TSFS11 HVDC

Lecture 13 Tomas Jonsson ISY/EKS

Outline

- HVDC Introduction
- Classic HVDC Basic principles
- VSC HVDC Basic principles
- VSC in the power grid Wind applications

High Voltage Direct Current

Tackling society's challenges on path to low-carbon era means helping utilities do more using less

Forecast rise in electricity consumption by 2030

INIVERSITY

Solutions are needed for:

- Rising demand for electricity – more generation
- Increasing energy efficiency - improving capacity of existing network
- Reducing CO₂ emissions Introduce high level of renewable integration

Meeting the rise in demand will mean adding a 1 GW power plant

and all related infrastructure every week for the next 20 years

The evolution of grids: Connect remote renewables Europe & Germany are planning large scale VSC-HVDC

Source: DG Energy, European Commission

European Visions

- Hydro power & pump storage -Scandinavia
- 2 >50 GW wind power in North Sea and Baltic Sea
- 3 Hydro power & pump storage plants Alps
- 4 Solar power in S.Europe, N.Africa & Middle East

Germany (draft grid master plan)

- Alternatives to nuclear-distributed generation
- Role of offshore wind / other renewables
- Political commitment
- Investment demand and conditions
- Need to strengthen existing grid

What is an HVDC Transmission System?

Why HVDC is ideal for long distance transmission? Capacitance and Inductance of the power line

In cable > 50 km, most of AC current is needed to charge and discharge the "C" (capacitance) of the cable

Overhead Line

In overhead lines > 200 km, most of AC voltage is needed to overcome the "L" (inductance) of the line

⇒ C& L can be compensated by reactors/capacitors or FACTS

Investment cost versus distance for HVAC and HVDC

More than 50 years ago ABB broke the AC/DC barrier Gotland 20 MW subsea link 1954

ABB has more than half of the 145 HVDC projects The track record of a global leader

Development of HVDC applications

HVDC Classic

- Very long sub sea transmissions
- Very long overhead line transmissions
- Very high power transmissions

HVDC Light

- Offshore power supply
- Wind power integration
- Underground transmission
- DC grids

- HVDC Classic
 - Current source converters
 - Line-commutated thyristor valves
 - Requires 50% reactive compensation
 - Converter transformers
 - Minimum short circuit capacity > 2x converter rating
- HVDC Light
 - Voltage source converters
 - Self-commutated IGBT valves
 - Requires no reactive power compensation
 - "Standard" transformers
 - No minimum short circuit capacity, black start

Classic HVDC basic principles

AC and DC transmission principles

Power flow independent from system angles

Principles of AC/DC conversion, 6-pulse bridge

Relation between firing delay and phase displacement

Classic HVDC, Active vs Reactive Power

How the Reactive Power Balance varies with the Direct Current for a Classic Converter

Baltic Cable 600 MW HVDC link

-L36994

The HVDC Classic Monopolar Converter Station

Monopolar Converter station, 600 MW

DC Switchyard

Longquan, China HVDC Classic

Introduction

1. Why VSC HVDC

Particular advantages with VSC HVDC

1. Voltage source functionality

- Rapid, <u>independent</u> control of active <u>and reactive</u> power
- No need for a strong grid

Introduction

1. Why VSC HVDC

Particular advantages of VSC HVDC

3. Pulse width modulation of AC voltages

Small filters, both on AC and DC side

2. VSC converter topologies

Two-level voltage source converter.

Converts a DC voltage into a three-phase AC voltage by means of switching between **two** voltage levels.

Basic operation of a phase leg:

2. VSC converter topologies

Multilevel topologies - basics

- + Phase voltages are multi-level (>2).
- + Pulse number and switching frequency are decoupled.
- + The output voltage swing is reduced less insulation stress
- + Series-connected semiconductors can be avoided for high voltage applications
- More complicated **converter topologies are** required
- More semiconductors required
- Typical applications: high-power converters operating at medium or high voltage.

2. VSC converter topologies

Multilevel converter topologies

Cascaded topologies

Modular multi-level converter (MMC)

Modular multi-level converter (MMC)

Prof. Marquardt, Univ. Munich

- DC capacitors distributed in the phase legs
- > DC capacitors handle fundamental current
- > Scalable with regard to the number of levels
- > Twice the total blocking voltage required (twice no of semiconductor devices) compared to two-level converter
- Redundancy possible by shorting failing cells

MMC-converter, switching principle

VSC HVDC basic principles MMC-converter, Output voltage

© ABB Group Side 30 PowDoc id

VSC performance – Switching Principle

2-level $\pm 150 \text{ kV}_{dc}$

MMC ±320 kV_{dc}

VSC performance

- Valve voltages and currents

ligbt1_1Idiod1

Udiod1

Uigbt1

Reduced losses

IGBT Module

IGBT inner structure

HVDC Light Generation 4 Valve arm

Normal operation

- 1. Off-shore converter in voltage and frequency control.
- 2. On-shore converter in dc-voltage and reactive power control.
- 3. Windpark power reduction,
- 4. Off-shore converter power (P1) drops, since acvoltage control results in power tracking
- 5. Instantaneous dc-power unbalance (P1-P2) < $0 \Rightarrow$ dc-voltage drop
- 6. On-shore dc-voltage control quickly reduces power (P2) to restore nominal dc-voltage and power balance.

VSC in the power grid Wind applications

Overview Offshore HVDC wind power connectors

Borwin 1, Dolwin 1 & 2 Offshore Point-to-Point

Why HVDC Light: Length of land and sea cable

Main data	Borwin 1	Dolwin 1	Dolwin 2 .
In operation:	2010	2013	2015
Power rating:	400 MW	800 MW	900 MW
AC Voltage Platform: Onshore	170 kV 380 kV	155 kV 380 kV	155 kV 380 kV
DC Voltage:	±150 kV	±320 kV	±320 kV
DC underground cable: DC submarine cable:	2 x 75 km 2 x 125 km	2 x 75 km 2 x 90 km	2 x 45 km 2 x 90 km

DOLWIN1: efficiently integrating power from offshore wind

DOLWIN alpha platform loadout

Power and productivity

www.liu.se

