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∗ Linköping University, Linköping Sweden

Abstract:
Recent studies from several authors show that it is possible to lower the fuel consumption for
heavy trucks by utilizing information about the road topography ahead of the vehicle. The
approach in these studies is receding horizon control where horizon length and residual cost are
main topics. To approach these topics, fuel equivalents previously introduced based on physical
intuition are given a mathematical interpretation in terms of Lagrange multipliers. Measures
for the suboptimality, caused by the truncated horizon and the residual cost approximation, are
defined and evaluated for different routes and parameters.
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1. INTRODUCTION

The scenario of look-ahead control is a heavy truck
operating on varying terrain, and there is road data on-
board so that the road slope ahead of the vehicle is known.
The objective used is to minimize the fuel mass M required
for a drive mission with a given maximum trip time T0:

minimize M (P1)
subject to T ≤ T0

A receding horizon control (RHC) approach has successfully
been used for the solution, and experimental evidence
confirms that it is possible to improve the fuel economy
of heavy trucks by this approach (Hellström et al., 2009).
RHC is a general method to find an approximation for the
optimal control law by solving on-line, at each time step, a
finite horizon optimal control problem (see, e.g., the survey
paper Mayne et al., 2000). In this method, it is crucial how
to select the residual cost at the end of the finite horizon and
how to select a proper horizon length to balance between
computational complexity and suboptimality. These two
topics are in this paper given a thorough investigation that
is independent of the method of solving the optimal control
problem in each time step.

The line of investigation is to consider (P1) but also the
reformulation

minimize M + βT (P2)
where β determines the compromise between fuel mass and
trip time. Problem (P1) is solved in Hellström et al. (2010a)
by developing an efficient algorithm for (P2). The RHC
approach is taken in recent papers on the problem (P1) for
heavy trucks (Terwen et al., 2004; Hellström et al., 2007,
2009; Huang et al., 2008; Passenberg et al., 2009). These
works utilize the reformulation (P2) except for Terwen et al.
(2004) where cruise control rather than fuel-optimal control
is considered by adding a quadratic penalty on deviations
from a cruise speed in (P1). Although the method of
solution in each time step differs in these studies, the
length of the horizon and the residual cost are important
common issues. A residual cost is selected and explained

by Hellström et al. (2010a) that is linear in kinetic energy
where the gradient γ represents the trade-off between fuel
mass and kinetic energy at the end of the horizon. The
deviation from optimality thus depends on the length of
the horizon and the choice of the fuel equivalence factors
(β, γ), and the issue of suboptimality is studied here.

The paper starts out by formulating models of the lon-
gitudinal vehicle dynamics that follows the treatment in
previous papers (Hellström et al., 2009, 2010a). Next look-
ahead control is recalled, and measures are introduced
for the suboptimality due to the truncated horizon. The
following two sections treat the fuel equivalents. These
were based on physical intuition in the prior papers but a
clear mathematical interpretation is added here by relating
to well established optimal control theory. A quantitative
study is then performed to evaluate how the degree of
suboptimality depends on the horizon length, vehicle mass,
and road characteristics.

2. MODEL

The dynamics of the vehicle is modeled by considering the
motion in one dimension, see Fig. 1. The propelling force
is denoted by Fp. The drag force is denoted by Fd(s, v)
and is dependent on position s and velocity v. The velocity
dynamics is given by Newton’s second law of motion,

mv
dv

ds
= Fp − Fd(s, v) (1)

s

m FpFd(s, v)

Fig. 1. A vehicle moving in one dimension.

In the following, the full model and the basic model are
presented. The full model has two states and three control
signals whereas the basic model is an approximation of the
full model and has one state and one control.



2.1 Full model

A model of the longitudinal dynamics is formulated for a
stiff driveline (Kiencke and Nielsen, 2005). Gear shifting
is considered and the ratio i and efficiency η are functions
of the current gear. The engine torque Te is given by a
look-up table from measurements. The states are velocity v
and engaged gear g, and the controls are fueling uf, braking
ub and gear ug. The road slope is given by α(s) and the
brake torque is denoted by Tb. The forces in (1) are then

Fp =
1

cmrw
(iηTe(v, g, uf)− Tb(ub)) (2a)

Fd(s, v) =
1
cm

(Fa(v) + Fr(s) + Fg(s)) (2b)

where cm = 1 + Il+ηi
2Ie

mr2w
is a mass factor. The models of

the resisting forces and all model parameters are explained
in Table 1 and 2 respectively.

Table 1. Longitudinal forces.

Force Explanation Expression

Fa(v) Air drag 1
2
cwAaρav2

Fr(s) Rolling resistance mg0cr cosα(s)
Fg(s) Gravitational force mg0 sinα(s)

Table 2. Truck model parameters.

Il Lumped inertia cw Air drag coefficient
Ie Engine inertia Aa Cross section area
m Vehicle mass ρa Air density
rw Wheel radius cr Rolling res. coeff.
g0 Gravity constant

The fuel consumption is given by integrating the mass flow
of fuel M ′ (g/m),

M ′ =
ncyl
2πnr

i

rw
uf (3)

where ncyl is the number of cylinders, nr is the number of
engine revolutions per cycle, and uf is grams of fuel per
engine cycle and cylinder.

2.2 Basic model

A basic model is derived as an approximation of the full
model for the purpose of analytical calculations later on.
A constant gear and no braking is assumed, the state is
velocity v and the control is fueling u.

Measurements of engine torque Te as a function of fueling
u for a diesel engine typically show an approximate
affine relation, see, e.g., Hellström et al. (2010a) for
an experimental validation. Such an approximation can
be interpreted as a Willans description (Guzzella and
Sciarretta, 2005). Denote an estimated gradient of this
relation by ce, then

∆u = ce∆Te (4)
holds approximately. For the basic model, it is assumed
that the fueling is proportional to the torque with ce being
the constant of proportionality (the drag torque offset
de is included in the drag forces without changing the
model structure). The dependence on the road slope α is

approximated to first order (α is typically a few percent).
The forces in (1) become

Fp =
iη

cmrw

u

ce
(5a)

Fd(s, v) =
1
cm

(Fa(v) + Fr + Fg(s)) (5b)

where Fa(v) = 1
2cwAaρav

2, Fr = mg0cr − iη
rw
de, and

Fg(s) = mg0α(s). The control is bounded by
0 ≤ u ≤ ū (6)

where ū is maximum fueling. The mass flow of fuel (3) is

M ′ = cuu, cu =
ncyl
2πnr

i

rw
(7)

where cu is a constant.

3. LOOK-AHEAD

Look-ahead control utilizes RHC to handle the complexity
due to changing conditions. Now the RHC problem is
formulated, and based on that suboptimality measures are
introduced.

3.1 Receding horizon

Combining Eqs. (1) and (2), the system model is given by
dx

ds
= f(x, u, s), x(0) = x0 (8)

where x ∈ X, u ∈ U are states and controls. The problem
over the entire drive mission s ∈ [0, S] is defined by

JS(x0) = min
u∈U

∫ S

0

L(x, u) ds (9)

where L is the running cost given by (P2).

Denote by JR the optimal cost for the RHC problem with
the horizon length R. Let sr be the current position and
P = min{sr +R,S}. The problem

JR(sr, x) = min
u∈U

{
φ(x(P )) +

∫ P

sr

L(x, u) ds

}
(10)

where φ is a residual cost, is solved repeatedly on-line
by some optimization method. The solution is the RHC
controller, denoted by µR, and the resulting trajectory is
the solution for

dx

ds
= f(x, µR, s), x(0) = x0 (11)

with an associated cost

JSµR(x0) =
∫ S

0

L(x, µR) ds (12)

Thus, JSµR gives a basis for evaluating a given horizon length
R in relation to the full problem given by JS in (9). The
other important performance factor in RHC is the residual
cost φ in (10). The choice of R and φ will be studied in
the following.

3.2 Suboptimality measures

To begin with, the basis for studying different horizon
lengths is introduced. This foundation is valid independent
of the choice of the residual cost φ in (10).



The difference between the costs (9) and (12) is the central
matter, and it is clear that the relation

JS(x) ≤ JSµR(x) (13)
holds between these costs. To quantify the difference
between them, a measure of the suboptimality imposed by
RHC is introduced that is the relative difference between
the costs. Consequently, define the degree of suboptimality
for a horizon length R by κRJ , where

κRJ = JSµR(x)
/
JS(x) − 1 (14)

Clearly, κRJ is non-negative, is zero for the optimal control
law for the original problem (9), and κRJ → 0 when R→ S.
The suboptimality is decreasing with horizon length so
studying κRJ for varying R can be used to judge suitable
horizon lengths. Note that the measure is independent of
how the optimal solution for (10) is obtained.

The application here is problem (P2) where
JS(x) = MS(x) + βTS(x) (15)

To separate the suboptimality in fuel mass M and trip
time T , define the measures κRM , κ

R
T by

κRM =
MS
µR(x)

MS(x)
− 1, κRT =

TSµR(x)

TS(x)
− 1 (16)

analogous to (14). The measures κRJ , κ
R
M , κ

R
T are studied

quantitatively for (P2) and varying R in Sec. 6.

4. FUEL EQUIVALENTS

For an efficient solution of (P1), fuel equivalents have
been introduced in Hellström et al. (2010b,a) based on
physical intuition. The support for these is substantiated in
Sec. 5 by a mathematical interpretation relating to optimal
control theory. The use of fuel equivalents is inspired by
the electrical energy equivalents in works by, e.g., Paganelli
et al. (2000); Sciarretta et al. (2004).

4.1 Kinetic energy equivalence - residual cost

The residual cost, the other important topic in RHC, is now
treated. Starting with the fuel equivalent γ (g/J) that is
based on that Eq. (4) represents an affine relation between
engine torque Te and fueling u. The scaled gradient,

γ =
ncyl

2πnrη
ce (17)

defines an equivalence between energy and fuel mass.

In Hellström et al. (2010a), the idea is to calculate kinetic
energy into an equivalent fuel mass as an approximation of
the fact that kinetic energy can be used to save fuel in the
future. The residual cost φ(x) = −γe, where e = 1

2mv
2 is

kinetic energy at the end of the horizon, was proposed. A
slightly modified residual cost is obtained by rewriting the
basic model for a small ∆s. Eqs. (1),(5),(7), and (17) yield

∆M = γ [cm∆e+ ∆p+ (Fa(v) + Fr) ∆s] (18)
where p is potential energy and ∆p ≈ mg0α∆s. From (18)
it is seen that a change ∆e in kinetic energy approximately
equals a fuel mass γcm∆e. Based on this, the mass factor
cm should be included to yield

φ(x) = −γcme (19)
but cm is typically close to one, especially for large masses
and higher gears. The value of γ for an example of a typical
engine in a heavy diesel truck is 53 g/MJ or 4.6 kWh/L.

4.2 Time equivalence

The reformulation in (P2) is beneficial since the problem
has a lower dimension than (P1) and since, with an RHC
approach, it avoids the risk of an infeasible constraint. How-
ever, the parameter β has to be selected. An approximate
value of β can be found by assuming that the constant
speed v̂ is the solution for the trip length S. Using S = v̂T0

and (18) gives the criterion.

J(v̂) = γ (p(S)− p(0)) + γ (Fa(v̂) + Fr)S + β
S

v̂
(20)

In a stationary point J ′(v̂) = 0 which yields β = γv̂2F ′a(v̂).
The air drag force according to Table 1 yield

β = 2γPa(v̂) = 2γPa(S/T0) (21)
where Pa(v̂) = v̂Fa(v̂) is the air drag power. With β
according to (21), J ′′(v̂) is positive for all physically feasible
parameters which shows that it gives a minimum for this
stationary case. The compromise between fuel mass and
trip time is defined by the ratio

q =
M

βT
=

1
2

(
1 +

Fr
Fa(v̂)

)
(22)

A change in β gives another stationary speed v(β) and q.
The relative changes in fuel mass and trip time become

κβM =
Fa(v(β))− Fa(v̂)

Fa(v̂) + Fr
, κβT =

v̂

v(β)
− 1 (23)

The slope in the origin of the graph κβM versus κβT becomes
−q−1 where q is given by (22) and so, close to the origin

qκβM + κβT = 0 (24)
holds. Examples of typical parameters for a heavy diesel
truck and 80 km/h give β as 4.5 g/s or 18.5 L/h and q as 1.2.
The ratio q thus indicates that an increase in time of 1.2 %
gives, approximately, a decrease in fuel mass of 1 %.

5. INTERPRETATION OF FUEL EQUIVALENTS

The fuel equivalents in Sec. 4 are given a mathematical
interpretation by relating them to the Lagrange multipliers
used in optimization theory. To accomplish this, first an
optimal control problem is formulated and the multipliers
for this problem are throughly studied. A related work
is Fröberg and Nielsen (2008) where the multiplier for a
velocity state is studied.

5.1 Problem formulation

Consider (P1) for the basic model in Sec. 2.2 and treat the
time constraint as an equality constraint since the minimum
is attained in the limit for a realistic drive mission:

minimize M (P3)
subject to T = T0

The problem (P3) is specified exactly below by (25)–(28).
In the formulation, it is convenient to use position s as
independent variable and kinetic energy e as state instead
of velocity. The notation in the following is adopted from
Bryson and Ho (1975).

The states are time t and kinetic energy e with associated
Lagrange multipliers denoted by

x = (t, e)T , λ = (λt, λe)T



The dynamics is

x′ = f(x, u, s) =

( √
m/2e

cu
γcm

u− Fd

)
(25)

The running cost is L = M ′, so (7) gives the objective

J = min
u∈U

∫ S

0

cuu ds (26)

with U given by (6). The trip time constraint is
ψ(x(S)) = t(S)− T0 (27)

Together with an initial condition

x(0) = (0,
1
2
mv2

0) (28)

the problem (P3) becomes completely specified.

5.2 Solution

The Minimum Principle states that the optimal control
minimizes the Hamiltonian H,

u? = arg min
u∈U

H (29)

where H = L+ λT f and

λ′T = −∂H
∂x

, λ(S) = νT
∂ψ

∂x
(30)

where ν is a constant vector (Bertsekas, 1995, Ch. 3.3).

For the problem (P3), the Hamiltonian is

H = L+ λT f = σu+ λt
√
m/2e− λeFd (31)

where σ is given by

σ(s) =
cu
γcm

(γcm + λe(s)) (32)

The dynamics of λ (30) is

λ′ =

 0
λt
m

(m
2e

) 3
2

+
λe
cm

∂Fa
∂e

 , λ(S) =
(
ν
0

)
(33)

where the fact that ∂
∂eFd(s, e) = 1

cm

∂
∂eFa(e) has been used.

Since H is linear in u, the solution is at one of the bounds
in (6) if σ(s) 6= 0. If σ(s) = 0, the solution is singular and
can not be determined from the Minimum Principle. To
summarize, the possible controls are

u? =


0 σ(s) > 0
û σ(s) = 0
ū σ(s) < 0

(34)

where û is the yet unknown control on a singular arc.

To find û, the singular arc is studied. Eq. (32) immediately
gives that if σ(s) = 0, then

λe(s) = −γcm (35)
If σ(s) = 0 on a finite interval, it must hold that σ′(s) = 0.
From (32) and (33) together with (35) it then follows that

σ′ =
λt
m

(m
2e

) 3
2 − γ ∂Fa

∂e
= 0 (36)

which shows that, since λt and ∂Fa

∂e are constant, the kinetic
energy is constant on a singular arc (this further implies
that σ′′(s) = 0). The control û is then given from (25)

û =
γcm
cu

Fd(s, v̂) (37)

where v̂ is the constant speed. Singular arcs are possible on
road segments with small slopes such that constant speed
is feasible since there must be a feasible û, 0 ≤ û ≤ ū.

Solving (36) for λt and inserting the air drag force Fa in
(5b) shows that, on a singular arc,

λt = 2γPa(v̂) (38)
holds where Pa(v̂) = v̂Fa(v̂) is the air drag power. Since
ν = λt is constant, the choice of ν such that the trip time
constraint is satisfied also determines the constant speed v̂
on singular arcs.

A complete solution for (P3) is given by solving the two-
point boundary value problem given by (25), (28), and (33)
where ν is determined by the trip time constraint (27).

5.3 Interpretation

The relationships (Bryson and Ho, 1975; Bertsekas, 1995)

λT =
∂J

∂x
, H = −∂J

∂s
(39)

or equivalently
dJ = λT dx−Hds (40)

form a general connection between the optimal cost function
J and the Lagrange multipliers λ and the Hamiltonian
H. The aim here is to investigate physically meaningful
interpretations of these quantities.

The control u may be discontinuous if selected according
to (34). Moreover, the road slope α(s) is typically known
in discrete points αk where

α(s) = αk, s ∈ [k∆s, (k + 1)∆s) (41)
Jumps in α(s) and u(s) yield jumps in the system dynamics
f , and the point at which f changes can be seen as
an interior boundary condition. Since, in this case, the
condition becomes a function only of position, it leads to
that λ is continuous whereas H may be discontinuous (see
Bryson and Ho, 1975, Ch. 3.5).

Kinetic energy The dynamics of λe is written as

λ′e(s) = θλe(s) + γcmθ

(
v̂

v(s)

)3

, θ =
cwAaρa
cmm

(42)

by inserting (5b) and (38) into (33). It turns out that the
adjoint dynamics is driven by the deviation of the optimal
velocity v(s) from the constant level v̂ and it is expected
that λe(s) varies around −γcm if v(s) varies around v̂. On
a singular arc, v(s) = v̂ which implies that λ′e is zero.

A variation δe on an optimal trajectory gives a changed
cost δJ = λeδe according to (39), i.e., a change in kinetic
energy leads to a proportional change in the equivalent fuel
consumption with the constant of proportionality being λe.
In particular, on a singular arc, δJ = −γcmδe and

∂J

∂e

∣∣∣∣
e=ê

= −γcm, ê =
1
2
mv̂2 (43)

The change in the Hamiltonian (31) due to a change in the
road slope at s = s1 becomes, since x and λ are continuous,

H(s1+)−H(s1−) = − 1
cm

λe(s1)mg0 (αk − αk−1) (44)

The Hamiltonian is therefore stepwise constant
H(s) = Hk, s ∈ [k∆s, (k + 1)∆s) (45)



and may be written as

Hk = H0 −
1
cm

k∑
j=1

λe(j∆s)mg0 (αj − αj−1) (46)

for k = 1, 2, . . . , S/∆s−1. According to (40), the change in
the optimal cost due to a ∆s with ∆x = 0 is −H. Potential
energy is approximately mg0α(s)∆s and consequently,
λe(s) determines the proportional change in the cost due
to the change in potential energy during [s, s+ ∆s).

Time When solving (P3), the value of ν = λt = 2γPa(v̂)
must be found such that the trip time constraint (27) is
satisfied. Using the time equivalent β in (21) is the same
as choosing a value β, removing the trip time constraint
(27) by letting ψ = 0, and modify the objective (26) as

J = min
u∈U

∫ S

0

cuu+
β

v
ds (47)

that is equal to the formulation (P2). This formulation may
lead to a trip time T 6= T0. With the original formulation,
a variation δt on the optimal trajectory gives a changed
cost δJ = νδt according to (39) and ν is thus a measure
of the increase in the equivalent fuel consumption if the
remaining time decreases.

Summary In conclusion, λt determines the constant speed
v̂ on singular arcs, according to (38), whereas λe is the
decisive variable for the dynamical behavior, i.e., when the
velocity deviates from v̂, according to (32),(34),(42). The
standard interpretation, given by (39), of the values of the
adjoint variables is that they are the gradient of the cost
function with respect to the states. In addition, it turns
out in (46) that, in the position direction, the cost function
varies proportional to the varying potential energy with
the constant of proportionality equal to λe.

5.4 Residual cost

The residual cost (19) is now interpreted by aid of
problem (P3). Consider an RHC approach for solving (P3)
by using the objective (47) and ψ = 0. The real residual
cost for the objective (47) at position s, with x = (t, e), is

J(s, x) = min
u∈U

∫ S

s

cuu+ βt′ ds (48)

Since ψ = 0, (30) yields that λt = 0, so it follows from (39)
that J(s, x) is a function of s and e. Eq. (39) gives that

∂J

∂e
= λe (49)

According to (35), λe = −γcm on a singular arc and now,
approximate λe with this constant value on constrained
arcs as well, i.e., λe ≈ −γcm. Integration of (39) with
respect to e then gives

J(s, x) ≈ −γcme+ C(s) (50)
The integration constant C(s) does not affect the optimal
solution and can be omitted when choosing a residual
cost φ. Thus, this connection to optimal control theory
supports the choice of the residual cost φ(x) = −γcme
in (19). Further, the choice is justified in Hellström et al.
(2010a) where it is shown that, without approximations,
the real residual cost (48) is dominated by this term.
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Fig. 2. Elevation profiles (in one direction) and distribu-
tions of road slope values (in both directions) for two
Swedish routes and one German route.

6. QUANTITATIVE STUDY

The choice of horizon length is quantitatively studied by
evaluating the suboptimality measures in Sec. 3.2. The
full model in Sec. 2.1 and three different routes, with the
characteristics and the abbreviations in Fig. 2, are used.
The maximum allowed speed is 89 km/h and β in (P2) is
chosen for a cruising speed of v̂ = 84 km/h. The vehicle
parameters are from the experimental setup in Hellström
et al. (2009) and represent a truck with a gross weight of 40 t
with a relatively small engine of 310 hp. The computation
of the optimal cost functions (9) and (10) is done by
value iteration (see, e.g., Bertsekas, 1995) by utilizing the
algorithm development in Hellström et al. (2010a).

In Fig. 3, the measure κRJ is shown for different horizon
lengths R. It is seen that κRJ depends on the route but the
rate of decrease, i.e., the relative benefit of increasing R,
for around 1–2 km is similar. To study the effect on the fuel-
time trade-off, Fig. 4 shows κRM versus κRT for increasing R.
It is observed that optimality is approached approximately
along a line with negative slope. To explain this behavior,
note the following relationship between the suboptimality
measures obtained by combining (13)–(16):

0 ≤ κRJ (1 + q) = qκRM + κRT , q =
MS

βTS
(51)

Now, since κRJ tends to zero faster than the other terms, the
solution approaches the line qκRM + κRT = 0. By computing
JS in (15) for varying β, it shows that the ratio q is around
1 which explains the observed behavior. The computations
also show that Eq. (24) gives a good approximation when
κβM , κ

β
T are a few percent. With a desired suboptimality d

in M , it is reasonable, based on (24), to aim for

0 ≤ qκRM + κRT ≤ d (52)
since this is close to an optimal solution with a different β.
The optimal trade-off line (24) and the desired area (52)
are shown in Fig. 4 for d = 0.5 % and q given by (22). These
are used to determine horizon lengths with the appropriate
compromise between fuel consumption and trip time.
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The vehicle mass is now varied by repeating the computa-
tions for lower masses down to 20 t. The principle behavior
in Figs. 3–4 remains the same but the necessary horizon
length to reach a certain degree of suboptimality decreases
with decreasing mass. This effect is shown in Fig. 5 where
the necessary horizon length to reach the desired area (52)
for q given by (22), in both directions of the respective
route, is drawn as a function of vehicle mass.

7. CONCLUSIONS

Approximating the residual cost and choosing the horizon
length are the two main issues in RHC, and these are
addressed here for the look-ahead problem. The support
for the residual cost used is strengthened by a mathematical
interpretation, in terms of Lagrange multipliers, that
confirms the physical intuition. The choice of horizon length

is a compromise between complexity and suboptimality,
and this compromise is quantified by introducing measures
for suboptimality. These are combined into an optimal
trade-off line that enables choosing horizon lengths with
the appropriate compromise between fuel consumption
and trip time. Altogether, the framework for quantitative
analysis provide valuable insights into design and tuning
for different road characteristics and vehicle mass.
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