solid curvew & GLR algorithm can be
approximated by two CUSUM algorithms for detecting changes with smallaagd magnitudes, respectively.

]

Figure2.16 Piecewise constant signal.
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This estimation is known to be efficient provided that thearhdng unknown mean value is constant. Our
suggestion is to use change detection algorithms for chgdkiis assumption. We assume that the time
duration between successive jumps is bounded from belovis d3sumption is necessary for the initial

estimation of the mean to be used in the subsequent detedtitrange. The joint use of the estimation and
detection algorithms results in cycles made of the follasteps :

1. Initial estimation of the mean, during a fixed size time im&iduring which the detection algorithm
is switched off; letjy be this estimated mean value.

2. Carrying on the estimation and activation of the changeatietealgorithm using.y = g, for k > N.

3. Updating the initial estimation after a change has beerctite This updating can take place either
at the alarm time if no other information is provided by thehe detection algorithm, or at the
estimated change timg if this information is available. Similarly, the updatingr include the
possible estimaté of the magnitude of the jump. If both valuésandi are available, returning to
step 1 after a change has been detected is not necessaryclinesstarts from step 2.

The two main types of relevant change detection algorittorietused in such a cycle are the CUSUM and
GLR algorithms introduced before. The main reason is tregdhare the only algorithms that can provide
us with an estimate of the change timédn addition to an alarm time,.

Let us add some comments about the tuning of change detedgjorithms in such a framework. Min-
imum values,,, of jump magnitudes (for the CUSUM and GLR algorithms) anésholds are required.
Minimum values of jumps must be close to the precision of staration algorithm, for example, of the
order of magnitude of the corresponding standard deviatidine estimate. On the other hand, the threshold
has to be chosen in such a way that the mean time between falsesashould not be too much less than
the mean time between successive jumps in the piecewisedanc

2.6 Off-line Change Detection

In this section, we introduce two new tasks, which were nometil in subsection 1.1.2 :

1. Off-line hypotheses testirgptween the hypotheses “without change” and “with change.”
2. Off-line estimation of the unknown change time

The main difference between this section and the previoas @that now the complete sample of observa-
tions is available before beginning the investigation fahange.

This task was first investigated in [Page, 1957], using ladlgithe same type of ideas that he used
for the CUSUM algorithm, which are described in subsectidh® The problem of off-line estimation
of the change time was investigated in [Hinkley, 1970, H#ykl1971], including precision issues and the
distribution of the estimation error.

2.6.1 Off-line Hypotheses Testing

Let (yx)1<k<n be a sequence of independent random observations withtylep&j). Two situations are
possible. Either all the observations in this sample hages#ime density, characterizedday or there exists
anunknown change time < ¢ty < N such that, beforg,, the parametet is equal tdy, and after the change

it is equal tof; # 6y. Let us first assume that, 0y, andd; are known. As discussed in subsection 2.2.3, it
is convenient to introduce the following hypotheses ablistsequence of observations :

Hy: 0=0, for 1<k<N
for1<j<N, Hj: =06y for 1<k<j—1 (2.6.1)
=6, for j<k<N
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The problem is to test between the hypothd&gjsand the composite hypothesis :
Hi = szlH]' (2.6.2)

Note that the estimation of the change timaddincluded in this problem statement, and that the unknown
change time may be interpreted here asisancgparameter. The estimation of the change time is discussed
in the next subsection.

The likelihood ratio corresponding to the hypothebBksandH; is

j—1 N
121 poy (Yi) - Hi:j po, (i)
N
Hi:l Py, (i)

(Where]_[?:1 = 1). The standard statistical approach in this situation ists®f replacing the unknown
parametet, by its maximum likelihood estima{®l.L.E.). Therefore, we consider the following statistic :

AY(j) =

(2.6.3)

_ N,
Ay = | max_ Ay (4) (2.6.4)

and the decision rulé such that/ = 0 (1), according to which hypothesH, (#,) is chosen, is given by

1 if InAxy>h (2.6.5)

d:{ 0 if InAy<h
When the parametefk, 6, andd; are unknown, they are also replaced by their M.L.E. Thisltesu
the following decision function :

Ay = max sup sup sup AN (4,0, 600,60:) (2.6.6)

1<G<N b 0o 0

2.6.2 Off-line Estimation of the Change Time

We consider the same hypotheses as in the previous sulbsastioassume the existence of a change point
(typically this assumption is the result of the previousdtiyeses testing) and the problem is now to estimate
the change time. In the present case, all the paramgtets, andty are assumed to be unknown. Therefore,
the corresponding M.L.E. algorithm is

k—1 N
(to, 6o, 01) = arg 1g}ea§XN s;tp szllp In Ll;[l Do, (Vi) gpgl (yl)] (2.6.7)

which can be condensed into

k—1 N
fo = arg max  In [Hl P, (i) ngl (yi)] (2.6.8)
wheref, is the M.L.E. estimate of, based on the observatiops ..., yx_1, andd; is the M.L.E. estimate of

#, based upon the observatiops ..., yn . When#, and#, are assumed to be known, this can be simplified
to

1<k<N

k—1 N
to = arg max In [H Do, (Vi) l—ng1 (yl)] (2.6.9)
=1 i=k
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Figure2.17 Estimation of the change time. The MLE of the change time is the alasafdbe maximum value of
the cumulative sung}y .

and rewritten as

to = arg max |In M + lnﬁpg (yi) (2.6.10)
= i .6.
e N I A N (7 B

The second term on the right of this equation is constant fiiven sample. Therefore, the estimate of the
change time is

N
? pgl(yi)
tp = arg max In ———= 2.6.11
0T MR G zz Po, (y:) (2611

The geometrical interpretation of this estimation methodepicted in figure 2.17, in which we plot the
cumulative sum :

N
SN = N P (i) 2.6.12
F = 2 ) (2612
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The figure shows that the M.L.E. &f is the abscissa of the maximum value of this sum. Let us ad@som
further comments about the relationship between this glgorand the CUSUM algorithm described in
subsection 2.2.3. Formula (2.6.11) can be rewritten as

k—1
. . o, (¥:)
iy = arg min, ; In oo (o) (2.6.13)
which has the following geometrical interpretation. Leteisirn once more to figure 2.5. From the previous
formula, it is obvious that the estimatg is one plus the abscissa of the minimum value of the cumelativ
sum plotted in this figure. On the other hand, the on-line CM&lyorithm can be geometrically interpreted
with the aid of figure 2.17 in the following manner. The alarfrttds on-line algorithm is set when the
deviation of the cumulative sur$1,]€V with respect to its current maximum value is greater tharttireshold
h. If you look at figure 2.1'both upside down and from the baglou see that you exactly recover the picture
of figure 2.5. From this explanation, it is obvious that estien(2.6.13) can be rewritten as in (2.2.18).

Example 2.6.1 (Changein mean - contd.). We continue the investigation of the Gaussian independent
case, and we assume that the variamceis known, but that the two mean valueg before andu, af-
ter the change are unknown. In this case, the M.L.E. form2i&.8) can be written as

k-1 N
ty = arg X {— [Z(yz — fu)® + ;(yi - ﬂ1)2] } (2.6.14)

i=1
where we canceled the terms that do not modify the arguméme afiaximization. By replacing the estimates
by their values, which are the relevant empirical means efabservations,

k—1
. 1
and
1 N
Il = ——— i 2.6.16
m=N_% 1 ;y ( )

we obtain, after straightforward manipulations,

P o o o N a2

ty = arg 1g}3§XN [—(k = 1)(N — k+ 1) (20 — f1)?] (2.6.17)
The geometrical interpretation is the same as before in&gut7.

Let us give a further interpretation of (2.6.14) in terms efdt-squares estimation. This equation can
be rewritten as

k—1 N
to = arg min_ Inf [z;(yz fi0)” + z%(yz fi1) (2.6.18)
In other words, we use a least-squares estimation algorftnthe following piecewise regression problem :
yp = u(k) + ep (2.6.19)
whereL(gx) = N(0,0?) and
. wo Ik <ty
(k) _{ P (2.6.20)

as depicted in figure 2.18. This problem is the simplest cd¢beomore complex problem of choice of
segments for piecewise approximation, which is also calleatphase regression. More details can be
found in [Quandt, 1958, Quandt, 1960, Hinkley, 1969, Hipkl®©71, Seber, 1977].
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50

Figure 2.18 Least-squares regression : piecewise constant mean (dotted line), anpawding Gaussian signal
(solid line).

2.7 Notes and References
Section 2.1

All these algorithms were introduced for solving problemsjuality control [Duncan, 1986], which is the
origin of the word “chart”, as used in this context. The firsbposed algorithm was Shewhart’s control
chart [Shewhart, 1931], which was investigated furtherHade, 1954c]. The geometric moving average
algorithm was introduced in [S.Roberts, 1959] as a moreieffialternative to Shewhart’s chart in many
cases. Another alternative, finite moving average chad,imteoduced in [Page, 1954a, Lai, 1974]. A close
although essentially different algorithm, the filteredidaive algorithm, was introduced in [Bassevik¢

al., 1981]; this algorithm is similar to the gradient techniguesed for edge detection in image processing
[L.Roberts, 1965].

Section 2.2

The CUSUM algorithm was introduced in [Page, 1954a]. Tlegdiiure concerning this algorithm is quite
extensive [Phillips, 1969, Woodward and Goldsmith, 196&n YDobben De Bruyn, 1968, Hinkley, 1969,
Hinkley, 1970, Hinkley, 1971]. One reason for this situatis the optimal property of this algorithm, which
was proved in [Lorden, 1971]. This algorithm is also oftefeneed to as Shiryaev's SPRT [Shiryaev, 1961].

Section 2.3

Bayesian techniques for change detection were introducgsiiishick and Rubin, 1952], further developed
and investigated in [Shiryaev, 1961, Shiryaev, 1963, Slevy 1965, S.Roberts, 1966], and more recently
in [Shiryaev, 1978, Pollak, 1985, Pollak, 1987]. They weréally the result of the first attempt to solve
change detection problems in quality control with the aid édrmal mathematical problem statement. The
optimal properties of these algorithms were obtaibhetbrethe proof of optimality of CUSUM techniques,
and with the aid of slightly different criteria.
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Section 2.4

In the case of an unknown parameter after change, the GLRithigowas derived in [Lorden, 1971] as
a generalization of the CUSUM algorithm for this situatiofhe interest in this algorithm is justified by
its “uniformly optimal properties” [Lorden, 1971, Lordeh973]. This algorithm is less efficient than the
CUSUM algorithm because it does not require the precise latye of the parameter after change. Fur-
thermore, the possibility of adapting it to more complexiaitons makes this algorithm quite attractive.
Another less sensitive algorithm is the weighted CUSUM @dgm introduced in [Pollak and Siegmund,
1975]. Thex?-CUSUM algorithm was introduced in [Nikiforov, 1980, Nikifov, 1986].

Section 2.5

To our knowledge, the idea of using a change detection &lgorio improve the performance of an adap-
tive identification algorithm was introduced in [Willsky @dones, 1976], which is an extension of the work
in [MacAulay and Denlinger, 1973]. For earlier investigais concerning the joint use of detection and
identification, the reader is referred to [Lainiotis, 197h]the present framework of a change in a scalar pa-
rameter, the CUSUM algorithm was used in [Perriot-Mathori884, Favier and Smolders, 1984, Bivaikov,
1991]. Similar attempts, although not based on the sameta®iealgorithms, can be found in [Hagglund,
1983, Chen and Norton, 1987, Maritehal., 1988].

Section 2.6

The off-line hypotheses testing problem was first addregs¢dlage, 1957]. Other investigations can be
found in [Deshayes and Picard, 1986, Siegmund, 1985b]. TH&e estimation of a change time was
originally obtained in [Page, 1957]. The literature on tilssue is extensive [Hinkley, 1969, Hinkley, 1970,
Hinkley, 1971, Kligiene and Telksnys, 1983, Picard, 1988shayes and Picard, 1986].

2.8 Summary

Main notation :

S; — ln pal (yl)
o, (Yi)
k
SEo= Y s Sp=5¢
i=j
te = min{k: gy > h}

For the basic example of a change in the mgasf a Gaussian distribution with constant variance we
also use the notation :

- M1 — Mo
g

. b( M0+M1>
si = —|yi——%—
o 2

k

- 1
Sy = = (yi— o)
i=j

o~
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Elementary Algorithms

Shewhart control chart
gKN = S{V(K) = S%([;(fl)Jrl

whereK is the sample number. The tuning parameters are theN\siabthe sample of observations tested
and the threshold.

GMA algorithm
g = (1 — a)gr—1 + asg, with: go =0
The tuning parameters are the wei@ht « < 1 and the threshold.

FMA algorithm

o, (Yr—i)
01 (Yk—i
gk = § 7iIn

i=0 ' p@o(yk—z)

The tuning parameters are the si¥ef the sliding window, the weightsg;, which are any weights for causal
filters, and the thresholdl.

Filtered derivative algorithm

Vi = gk =gk
N
to, = min{k: Z Livge_;>hy = 1}
1=0

The tuning parameters are again the gizef the sliding window, the weights;, which are any weights for
causal filters, the threshold and the counter of alarmgs For the basic example, two useful choices are

Vo = Yk —Yr-N
2N -1

N-1
Voe = Y Uk-i— Y Yk—i
i=0 i=N

CUSUM Algorithm
Intuitive derivation of the CUSUM algorithm
g = Sk—myp
my = 1213121@ S;

The stopping rule can thus be rewritten as
to = min{k : Sy > my, + h}

or equivalently as an integrator compared to an adaptishiuid.
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CUSUM as a repeated SPRT The CUSUM algorithm can be recursively written as
gk = (ge—1+s1)"
or equivalently as

+
9k = (SI'E_NW)
Nk = Ni—1-lig >0y +1
The CUSUM algorithm can thus be seen as a random size slidimgpw algorithm.

Off-line derivation

k
= max S’
Tk = (55

The estimate of the change time is
to=tq — Ny, +1

Two-sided CUSUM algorithm For the basic example,

te = min{k: (g >h)U(g, >h)}
v\ +
g = (9,11 + Yk — po — 5)
_ _ v\t
9 = (gkq — Ykt Ho — 5)

Bayes-type Algorithms

Do, (yk)

oo (Yr)

The tuning parameters of this Bayes-type algorithm areathpeiori probability ¢ of a change, the initial
probability 7 implicit in gy, and the threshold.

gk =In(p+ e%-1) —In(1 — p) + In

Unknown Parameter After Change

x?-CUSUM algorithm For the basic example,

2

~ b
= Incosh (bS%) — —(k —j +1
Ik lrgj.as)(k n cosh (bS}) 5 (k—j5+1)

GLR algorithm

k
= max sup S7(6
k <5<k Glp j( )

For the basic example, the second maximization is explicit :

T oi(yi —mo) 7
o = mn 2| T o
k

. 1
vi = mZ(%—MO)
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Off-line Change Detection

Off-line hypotheses testing
Ay = max A7(j)

Ay = max sup sup sup Ay (4,0, 6o, 01)
1<j<N G, 0o 01

Off-line estimation

N
? Po, (yz)
tp = arg max In ———=
1<k<N lz Poo (yi)
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