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Chapter 1
Introduction to diagnosis

Exercise 1.1.
This exercise is intended for getting acquainted with decisions structures. Ob-
serve the following decision structures that describe how test δi for i = 1, 2, 3
reacts to four behavior modes (consider only single faults):

NF F1 F2 F3
δ1 0 0 X X
δ2 0 X 0 X
δ3 0 X X 0

a) Which behavior modes should test δ1 react on?

b) Describe in words the conclusion of test δ1 when the test does not generate
an alarm.

c) Describe in words the conclusion of test δ1 when the test generates and
alarm.

d) Calculate the diagnosis/diagnoses when no test generates an alarm.

e) Calculate the diagnosis/diagnoses when only δ1 generates an alarm.

f) Calculate the diagnosis/diagnoses when both δ1 and δ2 but not δ3 generate
alarms .

Exercise 1.2.
This exercise is intended for providing understanding of how a diagnosis system
works. The exercise exemplifies tests and decision structures that are the two
fundamental components of a diagnosis system.

Figure 1.1 shows the system that is often called the polybox example. The
system consist of five components, the multiplications M1, M2 och M3 and two
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Figure 1.1: The polybox example.

additions A1 och A2. The input a, b, c, d and e and output f and g signal
values are known. In this exercise the following modes are considered:

NF No fault
A1 Arbitrary fault in component A1
A2 Arbitrary fault in component A2
M1 Arbitrary fault in component M1
M2 Arbitrary fault in component M2
M3 Arbitrary fault in component M3

Assume that a diagnosis system has been constructed with the following four
test quantities:

T0 =|f − ac− bd|+ |g − bd− ce|
T1 =|g − bd− ce|
T2 =|f − g − ac+ ce|
T3 =|f − ac− bd|

The test quantities are compared to a threshold J = 1 and are said to react
if the value of the test quantity are higher than the threshold. Decisions are
specified by the following decision structure:

NF A1 A2 M1 M2 M3
T0 0 X X X X X
T1 0 0 X 0 X X
T2 0 X X X 0 X
T3 0 X 0 X X 0

a) Assume a fault in the the addition A1 that makes f = x+ y + 2. With
this fault the system outputs are f = 13 och g = 23 when the inputs are
a = 1, b = 2, c = 3, d = 4, e = 5. Given these observations calculate the
values of the test quantities. Which tests generate an alarm?

b) Calculate the diagnoses that are given by the test response in the (a)
exercise using the decision structure. Comment on whether the result is
as expected.
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Exercise 1.3.
Model based diagnosis for a process requires a specification of the possible fault
that should be diagnosed and a model that describes the behavior of the process
for the faults. A common case is that only a model of the fault free behavior
is available and that the model must be expanded with information on the
behavior of the process when a fault has occurred. The process that should be
diagnosed consist of an actuator and two sensors. Assume that the model for a
fault free behavior is

ẋ = u
y1 = x
y2 = x

(1.1)

where x is unknown, u a known control signal and y1 and y2 two sensor signals.
Assume that the actuator and the two sensors can fail.

a) List all possible behavior modes. It is sufficient to list all singular faults.

b) Assume that the behavior for a faulty component is unknown. Model this
by introducing the fault signals f1, f2 and f3 for the three faults. Indicate
which values the fault signals can take for all the listed behavior modes in
the answer on the a)-exercise.

Exercise 1.4.
Making a diagnosis requires redundancy. Give examples on static and temporal
redundancy in (1.1).

Exercise 1.5. There is redundancy in model (1.1) and therefore residuals
can be constructed.

a) Calculate two residuals, one based on static and one on temporal redun-
dancy. You can assume that derivatives of known signals, like e.g. ẏ1, are
known.

b) For it to be possible to construct a decision structure it is necessary to
know which faults that affect each residual. Express the residuals only
in the fault signals f1, f2 and f3 introduced in exercise 1.3, to determine
which faults the residuals are sensitive to. The expressions for the residuals
are then called the internal form of the residuals.

c) Compile the fault sensitivity of the residuals in a decision structure.

Exercise 1.6. Assume that the residuals ri that were constructed in
exercise 1.5 generates alarms when |ri| > 1/2. Use the constructed diagnosis
system to calculate the diagnoses when the following values u = 1, y1 = 0,
ẏ1 = 0, y2 = 1 and ẏ2 = 1 has been observed.

a) Calculate the value of the residuals and which tests that generate alarms.

b) Use the decision structure to calculate the diagnoses. Assume that only
singular faults are considered.
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Exercise 1.7.
A rotating system is propelled by a motor. A simple model of the system can
be:

Jω̇ = −Mfric +Mmotor

Assume simple viscous friction, i.e. Mfric = µω where µ is the friction coefficient.
Assume also that the motor torque is controlled toward a reference torque u
and that the torque control is quick enough for this dynamics to be neglected.
The motor torque is then given by Mmotor = ku, where k is a constant that is 1
when the torque control works. Assume that the process is equipped with two
sensors, one that measures the angular velocity ω and one that measures the
angular position of the machine ϕ.

Write the model in state space form och introduce behavior models for the
following faults:

1. Increased viscous friction

2. Torque controller malfunction

3. Faults in the angular position sensor

4. Constant bias fault in the angular velocity sensor

Exercise 1.8.
The figure1 shows an industrial robot IRB1400 from ABB Robotics. A model
of the dynamics of the robot around an axle can, with some simplifications, be
written as

Jmϕ̈m = −Fv,mϕ̇m + kTu+ τspring

τspring = k(ϕa − ϕm) + c(ϕ̇a − ϕ̇m)
Jaϕ̈a = −τspring

y = ϕm

1The picture comes from ABBs web page http://www.abb.com/

http://www.abb.com/
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Symbol Description
Jm Angular inertia: motor
Ja Angular inertia: arm
ϕm Motor position
ϕa Arm position
Fv,m Viscous friction coefficient, motor
k Stiffness coefficient, gearbox
c Damping coefficient, gearbox
kT Torque constant, is 1 when the torque control works
u Torque reference for the torque controller
y Measured motor position value

Introduce models for the following faults in the model equations:

1. Fault in the torque control for the driving motor.

2. Ground wire for the sensor torn off which causes reduced signal to noise
relation in the sensor signal.

3. The robot has a load, attached at the arm tip, that is dropped.

4. The robots arm collides with its surroundings.

Exercise 1.9.
Are there analytic redundancy in the systems described by the following model
relations? In the cases analytic redundancy exist, is it static or temporal
redundancy?

Variables yi denotes sensor signals, u control signals, and di unknown distur-
bances.

a)
d+ y1 + ẏ2 − u = 0

b)

d+ y1 + y2 − u = 0
2y1 + d+ 3u = 0

c)

d+ y1 + y2 − u = 0
2ẏ1 + d+ 3u = 0

d)

ḋ+ y1 + y2 − u = 0
2y1 + d+ 3u = 0

e)

d1 + y1 + y2 − u = 0
2y1 + d2 + 3u = 0
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Exercise 1.10.
The purpose with this exercise is to understand the concepts of false alarms
and missed detection. Consider a residual with the internal form

r = f + v (1.2)

where f is the fault signal that we want to detect and v is a normal distributed
stochastic variable with mean 0 and standard deviation σ = 1. Based on the
residual, a diagnosis test is defined that generates an alarm when |r| > J where
J > 0 is a predetermined threshold. The conclusions of the test is defined by

NF F
0 X

where NF denotes the fault free mode, i.e. when f = 0, and F the fault mode
when f 6= 0.

a) Make a sketch of residual distribution in the case when f = 0 and f = 3
and mark a suitable threshold.

b) Define the false alarm probability. The false alarm probability corresponds
to an area in the sketch from exercise (a). Mark this area.

c) If X is a normal distributed stochastic variable with mean µ = 0 and
standard deviation σ = 1 then let Φ(x) be the cumulative distribution
function for X, i.e.

Φ(x) = P (X ≤ x) =
∫ x

−∞
f(x) dx

where f(x) is the known normal distribution curve

f(x) = 1√
2π
e−

x2
2

Using Φ(x), sketch the probability for false alarms as a function of the
threshold J .

d) Define the probability for missed detection given a fault with the size
f = f0 6= 0. Just like the false alarm probability the probability for missed
detection corresponds to an area in the sketches from exercise (a). Mark
this area.

e) Sketch the probability for missed detection given a fault with the size
f = f0 6= 0 as a function of the threshold J and the cumulative distribution
function Φ.

f) What is the best possible false alarms probability and the probability for
a missed detection at a test?

Exercise 1.11.
Consider a hypothesis test with the hypotheses

H0 : θ = 0 fault free
H1 : θ 6= 0 faulty
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and a test quantity T that is written on internal form can be expressed as
T = θ + v where v is a normal distributed stochastic variable with mean 0 och
standard deviation σ. The zero hypothesis is rejected if |T | > J where J is a
threshold selected so that the probability for false alarm is 10−5, i.e. J is the
solution to

P (|T | > J |θ = 0) = 10−5

There are two views as to what conclusion that can be drawn when |T | ≤ J
namely

I) H0 is true

II) H0 is not rejected

a) What are the verdict on the parameter θ when |T | ≤ J for the hypothesis
test in the exercise, according to the two views?

b) What can be said on the probability

P (faulty conclusion|θ 6= 0)

for the two views.
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Exercise 1.12.
Consider a SISO-system that is described by the following differential equation:

ẏ − ay − (b+ ∆b)u = 0

where a and b are known nonzero constants, y a sensor signal, u a control signal
and ∆b a parametrization of a fault in the system. In the normal case ∆b = 0
and when a fault occurs ∆b 6= 0. Assume that the system is controlled towards
y = 0. Indicate a fundamental problem in detecting changes in the parameter
∆b. Do this by analyzing a simplified model that applies under the assumption
that the controller works perfectly, i.e. that y(t) = 0 for all t ∈ R. Give a
suggestion for how to solve this.

Exercise 1.13.

B

D

L

S

R

The circuit shown above includes 5 components: a switch (S), a resistor (R), a
light emitting diode (D), a battery (B) and a light bulb (L). The following faults
are assumed possible in the system: The switch can get stuck in open (SÖ) or
closed (SS) position. The light bulb can be broken (LT) and the battery can
become discharged (BU). Assume that only singular faults can occur. We can
see whether the light bulb and diode are lit and we know the desired position
of the switch.

a) for the different combinations of observations (8 st) indicate all possible
diagnoses.

b) Which faults can be isolated from each other? Assume that the switch S
can be freely controlled.

Exercise 1.14.

air mass-flow

manifold pressure

engine speed

throttle
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Consider the inlet system in the figure above. Let W be the air mass flow,
p pressure, yw the measured air mass flow, yp the measured pressure and u
actuator signal to the throttle. A model for the system is

W (t) = f(p(t)) k(u(t)) a (1.3)
yw(t) = gW (t) (1.4)
yp(t) = p(t) (1.5)

where g 6= 1 describes an amplification error in the flow sensor and a 6= 1 an
offset of the throttle on its axle. Both a and g are assumed to be constants.

a) Write the observation space O(NF ), O(Fa), and O(Fg).

b) Can the two faults be isolated from each other?
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Chapter 2
Fault isolation

Exercise 2.1.
The exercise is intended for understanding how a decision structure is set up
given a number of tests and their fault sensitivity. Study the examples in
section 3.4.6 of the compendium.

a) Derive the decision structure for the diagnosis system that is described in
the example which contains equation (3.18) in section 3.4.6.

b) Derive the decision structure for the diagnosis system that is described in
the example which contains equations (3.19) and (3.20) in section 3.4.6.

Exercise 2.2.
This is an exercise of how to calculate diagnoses given a decision structure and
a number of tests that has generated alarms. Consider the decision structure

NF F1 F2 F3
T1 0 X 0 X
T2 0 1 X 0
T3 0 0 X 0

Assume that Ti > Ji means reject H0
i for i ∈ {1, 2, 3}.

a) Determine the decisions that are taken when each test generates an alarm
or not, i.e indicate S0

i and S1
i for i = 1, 2, 3.

b) What is Si, i = 1, 2, 3, when T1 < J1, T2 > J2, T3 > J3. Show also the
calculation of S.

c) What is Si, i = 1, 2, 3, when T1 > J1, T2 < J2, T3 < J3. Show also the
calculation of S.

13
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Exercise 2.3.

I f1 f2 f3
T1 1 1 0
T2 1 0 1
T3 1 1 1

II f1 f2 f3
T1 1 1 0
T2 X 0 1
T3 1 X 1

State the conclusion for both of the decision structures above when only the
following quantities are significantly separate from 0:

a) T2 and T3

b) T1 and T3

c) T1

d) T1 and T2

e) The only difference between the decision structures is that some 1:s in
case I have been switched to X:s in case II. Compare the diagnoses for
case I and II in subproblems (a)-(d). Is there any relation between the
diagnoses calculated with decision structure I and the diagnoses calculated
with decision structure II?

Exercise 2.4.
Consider the decision structure

NF F1 F2 F3
T1 0 0 X 0
T2 0 0 X 1
T3 0 X 0 X

Assume that the fault mode F2 occur and that T1 > J1, T2 > J2 and T3 < J3.
Verify that F2 is isolated uniquely, i.e. S = {F2}. What happens with the
diagnosis statement S if a disturbance affects the system so that T3 > J3?

Exercise 2.5.
This exercise intends to provide understanding of the concepts of detectability
and isolability for a given diagnosis system. consider a diagnosis system that
consists of the residuals

r1 = f1 − f2

r2 = −f1 − f3

that are here given on internal form and the decision structure

NF f1 f2 f3 f4
r1 0 X X 0 0
r2 0 X 0 X 0

Assume that a decision is taken if ri 6= 0.

a) Describe what is meant by saying that a fault fi is detectable with the
given diagnosis system.
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b) Show that f1 is detectable with the given diagnosis system.

c) Which faults are detectable?

d) Describe what is meant by saying that a fault fi is isolable from a fault
fj 6= fi with the given diagnosis system.

e) Which faults are f2 isolable from in the exemple? Answer the question by
assuming a fault in f2, identify which residuals react and finally calculate
the diagnosis/diagnoses for this test response.

f) Compile the detectability and isolability for the diagnosis system.

Exercise 2.6. Consider the model

ẋ = u+ f3
y1 = x+ f1
y2 = x+ f2

(2.1)

where u, y1 and y2 are known signals, x an unknown and f1, f2 and f3 fault
signals.

a) Define that a fault fi is detectable in a model. Which faults are detectable
in the model?

b) Define that a fault fi is isolable from a fault fj 6= fi in a model. Which
singular fault isolability does the model give?

c) assume that a diagnosis system has been constructed with the residuals

r1 = y1 − y2

r2 = u− ẏ1

and the decision structure
NF f1 f2 f3

r1 0 X X 0
r2 0 X 0 X

State the diagnosis systems detectability and isolability. How does the
diagnosis systems detectability and isolability differ from that of the
model?

d) For the diagnosis system to achieve the same detectability and isolability
as the model it is necessary to add another residual to the two already
available residuals. What fault sensitivity must this residual have?

e) Derive a residual with the desired fault sensitivity. You may assume that
derivatives of known signals are known.

Exercise 2.7.
The goal in this exercise is to gain understanding of how tests should be added
for achieving a specified detectability and isolability. Assume a system with
three singular faults f1, f2 and f3. A diagnosis system should be constructed
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so that all faults are detectable and the following isolability is achieved

f1 f2 f3
f1 X 0 0
f2 0 X X
f3 0 X X

a) assume that the model enables that a maximum of two faults can be
decoupled in each residual. Calculate a decision structure with a minimum
of number of rows that fulfills the detectability and isolability specifications.
What detectability and isolability gives the designed decision structure?

b) Do the same exercise as in (a) but assume that only one fault at the time
can be decoupled.

Exercise 2.8.
Consider a system that can be modeled according to

ẋ =
[
−2 1
0 −1

]
x+

[
1
1

]
(u+ fu) +

[
1
0

]
d

y =
[
1 1
0 1

]
x+

[
1 0
0 1

] [
f1
f2

]
where d is a nonmeasurable disturbance and fu, f1 and f2 are three fault signals.
Four behavior models are considered:

NF θ = [0 0 0]
Fu θ = [fu(t) 0 0], fu(t) 6≡ 0
F1 θ = [0 f1(t) 0], f1(t) 6≡ 0
F2 θ = [0 0 f2(t)], f2(t) 6≡ 0

It is desired that the diagnosis system uses the following four hypothesis tests:

H0
1 : Fp ∈M0 = {NF} H1

1 : Fp ∈MC
0 = {F1,F2,Fu}

H0
2 : Fp ∈M1 = {NF,Fu} H1

2 : Fp ∈MC
1 = {F1,F2}

H0
3 : Fp ∈M2 = {NF,F1} H1

3 : Fp ∈MC
2 = {Fu,F2}

H0
4 : Fp ∈M3 = {NF,F2} H1

4 : Fp ∈MC
3 = {Fu,F1}

For each test quantity (i.e. residual generator) that should be constructed,
indicate which signals that need to be decoupled.

Exercise 2.9.
Assume a decision structure according to:

f1 f2 f3
r X 0 X

Why are disturbances and faults f2 equivalent, as seen from the residual r?

Exercise 2.10.
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Consider a time discrete system that can be modeled according to

x(t+ 1) = (a+ ∆a(t))x(t) + b(u(t) + fu(t))
y(t) = x(t)

where a and b are known parameters, y(t) and u(t) are known scalar signals,
fu(t) and ∆a(t) are two fault signals and x(t) an unknown scalar signal.

a) Assume that the parametric fault ∆a is modeled with an arbitrary additive
signal fa(t), i.e. fa(t) = ∆a(t)x(t). Can fa and fu be isolated? If that
is the case, construct two test quantities with which fa and fu can be
isolated.

b) Assume that we are modeling the parametric fault ∆a so that ∆a is
assumed to be constant, i.e. fa(t) = ∆ax(t). Can fa and fu be isolated?
If that is the case, construct two test quantities with which fa and fu can
be isolated.

c) Assume that we are modeling the parametric fault ∆a so that ∆a is
assumed to be constant, i.e. fa(t) = ∆ax(t). Assume also that fu(t) is
constant, i.e. fu(t) ≡ cu. Can fa and fu be isolated? If that is the case,
construct two test quantities with which fa and fu can be isolated.

Exercise 2.11.

Prove that a diagnosis system that always follows the rules (3.12) always gives
a ”complete diagnosis statement”.
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Chapter 3
Design of Test Quantities

Exercise 3.1.
Assume that a residual generator have been constructed with the following
internal form

rintern = f + v

where f is the fault signal that we want to detect and v is a normal distributed
stochastic variable with mean value of 0 and a standard deviation of σ. Based
on the residual define a diagnosis test that is triggered when |r| > J where
J > 0 is a predetermined threshold.

a) Define and illustrate the probability of false alarm and the probability
of missed detection for a fault of size f = f0 6= 0. The probabilities
can be illustrated in a figure that shows the distribution of the residual
with a given value on the threshold. Sketch the figure and highlight the
probabilities in an appropriate way.

b) Let Φ(x) and Γ(p) be defined as

Φ(x) =
∫ x

−∞

1√
2π
e−

s2
2 ds, Γ(z) = Φ−1(z)

and then the following holds

P (X ≤ x) = Φ(x), for X ∼ N (0, 1)

For the test that has been defined above, illustrate with the help of Φ(x)
and Γ(z)

1. probability of false alarm as a function of the threshold J

2. probability of missed detection given a fault of size f = f0 6= 0 as a
function of the threshold J .

19
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3. how the threshold J can be calculated given a value α on the proba-
bility of false alarm.

c) Describe, with words or with a figure, how the probability of false alarm
and the probability of missed detection depends on the choice of the
threshold J?

d) Define the power function, draw the typical shape of it and mark the
probabilities for false alarm and missed detection in the figure. Also state
the power function using Φ(x) and Γ(z) for the situation in this exercise.

Exercise 3.2. (D)
Consider the same residual as in Exercise 3.1 and let σ = 2.

a) Calculate a numerical value on the threshold J such that the probability
of false alarm becomes α = 0.01.

b) Calculate the power function for the calculated threshold value in Exercise
(a). Verify using the power function that the probability of false alarm is
α = 0.01.

c) For a given fault size, for example f0 = 5, it can be interesting to study how
the threshold influences the compromise between achieving low probability
of false alarm, pfa, and high probability of detection pd. Investigate the
compromise by draw pd as a function of pfa and interpret the results.

Exercise 3.3. (D)
During launches of manned space shuttles it has been shown that a fault in
the fuel system leads to almost an immediate explosion of the shuttle. The
probability that the fault will appear during a launch has been estimated to
be p1 = 0.01, which is considerably more often than is tolerated since the crew
is killed as a result of the explosion. It is impossible to avoid the fault by the
means of re-designing the space shuttle but analyzes of the system have shown
that it is possible to detect the fault by the following residual

r = v no fault
r = f + v fault

where v v N(0, σ = 2) and f = 5. If the fault is detected, that is if r > J for
any given threshold J , then the crew can be ejected from the space shuttle.
The probability that the escape from the space shuttle leads to the death of
the crew is estimated to p2 = 0.005. Calculate the threshold J that minimizes
the probability of the death of the crew. Becomes it safer by introducing the
test and, if yes, how much safer? The events that the crew will be killed during
an escape and that a fault will appear during the launch is assumed to be
independent of each other. It is sufficient to calculate a numerical value on the
threshold J and a possible safety gain.

Exercise 3.4.
Consider a system that can be modeled with a linear regression model

y(t) = u(t)θ + v(t)
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where y(t) and u(t) are known, θ describes the fault states and v(t) v N(0, σ2)
is white normal distributed noise. Consider the behavioral modes NF (No
Fault), F1, F2, and F3. The fault states θ = [θ1 θ2 θ3]T for the behavioral
modes are

ΘNF = {[0, 0, 0]T }
ΘF1 = {[θ1, 0, 0]T ; θ1 6= 0}
ΘF2 = {[0, θ2, 0]T ; θ2 6= 0}
ΘF3 = {[0, 0, θ3]T ; θ3 6= 0}

Assume that y(1), u(1), y(2), u(2), . . . y(N), u(N) have been observed and the
fault state can be assumes to be constant. A diagnosis system shall be con-
structed with three tests. For each test specify a test quantity, the distribution
of the test quantity given the null hypothesis is true, and also how the threshold
for the test quantity can be formulated. The threshold shall be set so the
probability for false alarm becomes pfa.

a) Construct a test quantity using the methodology from Section 4.2, p. 111
in compendium, ”Test Quantities Based on Prediction Errors”, that
corresponds to the following hypothesis test:

H0 : Fp ∈ {NF,F1} H1 : Fp ∈ {F2, F3}

Hint: If y(t) = ϕ(t)θ0+v(t) where v(t) are independent stochastic variables
with a distribution v(t) ∼ N(0, σ2) and m is the number of parameters in
θ the following holds

min
θ

1
σ2

N∑
t=1

(y(t)− ϕ(t)θ)2 ∼ χ2(N −m)

where χ2(N − m) represents a χ2-distribution with N − m degrees of
freedom.

b) Construct a test quantity with the log-likelihood function (Section 4.4,
page 124 in the compendium) which represents a row of

NF F1 F2 F3
T 0 X 0 0

in the decision structure. Take advantage of that the noise is normal
distributed and simplify as much you can.

c) Construct a test quantity using estimates of the parameters (Section 4.5,
p. 126 in the compendium) that decouples the behavioral mode F1 and
F3. The threshold and distribution does not need to be calculates for this
test quantity since this is done in Exercise 3.6.

d) State the decision structure for all these three tests.

Exercise 3.5.
This exercise repeat some fundamental properties of linear regression. Assume
a model according to

y(t) = au(t) + b+ v(t) (3.1)
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where a and b are constant parameters and v(t) white noise which distribution
of the amplitude is N(0, σ2

v).

a) A linear regression can be written on matrix form as

Y = Φθ + V (3.2)

where Y is a known column vector, Φ is a known matrix with the same
amount of columns as unknown parameters in the column vector θ and V
is a column vector with independent and uniformly distributed stochastic
variables. Write the matrices in the regression for (3.1) when a and b will
be estimated from the data y(t), for t = 1, . . . , N and u(t) for t = 1, . . . , N .

b) Show that for the model (3.2) the estimation

θ̂ = arg min
θ

n∑
t=1

(y(t)− ŷ(t|θ))2

is given by the following expression

θ̂ = (ΦT Φ)−1 ΦT Y (3.3)

provided that we have enough excitation. Show that the excitation here
means that the u(t) cannot be constant.

c) Show that if V ∼ N(0, I σ2) then θ̂ ∼ N(θ, (ΦTΦ)−1σ2
v).

Hint: The covariance matrix of a stochastic vector with mean value of 0 is
defined as cov(V ) = E{V V T }. Use this to first decide which distribution
T = KV have where K is an arbitrary constant matrix.

Exercise 3.6.
This exercise gives an understanding in how linear regression can be used to
compute test quantities according to the method for parameter estimation
and the method for prediction error when the underlying model is linear with
unknown parameters.

a) Show how test quantity from the method of prediction error in Exer-
cise 3.4 (a) can be written as a linear regression.

b) Same as (a) but using the test quantity from Exercise 3.4 (b) instead.

c) Show how the test quantity from the method of parameter estimation in
Exercise 3.4 (c) can be written as a linear regression. Specify also the
distribution of the test quantity when the null hypothesis is true and how
the threshold can be formulated when the probability for false alarm shall
be pfa.

Exercise 3.7. (D)
The diagnosis system developed in Exercise 3.4 and 3.6 will be implemented in
the skeleton file Batch_Tests/testquantities.m. Data are generated by the
file Batch_Tests/GenerateTestData.m.
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a) Implement the three test quantities. Write the code in such a way that
they become non-negative and normalize them such that P (Ti > 1) = pfa.
Let the probability of false alarms be pfa = 1%, the standard deviation
of the noise is σ = 1 and the number of samples that a test is based on is
N = 100.

b) Evaluate if the error sensitivity is the one that was expected by estimate
P (Ti > 1|m) for all i ∈ {1, 2, 3} andm ∈ {NF,F1, F2, F3} by Monte-Carlo-
simulations. In the file testquantities.m the number of realization for
every mode m of M is set to M = 1000. Further, the size of the fault was
set to 1, that is, θi = 1 when m = Fi.

Exercise 3.8.
Consider the same model as in Exercise 3.4. A test quantity constructed
according to the prediction error method is

T = arg
θ̂1

min
θ̂1,θ̂2

N∑
t=1

(y(t)− ŷ(t| θ = [θ̂1 θ̂2 0]′))2

Assume that

U =
[
u(1)T u(2)T . . . u(N)T

]T (3.4)

has full column rank.

a) Which faults are decoupled in the test quantity?

b) Which hypotheses do the test quantity tests?

c) Specify how the row in the decision structure corresponding to T looks
like.

Exercise 3.9.
Assume a model as

y = (G(s) + ∆G(s))u+ L(s)f

where G(s) = 1
s+1 and L(s) = 1. Additionally there is a estimation on the

upper boundary for |∆G(jω)| according to
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Construct a residual generator and an adaptive threshold based on this infor-
mation.

Exercise 3.10.
Consider a diagnosis system with only one hypothesis test. The test quantity
for the hypothesis test with the following hypothesis

H0 : θ = 1
H1 : θ 6= 1

has the power function β(θ) which is shown below.
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a) How can the power function be used to determine the probability for false
alarm P (FA)?

b) Given fault corresponding to θ 6= 1 what is the probability of missed
detection P (MD|θ)?

Exercise 3.11.
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a) Assume the linear and discrete system as

x(t+ 1) = Ax(t) +Bn(t)

where A is stable and n is white noise with a noise intensity of Σn, that is

E{n(t)nT (t− τ)} = Σnδ(τ)

where δ(τ) is the discrete dirac delta function. Show that the covariance of
vector x is given by the symmetrical solution to the (Lyapunov-)equation

Σx = AΣxAT +BΣnBT

Hint: Start with the definition Σx = E{x(t)x(t)T }.

b) Using the result in Exercise (a), formulate the covariance of the output
signal y for the system

x(t+ 1) = Ax(t) +Bn(t)
y(t) = Cx(t)

c) What happens in Exercise (b) if there exists a direct term, that is

x(t+ 1) = Ax(t) +Bn(t)
y(t) = Cx(t) +Dn(t)

? d) Assume a linear time-continuous system as

ẋ = Ax+Bn

where A is stable and n is white noise with a noise intensity of Σn, that is

E{n(t)nT (t− τ)} = Σnδ(τ)

where δ(τ) is the time-continuous dirac delta function. Show that the
covariance of the vector x is given by the symmetrical solution to the
(Lyapunov-)equation

AΣx + ΣxAT +BΣnBT = 0

3 hints:

– Σx = 1
2π
∫∞
−∞ Φx(ω)dω where Φx(ω) is x spectrum.

– F−1{(jωI −A)−1} = eAt if A is stable

– Parseval theorem and integration by parts

Exercise 3.12.
Assume that v(t) is white noise with expectation of 0 and variance σ2

v . What
can be said about

a) Auto-correlation (also called function of covariance) of v(t), that is

rv(k) = E{v(t)v(t− k)}
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b) The dependency between v(t) and v(t− k) for k 6= 0?

Exercise 3.13. (D)

a) Assume a test quantity T with distribution T ∈ N(θ, σ), where

σ = 0.7

The null hypothesis is that θ = 0. Determine the threshold in such a way
that the significance of the test becomes α = 0.05. The system alarms
when |T | exceeds the threshold.

b) Calculate the power function β(θ) given the threshold from Exercise-
(a). You should do this both by analytical calculations and Monte-Carlo
simulations.

Exercise 3.14. (D)

a) Let θ be a two-dimensional vector and T = |θ̂| where θ̂ ∈ N(θ,Σ) with
covariance matrix

Σ =
(

0.3 −0.2
−0.2 1

)
Under the null hypothesis the following holds θ = 0. Given a threshold
J = 1.372 calculate the power function along the axis of θ1 and θ2, that
is, calculate β(θ1) with θ2 = 0 and β(θ2) with θ1 = 0.

These calculations are preferable executed using Monte-Carlo simulations.
Interpret the results.

b) The covariance matrix have non-zero element outside the diagonally, that
is, the estimation of θ1 and θ2 are correlated. The following is true
E(θ̂1θ̂2) = −0.2.

The areas of significance becomes in this specific case not circles but
ellipses according to

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
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What does this cross-covariances means? How do this distortion affect
the value of the threshold?
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c) It is possible to find a K such that Kθ̂ has a diagonal in the covariance
matrix. One possible test quantity is T = σ−2|Kθ̂|2 ∈ χ2(2) where σ2 is
the variance for the two estimations in Kθ̂. What is the null hypothesis of
the test? Is it possible with this test to isolate faults θ1 6= 0 from θ2 6= 0
and vice versa?

? d) Calculate a K such that KT has a diagonal covariance matrix. Hint: Use
a symmetrical and positive semidefinite matrix Σ which can be written as

Σ = USUT

where S is a diagonal matrix with Σ:s eigenvalues in the diagonally and
U is an orthogonal matrix. See svd in Matlab.

Exercise 3.15. (D)
Consider the system

y(t) = θ + v(t)

where v is white noise with a distribution of its amplitude as N(0, σ). Assume
that given N samples of y shall test the following hypotheses

H0 : θ = 0 H1 : θ 6= 0

using the test quantity

T (y) =
N∑
t=1

y(t)2

Under the null hypothesis the following holds T (y)/σ2 ∈ χ2(N) but when θ 6= 0
the expression gets messy.

Estimate, using Monte-Carlo simulations the distribution of T (y) for different θ.

Exercise 3.16.
Assume a test with the following hypotheses

H0 : θ = 0 H1 : θ = 1

where θ either has the value 0 or 1. The test quantity T (x) has the distribution
N(θ, 0.15) and the threshold is 0.5. This corresponds to that the probability of
false alarm α is less than 0.0005.

Assume a distribution of θ according to

p(θ) =
{

0.9999 θ = 0
0.0001 θ = 1

that is, with high probability the null hypothesis is true. In the diagnosis
application this is fair to assume since the null hypothesis often includes the
fault free case which (hopefully) is the most likely behavioral mode.

a) Calculate the probability that given H0 is true that the H0 will be rejected,
that is

P (H0 true|0.5 < T (x))
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b) Assume there exists two independent samples x1, x2 that are available.
Assume also that H0 only is rejected if both T (x1) and T (x2) are above
their thresholds. Now, calculate the probability that H0 is true given that
H0 is rejected, that is

P (H0 true|0.5 < T (x1) ∧ 0.5 < T (x2))

c) Calculate how many independent samples are needed to be able to

P (H0 true|0.5 < T (x1) ∧ · · · ∧ 0.5 < T (xn)) < α

Exercise 3.17.
This exercise points out that estimation by linear regression is not unbiased
when the noise is colored.

Assume that the model structure is the following:

x(t+ 1) = ax(t) + bu(t)
y(t) = x(t) + v(t)

that is, the white noise is introduced as measurement noise in a dynamic system.

a) Write the above statements on the form y(t|t− 1) = ϕ(t)θ + w(t). With
y(t|t− 1) denoting the one-step-prediction, that is, y(t− 1) and u(t− 1)
can be a part of ϕ(t).

b) Are w(t) and w(t− 1) uncorrelated?

c) Write E{θ̂} when θ̂ is estimated with the least square method θ̂ =
(ΦTΦ)−1ΦTY . Please comment the results.

Exercise 3.18. (D)
Consider a model y(t) = b1u(t− 1) + b2u(t− 2) + v(t), where v(t) ∈ N(0, 0.1)
is uncorrelated noise. Re-write the model as a linear regression and perform a
least squares estimation of b1 and b2

a) With data from PersistentExcitation/data_a.mat.

b) With data from data_b.mat.

c) Is there any differences between the estimation? If yes, why?

d) How can this be avoided?

e) Discuss the difference on the data in Exercise (a) and (b) if the test
quantity would be y − ŷ or θ̂ − θnominal.

Exercise 3.19. (D)
A skeleton file for this exercise is available at CUSUM_GLR/cusum_glr.m

a) Load the data from file CUSUM_GLR/cusum_a.mat. The signal x is white
noise with an amplitude distribution of

X(t) ∈
{
N(0, 1) t < tch

N(0.3, 1) t ≥ tch
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Use the CUSUM algorithm from Section 4.7 in the compendium, alter-
native Section 2.2 in the distributed material, to get tch. Compare the
results with your own estimate from visual review of the signal.

b) Load the data from file cusum_b.mat. The signal x is white noise with
an amplitude distribution of

X(t) ∈
{
N(0, 1) t < tch

N(0, 1.22) t ≥ tch

that is, a change in variance compared in the expectation value. Use once
again the CUSUM algorithm to get tch.

c) Assume that in Exercise-(a) the expectation value after tch is not known.
Use the GLR algorithm to compute an estimate of tch. See Section 2.4
(more specific Section 2.4.3) in the extra material from the book “De-
tection of Abrupt Changes” by M. Basseville, I.Nikiforov. Compare the
performance compared to the Exercise-(a).

d) Solve the detection problem from Exercise-(c) with a simple low-pass filter
with a constant threshold. Discuss the differences.

Exercise 3.20. (D)
The CUSUM-algorithm is derived, as shown in the compendium and the extra
distributed material, formally under the assumption that the distribution of the
residual is known, both in the fault free case and also when a fault has occurred.
This is often not a realistic situation and this exercise tries to illustrate how
the CUSUM-algorithm can be useful even if detailed statistical knowledge is
missing.

A skeleton file is available at CUSUM_Res/cusumres.m and data for this exercise
can be loaded from the file cusumres.mat. In that file there is a vector of time,
t, control and measurement signals y(t) and u(t), respectively, and also a model
of the process G(q) for the scalar system.

a) Construct a residual generator for detection of faults in the sensor. Choose
the parameters for the filter in such a way that noise is reduced to a
moderate level and set a threshold.

b) Redo the Exercise-(a), but this time use the CUSUM-algorithm instead.
Use the algorithm to, in case of an alarm, estimate the time the fault
occurred.

c) Discuss the differences between the two solutions in (a) and (b).
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Exercise 3.21. (D)
This exercise includes a construction of a small diagnosis system. Three behav-
ioral modes are treated NF (no fault), MC (mean change), and DC (standard
deviation change). The model of the system can be described as

x(t) =
{
v(t) if t < tch

σ v(t) + µ if t ≥ tch

where v(t) ∈ N(0, 1), v(i) and v(j) are independent for i 6= j. The behavioral
mode NF means that σ = 1 and µ = 0. The behavioral mode MC means that
σ = 1 and µ 6= 0. Finally, the behavioral mode DC means that σ 6= 1 and
µ = 0. A skeleton file in Matlab for a diagnosis system is available in the file
diagsys.m. That file and other files that are needed for this exercise is available
at the following library MLR_Diag/.

In those cases where optimization is needed there is no requirements that the
implementation needs to be efficient. Exhaustive searches are OK.

a) Express θ and determine the following sets ΘNF , ΘMC , and ΘDC .

b) The diagnosis system contains three tests of the hypotheses. The sets
Mi are M1 = {NF}, M2 = {NF,MC}, and M3 = {NF,DC}. Examine
the code in the file diagsys.m and write correct conclusions (diagnosis
statements) Si for every test. How do the decision structure looks like?

c) The Maximum Likelihood Ratios for the three tests are:

λ1(X) =
supθ∈ΘMC∪ΘDC L(θ,X)

L(θ0, X) =

=
max(supθ∈ΘMC L(θ,X), supθ∈ΘDC L(θ,X))

L(θ0, X) ≈

≈
max(supθ∈ΘNF∪ΘMC L(θ,X), supθ∈ΘNF∪ΘDC L(θ,X))

L(θ0, X) = T1(X)

λ2(X) =
supθ∈ΘDC L(θ,X)

supθ∈ΘNF∪ΘMC L(θ,X) ≈
supθ∈ΘNF∪ΘDC L(θ,X)
supθ∈ΘNF∪ΘMC L(θ,X) = T2(X)

λ3(X) =
supθ∈ΘMC L(θ,X)

supθ∈ΘNF∪ΘDC L(θ,X) ≈
supθ∈ΘNF∪ΘMC L(θ,X)
supθ∈ΘNF∪ΘDC L(θ,X) = T3(X)

The expressions above defines the test quantities Ti(X). How come is the
approximation very good?

d) Show that

lnT2(X) = sup
θ∈ΘNF∪ΘDC

lnL(θ,X)− sup
θ∈ΘNF∪ΘMC

lnL(θ,X)

e) In the code we use lnTi(X) instead of Ti(X). Thus, for calculation of the
three test quantities we need expressions of

sup
θ∈ΘNF∪ΘMC

lnL(θ,X) = lnLmu(X)

sup
θ∈ΘNF∪ΘDC

lnL(θ,X) = lnLstd(X)

lnL(θ0, X) = lnL0(X)
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which also defines the three functions lnLmu(X), lnLstd(X), and lnL0(X).

The code for lnLmu(X) is already implemented. Now, implement also the
code for lnL0(X).

f) Test the implementation of lnL0(X) and lnLmu(X) with data generated
in the same way as in the file datagen.m.

g) Implement lnLstd(X) in the code and test the diagnosis system with data
generated in the same way as in the file datagen.m.

h) Use the diagnosis system to get diagnosis from the data given in the
following files x1, x2, x3, x4, and x5. What are the conclusions from
the diagnosis system for these signals? In those cases that the diagnosis
detects a fault, when are the faults occurring and what are the sizes of
the faults?

Exercise 3.22.
Consider the system that was developed in Exercise 3.21. Construct an ML
(Maximum Likelihood) estimator for all unknown variables tch, µ, and σ. Run
the estimator on data from the files x1, x2, x3, x4, and x5. What are the
conclusions? Compare the performance with the system that was constructed
in Exercise 3.21. Discuss the differences and assumptions made in both of the
approaches.

Exercise 3.23.
In this exercise we will use the same notation as in the material from “Detection
of Abrupt Changes”.

The density function of y is normal distributed with mean value µ and standard
deviation σ

pθ(y) = 1
σ
√

2π
exp−

(y−µ)2

2σ2

The probability for a given value yk from this distribution is given by

p(yk|θ) = pθ(yk)

a) Consider Example 2.1.1 in ”Detection of Abrupt Changes” where the mean
value is changed from µ0 to µ1. Show ”log-likelihood” ratio according to
the Equation (2.1.7) given Equation (2.1.5), that is, show

si = b

σ

(
yi − µ0 −

ν

2

)
where

ν = µ1 − µ0

b = µ1 − µ0

σ

b) What does it mean that si > 0? Also, what does it mean that si < 0?

c) Consider Equation (2.1.2). What is the indication if Skj is larger than all
others Skji where ji 6= j?
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d) Consider Example (2.1.3) where the standard deviation is changed from
σ0 to σ1. Show that Equation (2.1.23) is correct if y is normal distributed.

sk = ln σ0

σ1
+
(

1
σ2

0
− 1
σ2

1

)
(yk − µ)2

2

e) (GLR) Consider Example (2.4.3) where the mean value before the change
is µ0 and the mean value after the change is unknown. Equation (2.4.37)
gives gk. Show if vm = 0 then Equation (2.4.40) can be derived from
Equation (2.4.37).



Chapter 4
Linear Residual Generation

Exercise 4.1.
Assume that a model of the supervised process is

ẋ = −ax+ u

y = x+ f

where y and u are known measurement and control signals, respectively, the
signal f is modeling a fault we want to detect, x ∈ R is the internal state and a
is a known constant in the model, the initial state x(0) is unknown.

a) Write the model using the transfer function, that is, find Gu(p) and
Gf (p) in

y(t) = Gu(p)u(t) +Gf (p)f(t)

b) Write the model in the general form

H(p)x(t) + L(p)z(t) + F (p)f(t) = 0

that is, find the matrices H(p), L(p), and F (p). The vector z of known
signals is z = (y, u).

Exercise 4.2.
Consider the same model as in Exercise 4.1.

a) The observation set

O = {z|∃x H(p)x+ L(p)z = 0}

describes all observations from the process that could come from a system
with no faults. It is good to know this set since when z(t) 6∈ O then we
have detected a fault.

33
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Describe the observation set O in implicit form, that is, provide the
differential equation that the signals in z have to fulfill in order that z
will contain in O.

b) Describe the observation set O in explicit form, that is, provide the
relationship in the time domain that z(t) needs to fulfill in order to z will
contain in O. This means that the differential equation from (a) needs to
be solved.

Hint: Solution to a first order differential equation

ẋ+ ax− u = 0

is

x(t) = x(0)e−at +
∫ t

0
e−a(t−τ)u(τ)dτ

c) Construct a consistency relation for the system that can be used to test if
z ∈ O or not.

d) Use the answer in (c) to construct a residual generator on state-space
form where derivatives of z is not used in the calculation of the residual.

Exercise 4.3.
Consider, once again, the system in Exercise 4.1.

a) Assume that a = 1 and denote the true system transfer function as G0(p).
Show with the help of the definition of a residual generators that if one
generates a residual according to

-u(t)

f(t)

?

G0(p) y(t)

?f-- Gu(p) -ŷ(t) -r(t) = y(t)−Gu(p)u(t)

and set the initial conditions in the residual generator to 0 then the filter
is a residual generator.

b) Assume a = −1. Show that the expression in (a) is not an residual
generator.

c) Derive a residual generator for the case a = −1.

Exercise 4.4.
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Consider the static model

x1 = −3u+ d

x2 = 2u− d
y1 = 3x1 + f

y2 = x1 + 2x2

where yi and u are known signals, d is an unknown disturbance and xi unknown
internal variables. The signal f models a fault.

a) Consider the no fault case, that is f = 0. Find a consistency relation (and
thereby a residual generator) that have decoupled the disturbance d and
the unknown internal states xi. This can be done by hand.

Write the computational form of the residual generator.

b) Now, assume that f 6= 0, write the internal form of the residual generator.

(D) c) Write the model equations on the form

M


x1
x2
d
y1
y2
u

 = 04×1

Perform Gaussian elimination on the matrix M , that is, transfer the
matrix M to right triangular form by operations on rows. This can either
be done by hand or by QR-factorization in Matlab.

How can the results in (a) be seen in the right triangular matrix from of
M?

d) In (c) the variables were arranged in such a way that x1 was first and
then x2, d, y1, y2, u. Why was this sequence picked? Provide an other
possible sequence of the variables, please comment the results.

Exercise 4.5.
The usage of the complex Laplace-variable s and the differential operator p
are mixed in the next. The reason for this is that it formally is important to
separate these two apart from each other. This exercise will illustrate why this
is important.

a) Assume that the linear model

y = b(p)
a(p)u (4.1)

and the polynomial a(s) and b(s) share the same roots, that is, there
exists a polynomial q(s) that is contained in both a(s) as well in b(s). The
transfer function can then be written as

G(s) = b(s)
a(s) = b′(s)q(s)

a′(s)q(s) = b′(s)
a′(s) (4.2)
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Explain why

y = b′(p)
a′(p)u

does not describe the same solution set as (4.1).

b) Define the solution set for (4.1) and (4.2)

O1 = {(y(t), u(t))|y(t) and u(t) satisfies (4.1)}
O2 = {(y(t), u(t))|y(t) and u(t) satisfies (4.2)}

Which subset relations are between the two sets O1 and O2?

Exercise 4.6.
Assume that we want to generate residuals based on the nominal model

y = 1
p+ 1u

For linear systems there exists strong relations between constructions based on
state-space-observers and constructions based on consistency relations. This
exercise tries to clarify this relationship.

a) Derive a consistency relation and construct a first order residual generator
based on consistency relation, that is, the residual generator shall be able
to be written on state-space form with 1 state. Parameterize the residual
generator in such a way that the pole in the residual generator is placed
in s = −α. Write the residual generator on either as a transfer function
or on state-space form.

b) Write the model on state-space form.

c) Construct a first order residual generator based on state-space-observer
for the system.

d) Clarify the relationship between the constructions in (a) and (c) by showing
how the parameters in the solution for the observer case shall be chosen so
they become identical to the solution based from the consistency relation.

e) In (d) it is straightforward to find an one-to-one relation between the two
methods. Sketch, that is no calculations, on one or several cases where it
is not as straightforward to find such a relation as in the previous case.

Hint: Think about the ordinal number and how a decoupling can be
achieved in the solution for the observer and also for the solution in the
consistency relation case.

What is the consequence of decoupling of signals, for example regarding
fault isolation?

Exercise 4.7.

a) Write the single-input-single-output (SISO) model

2ẏ + y = u̇+ u



37

as a transfer function matrix using the differential operator p. Write also
the model on state-space form.

b) Write the SIMO-model

ẏ1 + y1 = u

ẏ2 + 2y2 = u

on state-space form and as a transfer function matrix.

c) Introduce an additive fault in the sensor in (a) and write the whole model
on state-space form.

d) Introduce additive faults in the actuators (f1 och f2) and one disturbance
d in the first sensor in (b). Write the whole model on state-space form.

e) Find a residual generator that decouples the disturbance d in Exercise-(d).
The dynamic of the residual generator shall be chosen that the residual
can detect a fault with a time constant of about 0.3 seconds. Write the
residual generator on state-space form.

Exercise 4.8.
Consider the SISO-system that is described by the following transfer function:

y = 1
p+ 1u+ f

where y is the measurement signal, u control signal, and f a model of a fault in
the sensor.

a) Write the differential equation that corresponds to the transfer function.

b) Assume that not only y is known, but also ẏ, ÿ, y(3), . . . and also u. Write,
from (a), the computational form for a residual generator. This kind of
relation is in the compendium called a consistency relation.

c) What happens to the residual if a fault occurrs, that is, write the internal
form for the residual generator.

d) Disregard the assumptions that the derivatives of u and y are known.
Find a new, implementable (for example on state-space form) residual
generator. Write both the computational form and the internal form for
the residual both in the time domain and in the frequency domain.

Exercise 4.9.
Assume that a consistency relation for a system has been constructed

ÿ(t) + c1ẏ(t) + c2y(t)− c3u̇(t)− c4u(t) = 0

To avoid to estimate derivatives it is wanted to generate the residual r according
to the differential equation

a(p)r(t) = b1(p)y(t) + b2(p)u(t) (4.3)

where b1(p) = p2 + c1p+ c2, b2(p) = −c3p− c4, och a(p) are polynomials that
are design choices for the user.
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a) Provide which demand is put on the polynomial a(p) in order to r shall
be a residual.

b) Realize (4.3) on state-space form. Use, for example, observable canonical
form for the realization.

Exercise 4.10.
Assume that we have the same system as in Exercise 4.8, with the addition that
we also measure the integral of y from Exercise 4.8. This can correspond to that
y (from Exercise 4.8) is the angular velocity in a rotating machine and both
the current angle, ϕ, and the angular velocity, ω, of the machine are measured.
The new vector of measurement becomes then

y =
(
ω
ϕ

)
The model is then

y =
(
ω
ϕ

)
=
[

1
p+1

1
p(p+1)

]
u

a) The upper part of the new system is the same system as in Exercise 4.8,
thus, the residual generator from Exercise 4.8.-(d) can be used, without
modifications, for this extended system. However, with the new sensor
there is more possibilities, that is, more residual generators. Find, at least,
one more residual generator compared to the ones found in Exercise 4.8.

b) How many linear independent residual generators can be found? Motivate
your answer.

Exercise 4.11.
Assume a system according to the schematics below, where yi are known
measured signals

-y1 1
1+sT - y3

- y2

Describe the set of consistency relations that exist for the system. How large is
the largest set of linearly independent consistency relations.

Find such a largest set and comment if there are any other consistency relations
that could be of interest and why.

Exercise 4.12.
This task aims at illustrating the relation between decoupling and fault isolation.
Consider a second order rotation systems where angle ϕ and angular velocity ω
are measured, e.g: (

ω
ϕ

)
=
[

1
p+1

1
p(p+1)

]
u

The model can be written in matrix form
−(p+ 1) 0

1 −p
1 0
0 1

(w1
w2

)
+


0 0 1
0 0 0
−1 0 0
0 −1 0


y1
y2
u

+


0 0
0 0
1 0
0 1

(f1
f2

)
= 0
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where the signals fi model faults in the two sensors and wi are state variables.

a) Assume that we want to generate a residual that isolates fault f1 from
fault f2. Complete the residual structure below

f1 f2
r

with a residual that enables the wanted isolation property.

b) Rewrite the model on the following form

H(p)x+ L(p)z + F (p)f = 0

so that a residual for the model is consistent with the structure in task a

Exercise 4.13.
Consider a second order system modeled as

ẋ = Ax+Buu+Bff

y = Cx+Duu+Dff

where u, f and y are vector valued signals. The dimension of both u and y is 2.
Assume that only one fault can occur simultaneously and that one element in
the vector f corresponds to one fault.

a) Assume that the column for f1 in[
Bf
Df

]
(4.4)

is linearly dependent of the column for another fault f2. Can we isolate
these faults from eachother?

b) Assume that we have three faults, f1, f2 och f3, (i.e. the dimension of
f is 3). Further, assume that none of the columns in (4.4) is parallel
with another column but (4.4) despite this does not have full column rank
((4.4) has to have rank 2). Can we isolate these 3 faults from eachother?

c) What is the maximum dimension of f , i.e. the maximum number of faults,
if we are to be able to isolate each and every one of the faults in the vector
f?

Exercise 4.14.
Consider the following linear system with two sensors, one actuator and a
modeled sensor fault in sensor 2.(

y1
y2

)
=
(

1
p+a

1
(p+b)(p+a)

)
u+

(
0
1

)
f

The model is parametrized by two model parameters, a and b.

a) Find a residual generator that only uses the 2nd row in the model, i.e. a
residual generator that only uses u and y2 and disregards sensor y1.
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b) Assume that we do not know the exact values of the parameters a and b.
Show that the uncertainty in both parameters will affect the performance
of the residual.

c) Find a residual that is only affected by the uncertainty in one of the
parameters, with the same internal form as the residual generator found
in task a.

d) Which residual is better if the main model uncertainty is in the parameter
a
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Exercise 4.15.
Again consider the model in Task 4.14. A state-space formulation of the model
is given by the following equations

ẇ =

−a 0 0
0 0 1
0 −ab −(a+ b)

w +

1
0
1

u
y =

[
1 0 0
0 1 0

]
w +

[
1
0

]
f

a) Write the model on the form

H(p)x+ L(p)z + F (p)f = 0

where x are unknown signals, z known signals and f the faults we want
to detect.

b) Compute, by hand, a basis NH(s) for the left null space to the matrix
H(s). Write the expression NH(p)L(p)z = 0 and relate it to the solution
to Task 4.14.

c) Redo the computions in Matlab to verify your own computations. Assign
reasonable values to the parameters a and b. Comment on eventual
differences compared to your hand calculations in task b.

Exercise 4.16.
Assume that we have the same model as in Task 4.10, but with modeled faults
in both sensors.

y =
(
ω
ϕ

)
=
[

1
p+1

1
p(p+1)

]
u+

(
f1
f2

)
a) Find a basis for all residual generators that exist for the system.

b) Construct realizable residual generators based on the result from task a.
Discuss the selection of the free parameters.

c) Use Matlab to compare the results with your answers in tasks a and b.
Produce relevant plots. (D)

Exercise 4.17. (D)
Consider a model of an airplane with inputs and outputs according to

Inputs Outputs
u1: spoiler angle [tenth of a degree] y1: relative altitude [m]
u2: forward acceleration [ms−2] y2: forward speed [ms−1]
u3: elevator angle [degrees] y3: Pitch angle [degrees]

The model has the state matrices:

A =


0 0 1.132 0 −1
0 −0.0538 −0.1712 0 0.0705
0 0 0 1 0
0 0.0485 0 −0.8556 −1.013
0 −0.2909 0 1.0532 −0.6859

 B =


0 0 0

−0.12 1 0
0 0 0

4.419 0 −1.665
1.575 0 −0.0732


C = [I3 03×2] D = 03×3
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The aim of this task is to model faults in sensors and actuators, construct a
residual generator that decouples 2 of these and finally evaluate the constructed
residual generator.

a) Introduce model for sensor and actuator faults.

b) How does the state description look like when faults in sensor 3 and
actuator 3 should be decoupled? Write Bf , Df , Bd and Dd.

c) Form the matrices H(p), L(p) och F (p).

d) Find a polynomial basis NH(s) for the left nullspace to H(s), using the
command null.

e) Form a residual generator, i.e. select appropriate matrices γ and d(s) that
form the residual generator R(s) = d−1(s)γNH(s)L(s). How doesd(s)
have to chosen in order to be realizable? Plot bode diagram for the
residual generator R(s) and the transfer function from fault to residual.

f) By selecting γ and d(s) the residual generator can be shaped. Which
properties are desirable and how can γ and d(s) be used to accomplish
this.

g) Why are faults in sensor 1 especially hard to detect? Can this be predicted?

Exercise 4.18.
The supervised system is often operated in closed loop, according to the schemat-
ics below:

-v f - F - f -u G - f -y

6-
?

fa

?

fs

where G represents the system and F the controller. It is therefore of interest
to see how the controller affects the diagnosis problem. Assume that both the
system and the controller are linear. Further assume that we have a model Ĝ(s)
of the real system G(s), i.e. G(s) = Ĝ(s) + ∆G(s) where ∆G(s) is unknown.
Let the residual r be r = y − Ĝu.

Decide whether the controller selection affects the residual in the case of:

a) G(s) = Ĝ(s), dvs. ∆G(s) = 0 (no model errors)

b) ∆G(s) 6= 0

c) Explain the results in a and b with words, and try to outline how the
results affect the control design.



43

Exercise 4.19.
Assume a rotating system where both angle ϕ and angular velocity ω are
measured, i.e.: (

ω
ϕ

)
=
[

1
p+1

1
p(p+1)

]
u

Explain in simple manner why a additive fault in the angle sensor cannot be
strongly detectable.

Exercise 4.20.
Consider a system described by the following transfer functions:

Gu(p) =
[ 2
p+1

1
p+1

]
Gd(p) =

[ 1
p+2

1
p+2

]
Gf (p) =

[
2p+1
p+2

1
p+2

]

a) Write the system in the standard form H(p)x+ L(p)z + F (p)f = 0.

b) Use the detectability criterion from the compendium to decide if the fault
is detectable. Note that this can be done with simple mental arithmetic.

c) Verify b) in MATLAB. (D)

d) Is the fault strongly detectable? Do the calculations by hand.

e) Verify d) in MATLAB. (D)

Exercise 4.21.
Show that there does not exist any asymptotically stable linear residual generator
(i.e. all poles are strictly in the left half plane), where additive sensor faults are
strongly detectable.

a) y = p+1
p(p+2)u+ fs

b) y =
[ 1
p

1
p+1

] [ u1
u2

]
+ fs

c) Show tasks a and b through hand calculations, without using the de-
tectability criterion from the compendium.

Hint: Use the fact that all residual generators can be written

r = A(p)y +B(p)u
C(p)

Exercise 4.22.

a) Assume a model of the following form

ẋ = Ax+Buu+Bdd

y = Cx+Duu

Assume there exists matrices P 6= 0, Az, L1 6= 0, L2 6= 0, K so that

PA = AzP ∧ L1C = L2P ∧ (Az −KL2) stable ∧ PBd = 0
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Show that the following residual generators decouple d

˙̂z = Az ẑ + PBuu+K(L1y − L1Duu− L2ẑ)
r = −L2ẑ + L1y − L1Duu

Hint: The residual generator is an observer for z = Px.

b) Construct a residual generator according to task a, for the model

ẋ =
[
−1 −1/2
0 −2

]
x+

(
1
1

)
u+

(
1
2

)
d+

(
0
1

)
f

y = x

c) Change the A-matrix from taks a to

A =
[
−1 −1/3
0 −2

]
Show that there does not exist a solution according to task a. Also, find
a residual generator for the system by hand.

Exercise 4.23.
This task is a theoretical task to aid in the solution of Task 4.24.

Let A,B ∈ Rn×n be symmetric matrices where B is positive definite. Consider
the problem of finding a scalar λi and the vector zi such that

Azi = λiBzi

This is the symmetric-definite generalized eigenvalue problem1. The task is to
show that the eigenvectors zi can always be scaled so that:

zTi Bzj = δij =
{

1 i = j

0 i 6= j

samt
zTi Azj = λjδij

Hint: The result is general, however, to make the task easier it is ok to assume
that λi 6= λj for i 6= j and that all eigenvalues are nonzero.

Exercise 4.24.
The task is about making an optimal trade-off between fault sensitivity and
attenuation of disturbances in the case where perfect decoupling of disturbances
is not possible. This can be for instance the case when the process is equipped
with too few sensors.

The Chow-Willsky algorithm is described in the course compendium and the
equation (6.31) describes the dependence of the consistency relation w.r.t. the
different included variables. If perfect decoupling were possible, w would be

1Compare with the normal eigenvalue problem, received when B = I and the symmetry
constraint in A and b is removed.
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selected so that (6.32) is fulfilled and that the x and V terms would disappear, so
that only the influence of the faults remained. Assume that (6.32) is not feasible,
i.e. perfect decoupling of both x and d is not possible. Then a consistency
relation can be created where the influence of the disturbances V is as small as
possible, while making the sensitivity to faults as large as possible.

This can be achieved by first decoupling all internal states x and then using
the available freedom to do the trade-off between sensitivity to faults and
attenuation of disturbances,

a) Show that decoupling of x is always possible and parametrize all w such
that x is decoupled in (6.31). I.e. decide the matrix N in the expression

wT = ζTN

such that for all w such that x is decoupled, there exists a corresponding
ζ.

b) The internal form for a consistency relation with a w that decouples x
then becomes:

h(y, u) = ζTNHV + ζTNPF

Explain how the optimization problem below, does a trade-off between
sensitivity in the faults and attenuation of the disturbances in the residual.

max
ζ

‖ζTNP‖22
‖ζTNH‖22

c) Solve task 4.23 (or simply use the result) to find a method to solve the
optimization problem in task b.

Hint:

1. The euclidean norm can be written as a matrix multiplication. For
instance ‖xTA‖22 = xTAATx

2. Rewrite the optimization criterion on the form

max
ζ

ζTAζ

ζTBζ

and switch basis ζ = Zv. To find the transformation matrix Z, use
the results from task 4.23.

d) In the file 422.mat there are state matrices for a model

ẋ = Ax+Buu+Bdd+Bff

y = Cx+Duu+Ddd+Dff

where perfect decoupling is not possible. Use Matlab to do a design with
optimal approximate decoupling of the disturbances d. (D)
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Chapter 5
Nonlinear Residual Generation

Exercise 5.1.
Assume a nonlinear first order system in state-space form

ẋ = −xu
y = x2

where y and u are known signals and x is an unknown internal state.

Find a consistency relation for the system.

Exercise 5.2.
Assume a nonlinear first order system, in the fault free case described on
state-space form according to

ẋ = −xu
y = x

where y and u are known signals and x is an unknown internal state.

a) Construct a residual generator using a state observer that detects faults
for the system

Choose the observer gain so that stability of the observer is guaranteed in
the fault free case.

b) Assume an additive fault in the sensor, i.e. the sensor equation is described
by

y = x+ f

State the internal form of the residual generator when K is chosen as in
task a.

47
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c) Assume a situation with a constant fault f = f0 and a constant control
u = u0. Explain, using the answer in task b, what/which u0 that are
problematic. Can this be seen in the model equation?

Exercise 5.3.
Observers are an important tool to generate residuals for nonlinear systems. A
fundamental step in observer design is to ensure stability, i.e. that the by the
observer estimated state converges towards the actual state.

For this aim, consider a simple pendulum with viscous damping in the joint,
according to

θ

u

Assume that the pendulum can be controlled by a torque at the joint. If
the physical constants are set so the coefficients of the model are simple, the
pendulum can be described by the differential equation

θ̈ + θ̇ + sin θ = u

Assume the process is equipped with an angle sensor. In state-space form, with
x1 = θ and x2 = θ̇, the model becomes

ẋ = f(x, u) =
(

x2
−x2 − sin x1 + u

)
y = x1

Construct a state observer of the form
˙̂x = f(x̂, u) +K(y − x̂1)

and select the gain K so that the observer is stable.

There are several ways to prove stability, but a basic method is called Lyapunov
theory. In short, the principle can be described as defining a measure of
magnitude, a Lyapunov function, on the estimation error och show that the
magnitude is decreasing with time.

One example of a Lyapunov functions that can be used in this case is V (e1, e2) =
e2

1 + βe2
2 where ei = xi − x̂i and β > 0. If one can select K so that V̇ < 0 one

knows that e(t)→ 0 when t→∞.

Hint: The inequality written below might be of help.

0 ≤ sin x− sin y
x− y

≤ 1 − π/2 ≤ x, y ≤ π/2

Exercise 5.4.
Assume that the following two equations represent consistency relations for
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two systems.
ÿ − 2ẏ + 3u̇− u = 0, ÿẏ − yu = 0

where y and u are known signals while their derivatives are unknown.

In the linear case it is easy to use the relation to generate residuals, if dynamics
is added according to Example 2.1 in the compendium.

Why isn’t it as easy in the nonlinear case?

Exercise 5.5.
Consider a system of water tanks according to the figure below.

FS

y
1

FS y
4

y
2

y
3

u

clogging

ḣ1 = a1u− a2
√
h1

ḣ2 = a2
√
h1 − a3

√
h2

y1 = h1

y2 = h2

y3 = a4
√
h1

y4 = a5
√
h2

The process is equipped with 4 sensors, y1 and y2 measure the level in the upper
and lower tanks respectively. The sensors, y3 and y4 measure the flow out of
the two tanks and are marked with FS (Flow Sensor) in the figure. Also given
is a simple nonlinear model of the process where the state variables hi represent
the water levels in the two tanks and u is the control signal for the pump, i.e.
the pump power

a) Model in an arbitrary manner, faults in the four sensors and in the pump.

b) Model clogging in the pipe between the upper flow sensor and the lower
tank.

c) In chapter 6 consistency relations for linear systems where developed, i.e.,
relations of the type

g(y, ẏ, ÿ, . . . , u, u̇, ü, . . . , f, ḟ , f̈ , . . . ) = 0

Develop, by hand, such relations based on the model equations for the
water tanks.

d) Assume that, not only y, but also ẏ, ÿ, . . . (and the corresponding for
u) are known. Write down residual generators based on the consistency
relations developed in task c. Write down both the calculation form as
well as the internal form of the residual generators.
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Exercise 5.6.
Again consider the watertank system in Task 5.5 and assume that the derivatives
of the known signals are so noisy that derivatives are hard to estimate. Denote
the sensor faults f1, . . . , f4 and pump fault fu.

a) Take a consistency relation from Task 5.5 that is sensitive to f1 and fu.
Add dynamics and write the residual generator on state-space form where
no derivatives of known signals are required in the calculation form.

b) Find a consistency relation that is sensitive to f3 and fu and no other
faults. Use the same procedure as in task a to get rid of the derivative of
y3, illustrate why task b is more complicated than task a. The residual
generator should work in all operating points, even when the upper tank
is empty, i.e. when h1 = 0.

Exercise 5.7.
Again consider the watertank system in Task 5.5 where residual generators
were constructed by first deriving consistency relations and then in Task 5.6
handling that derivatives of known signals are unknown.

Now instead assume that we want to construct residual generators directly,
using observer methodology. Denote the sensor faults f1, . . . , f4 and pump fault
fu. Construct, if possible, a residual generator that is

a) sensitive to f1 and f2 but not sensitive to fu, f3 and f4.

b) sensitive to f3 and f2 but not sensitive to fu, f1 and f4.

c) sensitive to f2 but not sensitive o fu, f1, f3 and f4.

d) sensitive to f2 but not sensitive to fu, f1, f3 and f4 where fu is assumed
to be constant/slowly varying.

e) Reflect over the differences and difficulties in designing residual generators
using consistency relations versus observers for this system.

Exercise 5.8.
Consider the system

ẋ1 = g1(x1, f1, u)
ẋ2 = g2(x1, x2)
y1 = h1(x1)
y2 = h2(x2) + f2

where x1 ∈ R3, x2 ∈ R, f1 och f2 are two modeled faults, gi och hi are nonlinear
functions. The fault free case corresponds to f1 = f2 = 0.

a) Assume that both faults vary slowly and can be assumed constant. Con-
struct an observer that estimates both faults.

b) Using the same constant fault assumption construct, through an observer,
a residual generator where the residual is sensitive to fault f2 but not f1.

c) Redo task b but with sensitivity to f1 and not f2.
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d) Which constant fault assumption, f1 or f2, can most easily be removed
and still solve task b and c?

Exercise 5.9.
Consider a system described by the following differential equation

ẏ + θy − u = 0

where θ is a constant, i.e. θ̇ = 0.

Find a consistency relation that is independent of θ. That is, find a function g
such that the following holds

∀θ. g(y, ẏ, ÿ, . . . , y, u̇, ü, . . . ) = 0

Reflect on how the task relates to diagnosis.

Hint: Differentiate!

Exercise 5.10.
Consider the following nonlinear differential equation

ẋ = −x2 + u

y = x3

a) Validate that a solution to the model satisfies the consistency relation

ẏ3 + 27ẏy2u+ 27y4 − 27y2u3 = 0

?b) Derive the above consistency relation in the manner outlined in the
compendium, that is, eliminate the state variable x from the equations

y − x3 = 0
ẏ − 3x2ẋ = ẏ − 3x2(−x2 + u) = 0

?c) Represent the model equations with the left hand side of the equations in
task b, i.e.

f1 = y − x3 f2 = ẏ − 3x2(−x2 + u)

The elimination stage in task b can be written as a linear combination of
fi, i.e. there are polynomials h1 and h2 such that

ẏ3 + 27ẏy2u+ 27y4 − 27y2u3 = h1f1 + h2f2

Since fi = 0 it will also hold that h1f1 + h2f2 = 0, i.e. the consitency
relation is derived.

Find the polynomials h1 and h2.
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Exercise 5.11.
Assume the static system

y(t) = θ1u1(t) + θ2u2(t)

where θi are constants modeling two different faults. In the fault free case
θi = 1, i = 1, 2.

A residual should be constructed where variations in θ2 are decoupled. For
simplicity we assume that ui and y are measured on two different occations
(generalization to N points is possible).

There are two obvious ways to construct r

1. Assume θ1 = 1 and estimateθ2 (e.g. using least squares) from the two
measurements. Then insert θ̂2 in the equations to get a residual generator
that does not react when θ2 6= 0.

2. Write the model equations for both time steps, i.e.

y(t) = θ1u1(t) + θ2u2(t)
y(t− 1) = θ1u1(t− 1) + θ2u2(t− 1)

Derive a residual generator by elimination θ2 from the equation system.

a) Write a residual generator according to principle 1

b) Write a residual generator according to principle 2

c) Find the relations between the residual generators in task a and b.

Exercise 5.12.
Here the air intake system in a regular SAAB production engine for passenger
cars should be supervised. The system is described by nonlinear differential
equations and the model is described in detail further down in the task.

The task is to construct a nonlinear diagnosis system, capable of detecting faults
in one or more of the sensors in the system.

• The throttle angle sensor

• The air massflow sensor

• The pressure sensor in the intake manifold

To test the diagnosis system there are fault free measurements of the actual
engine available in the file faultfree.mat. Measurements with faults are in
the file fault.mat. The measurement with faults is 60 s long and fault free
the first 10 s, then the three faults occur, one by one, for 15 s each. Between
each of the faults there is a 2 s fault free pause. A Simulink model of the air
intake system is in the file nonlinsim.m. Note that the actual throttle angle α
is unknown (that is, the angle given by the accelerator pedal), only the (possibly
incorrect) sensor signal αs is known.

All files, including Simulink files and measurement data, are in the library
Engine/. The functions f and g in the model are in the files fmat2.m and
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gmac2.m, and the constant in the model

RTman
Vman

≈ 3.5964

A model for the air intake system of a SI-engine
The SI(Spark Ignited)-engine is a non-linear plant and for the purpose of
diagnosis, a simple and accurate model is desirable. In the air system application
there is no need for extremely fast fault detection, therefore a so called mean
value model is chosen. This means that no within cycle variations are covered
by the model. The engine is a 2.3 liter 4 cylinder SAAB production engine.
The measured variables are the same as the ones used for engine control. A
schematic picture of the whole engine is shown in Figure 5.1. The engine
has electronic throttle control (drive-by-wire), which is basically a DC-servo
controlled by a PID controller. The part that is considered to be the air intake
system is everything to the left of the dashed line. Also the engine speed must
be taken into account because it affects the amount of air that is drawn into
the engine.

air mass-flow

manifold pressure

engine speed

throttle

Figure 5.1: The basic SI-engine.

The model of the air intake system is continuous. It is derived from the ideal
gas law and has one state which is the manifold pressure. The process inputs
are the throttle angle α, and the engine speed n. The outputs are throttle angle
sensor αs, mass air flow sensor ṁair,s, and manifold pressure sensor pman,s.
The equations describing the fault free model can be written as

ṗman = RTman
Vman

(ṁair − ṁac) (5.1)

ṁair = f(pman, α) (5.2)
ṁac = g(pman, n) (5.3)

The variables and its units are summarized and explained in Table 5.1. The
model consists of a physical part, equation (5.1), and a black box part, the
functions (5.2) and (5.3). Even if variations in ambient pressure and temperature
do affect the system, they are here assumed to be constant.
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pman [kPa] manifold pressure
R [J/(g K)] the gas constant
T [K] manifold air temperature which is

assumed to be equal to the ambient
temperature

V [m3] manifold volume
ṁair [kg/s] air mass flow into the manifold and is

equal to the air flow past the air
mass flow meter

ṁac [kg/s] air mass flow out from the manifold
f static function describing the flow

past the throttle
g static function describing the flow

into the cylinders
α [deg] throttle angle (unknown)
n [rpm] engine speed

Table 5.1: Symbols and units.



Chapter 6
Multiple fault isolation

Exercise 6.1.
The purpose of this exercise is to give understanding of minimal diagnoses.
Which of the diagnoses in Table 1.1 in the course literature are minimal diag-
noses?

Exercise 6.2.
This exercise explains the basic ideas of diagnosis and conflict. The Polybox
example is shown in Figure 6.1. Assume that we observe that a = 3, b = 3,

M2

M3

A1

M1

A2

c

f

g

x

y

z

b

d

e

a

Figure 6.1: Polyboxexemplet.

c = 2, d = 1, e = 5, f = 9 and g = 12.

a) Verify using Definition 2.1 in the course literature that

OK(M1) ∧OK(M2) ∧OK(M3) ∧OK(A1) ∧ ¬OK(A2)

is a diagnosis. Write down explicitly the three sets in the definition,
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i.e., the sets describing the modelM, the observations obs, and assigned
modes D.

b) Derive a conflict using Definition 3.1 in the course literature.

c) Use definition 3.2 to evaluate if the derived conflict is minimal.

Exercise 6.3.
This exercise gives understanding how diagnoses can be computed given a set
of conflicts. Consider a system with three components, A, B, and C, and the
following conflicts

π1 = OK(A) ∧OK(B)
π2 = OK(B) ∧OK(C)

are detected, i.e., residuals sensitivite to faults in A and B, and B and C,
respectively, have triggered. Also, assume that each component can either be
intact OK or broken ¬OK and there are no models for broken components.

a) Use Theorem 3.3 to show that

D1 = OK(A) ∧ ¬OK(B) ∧OK(C)
D2 = ¬OK(A) ∧OK(B) ∧ ¬OK(C)

are diagnoses but

D3 = OK(A) ∧OK(B) ∧ ¬OK(C)

are not.

b) Instead of using the logic notation in task a, use the set notation and
Theorem 3.5 to show tha same thing as in task a.

c) Compute the single-fault diagnoses by taking the intersection of the
negated conflicts.

Exercise 6.4.
This exercise show how the information about the fault sensitivities of the
residuals in a decision structure can be used for multiple-fault isolation by first
computing conflicts and then diagnoses.

a) Given the following decision structure

A B C
r1 0 X X
r2 X 0 X
r3 0 X 0

write, using logic notation, generated conflicts when no residual have
triggered and when the residual r2 has triggered, respectively.

b) Assume that all three residuals have triggered. Compute the diagnoses by
using the decision structure as before, i.e., by computing the intersections
of the decisions from each test. Also, compute the minimal diagnoses
by first writing down the conflicts and the use Theorem 3.3. Compare
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and comment the differences between the diagnoses computed from each
method.

Exercise 6.5.
This exercise deals with multiple-fault isolation.Consider a system with com-
ponents A, B, C, and D. Each component has two modes, OK or ¬OK. The
behavior is unknown in mode ¬OK.

a) Assume that we have a diagnosis system based on a set of tests and the
decision structure for 5 of the tests is:

A B C D
T1 X X
T2 X X
T3 X X
T4 X X
T5 X X

Write doen for each test which conflict is generated when the test quatity
exceeds its threshold.

b) Assume that the tests triggers in ascending order, i.e., T1, T2, . . . , T5. Use
the algorithm in Chapter 3 in the course literature to compute the minimal
diagnoses. You can use the lattice to simplify your calculations.

ABCD

ABC ABD ACD BCD

AB CDBDBCADAC

A DB C

[]

Exercise 6.6.
This exercise illustrates the comleity problems that occurs when multiple-fault
isolation is performed by extending the decision structure with all multiple faults
and computing diagnoses using intersections according to (3.17). A system has
30 components and each component has four behavior modes, including NF.
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a) The number of columns in the extended decisions structure is equal the
total number of system behavior modes. How large is the total number of
system behavior modes?

b) The intersection operation in (3.17) contains sets Si describing the de-
cisions taken from each test. Assume that diagnosis test 1 test the null
hypothesis that component 1 is in mode NF. How many elements would
the set S1

1 contain?

c) If only, fault-free, single fault, and double fault modes are considered,
what will the total number of system behavior modes be?

d) With the constraint in task c, how many elements are in set S1
1?

Exercise 6.7.

B

D

L

S

R

Figure 6.2: A simple circuit.

The circuit in Figure 6.2 contains 5 components: a switch (S), a resistor (R), a
LED (D), a battery (B), and a lamp (L).

The resistor and the LED are assumed to work and the other components can
have the following modes: The switch can be OK OK(S), stuck open SO(S), or
stuck closed SC(S). The battery can be OK(B) or discharged ¬OK(B). The
lamp can be OK OK(L) or broken ¬OK(L). Also multiple-faults can occur.
Observations are the requested position of the switch, if the LED is lit, and if
the lamp is lit.

a) Write down all minimal conflicts for all 8 combinations of the three
observations.

b) For all combinations of observations, write down all diagnoses. Indicate
for each observation, which diagnoses are minimal.

c) Are all minimal conflicts characterized by the minimal conflicts?

d) Are all diagnoses characterized by the minimal diagnoses?

Exercise 6.8.
Two lamps, L1 and L2 are connected in parallel over a battery B, see Figure 6.3.
Assume that fault models are missing, i.e., the behavior of the components
are only known in the fault-free case. If the battery is working, it generates a
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voltage. The voltage is denoted E such that E = true if there is a current and
false otherwise. Assume that only lamp L2 emits light.

1
L

2
LB

Figure 6.3: A simple circuit with two lamps and a battery.

a) Write the model and the observations as logical expressions.

b) Use Definition 2.1 to compute the diagnoses and Definition 2.2 to compute
the minimal diagnoses?

c) What happens if we assume ”exoneration”? Describe with logics what is
included to the model. Use the expressions to compute new diagnoses.

d) What must be added to the model to get an intuitively correct diagnosis?

e) Improve the model according to your answer to task d. Again, use the
definition of a diagnosis to compute the diagnoses.

Exercise 6.9.
Two inverters are connected in series according to Figure 6.4. Each inverter has
three behavior modes: the inverter is OK OK, the output is grounded SA0 and
the inverter is short-circuited SHORT . Assume that x can be selected freely
and the system behavior mode cannot change.

NOT

zx

BA

NOT

Figure 6.4: Two inverters connected in series.

a) First, let the input be x = 1 and the output z = 0. Find all conflicts and
compute all diagnoses.

b) To reduce the number of diagnoses in a, the input is set to x = 0. The
value of z becomes 1. Find all new conflicts and write down the diagnoses.

Exercise 6.10.
Prove Theorem 3.2 and Theorem 3.3.

Exercise 6.11.
Prove Theorem 3.5 and Theorem 3.6.
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Exercise 6.12.
A system has three different faults. Assume that we have three test quantities,
sensitive to each fault.

a) Write down the decision structure given that only single-faults can occur
and noise affects the decisions. The behavior modes are denoted NF , F1,
F2 och F3.

b) Assume now that also double-faults can occur, i.e., the behavior modes
F12, F23 och F13 are added. Extend the decision structure with these
modes.

c) Which behavior modes can be isolated uniquely?

d) Propose new test quantities that would be needed to isolate all behavior
modes.

Exercise 6.13.
Consider the polybox-example in Section 3.4.6. Assume that we work in a
noise-free environment, for example, in a computer.

a) Show that A1 cannot be isolated from A1&M1.

b) Show that there are fault magnitudes in mode A1&M1 that are isolable
from all fault magnitudes in mode A1.

c) Which faults in mode A2&M1 can be explained by a fault in mode
M2&M3 and which faults in mode M2&M3 can be explained by a fault
in mode A2&M1?

d) Consider the following four test quantities:

T0 =|f − ac− bd|+ |g − bd− ce|
T1 =|g − bd− ce|
T2 =|f − g − ac+ ce|
T3 =|f − ac− bd|

Write down the decision structure for single and multiple-faults. Hint:
realize that several modes are “identical” and can be considered in common,
then the analysis will be much shorter.

e) Redo the tasks a-c by only using the decision structure from the answer
in d.

f) Given the response T0 6= 0, T1 6= 0, T2 6= 0 och T3 = 0, which are the
correct diagnoses?

g) Assume that all X in the decisionstructure wrongly are changed to 1.
Which diagnoses do you get for the same response as in f?



Chapter 7
Probabilistic Diagnosis

Exercise 7.1.

a) During an experiment, 20 medical therapists performing HIV tests were
asked: what is the probability of HIV infection if a random person, not
belonging to any risk group, leaves a positive HIV test?

In a population without risk behavior it is assumed that 1 of 10 000 is
infected statistically. The test will always give a positive response if a
person is infected. For a non-infected person, the probability is 1 in 10 000
to get a positive reponse.

What is the correct answer to the question? If the test is positive, how
big is the change that the person really is HIV positive?

b) Assume that the person is from a risk group where 1 of 100 are infected.
What will the answer be in task a?

c) Discuss how the previous tasks relate to the diagnosis problem.

Exercise 7.2. (D)
Consider a residual generator and residual r is constructed to detect a fault f1
and an alarm is triggered when r exceeds a given threshold J .

First, assume that the fault f1 is the only fault that can occur and the a priori
probability of the fault P (f1) = 0.1. The threshold J is selected such that
the probability of false alarm given r is P (alarm|FM = NF ) = 0.05 and the
probability of detecting the fault is P (alarm|FM = f1) = 0.9.

a) Write down the probabilities for P (f1) and P (alarm|f1).

b) It is observed that the test has triggered, i.e., r > J . Calculate the
probability of a fault f1.
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It turns out after further analysis that another fault f2 can occur, which can be
assumed as commonly occuring as f1, independent of f1, and can trigger r. The
sensitivity of the residual given single-fault and double-faults is determined as

P (alarm|FM = f2) = 0.60
P (alarm|FM = f1&f2) = 0.95.

c) Write the conditional probability tables for P (alarm|f1, f2) and P (f2).
Again, assume that r triggers. Calculate the probabilities for each fault
f1 and f2.

d) What is the probability that the test triggers?

e) Calculate the probability for each fault mode FM ∈ {NF, f1, f2, f1&f2}
given that r has triggered.

f) Implement the problem using the software GeNIe and verify the results
from previous tasks b, c, and d.

Exercise 7.3. (D)
The purpose of this task is to understand how conditional probability tables can
be used to model more general situations and to use dedicated software to solve
these type of problems. In one example, taken from (S. Russel and P. Norvig,
2003), there is a burglary alarm which also triggers to smaller earthquakes. If the
alarm sounds, your neighbours, John and Mary, have promised to call you. This
situation has five binary stochastic variables, B (Burglary), E (Earthquake),
A (Alarm), J (John calls), and M (Mary calls). A Baeysian Network of this
situation is given by

Burglary Earthquake

Alarm

JohnCalls MaryCalls

where the a priori probabilities of burglary and earthquake are 0.001 and 0.002
respectively and the other probability tables are

B E P (A|B,E)
false false 0.001
false true 0.29
true false 0.94
true true 0.95

A P (J |A)
false 0.05
true 0.90

A P (M |A)
false 0.01
true 0.70

Use the software GeNIe to calculate the probabilities of

• burglary given that both Mary and John calls,

• earthquake given that both Mary and John calls,

• that Mary calls given a burglary,
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• that John calls given no burglary,

i.e., the following probabilities

P (B|j), P (B|m), P (E|j,m), P (M |b), P (J |¬b).

Exercise 7.4. (D)
Consider three test quantities T1, T2, T3 to monitor three faults f1, f2, and f3.
The test quantities have the decision structure

NF f1 f2 f3
T1 0 0 X X
T2 0 X 0 X
T3 0 X X 0

From a large amount of measurements, probabilites that each test will trigger
for each fault mode have been estimated, both single-faults and double-faults,
which is summarized in the following matrix

f1 f2 f3 f1&f2 f1&f3 f2&f3
T1 0.05 0.80 0.50 - - 0.85
T2 0.40 0.05 0.85 - 0.90 -
T3 0.90 0.65 0.05 0.98 - -

The underlined probabilities in the diagonal of the single-faults corresponds
to the false alarm rates of each test quantity. If a fault does not affect a test
quantity is represented by a dash. It means for example that

P (T1|f1&f2) = P (T1|f2)

The a priori probability of each fault is P (fi) = 0.1 and the faults are assumed
independent of each other.

a) Calculate the minimal diagnoses given the decision structure if T1 and T2
have triggered.

b) Implement the problem above using the software GeNIe. Use the stochastic
variables f1, f2, and f3, for each fault, and T1, T2, and T3, for each test.

c) Assume that it is observed that T1 and T2 have triggered but not T3.
What is the probability of each fault? It is assumed that the faults occur
independently of each other, explain why the probability of a fault-free
system

P (NF |t1, t2,¬t3) = P (¬f1,¬f2,¬f3|t1, t2,¬t3)

and cannot be calculated as∏
i

P (¬fi|t1, t2,¬t3).

d) The consistency-based diagnosis f1&f2 has low probability, actually lower
than, for example, f2&f3. Explain why?
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e) Assume that, similar to task c, T1 and T2 have triggered but T3 has not
been evaluated, i.e., we do not know if it has triggered or not. How will
this affect the situation compared to c? Explain the difference.

Exercise 7.5. (D)
In task 7.4, the faults are modeled as binary stochastic variables. One alternative
could be to model all fault modes, but it would scale badly since the number of
fault modes grows exponentially with number of considered multiple-faults.

Still, it can be interesting to add variables to represent fault modes as illustrated
in this task.

a) In task 7.4-c it was concluded that probability of a fault-free system cannot
be directly calculated from the conditional probabilities of each fault. To
automatically compute the probability of a fault-free system, add a new
stocahstic variable, called Fault, in the Bayesian Network. The variable
should be false if the system is fault-free and true if at least one fault
is present. Fault will be a deterministic function of the fault variables.
Write down the function and the probability of a fault-free system.

b) Assume that we want to use the Bayesian Network to isolate faults only,
i.e., we know that there is a fault and want to compute the probabilities

P (Fi|t1, t2,¬t3, fault), i = 1, 2, 3

Use the network from task a to calculate these probabilities. Comment
what are the differences with respect to task 7.4-c.

c) In the same way, add noted for all 8 fault modes (fault-free, 3 single-faults,
3 double-faults, and triple-faults). Compute the probabilities given the
test results.

Exercise 7.6. (D)
Model the system from task 7.4 using canonical models, leaky-or, according
to the discussion in Section 8.3.1 in the course book and implement in the
software GeNIe where the node type is called NoisyMax which is a generalized
Leaky/Noisy-Or. Discuss the differences in the results, for example compared
to b and c in task 7.4.

Exercise 7.7. (D)
A probability-based diagnosis system is implemented for a simple watertank
system where an actuator controls a pump that pumps water in a tank and
sensors measure the waterlevel and flow out of the tank. The purpose in this
task is to practice probability-based modeling.

For simplicity, assume that the state of the flows and water level is either high
or low. If the actuator is high, the probability is high that the water inflow is
high and vice versa. A higher inflow in the tank increases probability of a high
water level in the tank and a high water level a large outflow. The sensor values
contain uncertainties.

a) Model the watertank and sensors as a Bayesian Network and implement
it in a software. Verify that the model give reasonable results for different
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actuator values and observations. Suggested stochastic variables are:
pump reference signal R, pump outflow U , tank water level H, tank
outflow W , and sensors Yh and YW .

Faults that should be detected are leakage in the tank, clogging in the outflow
pipe, pump failure, and sensor faults. A leakage increase the probability of low
water level and clogging that the outflow is low even though the water level is
high.

b) Extend the model from the previous task with the different faults. Verify
that the model gives reasonable results for different actuator values and
observations.
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Chapter 8
Fault Effect and Fault Tree Analysis

Exercise 8.1.

a) Gör en process-FMEA som beskriver en lagning av en cykelpunktering.
De processsteg som åtminstone ska ingå är: sökning efter läckage, lagning
av slang, kontroll av insidan på däcket och montering av däck på fälg.

Processsteg Felsätt Felorsak Feleffekt Riskanalys
OCC SEV DET RPN

b) För att analysera resultatet från FMEA har riskbedömningen i tabell 8.1
tagits fram.

RPN Bedömning
60-250 Icke tolererbar risk.
30-59 Begränsad tolererbar risk.
1-29 Tolererbar risk.

Table 8.1: Riskbedömning genom RPN.

Vilka av momenten som analyserades i FMEA måste åtgärdas?
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c) Ovanstående riskbedömning använde både OCC, SEV och DET. En alterna-
tiv risk-bedömning kan ställas upp enligt tabell 8.2. (IT = Icke tolererbar
risk, BT =Begränsad tolererbar risk, T = Tolererbar risk.)

SEV
5 4 3 2 1

9-10 IT IT IT BT T
7-8 IT IT BT BT T

O
C
C

5-6 IT BT BT T T
3-4 BT BT T T T
1-2 T T T T T

Table 8.2: Riskbedömning genom SEV och OCC.

Vilka av momenten som analyserades i FMEA måste åtgärdas?
Blev det någon skillnad mot resultatet i b)?

Exercise 8.2.
Bilda ett felträd där topphändelsen är att cykeln inte är lämplig att använda
och betecknas A. Följande fel ska vara med i felträdet och analyseras i detalj.
B: Cykeln rullar trögt.
C: Ingen bromsverkan.
D: Belysningen uppfyller inte lagkraven.

Exercise 8.3.
Betraka felträdet som beskriver ett bromssystem i figur 18.5 i kompendiet
Bergman & Klefsjö. Antag att X, Y och W är oberoende händelser. Sanno-
likheten att X respektive Y, inträffar under en 10-årsperiod förutsatt en normal
service är 0.1%, medan W inträffar endast med 5ppm (5 · 10−6) sannolikhet.
Vad är sannolikheten att bromsen slutar att fungera under 10-årsperioden?

Exercise 8.4.
Finna alla minimala avbrott i felträdet som är givet i facit till uppgift 8.2.



Part II

Answers
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Answers for Chapter 1
Introduction to diagnosis

Exercise 1.1.

a) F2 and F3

b) The conclusion is that it can any mode.

c) Either the process is in F2 or in F3.

d) The single fault diagnoses are {NF,F1, F2, F3}.

e) The single fault diagnoses are {F2, F3}.

f) The single fault diagnosis is F3.

Exercise 1.2.

a)

T0 =2 > 1
T1 =0 < 1
T2 =2 > 1
T3 =2 > 1

Tests 0, 2 och 3 reacts.

b) The diagnoses become A1 och M1. The true mode, A1, is a diagnosis,
but the diagnosis system can not determine that it must be A1 but it
can also be M1. A closer study of the decision structure shows that the
diagnosis system never can separate faults of types M1 and A1 since A1
and M1 affect the same set of tests.
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Exercise 1.3.

a) The behavior modes are fault free (NF ), fault in sensor 1 (F1), fault in
sensor 2 (F2) and fault in actuator (F3). The three singular faults can
also be combined to produce a further 4 multiple faults.

b) The fault signals can e.g. be introduced as follows:

ẋ = u+ f3
y1 = x+ f1
y2 = x+ f2

(1.1)

In NF , f1 = f2 = f3 = 0. In Fi, fi is non zero and the other two fault
signals are 0.

Exercise 1.4. Examples on static redundancy are

y1 − y2 = 0

and on temporal redundancy
u− ẏ1 = 0

Exercise 1.5.

a) Examples of two residuals are

r1 = y1 − y2

r2 = u− ẏ1

b) By replacing the the known variables in the residuals with the model
equations

ẋ = u+ f3
y1 = x+ f1
y2 = x+ f2

fås

r1 = y1 − y2 = (x+ f1)− (x+ f2) = f1 − f2

r2 = u− ẏ1 = (ẋ− f3)− (ẋ+ ḟ1) = −ḟ1 − f3

c) The decision structure for the residuals in the answer on the (b)-exercise
becomes:

NF F1 F2 F3
r1 0 X X 0
r2 0 X 0 X

Exercise 1.6.

a)

|r1| = |y1 − y2| = |0− 1| = 1 > 1/2 → larm
|r2| = |u− ẏ1| = |1− 0| = 1 > 1/2 → larm
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b) With the residuals from the solution the diagnosis becomes F1, i.e. sensor
1 is broken. Observe that other selections of residuals can produce other
modes as diagnoses. F1 should however be a diagnosis regardless of which
residuals you have selected.

Exercise 1.7. A correct state space model is

ω̇ = −µ+ f1

J
ω + k + f2

J
u

ϕ̇ = ω

y =
[
ϕ+ f3
ω + f4

]
ḟ4 = 0

where fi parametrizes fault i. Increased viscous friction gives f1 > 0.

Exercise 1.8. The model becomes

Jmϕ̈m = −Fv,mϕ̇m + (kT + f1)u+ τspring

τspring = k(ϕa − ϕm) + c(ϕ̇a − ϕ̇m)
(Ja + f3)ϕ̈a = −τspring + f4

y = ϕm + ε(f2)

ε(f2) =
{
N(0, σ2

1) Fault free case
N(0, σ2

2) Ground wire torn off, σ2 > σ1

where fi parametrizes fault i.

Exercise 1.9.

a) No redundancy exist. For arbitrary y1, ẏ2 and u values there are a d value
so that d+ y1 + ẏ2 − u = 0. The model can therefore not be rejected.

b) The relation y1 − y2 + 4u = 0 shows that static redundancy exist.

c) The relation 2ẏ1− y1− y2 + 4u = 0 shows that temporal redundancy exist.
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d) The relation 2ẏ1 + 3u̇− y1 − y2 + u = 0 shows that temporal redundancy
exist.

e) No redundancy exist.

Exercise 1.10.

b) P (larm|NF )

c) P (larm|NF ) = 2φ(−J)

d) P (inget larm|f = f0)

e) P (inget larm|f = f0) = φ(J − f0)− φ(−J − f0)

f) The false alarms probability is 0 and the probability for a missed detection
is 0 for all sizes of the fault f = f0 6= 0.

Exercise 1.11.

a) θ = 0 and θ ∈ R

b) For the case (I) the following applies:

P (faulty conclusion|θ 6= 0) = P (|T | ≤ J |θ 6= 0)
= P (no alarm|θ 6= 0)

i.e. the probability for a faulty conclusion is the same as the probability
for a missed detection. Let pMD(θ) denote the probability for missed
detection of a fault θ ∈]0,∞[ and pFA the false alarm probability. The
function pMD(θ) is a monotonic decreasing function in θ where pMD →
1− pFA = 0.99999 when θ → 0 and pMD → 0 when θ →∞. This means
that for small faults it is probable that the wrong conclusion is drawn, but
for sufficiently large faults the probability for a faulty conclusion become
arbitrarily small. This means that the view I) only is sound if all faults
are av sufficient size, i.e. θ 6= 0 implies that |θ| > θmin where θmin is
sufficiently large.

for the case (II) the probability for a faulty conclusion is zero since the
outcome from the test does not say anything about the value of θ. Since
no conclusion is drawn we do not know if the diagnosed system is faulty
or not, which is the drawback this more cautious view (II).

Exercise 1.12. A simplified model under the assumption y(t) = 0 is

(b+ ∆b)u = 0

When b+ ∆b 6= 0 then u = 0. The impact on the system from the fault ∆b is
given by ∆bu which means that changes in ∆b are not visible since u = 0. One
possible solution is to “exercise” the system once and a while, i.e. excite the
system by making small steps with u for finding changes in ∆b.



75

Exercise 1.13.

a)

Observation Diagnosis
Diode Light bulb Switch
off off open/closed BU
off lit open/closed no diagnoses
lit off open NF,SÖ,LT
lit off closed SÖ,LT
lit lit open SS
lit lit closed NF,SS

b) By changing the desired position of the switch it is possible to uniquely
isolate faults NF, SS and BU. The fault modes SÖ and LT can be isolated
from the other modes but cannot be separated.

Exercise 1.14.

a) The observation space can, with z(t) = (u(t), yw(t), yp(t)), be written as

O(NF ) = {z(t) : ∀tW (t) = f(p(t)) k(u(t)), yw(t) = W (t), yp(t) = p(t)} =
= {z(t) : ∀t yw(t) = f(yp(t)) k(u(t))}

O(Fa) = {z(t) : ∃a∀t yw(t) = f(yp(t)) k(u(t))a, a 6= 1}
O(Fg) = {z(t) : ∃g ∀t yw(t) = g f(yp(t)) k(u(t)), g 6= 1}

b) It can be seen directly from the answer in the a-exercise that O(Fa) =
O(Fg) and that the faults thereby not can be isolated from eachother.

for example, assume that the sensors and the actuator has the values
(yw, yp, u) = (ŷw, ŷp, û) so that

ŷw 6= f(ŷp) k(û)

According to the model

ŷw = k f(ŷp) k(û)

where k = g a 6= 1. From this it is not possible to determine if a = 1 and
g = k 6= 1 or if g = 1 and a = k, i.e. the faults cannot be isolated from
each other.
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Answers for Chapter 2
Fault isolation

Exercise 2.1.

a)

NF F1 F2 F3
T1 0 X X X
T2 0 0 X X
T3 0 X 0 X
T4 0 X X 0

b)
NF Fu F1 F2

T1 0 X 0 X
T2 0 X X 0

Exercise 2.2.

a)

S0
1 ={NF,F1, F2, F3} S1

1 ={F1, F3}
S0

2 ={NF,F2, F3} S1
2 ={F1, F2}

S0
3 ={NF,F1, F2, F3} S1

3 ={F2}

b)

T1 < J1 ⇒ S1 = S0
1 = {NF,F1, F2, F3}

T2 > J2 ⇒ S2 = S1
2 = {F1, F2}

T3 > J3 ⇒ S3 = S1
3 = {F2}

The diagnosis decision S then becomes:

S =
⋂
Si = {F2}
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c)

T1 > J1 ⇒ S1 = S1
1 = {F1, F3}

T2 < J2 ⇒ S2 = S0
2 = {NF,F2, F3}

T3 < J3 ⇒ S3 = S0
3 = {NF,F1, F2, F3}

The diagnosis decision S then becomes:

S =
⋂
Si = {F3}

Exercise 2.3.

a) In case I S = {f3} and in case II S = {f3}.

b) In case I S = {f2} and in case II S = {f1, f2}

c) In case I S = {} and in case II S = {f2}

d) In case I S = {} and in case II S = {}

e) The diagnoses calculated according to structure I is a subset of the
diagnoses calculated according to structure II.

Exercise 2.4. The decision structure defines the following decision S0
k and

S1
k:

S0
1 ={NF,F1, F2, F3} S1

1 ={F2}
S0

2 ={NF,F1, F2} S1
2 ={F2, F3}

S0
3 ={NF,F1, F2, F3} S1

3 ={F1, F3}

The conclusions of the singular tests are

T1 > J1 ⇒ S1 = S1
1 = {F2}

T2 > J2 ⇒ S2 = S1
2 = {F2, F3}

T3 < J3 ⇒ S3 = S0
3 = {NF,F1, F2, F3}

and the diagnosis decision S then become

S =
⋂
Si = {F2}

If the test quantity T3 goes above the threshold J3, i.e. T3 > J3, because of a
disturbance the diagnosis decision becomes S = S1

1 ∩ S1
2 ∩ S1

3 = ∅.

Exercise 2.5.

a) There exists a fault signal fi 6= 0 so that fi is a diagnosis but not NF.

b) Assume that we have a fault f1 i.e. that f1 6= 0 and f2 = f3 = f4 = 0. This
means that r1 6= 0 and r2 6= 0 i.e. both tests generate alarms. With this
test turnout the only diagnosis is f1 according to the decision structure.
Since f1 is a diagnosis but not NF this means that f1 is detectable.
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c) All faults that affect any of the residuals are detectable, i.e. f1, f2 and f3
are detectable but not f4.

d) There exists a fault signal fi 6= 0 so that fi is a diagnosis, but not fj .

e) If f2 6= 0 and f1 = f3 = f4 = 0 then r1 6= 0 and r2 = 0. The diagnoses
are then f1 and f2. This means that f2 is isolable from f3 and f4 but not
from f1.

f) The detectable faults are f1, f2 and f3. The isolablity is specified in the
following table:

f1 is isolable from f2, f3 and f4
f2 is isolable from f3 and f4
f3 is isolable from f2 and f4
f4 is not isolable from any other fault.

The isolability matrix becomes

f1 f2 f3 f4
f1 X 0 0 0
f2 X X 0 0
f3 X 0 X 0
f4 X X X X

Exercise 2.6.

a) Let z = (u, y1, y2)′. Define

O(NF ) = {z|∃x ẋ = u ∧ y1 = x ∧ y2 = x}

and
O(f1) = {z|∃x∃f1 ẋ = u ∧ y1 = x+ f1 ∧ y2 = x}

The corresponding definitions can be made for faults f2 and f3. Fault fi
is detectable in the model if

O(fi) \O(NF ) 6= ∅

According to the definition all faults are detectable.

b) A fault fi is isolable from a fault fj if

O(fi) \O(fj) 6= ∅

According to the definition all faults are uniquely isolable, i.e. the isola-
bility matrix is

f1 f2 f3
f1 X 0 0
f2 0 X 0
f3 0 0 X

c) All faults are detectable with the diagnosis system. So there is no difference
between the detectability of the diagnosis system and the models. The
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isolability of the diagnosis system is given by

f1 f2 f3
f1 X 0 0
f2 X X 0
f3 X 0 X

The difference between the isolability of the diagnosis system and the
models is that f2 and f3 are not isolable from f1 with the diagnosis system.

d) Making f2 and f3 isolable from f1 with a residual r3 requires that the
residual reacts on f2 and f3 but not on f1. The expanded decision
structure becomes

NF f1 f2 f3
r1 0 X X 0
r2 0 X 0 X
r3 0 0 X X

e) For creating a residual that is not sensitive to f1, f1 is considered an
unknown variable, i.e. f1 is decoupled. This gives that the residual
becomes

r3 = ẏ2 − u = ḟ2 + f3

where the internal form shows that the residual has the desired fault
sensitivity.

Exercise 2.7. The requirements for detectability gives that all columns in
the decision structure must be non zero. The zeros in the isolability matrix
puts the following demands on the decision structure:

position NF f1 f2 f3
(1, 2) 0 X 0 ?
(1, 3) 0 X ? 0
(2, 1) 0 0 X ?
(3, 1) 0 0 ? X

a) The following decision structure fulfills the requirements:

NF f1 f2 f3
r1 0 X 0 0
r2 0 0 X X

the detectability and isolability becomes exactly the specified.

b) Under the assumption that only a single fault at the time can be decoupled
the following three residuals are required:

NF f1 f2 f3
r1 0 X 0 X
r2 0 X X 0
r3 0 0 X X

The decision structure gives full detectability and singular fault isolability,
which is more than required by the specification. All tests are required in
the sense that if any test is removed the specification will not be fulfilled.
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Exercise 2.8. Besides d the following signals should be decoupled for the four
cases:

• 1: no signal is decoupled

• 2: fu is decoupled

• 3: f1 is decoupled

• 4: f2 is decoupled

Exercise 2.9. Both should be decoupled.

Exercise 2.10.

a) A fault fu(t) affects the system in the same way as fa(t) = bfu(t). The
faults cannot be isolated from each other.

b) Fault fa cannot be isolated from fu, since an arbitrary fault fa(t) =
∆a0x(t) affects the system in the same way as fu(t) = ∆a0x(t)/b. Fault
fu can be isolated from fa, since we can create a residual that decouples
fa but that is sensitive to fu in the following way:

r1(t) = y(t− 2)(y(t)− bu(t− 1))− y(t− 1)(y(t− 1)− bu(t− 2))
= b(y(t− 2)fu(t− 1)− y(t− 1)fu(t− 2))

c) The faults can be isolated from each other. Residual r1 in the solution to
exercise (b) can isolate fu from fa and the residual

r2(t) = y(t)− y(t− 1)− a(y(t− 1)− y(t− 2))− b(u(t− 1)− u(t− 2))
= ∆a(y(t− 1)− y(t− 2))

is sensitive to fa but decouples fu and can therefore isolate fa from fu.

Exercise 2.11. A diagnosis system is "complete” if Fp = Fj entails that Fj is
a diagnosis, i.e. that Fj ∈ S =

⋂n
k=1 Sk where n is the number of tests in the

diagnosis system. The trick is therefore to show that Fj ∈ Sk for all k = 1, . . . n.
Assume that the system is in mod Fj , i.e. Fp = Fj . Consider the column k in
the decision structure skj , k = 1, . . . , n that corresponds to Fj . The tests can
be divided into three cases: 1) skj = 0, 2) skj = X and 3) skj = 1.

1) Consider an arbitrary test k so that skj = 0. According to (3.12) the test
k does not generate an alarm. Since skj = 0 it follows that Fj ∈ Sk.

2) Consider an arbitrary test k so that skj = X. Regardless if the test
generates an alarm or not it hold that Fj ∈ Sk.

3) Consider an arbitrary test k so that skj = 1. According to (3.12) the test
k generates an alarm. Since skj = 1 it follows that Fj ∈ Sk.

Since all three cases leads to Fj ∈ Sk it means that none of the tests rejects Fj
and therefore it holds that Fj =∈

⋂n
k=1 Sk = S.
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Answers for Chapter 3
Design of Test Quantities

Exercise 3.1.

a) The probability of false alarm P (alarm|NF ) = P (|r| > J |f = 0) and prob-
ability of missed detection for a fault with size f = f0 is P (no alarm|f =
f0) = P (|r| ≤ J |f = f0).

b) 1.

P (alarm|NF ) = P (|r| > J |f = 0)
= P (r/σ < −J/σ|f = 0) + P (r/σ > J/σ|f = 0)
= Φ(−J/σ) + (1− Φ(J/σ)) = 2Φ(−J/σ)

2.

P (no alarm|f = f0) = P (|r| ≤ J |f = f0)
= P (−J ≤ r ≤ J |f = f0)
= P ((−J − f0)/σ ≤ (r − f0)/σ ≤ (J − f0)/σ|f = f0)
= Φ((J − f0)/σ)− Φ((−J − f0)/σ)

3.

P (|r| > J |f = 0) = 2Φ(−J/σ) = α⇔
−J/σ = Φ−1(α/2)⇔

J = −σΓ(α/2)

c) The probability of false alarm decreases and the probability of missed
detection increases with increasing value on the threshold. When the
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threshold is 0 then the probability for false alarm is 1 and the probability
of missed detection is 0. When the threshold goes to infinity then the
probability for false alarm is 0 and the probability of missed detection is
1.

d)

β(f0) = P (alarm|f = f0)
= P (|r| > J |f = f0)
= P ((r − f0)/σ < (−J − f0)/σ|f = f0) + P ((r − f0)/σ > (J − f0)/σ|f = f0)
= Φ((−J − f0)/σ) + (1− Φ((J − f0)/σ))

Exercise 3.2.

a) sigma = 2;
alpha = 0.01;

J = -sigma*norminv(alpha/2);

b) f = [0:0.1:15];
beta = normcdf(-J,f,sigma) + (1-normcdf(J,f,sigma));
plot(f,beta)

c) f0 = 5
J = [0:0.1:100];
pfa = 2*normcdf(-J,0,sigma);
pd = normcdf(-J,f0,sigma) + (1-normcdf(J,f0,sigma))
plot(pfa,pd)

Exercise 3.3. Let pd(J) be the probability for detection and let pfa(J) be
the probability for false alarm. Death of the crew can either happen if the fault
is not detected or if the test detects the fault and the crew dies during the
escape from the space shuttle, that is

P (death) = P (¬alarm|fault)p1 + P (alarm)p2
= (1− pd(J))p1 + P (alarm)p2

(3.1)

The probability for alarm can be expressed as

P (alarm) = P (alarm|NF)(1− p1) + P (alarm|fault)p1

= pfa(J)(1− p1) + pd(J)p1

Using (3.1) gives P (death) as a function of threshold. Example of code that
generates the results are:

J = [-10:0.01:10];
f = 5;
p1 = 0.01;
p2 = 0.005;
pfa = 1-normcdf(J,0,2);
pd = 1-normcdf(J,f,2);
p = (1-pd)*p1 + (pfa*(1-p1)+pd*p1)*p2;
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plot(J,p)
min(p)
J(find(min(p)==p))

The minimum is achieved for J = 1.94 and the probability that the crew will
be killed is reduced from 0.01 to 0.0015.

Exercise 3.4.

a) The test quantity is

T1 = min
θ1

1
σ2

N∑
i=1

(y(t)− u1(t)θ1)2

and when the null hypothesis is true then is T1 χ
2-distributed with N − 1

degrees of freedom. Let Fχ2(n) be the cumulative distribution function
for a χ2-distribution with n degrees of freedom. Then

J1 = F−1
χ2(N−1)(1− pfa)

is the threshold that results in P (T1 > J1|H0) = pfa.

b) If r(i) = y(i)− u(i)θ and f(r(i)|θ) distribution function for r(i) given θ
then the following holds

T2 = max
θ2,θ3

ln
N∏
i=1

f(r(i)|
[
0 θ2 θ3

]T )

By using f as density function for N(0, σ) and after simplification you
get the following

T2 = min
θ2,θ3

1
σ2

N∑
i=1

(y(i)− u2(i)θ2 − u3(i)θ3)2

which is the same results the prediction error method would give. During
the simplification the constant terms have been neglected and the test
quantity has been scaled. The test quantity is χ2-distributed with N − 2
degrees of freedom when the null hypothesis is true. The threshold is the
same as in exercise (a).

J2 = F−1
χ2(N−2)(1− pfa)

c) A test quantity of the parameter estimation is

T3 = |θ̂2 − θ2,nom| = | arg
θ2

min
θ

N∑
i=1

(y(i)− u(i)θ)2 − 0|

d)

NF F1 F2 F3
T1 0 0 X X
T2 0 X 0 0
T3 0 0 X 0
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Exercise 3.5.

a) Equation (3.1) can be written as

y(t) = ϕ(t)θ + v(t) = [u(t) 1]
(
a
b

)
+ v(t)

and this gives the following matrices:

Y =

 y(1)
...

y(N)

 Φ =

 u(1) 1
...

...
u(N) 1

 θ =
[
a
b

]
V =

 v(1)
...

v(N)


b) The function that will be minimized can be written as

f(θ) = |Y − Φθ|2

From the fundamentals from linear algebra we know that a minimizing θ
is given by the solution of the equation

ΦT (Y − Φθ) = 0

If we have excitation, that is, if the matrix ΦTΦ is invertible, then the
minimization problem has a unique optimum in

θ̂ = (ΦT Φ)−1 ΦT Y

Explicit calculations gives

ΦTΦ =
(∑

t u
2(t)

∑
t u(t)∑

t u(t) N

)
whose determinant is

N
∑
t

u2(t)− (
∑
t

u(t))2

Let ū be the mean value of the signal u, the determinant can then be
written as

N
∑
t

u2(t)− (
∑
t

u(t))2 = N
∑
t

(
u2(t)− ū2)

This expression is 0 if and only if u(t) = ū for all t, that is, the input
signal u is constant.

c) The distribution of T = KV is

E{T} = KE{V } = 0
cov(T ) = E{TTT } = KE{V V T }KT = KΣKT (3.2)

where Σ is the co-variance for V , that is, Σ = E{V V T }. The estima-
tion (3.3) become, after a substitution of Y of the right side in (3.2)

θ̂ = θ + (ΦTΦ)−1ΦTV
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Since θ̂ is a linear combination of normal distributed variables then V is
θ̂ normal distributed. Using the results in (3.2) with K = (ΦTΦ)−1ΦT it
follows that E{θ̂} = θ, that is, θ̂ is unbiased and the covariance matrix
becomes

Σθ̂ = (ΦTΦ)−1σ2
v

where we have used (ΦTΦ)−T = (ΦTΦ)−1.

Exercise 3.6.

a) If Y = [y(1), . . . , y(N)]T , U1 = [u1(1), . . . , u1(N)]T and V = [v(1), . . . , v(N)]T
then the model is valid given H0:

Y = U1θ1 + V

The parameter θ1 that minimizes the test quantity is given be the solution
from the regression

θ̂1 = (UT1 U1)−1 UT1 Y

By formulating the residual R = Y −U1θ̂1 the test quantity can be written
as

T1 = 1
σ2R

TR

b) Låt

U23 =

 u2(1) u3(1)
...

...
u2(N) u3(N)


Then T2 is given by [

θ̂2
θ̂3

]
= (UT23 U23)−1 UT23 Y

R = Y − U23

[
θ̂2
θ̂3

]
T2 = 1

σ2R
TR

c) Låt U = [u(1)T , . . . , u(N)T ]T . The model that is used for the parameter
estimation is then:

Y = Uθ + V

The estimation is given by

θ̂ = (UT U)−1 UT Y

and the test quantity is thus T3 = θ̂2.

From Exercise 3.5 (c) we get

θ̂ ∼ N(θ, (UTU)−1σ2)

Furhter, T3 = Kθ̂ where K =
[
0 1 0

]
. Then T ∼ N(θ2, σ̄), where

σ̄2 = K(UTU)−1KTσ2. Let FN(µ,σ)(x) be the cumulative distribution
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function for N(µ, σ). The threshold that satisfies P (|T3| > J3|H0) = pfa
is given by

J3 = F−1
N(0,σ̄)(1− pfa/2)

Exercise 3.7.

a) % The test quantity as defined in Exercise a) will be computed
theta1 = U(:,1)\Y;
R1 = Y-U(:,1)*theta1;
T1 = R1’*R1;
J1 = chi2inv(1-pfa,N-1);
T1 = T1/J1;

% The test quantity as defined in Exercise b) will be computed
theta23 = U(:,[2 3])\Y;
R2 = Y-U(:,[2 3])*theta23;
T2 = R2’*R2;
J2 = chi2inv(1-pfa,N-2);
T2 = T2/J2;

% The test quantity as defined in Exercise c) will be computed
theta123 = U\Y;
T3 = theta123(2);
Phi = U;
K = [0 1 0];
sigma = sqrt(K*inv(Phi’*Phi)*K’);
J3 = norminv(1-pfa/2,0,sigma);
T3 = abs(T3)/J3;

b) The following matrix has same size as the decision structure and should
have values close to pfa in those positions where there are zeros in the
decision structure and values close to 1 in the rest of the positions.

pd = [sum(results.NF.A)’ sum(results.F1.A)’...
sum(results.F2.A)’ sum(results.F3.A)’]/M;

Exercise 3.8.

a) Let Y =
[
y(1) y(2) . . . y(N)

]T and Ui =
[
ui(1)T ui(2)T . . . ui(N)T

]T
för i = 1, 2, 3. According to the assumption that the vectors Ui are linear
independent. The prediction

Ŷ = θ̂1U1 + θ̂2U2

is the orthogonal projection of Y in the plane Ω that is spanned by U1
and U2. If θ3 = 0 then will Y be included or near the plane and the
estimations of θ1 and θ2 will become good. This means that the test
quantity if sensitive for F1 but decouples F2. If θ3 6= 0 then will Y not be
in the included in the plane Ω. The estimation of θ1 will be zero only if
U1 and U3 are orthogonal. There is no gDet finns det ingen garanti för,
så teststorheten kan vara känslig föruarantee that the test quantity will
be sensitive to F3.
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b)
H0 : Fp ∈ {NF,F2} H1 : Fp ∈ {F1, F3}

c)

NF F1 F2 F3
T 0 X 0 X

Exercise 3.9. According to the figure δ > ‖∆G(s)‖ approximate -20 dB, that
is

δ = 10−20/20 = 0.1

A residual generator can be written for example as

r = y − 1
s+ 1u

Using y when f is zero gives

r = ∆G(s)u

Using the approximation δ > ‖∆G(s)‖ yields an adaptive threshold as

Jadap = δ|u|+ J0 = 0.1|u|+ J0

Exercise 3.10.

a)

P (FA) = β(θ0) = β(1)

b)

P (MD|θ 6= 1) = 1− β(θ)

Exercise 3.11.

a)

Σx = E{x(t)x(t)T } =
= E{(Ax(t− 1) +Bn(t− 1)(Ax(t− 1) +Bn(t− 1))T } =

= AΣxAT +BΣnBT

The mixed terms becomes 0 since E{x(t)n(t)} = 0, that is

Σx = AΣxAT +BΣnBT

and symmetrical solution of the equation is guaranteed if A is stable.

b)
Σy = E{y(t)yT (t)} = CΣxCT
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c)
Σy = E{y(t)yT (t)} = CΣxCT +DΣnDT

d) Since x is a stationary stochastic process the following holds:

Σx = 1
2π

∫ ∞
−∞

Φx(ω)dω =
∫ ∞
−∞

(jωI −A)−1BΣnBT (jωI −A)−T dω =

= /* parseval*/ =
∫ ∞

0
eAtBΣnBT eA

T tdt

Multiplication from the left with A and integration by parts gives:

AΣx =
∫ ∞

0
AeAtBΣnBT eA

T tdt =

= [eAtBΣnBT eA
T t]∞0 −

∫ ∞
0

eAtBΣnBT eA
T tdtAT =

= /* A stable*/ = −BΣnBT − ΣxAT

Thus, the following holds

AΣx + ΣxAT +BΣnBT = 0

symmetrical solution of the equation is guaranteed if A is stable.

Exercise 3.12.

a)

rv(k) =
{
σ2
v k = 0

0 k 6= 0

b) There is no dependency between v(t) and v(t− k) when k 6= 0.

Exercise 3.13.

a) Find J such that α = P (|T | > J |θ = 0).

J = norminv(1-0.05/2,0,0.7)

b) theta = [-5:0.1:5]’;
beta = 1-normcdf(J,theta,0.7)+...

normcdf(-J,theta,0.7);
plot( theta,beta )

Exercise 3.14.

a) % Monte-Carlo simulation to determine
% the power function.
J = 1.372
n = 1e5; % Number of simulations
Sigma = [0.3,-0.2;-.2,1]; theta = -5:0.1:5;
for k = 1:2

for j = 1:length(theta)
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if k == 1
my1 = theta(j); my2 = 0;

else
my1 = 0; my2 = theta(j);

end
my = [my1, my2];
R = mvnrnd(my,Sigma,n); % Random number
X = find(abs(R(:,k)) > J); % |T| > J
beta(k,j) = length(X)/n;

end
end
figure(1);clf; plot(theta,beta)
hold on; plot([J,J],[0,1],’:r’); plot([-J,-J],[0,1],’:r’)
% For comparison
beta1=1-normcdf(J,theta,Sigma(1,1))+normcdf(-J,theta,Sigma(1,1));
beta2=1-normcdf(J,theta,Sigma(2,2))+normcdf(-J,theta,Sigma(2,2));
plot(theta,beta1,’b.’); plot(theta,beta2,’g.’)

b) It means roughly that if an estimation gets to big due to noise then it
tends to “pull” also the other estimation. The area |θ| = J corresponds to
a circle, but the area of significance corresponds to an ellipse which gives
difference levels of significance in different directions. .

c) The null hypothesis is that θ1 = 0 and θ2 = 0. The test cannot be used
for isolation of faults between fault θ1 6= 0 and fault θ2 6= 0.

d) The covariance for KT is cov(KT ) = KΣKT . The goal is to now find
a K such that KΣKT is a diagonally matrix with equal elements in the
diagonal. One way to find K is by using SVD of Σ, that is

Σ = USUT

where U is an orthogonal matrix and S is a non-singular (since Σ is non-
singular) diagonal matrix with its singular values (> 0) in the diagonal.
Chosse for example K = S−1/2UT which gives

KΣKT = S−1/2UTUSUTUS−1/2 = S−1/2SS−1/2 = I

Exercise 3.15. Example of code in Matlab:

N = 1000;
theta = 1;
T = zeros(N,1);
for l=1:N

y = randn(1000,1)+theta*ones(1000,1);
T(l) = y’*y;

end
hist(T,40)

For θ = 1 the histogram becomes
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Exercise 3.16.

a) Used notation: α = P (T > J |H0) = 0.0005, β = P (H0) = 0.9999.

P (H0|T > J) = P (T > J |H0)P (H0)
P (H0)P (T > J |H0) + P (H1)P (T > J |H1) =

= αβ

αβ + (1− α)︸ ︷︷ ︸
ty J=0.5

(1− β) = 1
1 + (1−α)(1−β)

αβ

≈ 0.83

b)

P (H0|T1 > 0.5 ∧ T2 > 0.5) = 1
1 + P (T1>J|H1)P (T2>J|H1)P (H1)

P (T1>J|H0)P (T2>J|H0)P (H0)

=

= 1
1 + (1−β)(1−α)2

βα2

≈ 0.0025 > α

c) The general expression for n independent samples is

1
1 + (1−β)(1−α)n

βαn

With some testing it can be seen that n = 3 is enough.

Exercise 3.17.

a)

y(t) = x(t)+v(t) = ax(t−1)+bu(t−1)+v(t) = [y(t−1) u(t−1)]
[
a
b

]
+w(t)

where w(t) = v(t)− av(t− 1).

b) No, since

E{w(t)w(t−1)} = E{(v(t)−av(t−1))(v(t−1)−av(t−2))} = −aσ2
v 6= 0

c) Since the noise is correlated the estimate will be biased, that is, regardless
how much data we collect it is impossible to estimate the true θ. This
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can be seen by the following calculations. Let W be a vector with all w(t)
on top of each other, then the following holds (only use the expression of
θ̂ to verify):

E{ΦTΦ(θ̂ − θ0)} = E{ΦTW}

The expression E{ΦTW} thus tells if the estimate will be biased or not.
Using it gives

E{ΦTW} = E{
[
y(1) . . . y(N − 1)
u(1) . . . u(N − 1)

]w(2)
...

w(N)

} =

= E{

[∑N−1
i=1 y(i)w(i+ 1)∑N−1
i=1 u(i)w(i+ 1)

]
} =

[
(N − 1)E{y(i)w(i+ 1)}

0

]
=

=
[
(N − 1)E{y(i)(v(i+ 1)− av(i))}

0

]
=
[
−a(N − 1)σ2

v

0

]
6= 0

which means that the estimate will not converge.

E{θ̂} = θ0 + (ΦTΦ)−1
[
−a(N − 1)σ2

v

0

]
= θ0 + bias

Exercise 3.18.

a) N1 = size(u,1);
z1 = [y u];

Y1 = z1(3:N1,1);
phi1 = [z1(2:N1-1,2) z1(1:N1-2,2)];
thls1 = inv(phi1’*phi1)*phi1’*Y1;

plot( [z1(3:N1,1) phi1*thls1])

b) N2 = size(u,1);
z2 = [y u];

Y2 = z2(3:N2,1);
phi2 = [z2(2:N2-1,2) z2(1:N2-2,2)];
thls2 = inv(phi2’*phi2)*phi2’*Y2;
plot( [z2(3:N2,1) phi2*thls2])

c) Yes, there is a difference. It depends on the excitation of the system. In
the other case then u = 1 for all t which leads to that it is impossible to
estimate both b1 and b2.

d) By varying the input signal u then the data will be informative enough to
be able to estimate both parameters correctly.

e) The prediction error method works well even if the estimates of θ are bad.
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Answers for Chapter 4
Linear Residual Generation

Exercise 4.1.

a)
Gu(p) = 1

p+ a
, Gf (p) = 1

b)

0 =
[
−(p+ a)

1

]
x+

[
0 1
−1 0

](
y
u

)
+
[
0
1

]
f = H(p)x+ L(p)z + F (p)f

Exercise 4.2.

a) The observation set is given by

O = {(y, u)|ẏ + ay − u = 0}

b)

O = {(y(t), u(t))|∃y0 y(t) = y0e
−at +

∫ t

0
e−a(τ−t)u(τ)dτ}

c)
ẏ + ay − u = 0

d) Add dynamics, for example calculate the residual as follows

ṙ + βr = ẏ + ay − u, β > 0

in state-space form becomes

ẇ = −βw + (a− β)y − u
r = w + y

95
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Exercise 4.3.

a) Calculation of the expressions for y(t) and ŷ(t) given z ∈ O becomes

ŷ(t) = ŷ0e
−t +

∫ t

0
e−(t−τ)u(τ)dτ

y(t) = y0e
−t +

∫ t

0
e−(t−τ)u(τ)dτ

The residual is then

r(t) = y(t)− ŷ(t) = (y0 − ŷ0)e−t

which results in that the residual generator satisfies the definition.

b) IF a = −1 the expression becomes

r(t) = y(t)− ŷ(t) = (y0 − ŷ0)et

which, since the initial condition is unknown, yields that the filter is not
a residual generator.

c) If a = −1 then is the consistency relation

ẏ − y − u = 0

Add dynamics for the residual generator and generate the residual accord-
ing to

ṙ + βr = ẏ − y − u, β > 0

which on state-space form is

ẇ = −βw − (1 + β)y − u
r = w + y

This expression can be shown that it fulfills the definition of residual
generators.

Exercise 4.4.

a) The consistency relation and the residual generator:

y1 + 3y2 + 6u = 0 r = y1 + 3y2 + 6u

b) The internal form of the residual generator becomes

r = y1 + 3y2 + 6u = f

c)

M =


1 0 −1 0 0 3
0 1 1 0 0 −2
−3 0 0 1 0 0
−1 −2 0 0 1 0


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Gaussian elimination gives

M ∼


1 0 −1 0 0 3
0 1 1 0 0 −2
0 0 −3 1 0 9
0 0 0 1 3 6


The bottom line means that

y1 + 3y2 + 6u = 0

d) All sequences with {x1, x2, d} > {y1, y2, u} would work.

Exercise 4.5.

a) Hint: Remember the writing

y = b(p)
a(p)u

which means that the two time-signals y(t) and u(t) satisfies the differential
equation

a(p)y(t)− b(p)u(t) = 0

b) O2 ⊆ O1

Exercise 4.6.

a) A first order consistency relation is

(p+ 1)y − u = 0

A residual with wanted dynamic properties is generated by the differential
equation

ṙ + αr = (p+ 1)y − u

The transfer function for the residual generator can then be written as:

r = R(s)z = 1
s+ α

[
s+ 1 −1

](y
u

)
and with the state w = y−r yields the following state-space representation

ẇ = −αw + (α− 1)y + u

r = −w + y

b) A state-space representation of the system is

ẋ = −x+ u

y = x
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c) A residual generator based on estimation of states is given by
˙̂x = −x̂+ u+K(y − x̂)
r = y − x̂

where the observer gain K is chosen so the observer becomes stable.

d) By a simple rewriting of the solution in the observer case yields the
following

˙̂x = −(1 +K)x̂+Ky + u

r = −x̂+ y

where it can be seen directly that with K = α−1 the two solution becomes
identical.

e) For example when we have disturbances d that shall be decoupled or if
the residual generator does not have the same order as the system

Exercise 4.7.

a) Transfer matrix
y = p+ 1

2p+ 1u

and state-space form

ẋ = −1
2x+ 1

2u

y = x+ u

2

b) Transfer matrix

y =
[ 1
p+1

1
p+2

]
u

ẋ =
[
−1 0
0 −2

]
+
[
1
1

]
u = Ax+Buu

y =
[
1 0
0 1

]
x = Cx

c)

ẋ = −1
2x+ 1

2u

y = x+ u

2 + f

d)

ẋ = Ax+Buu+
[
B1
u 0

0 B2
u

] [
f1
f2

]
y = Cx+

[
1
0

]
d
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e) With the given time constant then the dominant pole should be close to
s = −3. One, of many, such residual generator is

r = p+ 2
p+ 3y2 −

1
p+ 3u

With, for example, the state-variable z = y2 − r the following state-space
form is achieved

ż = −3z + y2 + u

r = −z + y2

Exercise 4.8.

a)
ẏ + y − u− ḟ − f = 0

b)
r = ẏ + y − u

c)
r = ẏ + y − u = ḟ + f

d) In the frequency domain:

r = 1
s+ α

[s+ 1 − 1]
(
y
u

)
= s+ 1
s+ α

f

On state-space form the residual generator is the following

ż = −αz + [1− α − 1]
(
y
u

)
r = z + [1 0]

(
y
u

)
In the time domain the calculation form is given by the following differential
equation

ṙ + αr − ẏ − y + u = 0

and the internal form
ṙ + αr − ḟ − f = 0
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Exercise 4.9.

a) The polynomial a(p) needs to be of at least of order 2 and all zeros to
a(s) must be in the left half-plane.

b) See definition on observable canonical form.

Exercise 4.10.

a)
ω − sϕ = 0

b) There exists two linear independent relations. The reason for this is that
we have an exactly determined model and two sensors which results in a
redundancy of two for the whole model.

Exercise 4.11.

y2 − y3 = 0
y2(1 + pT )− y1 = 0

and all filtered linear combinations of the two.

Hint regarding other than the above mentioned that would be of interest: Think
about possibilities for fault isolation.

Exercise 4.12.

a)
f1 f2

r X 0

b)

0 =


−(p+ 1) 0 0

1 −p 0
1 0 0
0 1 1


w1
w2
f2

+


0 0 1
0 0 0
−1 0 0
0 −1 0

(yu
)

+


0
0
1
0

 f1

Exercise 4.13.

a) No, it is not possible to isolate the faults from eachother.
Hint: What happens if f1 is decoupled?

b) No, it is possible to isolate the faults.
How many linearly independent signals can be decoupled in each residual?

c) We can isolate an unlimited number of faults fi if Bi :=
[
Bf (:, i)
Df (:, i)

]
has

properties as in b).
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Exercise 4.14.

a)
r1 = y2 −

1
(p+ b)(p+ a)u

b) Both parameters a and b are included in the expression for r1. Assume
an additive uncertainty ∆a in parameter a. The residual generator can
then be written as

r1 = y2 −
1

(p+ b)(p+ a+ ∆)u = y2 −
1− ∆a

p+a+∆a

(p+ b)(p+ a)u

whose internal form becomes

r1 = − ∆a
p+ a+ ∆a

1
(p+ b)(p+ a)u

in the fault free case. The effect of the uncertainty in parameter b is
treated equivalently.

c)
r2 = 1

p+ α
(y1 − (p+ b)y2)

d) r2

Exercise 4.15.

a) If z =
[
y
u

]
the model is written:


1 0 0
0 1 0

−(p+ a) 0 0
0 −p 1
0 −ab −(p+ a+ b)

w +


−1 0 0
0 −1 0
0 0 1
0 0 0
0 0 1

 z +


1
0
0
0
0

 f = 0

b)

NH(p) =
[
p+ a 0 1 0 0

0 (p+ a)(p+ b) 0 p+ a+ b 1

]
NH(p)L(p)z =

[
−(p+ a) 0 1

0 −(p+ a)(p+ b) 1

]
z =

(
−(p+ a)y1 + u

−(p+ a)(p+ b)y2 + u

)
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Exercise 4.16.

a) [
1 + p 0 −1
−1 p 0

](
y
u

)
= 0

b)

r1 = 1
1 + sTd

[0.58 + 0.58s 0 − 0.58]
(
y
u

)
r2 = 1

1 + sTd
[−1 s 0]

(
y
u

)

Exercise 4.18.

a) The controller does not affect

b) The controller affects

Exercise 4.19. (
ω
ϕ

)
=
[ 1

s+1
1

s(s+1)

]
u+

(
0
1

)
f

There are two possible consitency relations that can be used to detect f ,

y2s(s+ 1)− u = s(s+ 1)f
y2s− y1 = sf

In both versions only sf i.e. ḟ is included, therefore the fault cannot be strongly
detectable.

Exercise 4.20.

b) That the fault is detectable is follows directly from RankH(s) < Rank [H(s) F (s)].

d) Calculate NH(s)F (s) from which one sees that the fault is not strongly
detectable.

Exercise 4.21.

a)

M(s) =
[ s+1
s(s+2)

1

]
which yields

NM (s) = [s(s+ 2) − (s+ 1)]

Evaulation of the following yields that fs is not strongly detectable.

NM (s)
[
L(s)

0

]
|s=0 = [s(s+ 2) − (s+ 1)]

[
1
0

]
|s=0 = s(s+ 2)|s=0 = 0
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b) In this case M(s) is given by

M(s) =

 1
s

1
s+1

1 0
0 1


After some thinking:

NM (s) = [s(s+ 1) − (s+ 1) − s]

Multiplication as in task a:

NM (s)
[
L(s)

0

]
|s=0 = [s(s+1) − (s+1) −s]

1
0
0

 |s=0 = s(s+21|s=0 = 0

Exercise 4.22.

b) Verify for example that P = [2 − 1], Az = −1, L1 = [2 − 1], L2 = 1,
K = 2 satisfies the conditions in task a.
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Answers for Chapter 5
Nonlinear Residual Generation

Exercise 5.1. A consistency relation is given by

0 = ẏ − 2xẋ = ẏ + 2x2u = ẏ + 2yu

Exercise 5.2.

a) Choose an observer and residual generator according to

˙̂x = −x̂u+K(y − x̂)
r = y − x̂

Let the estimation error be e = x− x̂. In the fault free case the following
is true

ė = −e(u+K)

By choosing K as for instance K = −u+α where α is an arbitrary positive
constant, we get a guaranteed stable residual generator.

b) With a additive fault in the sensor, the internal form becomes

ė = −e(u+K)−Kf = −αe+ (u− α)f
r = e+ f

c) u = 0 yields a transfer from a constant fault to residual 0 and the fault is
not detectable.

Exercise 5.3. This solution is rather long and might require prior knowledge
in Lyapunov theory, knowledge that is outside the scope of a course in diagnosis.
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In that case, view this solution as a demonstration of how a proof of stability
could look.

For the observer

˙̂x1 = x̂2 +K1(y − x̂1)
˙̂x2 = −x̂2 − sin x̂1 + u+K2(y − x̂1)

the error dynamics, with ei = xi − x̂i, can be written as

ė1 = e2 −K1e1

ė2 = −e2 −K2e1 + sin x̂1 − sin x1

Now take the suggested Lyapunov function V (e) = 1
2e

2
1 + 1

2βe
2
2 with β > 0.

Then the following holds

V̇ = e1ė1 + βe2ė2 = e1(e2 −K1e1) + βe2(−e2 −K2e1 + sin x̂1 − sin x1) =

= −K1e
2
1 − βe2

2 + e1e2(1− βK2 − β
sin x1 − sin x̂1

x1 − x̂1︸ ︷︷ ︸
γ

)

According to the hint in the task 0 ≤ γ ≤ 1. Now rewrite the quadratic form in
matrix form

V̇ =
(
e1 e2

)( −K1
1
2 (1− βK2 − βγ)

1
2 (1− βK2 − βγ) −β

)(
e1
e2

)
= eTQe

If we can select K so that Q is a negative definite matrix we’re done. Basic
linear algebra can be used to find conditions through criteria on the matrix
minors. For instance Q < 0 is equivalent to

−K1 < 0

K1β −
1
4(1− βK2 − βγ)2 > 0

Since we know that 0 ≤ γ ≤ 1 this can be written as

0 <K1

−2

√
K1

β
+ 1− β

β
<K2 < 2

√
K1

β
+ 1
β

If a triple can be found, that fulfills the above conditions, V̇ < 0 and therefore
the observer will be stable,

An example of a triple that fulfills the conditions is< K1,K2, β >=< 1, 1, 1 >,
i.e. the observer

˙̂x =
(

x̂2
−x̂2 − sin x̂1

)
+
(

1
1

)
(y − x̂1)

Exercise 5.5.
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a) Select simple additive fault models for the sensors and the pump, yielding

ḣ1 = a1(u+ fu)− a2
√
h1

ḣ2 = a2
√
h1 − a3

√
h2

y1 = h1 + f1

y2 = h2 + f2

y3 = a4
√
h1 + f3

y4 = a5
√
h2 + f4

where fi = 0 corresponds to a fault free component and fi 6= 0 a with
component fault.

b) For instance a changed flow from the upper tank gives the model

ḣ1 = a1(u+ fu)− (1− fc)a2
√
h1

ḣ2 = (1− fc)a2
√
h1 − a3

√
h2

y1 = h1 + f1

y2 = h2 + f2

y3 = (1− fc)a4
√
h1 + f3

y4 = a5
√
h2 + f4

where fc = 0 is fault free and fc > 0 clogged.

c) Exist relatively many potential consistency relations, one example is

y4 − a5
√
y2 = 0,

ẏ2 − a2
√
y1 + a3

√
y2 = 0,

and

ẏ4 = a5
1

2
√
h2

(a2
√
h1− a3

√
h2) = a2

5a2

2a4

a4
√
h1

a5
√
h2
− a3a5

2 = a2
5a2

2a4

y3

y4
− a3a5

2
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Exercise 5.6.

a) An example of a consistency relation with the sought after fault sensitivity
is

ẏ1 + a2
√
y1 − a1u = 0

Since the derivatives enter linearly, we can use the same techniques as for
linear systems, i.e.

βr + ṙ = ẏ1 + a2
√
y1 − a1u, β > 0

which with the statew = r − y1 can be written on state-space form

ẇ = −βw − βy1 + a2
√
y1 − a1u

r = w + y1

b) A consistency relation with the sought after fault sensitivity is

2y3ẏ3 − a2
4a1u+ a2a4y3

received through differentiation of the measurement signal y3.

The y3 before ẏ3 is problematic, the derivative does not enter linearly. If
we would have been able to divide both sides with y3 the situation would
have been the same as in task a, i.e. the derivative would have acted
linearly, and we could have added linear dynamics and used the same
methodology here. Now this is not possible and we need to use a different
scheme. Note that

2y3ẏ3 = d

dt
y2

3

which gives that the consistency relation with added first order linear
residual generator dynamics can be written

βr + ṙ = d

dt
y2

3 − a2
4a1u+ a2a4y3, β > 0

which can be realized in state-space form with the state w = r − y2
3

according to

ẇ = −βw − βy2
3 − a2

4a1u+ a2a4y3

r = w + y2
3

Exercise 5.7. Assume additive fault models for all faults.

a) With the given fault sensitivity, the following equations can be used

ḣ2 = a2
√
h1 − a3

√
h2

y1 = h1

y2 = h2

and a residual generator can for instance be constructed according to

˙̂
h2 = a2

√
y1 − a3

√
ĥ2 +K(y2 − ĥ2)

r = y2 − ĥ2
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b)

˙̂
h2 = a2

a4
y3 − a3

√
ĥ2 +K(y2 − ĥ2)

r = y2 − ĥ2

c) With the given fault sensitivity, only the following equations

ḣ2 = a2
√
h1 − a3

√
h2

y2 = h2

are left. This cannot be used to construct a residual. Can be seen
since there are two equations and two unknowns, there is therefore no
redundancy.

d) Using the constant error assumption the following equations are at our
disposal

ḟu = 0

ḣ1 = a1(u+ fu)− a2
√
h1

ḣ2 = a2
√
h1 − a3

√
h2

y2 = h2

An observer based residual generator are for example given by

˙̂
fu = 0 +K1(y2 − ĥ2)
˙̂
h1 = a1(u+ f̂u)− a2

√
ĥ1 +K2(y2 − ĥ2)

˙̂
h2 = a2

√
ĥ1 − a3

√
ĥ2 +K3(y2 − ĥ2)

r = y2 − ĥ2

e) Observers:
Observers are often straight forward to formulate, however, it can often
be tricky to compute a stabilizing feedback. Decoupling of faults, except
sensor faults, can be harder to accomplish than in the consistency relation
case.

Consistency Relations:
Elimination of variables in nonlinear equation systems, has more than
exponential computational complexity in the number of variables. Thus
the equation systems have to be of relatively small size, or to the largest
part linear, for the elimination problem to be solvable. The resulting
consistency relation can become quite complex and long to write, even
for relatively small equations systems( ca 10 equations). Since dynamic
equations are included in the equation system the consistency relation
will include derivatives and potentially higher order derivatives of known
signals, something that has to be handled e.g. through estimation straight
from measurements or, when possible, through low pass filtering as in the



110

linear case. One advantage using consistency relations is the easy manner
in which decoupling is dealt with.

Summary: In decoupling of faults (not sensor faults) consistency relations
can be advantageous. If the model, on which the tests are based, contain
many unknowns or a lot of dynamics (corresponding to higher order
derivatives of known variables in the consistency relations) it can be more
advantageous to use observer methodology.

Exercise 5.8.
a) 

˙̂x1
˙̂x2
˙̂
f1
˙̂
f2

 =


g1(x̂1, f̂1, u)
g2(x̂1, x̂2)

0
0

+K

(
y1 − h1(x̂1)

y2 − h2(x̂2)− f̂2

)

b)  ˙̂x1
˙̂x2
˙̂
f1

 =

g1(x̂1, f̂1, u)
g2(x̂1, x̂2)

0

+K

(
y1 − h1(x̂1)
y2 − h2(x̂2)

)

och en residual r = |y − ŷ|.

c) Here we can use just the upper part of the system and construct an
observer

˙̂x1 = g1(x̂1, 0, u) +K(y1 − h1(x̂1))

with a residual r = y1 − h1(x̂1). One could do the same as in the answer
to task b, but it is not necessary and is also independent of that the model
for x2 is correct.

d) As seen above, only the constant fault assumption on f1 is required for
the simple methods outlined to be directly applicable.

Note however, that it is possible, but probably more complicated, depend-
ing on the shape of the nonlinear functions gi and hi, to construct an
observer solution even without the constant fault assumption on f1.

Exercise 5.9.
ẏ2 − uẏ − ÿy + u̇y = 0

Exercise 5.10.

?c)

h1 = 27(x3 + y)(y2 − (u− x2)3)
h2 = 9x4(u− x2)2 + 27uy2 + 3x2(u− x2)ẏ + ẏ2

Exercise 5.11.
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a) Assign

Ỹ =
[

y(t)− u1(t)
y(t− 1)− u1(t− 1)

]
=
[

u2(t)
u2(t− 1)

]
θ2

Least squares estimation of θ2 becomes

θ̂2 = (UTU)−1UT Ỹ =

= (u2(t)(y(t)− u1(t)) + u2(t− 1)(y(t− 1)− u1(t− 1)))
u2

2(t) + u2
2(t− 1)

A residual can now be computed according to

r1(t) = y(t)− u1(t)− θ̂2u2(t) = · · · =

= u2(t− 1)
u2

2(t) + u2
2(t− 1)(y(t)u2(t−1)−u1(t)u2(t−1)+u1(t−1)u2(t)−y(t−1)u2(t))

b)

r2(t) = y(t)u2(t− 1)− u1(t)u2(t− 1) + u1(t− 1)u2(t)− y(t− 1)u2(t)

c)

r1(t) = u2(t− 1)
u2

2(t) + u2
2(t− 1)r2(t)
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Answers for Chapter 6
Multiple fault isolation

Exercise 6.1. The set of minimal diagnoses for each observation are {”no
faults”}, {”S stuck closed”}, {”S stuck open”, ”L broken”} and {”no faults”}.

Exercise 6.2.

a) The sets in Definition 2.1 will be for this example:

M = {OK(M1)→ x = ac, (6.1)
OK(M2)→ y = bd, (6.2)
OK(M3)→ z = ce, (6.3)
OK(A1)→ f = x+ y, (6.4)
OK(A2)→ g = y + z} (6.5)

obs = {a = 3, b = 3, c = 2, d = 1, e = 5, f = 9, g = 12} (6.6)

D = {OK(M1) ∧OK(M2) ∧OK(M3) ∧OK(A1) ∧ ¬OK(A2)} (6.7)

The assigned modes in (6.7) result in that the equations (6.1)-(6.4) are
consistent. By assigning the variables as (6.6) we get

3 · 2 = x

3 · 1 = y

2 · 5 = z

x+ y = 9

The equations are consistent since there exists a solution x = 6, y = 3,
and z = 10. According to Definition 2.1, qthe allocated modes in (6.7) is
a diagnosis.

113
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b) One example of a conflict is:

OK(M2) ∧OK(M3) ∧OK(A2)

This is a conflict since all components M2, M3, and A2 cannot be OK,
since g should then be 13.

With similar reasoning, you can also see that

OK(M1) ∧OK(M3) ∧OK(A1) ∧OK(A2)

is a conflict.

c) The minimal conflicts are:

OK(M2) ∧OK(M3) ∧OK(A2)
OK(M1) ∧OK(M3) ∧OK(A1) ∧OK(A2)

Exercise 6.3. We use the notation A and ¬A to represent OK(A) and
¬OK(A), respectively, to simplify the notations.

a) The negated conflicts are

¬π1 = ¬A ∨ ¬B, ¬π2 = ¬B ∨ ¬C

For the diagnosis D1 it comes to that the set of expressions {¬π1,¬π2}∪D1
is satisfiable is equivalent to that the following expression is satisfiable

(¬A ∨ ¬B) ∧ (¬B ∨ ¬C) ∧A ∧ ¬B ∧ C = A ∧ ¬B ∧ C

which it is. Tips: X ∧ (X ∨ Y ) = X.

In the same way it can be shown that D2 is a diagnosis but for the set
{¬π1,¬π2} ∪ D3 we get the expression

(¬A∨¬B)∧ (¬B∨¬C)∧A∧B∧¬C = (¬A∨¬B)∧A∧B∧¬C = falskt

which is not satisfiable. Tips: X ∧ (¬X ∨ Y ) = X ∧ Y .

b) Using set notation the two conflicts becomes

π1 = {A,B}, π2 = {B,C}

and the three mode allocations

D1 = {¬B}
D2 = {¬A,¬C}
D3 = {¬C}

with the convention that the set of mode allocations only considers faulty
components. Direct use of Theorem 3.6 give that D1 and D2 are diagnoses
while D3 is not.

c) The only single-fault diagnosis is

¬π1 ∩ ¬π2 = {¬A,¬B} ∩ {¬B,¬C} = {¬B}
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Exercise 6.4.

a) If no residual has triggered, there is no conflict. If r2 has tirggered, then
OK(A) ∧OK(C) en konfliktis a conflict.

b) The intersection of the decisions result in an empty set of diagnoses. The
conflicts are

OK(B) ∧OK(C)
OK(A) ∧OK(C)
OK(B)

The minimal diagnoses are

¬OK(A) ∧ ¬OK(B) ∧OK(C)
OK(A) ∧ ¬OK(B) ∧ ¬OK(C)

The first method do not handle multiple-faults, except if the decision struc-
ture is extended with additional columns corresponding to the multiple-
faults.

Exercise 6.5.

a)

π1 = OK(A) ∧OK(B)
π2 = OK(C) ∧OK(D)
π3 = OK(A) ∧OK(D)
π4 = OK(A) ∧OK(C)
π5 = OK(B) ∧OK(D)

b) The minimal diagnoses are

D1 = ¬OK(A) ∧OK(B) ∧OK(C) ∧ ¬OK(D)
D2 = ¬OK(A) ∧ ¬OK(B) ∧ ¬OK(C) ∧OK(D)
D3 = OK(A) ∧ ¬OK(B) ∧ ¬OK(C) ∧ ¬OK(D)

Exercise 6.6.

a) 430 ≈ 1.15 · 1018

b) |S1
1 | = 429 · 3 ≈ 8.65 · 1017

c) 1 + 3 · 30 + 30!
2!28! · 9 = 4006

d) |S1
1 | = 3 + 29 · 9 = 264
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Exercise 6.7.

a) Let OK denote the fault-free mode, ¬OK broken, SC stuck closed, and
SO stuck open. The switch’s requested position can be open O or closed
C and the lamp and the LED can be lit L or not ¬L. Then, the minimal
conflicts for each observation are:

Observation Minimal conflicts
D L S
¬L ¬L O ∨ C {OK(B)}
¬L L O ∨ C ∅
L ¬L O {¬OK(B)}, {SC(S), OK(L)}
L ¬L C {¬OK(B)}, {OK(S), OK(L)}, {SC(S), OK(L)}
L L O {¬OK(B)}, {OK(S)}, {SO(S)}, {¬OK(L)}
L L C {¬OK(B)}, {SO(S)}, {¬OK(L)}

b) The minimal diagnoses are underlined.

Observation Diagnosis
D L S
¬L ¬L O ∨ C {¬OK(B)}, {¬OK(B), SO(S)},

{¬OK(B), SC(S)}, {¬OK(B),¬OK(L)},
{¬OK(B),¬OK(L), SO(S)},
{¬OK(B),¬OK(L), SC(S)}

¬L L O ∨ C no diagnoses
L ¬L O ∅, {SO(S)}, {¬OK(L)}, {¬OK(L), SO(S)},

{¬OK(L), SC(S)}
L ¬L C {SO(S)}, {¬OK(L)}, {¬OK(L), SO(S)},

{¬OK(L), SC(S)}
L L O {SC(S)}
L L C ∅, {SC(S)}

As an example of how the diagnoses can be computed from the conflicts
consider the case on the third row. Using logic notation, the negated
conflicts are

OK(B) ∧ (¬SC(S) ∨ ¬OK(L))

Since S ∈ {OK,SO, SC}, ¬SC(S) ≡ OK(S) ∨ SO(S). By using this in
the expression above and expanding the expression to a conjunction of
disjunctions we get

OK(B) ∧ (OK(S) ∨ SO(S) ∨ ¬OK(L)) ≡
(OK(B) ∧OK(S)) ∧ (OK(B) ∨ SO(S)) ∧ (OK(B) ∨ ¬OK(L))

All mode allocations implying any of the conjunctions above are diagnoses.
For example, OK(B) ∧OK(S) is implied by OK(B) ∧OK(S) ∧OK(L)
but also OK(B) ∧OK(S) ∧ ¬OK(L) which are two of the diagnoses.

c) Yes.

d) No.

e) The kernel diagnoses for each observation are:
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Observation Kernel diagnoses
D L S
¬L ¬L O ∨ C ¬OK(B)
¬L L O ∨ C no diagnoses
L ¬L O OK(B) ∧ OK(S), OK(B) ∧ SO(S), OK(B) ∧

¬OK(L)
L ¬L C OK(B) ∧ SO(S), OK(B) ∧ ¬OK(L)
L L O OK(B) ∧ SC(S) ∧OK(L)
L L C OK(B) ∧ OK(S) ∧ OK(L), OK(B) ∧ SC(S) ∧

OK(L)

Exercise 6.8.

a) Introduce the interpretation T that is true if the lamp is lit. The model is

M = {OK(B)→ E (6.8)
OK(L1)→ (E ↔ T (L1)) (6.9)
OK(L2)→ (E ↔ T (L2))} (6.10)

and the observation

obs = {¬T (L1), (6.11)
T (L2)} (6.12)

b) According to Definition 2.1, there must be a value of E such that
M
⋃
obs
⋃
D is satisfiable. We start with testing if OK(B) ∧ OK(L1)

is consistent with the model and observations. From OK(B) and (6.8)
follows E. The expressions OK(L1) and (6.9) imply that E ↔ T (L1).
This and (6.11) give that ¬E. This is a contradiction to E which means
that OK(B) ∧OK(L1) is not consistent with the model and the observa-
tions. Thus, neither OK(B)∧OK(L1)∧OK(L2) nor OK(B)∧OK(L1)∧
¬OK(L2) are diagnoses. In the same way, the consistency of the following
mode allocations are tested:

OK(B) ∧ ¬OK(L1) ∧OK(L2)⇒ E
OK(B) ∧ ¬OK(L1) ∧ ¬OK(L2)⇒ E
¬OK(B) ∧OK(L1) ∧OK(L2)⇒ ¬E ∧ E ⇔ ⊥
¬OK(B) ∧OK(L1) ∧ ¬OK(L2)⇒ ¬E
¬OK(B) ∧ ¬OK(L1) ∧OK(L2)⇒ E
¬OK(B) ∧ ¬OK(L1) ∧ ¬OK(L2)} ⇒ E ∨ ¬E

This means that the diagnoses are {¬OK(L1)}, {¬OK(B),¬OK(L2)},
{¬OK(L1),¬OK(L2)}, {¬OK(B),¬OK(L1)} och {¬OK(B),¬OK(L1),¬OK(L2)}.
The minimal diagnoses are {¬OK(L1)} and {¬OK(B),¬OK(L2)}.

c) The following is included inM:

¬OK(B)→ ¬E
¬OK(L1)→ ¬(E ↔ T (L1))
¬OK(L2)→ ¬(E ↔ T (L2))
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The model can now be described as:

OK(B)↔ E

OK(L1)↔ (E ↔ T (L1))
OK(L2)↔ (E ↔ T (L2))

The diagnoses are {¬OK(B),¬OK(L2)} and {¬OK(L1)}

d) Fault models must be included in the model.

e) Possible fault modes are:

¬OK(B)→ ¬E
¬OK(L1)→ ¬T (L1)
¬OK(L2)→ ¬T (L2)

The only remaining diagnosis is {¬OK(L1)}.

Exercise 6.9.

a) The conflicts are
OK(A) ∧OK(B)
SA0(A) ∧OK(B)
SHORT (A) ∧ SHORT (B)

and the diagnoses are

OK(A) ∧ SA0(B)
OK(A) ∧ SHORT (B)
SA0(A) ∧ SA0(B)
SA0(A) ∧ SHORT (B)
SHORT (A) ∧OK(B)
SHORT (A) ∧ SA0(B)

b) The new conflicts are

SA0(B)
SA0(A) ∧ SHORT (B)

and the diagnoses are

OK(A) ∧ SHORT (B)
SHORT (A) ∧OK(B)

Exercise 6.12.

a) The decision structure is

NF F1 F2 F3
δ1 0 X 0 0
δ2 0 0 X 0
δ3 0 0 0 X
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b) The decisions structure is

NF F1 F2 F3 F12 F13 F23
δ1 0 X 0 0 X X 0
δ2 0 0 X 0 X 0 X
δ3 0 0 0 X 0 X X

c) The three double-faults can be uniquely isolated.

d) Given that the principle to determine the sensitivity to double-faults of
the different tests in b is a model property it will be impossible to isolate
single-faults.

Exercise 6.13.

a) Let all observations consistent with mode A1 and A1&M1 be denoted as
O(A1) and O(A1&M1), respectively. These sets are given by

O(A1) = {(a, b, c, d, e, f, g)|∃ff 6= 0.ac+ bd+ ff = f}

O(A1&M1) = {(a, b, c, d, e, f, g)|∃f̂x 6= 0∃f̂f 6= 0.(ac+ f̂x) + bd+ f̂f = f}

To show that A1 is not isolable from A1&M1 is equivalent to show
that O(A1) ⊆ O(A1&M1). Assume that z is the vector with known
variables. We will show that for any observation z ∈ O(A1) it holds that
z ∈ O(A1&M1). Select any z0 ∈ O(A1) which is equivalent to that there
is a f0

f 6= 0 such that

a0c0 + b0d0 + f0
f = f0 (6.13)

To determine if z0 ∈ O(A1&M1) use the value of z0 in the expression for
A1&M1, i.e.,

a0c0 + b0d0 + f̂x + f̂f = f0 (6.14)

Eliminating a0, b0, c0, d0, and f0 in equations (6.13) and (6.14) gives
O(A1&M1) there should be an f̂x 6= 0 and an f̂f 6= 0 such that f0

f =
f̂x + f̂f . Since f0

f 6= 0 is such a choice f̂x = f̂f = f0
f /2, which proves the

statement.

b) Assume that the fault in A1&M1 is f̂x = −f̂f 6= 0. According to the
relation in a, it will give the same observations as when ff = −f̂f + f̂f = 0
showing that A1 cannot explain the fault.

c) The mode A2&M1 gives that

ac+ fx + bd = f

bd+ ce+ fg = g

where fx 6= 0 and fg 6= 0. Mode M2&M3 gives that

ac+ bd+ fy = f

bd+ fy + ce+ fz = g
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Elimination of known variables from the two systems gives that

fx = fy
fg = fy + fz

(6.15)

If fx = fg 6= 0 in A2&M1 then fz = 0 to satisfy (6.15). Thus, there are
faults in A2&M1 that cannot be explained by M2&M3. The converse is
also true, since if fy = −fz then fg = 0 according to (6.15).

d) The sensitivity to faults in each residual becomes:

T0 = |fx + fy + ff |+ |fy + fz + fg|
T1 = |fy + fz + fg|
T2 = |fx + ff − fz − fg|
T3 = |fx + fy + ff |

The decision structure is determined by the following rules. In position
(Ti, B), where Ti is a test quantity and B is a mode there should be a

0:a if Ti do not contain a non-zero variable in B.

1:a if Ti contain one absolute value with only one of the non-zero variables
in Ti.

X otherwise.

The decision structure becomes:
NF A1 A2 M1 M2 M3 A1&A2 A1&M1

T0 0 1 1 1 1 1 1 X
T1 0 0 1 0 1 1 1 0
T2 0 1 1 1 0 1 X X
T3 0 1 0 1 1 0 1 X

A1&M2 A1&M3 A2&M1 A2&M2 A2&M3 M1&M2 M1&M3 M2&M3
T0 1 1 1 1 X 1 1 1
T1 1 1 1 X X 1 1 X
T2 1 X X 1 X 1 X 1
T3 X 1 1 1 0 X 1 1

e) The fault signature for A1 is [1 0 1 1]′ which would lead to that A1&M1
is an explanation. The column corresponding to A1&M1 is [X 0XX]′
meaning that there are many signatures for A1&M1. Since the first row
contains an X there must be a signature with 0 in the first row. This
signature results in that A1 is not an explanation.

The analysis for A2&M1 och M2&M3 is done in the same way.

f) S = {A2,M3, A1&M2, A2&M3,M1&M2}

g) S = {A2,M3, A2&M3}



Answers for Chapter 7
Probabilistic Diagnosis

Exercise 7.1.
a) Let the binary stochastic variables H and T represent infected and test

result respectively. Then we have the conditional probability tables

h P(t|h)
falsk 1/10 000
sann 1

P(h)
1/10 000

The probabilities for the stochastic variable H are

P (H|t) = α〈 1
10 000(1− 1

10 000), 1 · 1
10 000 〉 ≈< 0.5, 0.5 >

b) The new probabilities are

P (H|t) = α〈 1
10 000(1− 1

100), 1 · 1
100 〉 ≈< 0.01, 0.99 >

Exercise 7.2.

a) The conditional probability tables are given by

f1 P (f1)
falsk 0.90
sann 0.10

f1 P (alarm|f1)
falsk 0.05
sann 0.90

b) The case F1 = sann gives

P (f1|alarm) = αP (f1, alarm) = αP (alarm|f1)P (f1) = α · 0.9 · 0.1

and the case F1 = falsk gives

P (¬f1|alarm) = αP (¬f1, alarm) = αP (alarm|¬f1)P (¬f1) = α · 0.05 · 0.9
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Normalization gives that

P (F1|alarm) = 〈0.33, 0.67〉

which corresponds to a normalization factor of

α = 1
0.9 · 0.1 + 0.05 · 0.9 ≈ 7.41

c) The conditional probability tables are

f2 P (f2)
sann 0.10
falsk 0.90

f1 f2 P (alarm|f1, f2)
falsk falsk 0.05
falsk sann 0.60
sann falsk 0.90
sann sann 0.95

The basic equations for conditional probabilities and maginalization gives,
for the case F1 = true

P (f1|alarm) = αP (f1, alarm) = α
∑
f2

P (f1, f2, alarm) =

α
∑
f2

P (alarm|f1, f2)P (f1)P (f2) = α (P (alarm|f1, f2)P (f1)P (f2) +

+P (alarm|f1,¬f2)P (f1)P (¬f2)) = α · 0.0905

In the same way
P (¬f1|alarm) = α · 0.0945

and after normalization

P (F1|alarm) = 〈0.51, 0.49〉

The corresponding calculations given f2 give

P (F2|alarm) = 〈0.66, 0.34〉

d) The probability of alarm is

P (alarm) =
∑
f1,f2

P (alarm, f1, f2) =
∑
f1,f2

P (alarm|f1, f2)P (f1)P (f2) ≈ 0.1850

e) The stochastic variable FM can be either NF , f1, f2, or f1&f2 and the
probabilities for each fault mode are

P (FM = NF |alarm) = P (¬f1,¬f2|alarm)
P (FM = f1|alarm) = P (f1,¬f2|alarm)
P (FM = f2|alarm) = P (¬f1, f2|alarm)
P (FM = f1&f2|alarm) = P (f1, f2|alarm)

which corresponds to

P (FM |alarm) = 〈0.2189, 0.4378, 0.2919, 0.0514〉
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Exercise 7.3. The probabilities are

P (B|j) ≈ 〈0.984, 0.016〉
P (B|m) ≈ 〈0.944, 0.056〉

P (E|j,m) ≈ 〈0.824, 0.176〉
P (M |b) ≈ 〈0.341, 0.659〉
P (J |¬b) ≈ 〈0.949, 0.051〉

Exercise 7.4.

a) Minimal diagnoses: f3 och f1&f2.

c) The probabilities of the three faults are

P (F1|t1, t2,¬t3) = 〈0.983, 0.017〉
P (F2|t1, t2,¬t3) = 〈0.91, 0.09〉
P (F3|t1, t2,¬t3) = 〈0.08, 0.92〉

The probability of the fault-free system, given the observed tests, can not
be calculated as the product since even though the faults are independent,
they are not independent conditioned the test results.

c)

e) The probabilities for the three faults when T3 has not been evaluated is

P (F1|t1, t2) = 〈0.83, 0.17〉
P (F2|t1, t2) = 〈0.76, 0.24〉
P (F3|t1, t2) = 〈0.83, 0.17〉

The conclusion is that the faults f1 and f2 cannot be rejected since f3 fault in F3, reverse num-
bers?can explain that both T1 and T2 trigger. It is first when it is known that

T3 did not trigger, f1 and f2 can be rejected.

Exercise 7.5.

a) The binary stochastic variable FAult is a deterministic or-function of the
fault variables and

P (Fault|t1, t2,¬t3) ≈ 〈0.045, 0.955〉

b) The probabilities are

P (F1|t1, t2,¬t3, fault) = 〈0.983, 0.017〉
P (F2|t1, t2,¬t3, fault) = 〈0.905, 0.095〉
P (F3|t1, t2,¬t3, fault) = 〈0.037, 0.963〉
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c) The probabilities are

P (FM = NF |t1, t2,¬t3) ≈ 〈0.045, 0.955〉
P (FM = F1|t1, t2,¬t3) ≈ 〈0.996, 0.004〉
P (FM = F2|t1, t2,¬t3) ≈ 〈0.971, 0.029〉
P (FM = F3|t1, t2,¬t3) ≈ 〈0.15, 0.85〉
P (FM = F12|t1, t2,¬t3) ≈ 〈0.999, 0.001〉
P (FM = F13|t1, t2,¬t3) ≈ 〈0.989, 0.011〉
P (FM = F23|t1, t2,¬t3) ≈ 〈0.941, 0.059〉
P (FM = F123|t1, t2,¬t3) ≈ 〈0.000, 1.000〉

Exercise 7.6. The probabilities for the three faults are

P (F1|t1, t2,¬t3) = 〈0.983, 0.017〉
P (F2|t1, t2,¬t3) = 〈0.912, 0.088〉
P (F3|t1, t2,¬t3) = 〈0.076, 0.924〉

The differences compared to task 7.4-c are hardly visible. The main reason for
the difference is how multiple-faults, which are unlikely, are dealt with.

Exercise 7.7. There are many approaches to model this type of system, the
following solution is one approach. The structure of the Bayesian Network could
look like this.

R

U

H

W

Yw

Yh Fw

Fh

Fl

Fr

Fk

The variables are pump reference signal R, pump outflow U , tank level H, tank
outflow W , and sensors Yh and YW . Faults in the pump, level sensor, flow
sensor, clogging, and leakage are represented by the variables Fr, Fh, Fw, Fk,
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and Fl respectively. Given a simplified model of the system, the conditional
probability tables could look as below. The probability tables without parents:

r P (r)
high 0.50
low 0.50

fr P (fr)
true 0.10
false 0.90

fh P (fh)
true 0.05
false 0.95

fk P (fk)
true 0.20
false 0.80

fw P (fw)
true 0.05
false 0.95

fl P (fl)
true 0.05
false 0.95

The system functionality could be modeled as, for example,

fr r P (U = high|fr, r)
false low 0.01
false high 0.99
true low 0.1
true high 0.1

fk fl u P (H = high|u, fl)
false false low 0.10
false false high 0.90
false true low 0.05
false true high 0.70
true false low 0.20
true false high 0.95
true true low 0.10
true true high 0.80

fl h P (W = high|fl, h)
false low 0
false high 0.95
true low 0
true high 0.7

and for the two sensors

fh h P (Yh = high|fh, h)
false low 0.05
false high 0.95
true low 0.50
true high 0.50

fw w P (Yw = high|fw, w)
false low 0.05
false high 0.95
true low 0.50
true high 0.50



126



Answers for Chapter 8
Fault Effect and Fault Tree Analysis

Exercise 8.1.

a) Start av FMEA:

Processsteg Felsätt Felorsak Feleffekt Riskanalys
OCC SEV DET RPN

Hitta läckaget Fanns fler läckage Dålig noggranhet Punktering 4 3 2 24
Små hål Smygpunka 3 5 4 60

...
...

...
...

...
...

...
...

b) & c) Riskbedömning för FMEA:n i a):

Felnr OCC SEV RPN Riskbedömning b) Riskbedömning c) Skillnad
1 4 3 24 T T
2 3 5 60 IT BT Ja
...

...
...

...
...

...
...

Exercise 8.2. Ett exempel på hur ett felträd kan se ut. Här följer en tabell
med de införda beteckningarna som används i felträdet. Vissa beteckningar har
index f som står för fram och b som betyder bak.

127
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A: Cykeln är inte lämplig att använda. P: Bromsvajern fungerar inte.
B: Cykeln rullar inte som den ska. Q: Broms utsliten.
C: Handbromsarna fungerar inte. R: Framlyset är trasigt.
D: Belysningen uppfyller inte lagkraven. S: Baklyset är trasigt.
E: Framhjulet fungerar inte. T: Ventilen fungerar inte.
F: Bakhjulet fungerar inte. U: Slangen är trasig.
G: Frambroms fungerar ej. V: Bromsvajern har frusit fast.
H: Bakbroms fungerar ej. X: Bromsvajern är av.
I: Det är mörkt ute. Y: Batteriet är slut.
J: Någon lampa fungerar ej. Z: Kontaktfel.
L: Framdäcket är tomt på luft. Å: Glödlampan är trasig.
M: Frambromsen går emot fälgen. Ä: Fukt i bromsvajern.
N: Bakdäcket är tomt på luft. Ö: Minusgrader.
O: Bakbromsen går emot fälgen.

**

+ + + +++

+++++

+ **

+

I

ÖÖ

VbVf

SRPbPfONML

JHGFE

DCB

A

ÅbZbYbZfYfXbXfUbTbUfTf

ÄbÄf

QbQf

Åf

Figure 8.1: Exempel på ett felträd.

Exercise 8.3. P (A) ≈ 6 ppm.

Exercise 8.4. De minimala avbrotten är {Tf}, {Uf}, {M}, {Tb}, {Ub}, {O},
{Äf ,Äb,Ö}, {Äf ,Ö, Qb}, {Äf ,Ö, Xb}, {Äb,Ö, Qf}, {Äb,Ö, Xf}, {Xf , Xb},
{Xf , Qb}, {Qf , Xb}, {Qf , Qb}, {I, Yf}, {I, Zf}, {I,Åf}, {I, Yb}, {I, Zb} och
{I,Åb}.
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