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Abstract: A model based diagnosis system for the air-path of a turbo-charged diesel
engine with EGR is constructed. The faults considered were air-mass flow sensor fault,
intake-manifold pressure sensor fault, air-leakage, and the EGR-valve stuck in closed
position. A non-linear engine model, with four states, is constructed. The diagnosis
system is then constructed in the framework of structured hypothesis tests, and by
using adaptive observers. The diagnosis system is successfully evaluated in a real car
driving on the road.
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1. INTRODUCTION

Since the year 1996, cars sold in California are re-
quired to have an on-board diagnosis (OBD) sys-
tem. These requirements, called OBDII (On Board
Diagnostics), were introduced by CARB (California
Air Resource Board). The same type of requirements
have since then also been introduced in the other
parts of USA. Further, from year 2000, all cars sold
in EU must be equipped with an OBD system. Au-
tomotive diesel engines are not sold so much in the
USA, but they are very popular in EU. Therefore,
the importance of OBD systems for diesel engines
has increased significantly since year 2000.

One important part of the diagnosis requirements
for diesel engines is the components in the air path.
Possible faults includes sensor faults, actuator faults,
and leakages. These types of faults typically lead to
degraded emission control, and also possible damage
to engine components.

In this paper we consider diagnosis of faults in the
air-path of a turbo-charged diesel engine. The engine
is equipped with EGR (Exhaust Gas Recycling)
and a VNT (Variable Nozzle Turbine). The faults
considered are air-mass flow sensor fault, intake-
manifold pressure sensor fault, air-leakage between
the air-mass flow sensor and the cylinders, and the
EGR-valve stuck in closed position.

The solutions presented here are based on previous
works presented in (Nyberg and Perkovic, 1998; Ny-
berg, 1999a). However, the engine investigated in the
previous works did not include EGR and VNT. These
both components makes the diagnosis problem much
more difficult since the air flow through the EGR-
valve, and also the exhaust side of the engine have
to be taken into account. Thus the main challenge in
this paper is to construct a diagnosis system for an
engine which includes EGR and VNT.

In Sections 2 and 3, the engine and a model of the
engine are presented. Then, in Section 4, models
of the different faults are presented. The diagnosis
system is constructed within the framework of struc-
tured hypothesis tests (Nyberg, 2000) and the basic
principles for this are given in Section 5. Then the
actual design of the diagnosis system is covered in
Section 6. Finally, Section 7 describes experiments
on a real vehicle.

Fig. 1. The Mercedes-Benz OM611 diesel engine.

2. ENGINE DESCRIPTION
The diesel engine is a Mercedes-Benz OM611, has
2.2 liter displacement, and direct ignition. Detailed
information about the engine can be found in
(Klingmann. et al., 1999). A principle illustration is
shown in Figure 1. The air entering the engine is
measured by an air-mass flow-meter (HFM). It then
passes the compressor and the CAC (Charge Air
Cooler), enters the intake manifold, and flows into
the cylinders. On the exhaust side, the exhausts are
partly driving the turbine, and are partly recycled
via the EGR (Exhaust Gas Recycling) path.



The production version of the engine is equipped
with sensors measuring in-flowing air WHFM , the
temperature after CAC TCAC , and inlet manifold
pressure PInlet. The inputs to the engine are WFuel,
the turbine vane position XV NT , and the EGR-valve
position AEGR. In the model, also NEng is considered
to be an input.

variable unit explanation
pInlet Pa pressure in intake manifold
VInlet m3 volume of intake manifold
RAir J/(kg · K) gas constant of air
cp,Air J/(kg · K) specific heat at const. pres.

of air
cv,Air J/(kg · K) specific heat at const. vol.

of air
RExh J/(kg · K) gas constant of exhaust gas
cp,Exh J/(kg · K) specific heat at const. pres.

of exhaust gas
cv,Exh J/(kg · K) specific heat at const. vol.

of exhaust gas
RInlet J/(kg · K) gas constant of gas in intake

manifold
cp,Inlet J/(kg · K) specific heat at const. pres.

of gas in intake manifold
cv,Inlet J/(kg · K) specific heat at const. vol.

of gas in intake manifold
κ cp/cv ratio of specific heats
WHF M kg/s air mass-flow past the air

mass-flow sensor
TCAC K temperature of the air after

the charge-air cooler
WEGR kg/s EGR mass-flow into intake

manifold
TEGR K temperature of EGR gas-

flow into the intake manifold
WInlet kg/s mass-flow into engine inlet

-ports
TInlet K temperature in the intake

manifold
mAir kg mass of air in intake manifold
mEGR kg mass of EGR-gas in intake

manifold
WExh kg/s exhaust mass-flow into the

exhaust manifold
mExh kg mass of exhaust gas in

exhaust manifold
pExh Pa pressure in exhaust manifold
TExh K temperature in exhaust

manifold
AEGR m2 effective area of EGR valve
VEng m3 engine displacement
NEng min−1 engine speed
WF uel kg/s mass-flow of injected fuel
QLHV J/kg Lower Heating Value
VExh m3 volume of exhaust manifold
pAtm Pa atmospheric pressure
WTurb kg/s exhaust mass-flow past

the turbine
XV NT % position of VNT vanes

Table 1. The variables used in the engine
model.

3. MODELING
The model used in the diagnosis algorithm is based
on principles described in (Heywood, 1992; Guzzella
and Amstutz, 1998; Nyberg and Perkovic, 1998; Tr-
uscott et al., 2000). For diagnosing the faults of inter-
est, it is not necessary to include the compressor and
the CAC in the model. The reason for this is that no
faults in the compressor or the CAC are considered,
and also, the mass-flow and the temperature after
the CAC are already known variables because they
are measured by the production sensors.

Table 1 lists the variables used in the model. The
model, for the fault-free case, is as follows:

ṗInlet =
1

VInlet

(RAircp,Air

cv,Air
WHFMTCAC+

+
RExhcp,Exh

cv,Exh
WEGRTEGR

− RInletcp,Inlet

cv,Inlet
WInletTInlet

)
(1)

ṁAir =WHFM − mAir

mAir + mEGR
WInlet (2)

ṁEGR =WEGR − mEGR

mAir + mEGR
WInlet (3)

ṁExh =WExh −WTurb −WEGR (4)

where

WEGR =
AEGRpExh√
RExhTExh

ΨκExh
(
pInlet

pExh
) (5)
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√
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(
2
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) κ+1
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otherwise

(6)

WInlet =fvol(NEng,
pInlet

TInletRInlet
)

NEngpInlet

TInletRInlet

VEng

120
(7)

TInlet =
pInletVInlet

(mAir + mEGR)RInlet
(8)

TEGR =831K (9)
WExh =WInlet + WFuel (10)

TExh =TInlet +
QLHV h(WFuel, NEng)
cp,Exh(WInlet + WFuel)

(11)

pExh =
mExhRExhTExh

VExh
(12)

RInlet =
RAirmAir + RExhmEGR

mAir + mEGR
(13)

cv,Inlet =
cv,AirmAir + cv,ExhmEGR

mAir + mEGR
(14)

cp,Inlet =cv,Inlet + RInlet (15)

WTurb =
pExh√
TExh

g(
pExh

pAtm
, XV NT ) (16)

As seen, the temperature TEGR is assumed to be
constant. The model contains three static functions:
fvol, h, and g. They are represented as interpolation
in lookup tables (maps). The parameters and lookup
tables in the model, were obtained partly from man-
ufacturer data, and partly from steady state and
dynamic measurements.

The presented model is assumed to be valid in the
fault-free case. When there is a fault present, other
models are valid and these will be described later in
Section 4.

3.1 Model Validation

The model described above is simulated and a com-
parison with real measurement data can be seen in
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Fig. 2. Simulated and measured inlet pressure pInlet

(upper lines). The absolute value of the differ-
ence (lower line).

Figure 2. The figure shows the simulated and mea-
sured inlet pressure pInlet. The agreement is quite
good but some model errors can be seen for highly
dynamic parts. Also longer measurements were com-
pared and on average, an RMS error of 3% was
obtained.

4. MODELING OF FAULTS
The diagnosis algorithm described later in this paper
uses the framework of structured hypothesis tests
proposed in (Nyberg, 1999a; Nyberg, 1999b; Nyberg,
2000). In this framework, it is possible to utilize
detailed models for the faults. Below, the different
models, for the faults considered in this paper, are
described. However, first we introduce the concept of
fault modes.
4.1 Fault Modes
When using structured hypothesis tests, the different
faults are classified into different fault modes. We
consider the following fault modes:

Abbreviation Explanation
NF no fault
HFM air-mass flow sensor fault
IPS intake-manifold pressure sensor fault
ML air-leakage between the air-mass flow

sensor and the cylinders
EGR EGR-valve is stuck in closed position

Note that one of the fault modes is the no-fault
case. This list of fault modes was chosen based
on how often the faults occur, how difficult they
are to diagnose with the current non-model based
algorithms, and how big effects they have on the
system. Note however, that no specific investigations
have been made regarding how these different faults
influence the emissions. Each fault mode is associated
with a model of the engine. Next, each of the models
for all the fault modes are described.

4.1.1. No Fault (NF ) The model for the fault free
engine was described in Section 3. To completely
describe the NF fault-mode, we also add equations
describing that also the sensors and actuators are
fault free:

WHFM,s =WHFM (17a)
TInlet,s =TInlet (17b)
pInlet,s =pInlet (17c)
NEng,s =NEng (17d)
pAtm,s =pAtm (17e)
AEGR =AEGR,r (17f)
WFuel =WFuel,r (17g)
XV NT =XV NT,r (17h)

Here, index s indicates sensored value and index r in-
dicates reference value, set by the controller. For ex-
ample, equation (17a) says that the measured value
WHFM,s is equal to the physical variable WHFM .

4.1.2. Air Mass-Flow Sensor Fault (HFM) The
model for the fault mode HFM is obtained by taking
the model for the NF fault-mode but replacing
equation (17a) with

WHFM,s = gWHFM

where g is an unknown constant, and g 6= 1.

4.2 Inlet-Pressure Sensor Fault (IPS)

The model for the fault mode IPS is obtained
by taking the model for the NF fault-mode but
replacing equation (17c) with

pInlet,s = kpInlet

where k is an unknown constant, and k 6= 1.

4.3 Manifold Leakage (ML)

The leakage size is assumed constant and the flow
through the leakage is modeled as a flow through a
restriction. This type of model has been validated in
(Nyberg and Perkovic, 1998) with good results.

Equations (1), (2), and (3) in the fault-free model is
replaced by

ṗInlet =
1

VInlet

(RAircp,Air

cv,Air
WHFMTCAC+

+
RExhcp,Exh

cv,Exh
WEGRTEGR

− RInletcp,Inlet

cv,Inlet
(WInlet + WLeak)TInlet

)
ṁAir =WHFM − mAir

mAir + mEGR
(WInlet + WLeak)

ṁEGR =WEGR − mEGR

mAir + mEGR
(WInlet + WLeak)

where

WLeak =
ALeakpInlet√
RInletTInlet

ΨκAir(
pAtm

pInlet
)

and the function Ψκ(·) was defined in (6). All sen-
sors and actuators are assumed fault free, and thus
equations (17) are assumed to hold.

4.4 EGR-Valve Stuck Closed (EGR)

When the EGR valve is stuck in closed position, no
gas flow is able to pass the EGR valve. Thus, the
model for the fault mode EGR is obtained by taking
the model for the NF fault-mode but replacing
equation (17f) with

AEGR = 0 (18)
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4.5 A One-Model-View
Above, we have defined 5 different models for each of
the 5 different fault modes. It is also possible to view
this as one model with a free vector valued param-
eter. This is advantageous when later, in Section 5,
the diagnosis problem is described from the view of
hypothesis testing.

First, introduce the variable q and let equation (18)
be written

AEGR = qAEGR,r q = 0

With the vector valued parameter θ = [g k ALeak q],
each of the 5 different models can be obtained from
one model M(θ) by letting θ be constrained to a
certain set Θγ , where γ denotes the corresponding
fault mode. For example, the NF fault-mode is
obtained when θ = [1 1 0 1]. All the sets Θγ

corresponding to each of the fault modes are
ΘNF ={[1 1 0 1]}

ΘHFM ={[g 1 0 1] | g 6= 1}
ΘIPS ={[1 k 0 1] | k 6= 1}
ΘML ={[1 1 ALeak 1] | ALeak > 0}

ΘEGR ={[1 1 0 0]}

5. ISOLATION USING STRUCTURED
HYPOTHESIS TESTS

With the fault modes defined above, the diagnosis
problem can be stated as follows:

Given measured data, which different
models, defined by the different fault
modes, can explain the measured data?

This means, that the task of diagnosis is to in-
vestigate which of the different models that match
the measured data. Because of model errors and
measurement noise, a formalized decision procedure
for this is naturally based on hypothesis testing.
To construct the diagnosis system by combining a
set of hypothesis tests is the basic idea of struc-
tured hypothesis tests. The hypothesis tests used
are ”binary”, i.e. the task is to test one null hy-
pothesis against one alternative hypothesis, see e.g.
(Lehmann, 1986; Casella and Berger, 1990).

Let Fp denote the present fault mode. To describe
the k:th hypothesis test, introduce the set Mk. The
null hypothesis and the alternative hypothesis can
then be written

H0
k :Fp∈Mk ”some fault mode in Mk can explain meas. data”

H1
k :Fp∈MC

k ”no fault mode in Mk can explain meas. data”

The convention used here and also commonly used
in hypothesis testing literature, is that when H0

k is
rejected, we assume that H1

k is true. This implies
that the present fault mode can not belong to Mk,
i.e. it must belong to MC

k . Further, when H0
k is

not rejected, we will not assume anything 1 . In this
way, each hypothesis test contributes with a piece
of information regarding which fault modes that
can be matched to the data or not. This piece
of information, i.e. the decision reached by each
hypothesis test, is called a sub-diagnosis statement.

1 Sometimes it is possible to assume something also when H0
k

is not rejected, see NybergPhD.

How a set of different hypothesis tests are used
to diagnose and isolate faults is illustrated by the
following example.

Example 1. Assume that the diagnosis system con-
tains the following set of three hypothesis tests:
H0

1 : Fp ∈ M1 = {NF, F1} H1
1 : Fp ∈ MC

1 = {F2, F3}
H0

2 : Fp ∈ M2 = {NF, F2} H1
2 : Fp ∈ MC

2 = {F1, F3}
H0

3 : Fp ∈ M3 = {NF, F3} H1
3 : Fp ∈ MC

3 = {F1, F2}
Then if only H0

1 is rejected, we can draw the con-
clusion that Fp ∈ MC

1 = {F2, F3}, i.e. the present
fault mode is either F2 or F3. If both H0

1 and H0
2 are

rejected, we can draw the conclusion that Fp ∈ MC
1 ∩

MC
2 = {F2, F3} ∩ {F1, F3} = {F3}, i.e. the present

fault mode is F3.

The decision reached by the whole diagnosis system
is called the diagnosis statement. From the example
above, it is clear that to find the diagnosis state-
ment from the sub-diagnoses statements, a simple
intersection operation can be used. To develop the
actual hypothesis tests, we first need to decide the
set of hypotheses to test. One solution is to use one
hypothesis test for each fault mode.

5.1 Hypothesis Tests
Each hypothesis test can also be described by using
the sets Θγ , defined in Section (4.5). This is done via
sets Θ0

k which are defined as
Θ0

k =
⋃

γ∈Mk

Θγ (19)

The hypotheses can now be expressed as

H0
k :θ∈Θ0

k ”some value of θ ∈ Θ0
k can explain meas. data”

H1
k :θ /∈Θ0

k ”no value of θ ∈ Θ0
k can explain meas. data”

For each hypothesis test, we need to find a test
quantity and a threshold. The test quantity is a
function Tk(x) from the sample data x, to a scalar
value which is to be thresholded by the threshold Jk.
The sample data x can be all measured data up to
present time or a subset of this data. One choice is
to use a fixed size time window. If Tk(x) ≥ Jk, then
H0

k is rejected and otherwise not rejected.

The test quantity Tk(x) is in many texts instead
called a test statistic. However, the name test statistic
indicates that Tk(x) is a random variable which
in general may not be a desired view. In many
applications, a deterministic view is taken and Tk(x)
is seen just as a function of the data and not as a
random variable.

According to what has been said above, we need to
design each test quantity Tk(x) such that it is low or
at least below the threshold if the data x matches
the hypothesis H0

k , i.e. a fault mode in Mk can
explain the data. Using traditional fault-diagnosis
terminology, the fault modes in Mk are said to be
decoupled. Also if the data come from a fault mode
not in Mk, Tk(x) should be large or at least above
the threshold.

To be able to make the assumption that H1
k is true

when H0
k is rejected, we need to design the hypothesis

4



test such that the significance level is small. This
implies that the threshold Jk must be set relatively
high. This in turn means that the value of the
power function P (reject H0

k | θ) does not necessarily
become large for all values θ /∈ Θ0

k. For instance, if
the present fault mode is Fi and Fi ∈ MC

k , then for
some θ ∈ ΘFi , the probability to reject H0

k may be
very small. This is the reason why we don’t assume
anything when H0

k is not rejected.

It turns out that some fault modes are related to
other system fault modes such that for some values
of θ they are impossible to separate. These relations
between fault modes have implications on how the
sets Mk (i.e. the null hypotheses) can be chosen. For
example for most fault modes, the limit when the
fault size goes to zero is equal to the fault mode
“no fault”. This means that when fault mode NF ,
i.e. no fault, is present, most null hypothesis can
not be rejected. The implication is that almost all
sets Mk must include NF . For more information on
this relation and how it affects the choice of null
hypotheses, see (Nyberg, 1999b).

6. DESIGN OF THE DIAGNOSIS SYSTEM
In the previous section, some general principles for
constructing the diagnosis system were discussed.
In this section we go into the actual design of the
diagnosis system for the diesel engine.

6.1 Choice of Null Hypotheses
We chose to use one hypothesis test for each of
the fault modes. However, because of the submode
relation mentioned in Section 5.1, the NF fault mode
must be included in almost all null hypotheses. This
means that the complete list of null hypotheses is
defined by the following Mk-sets:

M1 ={NF}
M2 ={NF, HFM}
M3 ={NF, IPS}
M4 ={NF, ML}
M5 ={EGR}

Also without the first hypothesis test, with M1 =
{NF}, it is possible to perform isolation. However,
to save computational time, it can be desirable to
first execute the NF -test. Then only if this null
hypothesis, i.e. H0

1 : Fp = NF , is rejected, the other
hypothesis tests are executed.

6.2 Construction of Test Quantities
The test quantities are calculated as

Tk =
1

t1 − t0

∫ t1

t0

r2
k(t)dt

where rk(t) is the residual between measured and the
estimated pressure pInlet. The window length, i.e. the
interval [to, t1], is chosen to be 1 minute.

For the fault modes NF and EGR, the correspond-
ing models contain no unknown parameters. This
means that the residuals rk(t) can simply be calcu-
lated as

rk(t) = pInlet,s(t)− p̂Inlet,k(t)

where p̂Inlet,k(t) is calculated by simulating the
model.

For the fault modes HFM , IPS, and ML, each
of the corresponding models contains one unknown

parameter. Let this parameter be denoted θk. Then
the residual rk is dependent on θk and we can write

rk(t|θk) = pInlet,s(t)− p̂Inlet,k(t|θk)

That is, when calculating the estimated pressure
p̂Inlet,k(t|θk), it is first necessary to assume a value
of θk. The solution in this work is to use an adaptive
observer get the estimate θ̂k. Then p̂Inlet,k(t|θk) can
be calculated by simulating the model with θk = θ̂k.
In other words, first the collected data (i.e. the
sample data x) is used to estimate θ̂k, and then, the
same data is used to calculate the value of the test
quantity Tk(x).

6.3 Adaptive Observers
Define z = [pInlet, mAir, mEGR, mExh] and u =
[WFuel, NEng, XV NT , AEGR]. Also, let θk denote
the part of the θ-vector that is to be estimated. The
system dynamics, including a state for θk, can then
be written in state-space form as

ż =f(z,u, θk)

θ̇k =0

The system is assumed stable, and also it is assumed
that we can estimate the initial values of the states
reasonable well. Therefore no feedback is used for the
states z. The adaptive observers are then constructed
as ˙̂z =fk(ẑ,u, θ̂k)

˙̂
θk =Gk(pInlet,s − p̂Inlet)

p̂Inlet =z1

6.4 Normalization of the Test Quantities
Because there are model errors present, it is advan-
tageous to use a normalization of the test quantities.
This idea has also been used in (Nyberg, 1999a) with
good results. Each test quantity is normalized as
follows:

T norm
k = Tk − µ min

k
Tk

where the constant µ ∈ [0, 1] determines how ”much”
normalization that should be used. The idea is that
when the engine is run in an operating condition
where the model has a large model error, then
mink Tk becomes quite large. This reduces the size of
the normalized test quantity T norm

k and thus, a false
alarm is avoided. As is explained in (Nyberg, 1999b),
the idea is similar to the maximum likelihood ratio
for stochastic systems, and adaptive thresholds, see
e.g. (Höfling and Isermann, 1996).

7. EXPERIMENTAL RESULTS
To test the diagnosis algorithm, test sequences of
one-minute measurements were used. The measure-
ments were collected from a real car, driving on the
road. Sensor faults were simulated in the computer
while leakages and EGR faults were implemented in
the car. The sensor-fault sizes were g = 0.9 for the
HFM fault mode, and k = 1.1 for the IPS fault
mode, and the leakage-sizes were 4 mm and 6 mm in
diameter.

For each fault case, a total of 11 one-minute mea-
surements were used. For each fault case and each
one-minute measurement, a diagnosis statement was
calculated. This means that in total, 66 cases were
tested. An example is shown in Table 2, which lists
all the test-quantity values and the sub-diagnosis
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statements obtained in an experiment when the
HFM fault-mode was present. For each row, the sub-
diagnosis statement is the complement of the Mk-set
if the test quantity T norm

k is above the threshold Jk,
and otherwise the set of all fault modes.

Mk T norm
k

Jk sub-diagnosis statement

{NF} 0.4921 0.4 {IPS, HFM, ML, EGR}
{NF, HFM} 0.098 0.4 {NF, IPS,HFM, ML, EGR}
{NF, IPS} 0.1481 0.4 {NF, IPS,HFM, ML, EGR}
{NF, ML} 0.423 0.4 {IPS, HFM, EGR}
{EGR} 0.528 0.4 {NF, IPS,HFM, ML}
Diagnosis Statement: {IPS,HFM}

Table 2. The hypothesis tests and the di-
agnosis statement for an experiment with

fault mode HFM present.

present diagnosis statements
fault-mode
NF 9 {NF, IPS,HFM, ML},

2 {NF, IPS,HFM, ML, EGR}
HFM 2 {HFM}, 8 {IPS, HFM}, 1 {ML}
IPS 11 {IPS}
ML 4 mm 6 {ML}, 3 {ML, HFM}, 1 {ML, IPS},

1 {ML, IPS,HFM}
ML 6 mm 11 {ML}
EGR 11 {EGR}

Table 3. The diagnosis statements ob-
tained in the different experiments.

A summary of the diagnoses obtained in all exper-
iments is shown in Table 3. In the table, we can
read that when the NF fault mode was present,
the diagnosis statement always includes NF but also
other fault modes. The desired result is that NF
should be included, and it doesn’t matter if also other
fault modes are included. The explanation for this is
that except for NF , for example a very small HFM-
fault can also explain the measured data. In this
application, which includes noise and model errors, it
is not possible to obtain the diagnosis statement NF ,
because very small faults can never be distinguished
from NF .
For the cases when other faults modes were present,
a non-unique diagnosis statement was sometimes ob-
tained. For example when the HFM fault mode was
present, the diagnosis statement was {HFM} for 2
of the measurement sequences and {IPS, HFM} for
8 of the measurement sequences. Both {HFM} and
{IPS, HFM} are correct diagnoses, but {HFM} is
more detailed. It would be desirable to always get
{HFM} as the diagnosis statement. However this
is not possible due to the model errors and lack of
sufficient excitation in some driving conditions.

In one case, when {HFM} is present, an incorrect
isolation is obtained, namely {ML}. The reason for
this is again the model errors.

8. CONCLUSIONS
In this paper, model based diagnosis of an automo-
tive diesel engine has been considered. The main goal
has been to investigate if a model based diagnosis
system can be constructed for this engine which
is considerably more complex compared to engines
in previous studies, e.g. (Nyberg, 1999a; Gertler et
al., 1995).
First an accurate model has been constructed. The
effects of EGR and VNT are included, and in a
validation against a real car, the model was shown
to have an error of 3%. However, in the experiments,

only one car was used so the individual-to-individual
variation could not be studied.
The faults considered were air-mass flow sensor fault,
intake-manifold pressure sensor fault, air-leakage be-
tween the air-mass flow sensor and the cylinders, and
the EGR-valve stuck in closed position. The design
of the diagnosis system then follows the framework
of structured hypothesis tests. It has been shown that
for this application, this framework is a useful en-
gineering tool to systematically design model based
diagnosis systems.
In experiments on a real vehicle, driving on the road,
the performance of the diagnosis system has been
successfully evaluated. Of 66 tested cases, unique
isolation was achieved in 52 cases, and non-unique,
but correct isolation was achieved in 13 cases. In one
case, a fault is detected but incorrectly isolated. To
improve the diagnosis system, i.e. to reduce the prob-
ability of incorrect isolation, and also non-unique
isolation, the model of the engine should be im-
proved. Even though the average error of the model
is not so large, it is the worst-case error that causes
the problems. It might also be possible to improve
the diagnosis system by better tuning, e.g. by using
better thresholds.
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