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Abstract: Cylinder pressure simulation has grown to become an important tool when de-
veloping and evaluating new engine concepts and control strategies. A new formulation of
zero-dimensional multi-zone models is developed and described. A general model structure
is formulated that rely on a set of differential algebraic equations that are easy to solve. The
selected formulation also results in models that are easy to scale, i.e. add new zones, and to
increase complexity, which is a result of the selected structure. A number of important issues
that can cause problems when simulating the model are treated. It is shown: a) How a new
zone is initialized. b) How variables of varying magnitude can be scaled to avoid numerical
difficulties. c) How numerical errors accumulated during the simulation can be reduced by
using a set of consistency equations.
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1. INTRODUCTION

Cylinder pressure simulation is an important tool when
developing and evaluating new engine concepts and
control strategies. Cylinder pressure models are derived
from the first law of thermodynamics which connects
the thermodynamic properties such as pressure and tem-
perature to the engine revolutions. These models have
been developed with different complexity and are used
in a wide range of applications from analysis of engine
data from test-benches to predicting the performance
of new engine concepts. The models are currently too
complex to be implemented directly in engine manage-
ment systems and are mainly used in laboratories and
for off-line simulations. However, the computational
power of the computerized control systems is steadily
increasing and will in the foreseeable future enable real-
time implementations of these models. This opens up
possibilities for direct monitoring and control of the
combustion process.

Here, a new formulation of zero-dimensional multi-
zone models is developed and described. The model

is: a) zero dimensional since it does not take spatial
variations in the zones into account, b) multi zone since
the cylinder is divided into a number of zones. These
are homogeneous, isolated, and have their individual
thermodynamic properties. It should be mentioned that
the underlying structure of the model is the same as
most other models presented in the literature, so the
model is not new in itself; instead, it is the formulation
that is new. A general model structure is formulated that
rely on a set of differential algebraic equations that are
easy to solve. The selected formulation also results in
models that are easy to scale, i.e. add new zones, and
to increase complexity, which is a result of the selected
structure.

A wide variety of models have been described in the
literature (Ramos, 1989; Keating, 1993; Turns, 2000),
and the user of the model can choose among a number
of models of varying complexity and select the model
best suited for the application. This possibility is further
enhanced with the new formulation. In addition, this
paper also shows how to handle a number of practical



problems that arise when the general model is used in a
simulation.

2. THE MULTI-ZONE COMBUSTION MODEL

Consider a system withN zones. The whole system has
a certain volume, pressure and mass (V , p, andm). The
pressure is assumed to be homogeneous throughout the
combustion chamber. Each zone has its own volume,
temperature, mass (Vi, Ti, andmi for zonei) and gas
composition. The change in system volume and the
mass transfer from zonei to zonej (dV and dmij

respectively) are assumed to be known, and the mass
of a zone can easily be determined by integrating the
mass flows in and out of the zone. The change of the
remaining quantities (p, Ti andVi, i = 1, 2, . . . , N ) are
unknown and are to be determined.

The system consists of N zones. Therefore we know that
the sum of allVi, i = 1, 2, . . . , N , must be the same as
the volume of the whole system, i.e.∑

i

dVi = dV (1)

The energy balance equation for zonei is given by
(Sonntaget al., 1998):

dUi = −dQi − dWi +
∑
j 6=i

dmijhij (2)

wheredQi is the heat transfer from the zone,dWi the
work done by the gas which isdWi = pdvi, andhij

the enthalpy of the gas that enters the zone – or leaves
if dmij is negative. The internal energy is:

dUi = mi dui +
∑
j 6=i

uidmij (3)

Since the gas composition is not necessarily fix,dui

depends on both temperature and pressure:

dui(p, Ti) =
(

∂ui

∂p

)
Ti

dp +
(

∂ui

∂Ti

)
p

dTi (4)

From the second law of thermodynamics:

dUi = Ti dSi − p dVi

and the Maxwell relations (Finn, 1998), the first term in
(4) can be derived:(
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The second term in (4) is(
∂ui

∂Ti

)
p

=
(

∂hi

∂Ti

)
p

− Ri − Ti

(
∂Ri

∂Ti

)
p

(6)

and according to the definition
(

∂hi

∂Ti

)
p

= cp,i (Kittel

and Kroemer, 1980). Equation (2) together with (3), (4),
(5), and (6) gives:

pdVi+cidp+didTi = −dQi+
∑
j 6=i

(hij−hi+RiTi)dmij

(7)
where

ci = −miTi

(
Ti

p

(
∂Ri

∂Ti

)
p

+
(

∂Ri
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)
Ti

)

di = mi

(
cp − Ri − Ti

(
∂Ri

∂Ti

)
p

)

The ideal gas law in differentiated form gives the last
equation needed to get an unambiguous equation sys-
tem:

pdVi + aidp + bidTi = RT
∑
j 6=i

dmij (8)

where

ai = Vi

(
1 − p

Ri

(
∂Ri

∂p

)
Ti

)

bi = −mi

(
Ri + Ti

(
∂Ri

∂Ti

)
p

)

Equation (1), (7), and (8) make a system of2N + 1
ordinary differential equations. In these equations, the
right hand side of the equality signs are known from the
previous step, while the differentials on the left hand
side are to be determined. The differentials on the left
hand side are linear in the unknowns, and the system
can thus be expressed

Adx = B (9)

where dx is a vector containing all the unknowns.
Selectingdx to

dx = [dp dV1 dT1 . . . dVN dTN ]T

yields the followingA- andB-matrix:

A =




0 1 0 . . . 1 0
a1 p b1 . . . 0 0
c1 p d1 . . . 0 0
...

...
...

. ..
...

...
aN 0 0 . . . p bN

cN 0 0 . . . p dN




B =




dV

R1T1

∑
i6=1

dm1i

−dQ1 +
∑
i6=1

(h1i − h1 + R1T1)dm1i

...

RNTN

∑
i6=N

dmNi

−dQN +
∑
i6=N

(hNi − hN + RNTN )dmNi




The state variable differentials,dx, are determined by
solving the system of linear equations (9). The state



variables can thereafter be calculated by numerical in-
tegration.

3. SIMULATION ASPECTS

There are some problems that have to be solved before
equation system (9) can be used in a simulation. The
problems are:

1. Non-existent zones – In the beginning of the com-
bustion simulation, one or more zones may be
non-existent. For example, there exist no burned
gas zone before any gas has been combusted.

2. Ill-conditionedA-matrix
3. Accuracy limitations due to finite precision arith-

metic
4. Big relative error ofVi andmi, due to accumula-

tion of calculation errors

Solutions to these problems for fixed gas composition
are discussed below. The procedures can in most cases
easily be extended to cover variable gas composition as
well.

3.1 Empty zones – Initializing a new zone

Seeing that the determinant ofA is

det A = −pN−1
N∏

i=1

mi ·
N∑

j=1

(
Vjcv,j

∏
k 6=j

cp,k

)
(10)

there will always exist a unique solution to the system of
linear equations as long as allmi 6= 0, i = 1, 2, . . . , N ,
since at least oneVi 6= 0. This means that once the
combustion simulation has started, it runs smoothly
using equation system (9). One question is what the
temperature of the burned fuel is whenmb → 0+,
which is the case at the start of combustion. Another
problem when dealing with empty zones is to determine
its state variable differentials, since the equation system
can not be completely solved whenA is singular.

3.1.1. Initial temperature of the burned gas The
question about the initial temperature can be answered
simply by studying the energy balance equation (2) and
the ideal gas law (8) for zonei. At the initial state
mi = Vi = 0 anddQi = 0. It follows that:

pdVi+0·dp+0·dTi = −0+
∑
j 6=i

(hij−hi+RiTi)dmij

(11)
and

pdVi + 0 · dp + 0 · dTi = RiTi

∑
j 6=i

dmij (12)

Combining equation (11) and (12) gives:

RiTi

∑
j 6=i

dmij =
∑
j 6=i

(hij − hi + RiTi)dmij

m∑
j 6=i

(hij − hi)dmij = 0
(13)

To make this true for all mass flows,hij has to be
equal to hi as long asdmij 6= 0. Therefore, the
initial temperature can be found by solving the equation
hi(Ti,init) = hij(Tj).

The equationhij = hi may not be solved analytically.
If this is the case, the Newton-Raphson method can be
useful:

(Ti)n+1 = (Ti)n − f((Ti)n)
f ′((Ti)n)

where

f((Ti)n) = hi((Ti)n) − hij(Tj)
f ′((Ti)n) = cp,i((Ti)n) (14)

3.1.2. Solving the initial equation system If there is
a zone without any mass, equation system (9) will not
have any unique solution, and are thus to be modified.
Combine the two rows of the equation system that
describe the behavior of zonei, and eliminatedTi. This
gives

Vidp + γip dV = RiTi

∑
j 6=i

dmij + miTidRi+

+(γi −1)


−dQi +

∑
j 6=i

(hij − hi + RiTi) dmij



(15)

whereγi = cv,i+Ri

cv,i
(the ratio of specific heats). Set

mi = 0, then the volume of zonei is Vi = 0, hij = hi

anddQi = 0. Equation (15) can thus be simplified into:

p dVi = γi RiTi

∑
j 6=i

dmij (16)

The two rows for zonei in the equation system are re-
placed with equation (16). Now, the resulting equation
system consisting of2N equations can be solved.

The temperature of the zone in the next simulation step
is given from the other state variables by use of the ideal
gas law.

3.2 Ill-conditioned matrix – Adaptive scaling

There are large differences in magnitudes between the
elements in theA-matrix, since the pressure and tem-
perature values are much greater than the volume and
mass values. This makes scaling of the state variables
necessary. By a fix scaling, the equation system will be
solvable in most cases, but there is still a risk of getting
a matrix that is so badly conditioned that the numerical
solution toAx = B will be highly unreliable. A better
way to handle this is to use a scaling that adapts to the
size of the state variables.

The temperatures and pressure change with about the
same speed, while the volume and mass in each zone
are highly correlated. An example of a feasible scaling
is therefore:



p′ = spp dp′ = sp dp
T ′ = spT dT ′ = sp dT
V ′

i = siVi dV ′
i = si dVi

m′
i = simi dm′

i = si dmi

(17)

wheresp andsi are scaling factors determined in such
a way thatp′ = 1 andm′

i = ki, i = 1, 2, . . . , N in
each step. It can be shown that using this scaling has
the same effect as multiplying the left hand side of each
row, except the very first, in equation system (9), with
a scaling factor (spsi). Thus, the rows on the right hand
side have to be multiplied with the same scaling factors.
The first row has to be treated somewhat differently. It
is rewritten in the following way:

N∑
i=1

1
si

dV ′
i = dV

The scaled state variablesdx′ are determined by solving
the resulting equation systemA′dx′ = B

′. Thereafter,
dx′ are transformed back todx.

3.3 Finite precision – Exclusion of zones

If a zone is very small, it is difficult for the software in
use to handle the calculations correctly. For example,
the outcome of the calculation of1 − ε is set to 1 even
though|ε| > 0, if ε is a sufficiently small number. One
of the consequences is that the mass of a zone might be
set to zero even though it is still greater than zero.

A zone with no mass is the same as a non-existent zone,
and according to (10) theA-matrix is singular. Thus,
the equations for the zone have to be excluded from the
equation system. This is done by removing the two rows
and two columns referring to the zone in theA-matrix,
the two rows in theB-vector, anddVi anddTi from the
list of differentiated state variables indx.

3.4 Accumulated faults – Consistency equations

The model consists of a set of differential equations,
which has to be solved numerically. There are several
methods to do this, but regardless how well the chosen
method performs, it will never be completely accurate.
Tiny local errors in each step may result in a great
relative global fault in the end, if the variable concerned
decreases to a small value. A way of avoiding drifting
of variables without reducing the time step, is to check
the variables consistency and correct them if needed.

By using the ideal gas law, and knowing that the sum
of all zone volumes is the same as the cylinder volume,
the following equations are derived that can be used to
check the consistency:

p =
m1R1T1 + . . . + mNRNTN

V

V1 =
m1R1T1

p
...

VN =
mNRNTN

p

(18)

4. THE TWO-ZONE COMBUSTION MODEL

To exemplify how the model can be used, it is applied
on a two-zone system with fix gas compositions. In a
two-zone system, the cylinder gas is divided into two
zones; unburned (u) and burned (b) gas. The two zones
are considered fully separate, and may therefore have
different compositions as well as temperature. There is
only one mass flow; a mass transport from the unburned
to the burned zone. The gas is combusted at the moment
when it leaves the unburned zone and enters the burned
zone. This implies thathub = hbu = hu. Since changes
in gas composition due to pressure and temperature are
neglected, and the gas that enters the burned zone has
the same composition as the gas already in the zone,
dR ≡ 0.

According to the discussion above the multi-zone
model can be simplified into the two-zone model (19).

4.1 Simulation

The two-zone model has been implemented and simu-
lated in the crank angle domain. The mathematical tool
used in the simulation was MATLAB 5.3. For the numer-
ical solution to the differential equation, the MATLAB

built-in function ’ode’ was used. The following assump-
tions were made in addition to the previous ones:

1. The mass fraction burned is described by a Wiebe
function (Heywood, 1988).

2. The Wiebe parameters (m, a and ∆θ) are de-
termined according to the method presented in
(Eriksson, 1999), and the ignition angle is set to
20◦.

3. The fuel becomes completely combusted during
the combustion phase.

4. There is no heat transfer to the surroundings, nor
between the zones.

5. The unburned zone contains a mixture of isooc-
tane and air, which stochiometric air/fuel ratio is
λ = 1.

6. The burned gas consists of 14.0% H20, 12.5%
C02, and 73.5% N2. Its gas constant is 292.

7. The heat capacity and enthalpy are depending
solely on temperature, not pressure (follows from
the fixed gas composition assumption).

The equation system was scaled adaptively according
to the method described in section 3.2, and then solved
by Gaussian elimination. The volume of the unburned
fuel (Vu) risked getting a big relative error in the end






dVu + dVb = dV
Vudp + p dVu − muRudTu = RuTu dmub

p dVu + mucv,u dTu = −dQu + (hub − uu) dmub

Vbdp + p dVb − mbRbdTb = RbTb dmbu

p dVb + mbcv,b dTb = −dQb + (hbu − ub) dmbu

(19)

of the combustion phase. This was avoided thanks to
the use of the consistency equation forVu, as described
in section 3.4. In the initial phase of the combustion
the burned zone was non-existent as it had no mass.
Therefore, the calculations had to be carried out as
described in Section 3.1. The initial temperature of the
burned gas,Tb, was determined by solvinghu(Tu) =
hb(Tb).

The simulation results are shown in Figure 1 and Fig-
ure 2. As can be seen, the shape of the simulated pres-
sure curve and the measured pressure curve coincide
quite well. The maximum pressures differ from each
other, which could be expected since the heat transfer
has been neglected in the simulation and fix gas com-
position is assumed. Another reason is that in a real
engine, about 5% of the fuel remains unburned during
the whole combustion. At150◦ after TDC, there is a
pressure drop in the measured curve due to the gas
exchange. This phase is not included in the simulation
model, and therefore the pressure remains fairly con-
stant at this angle. At about50◦ after TDC, the mass of
the unburned zone is so small that numerical operations
can not be carried out correctly (discussed in subsection
3.3). At this point, the two equations for the unburned
zone are removed from equation system (19), leaving
the equation system with only three equations – one of
them being the trivialdVb = dV .
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Fig. 1. Simulation results showing burned (upper curve)
and unburned gas temperatures as function of
crank angle. Inlet manifold pressure was set to
50 kPa, residual gas fraction to 7% and ignition
angle to20◦ before TDC. The cylinder gas consists
of a mixture of air and isooctan, with normalized
air-fuel ratioλ = 1. At about50◦ after TDC, the
unburned zone is treated as non-existent.
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Fig. 2. Cylinder pressure as function of crank angle.
The solid line shows the result from the simulation
(same as in Figure 1), and the dashed line mea-
sured data from a SAAB 2.3 l naturally aspirated
engine with compression ratiorc = 10.1.

4.2 The adaptive scaling

The outcome of the simulation described in the previous
subsection is used to show the effectiveness of the adap-
tive scaling. Without any kind of scaling, the condition
number for theA-matrix is 1016 or greater, which is
shown in Figure 3. The condition number is very high in
the beginning of the combustion simulation, caused by
the small value ofmb. The local maximum at20◦ after
TDC coincide with the pressure maximum. In the end of
the combustion, the condition number increases rapidly
again, since the mass of the unburned fuelmu → 0.
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Fig. 3. Condition number for the unscaledA-matrix.

In Figure 4, theA-matrix has been scaled adaptively
according to (17). Four different combinations ofki-



values are shown. Ifki = Ri, thebi-values are equal to
one, and iski = cv,i thedi values are equal to one. The
lowest condition number is achieved in the latter case.
For this choice ofki the condition number never gets as
high as5 ·104. Even with the worst choice of these four
it stays beneath5 · 107, which is a major improvement
from the unscaled case.
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Fig. 4. Condition number for theA-matrix after being
scaled adaptively withku = kb = 1 (solid line),
ku = Ru andkb = Rb (dotted),ku = cv,u and
kb = cv,b (dash-dotted), andku = kb = 3000
(dashed).

5. USE OF MODEL IN OTHER PHASES THAN
THE COMBUSTION PHASE

The multi-zone combustion model presented has a very
flexible form. With no or minor changes it can be used
to describe other phases than the combustion phase. For
example, the compression and expansion phase can be
simulated by applying the model to a one zone system
where the burn speeddxb ≡ 0. The compression and
expansion phases in Figure 2 are simulated this way.
Actually, what happens in section 4.1 when the two-
zone model is reduced into a one-zone model in the
end of the simulation, is that the combustion phase turns
into an expansion phase.

The gas exchange phase can be described with the
multi-zone model as well. A way to do this is by
divide the total system into a set of subsystems, that
are represented by physical units like the cylinders and
manifolds. During the gas exchange phase there is no
combustion, but the gas composition will change due to
that burned gas leaves the cylinders and are replaced by
unburned gas.

6. CONCLUSIONS

A new formulation of zero-dimensional multi-zone
models is presented. The formulation has a clear and
simple structure which enables the user of the model

to easily add and remove zones while maintaining the
structure. A number of important issues that can give
problems when simulating the model are also treated.

One issue is the initialization of a new zone. The most
significant example of initialization is the initiation of
the burned gas zone. It is shown how the state of the
gas can be initiated in two steps, simply by studying the
equations for the zone. Another issue arise due to the
large differences in magnitude between the variables.
This can result in numerical problems when simulating
the system on a computer with finite precision. It is
shown that the numerical difficulties can be avoided
by proper scaling of the variables. The final issue is
how faults, accumulated during the simulation, can be
reduced by utilizing a set of consistency equations. For
each zone one consistency equation can be formulated
using the ideal gas law.

Simulation results from a two-zone model are compared
with measured engine pressure data, which illustrates
how the presented formulation can be applied. The
simulation result is used to indicate the strength of the
adaptive scaling.
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