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Abstract—There is currently a strongly growing interest in
obtaining optimal control solutions for vehicle maneuvers both
in order to understand optimal vehicle behavior and to devie
improved safety systems, either by direct deployment of theolu-
tions or by including mimicked driving techniques of professional
drivers. However, it is nontrivial to find the right mix of mod els,
formulations, and optimization tools to get useful resultsfor the
above purposes. Here, a platform is developed based on a stat
of-the-art optimization tool together with adoption of existing
vehicle models, where especially the tire models are in fosuA
minimum-time formulation is chosen to the purpose of gaininy X
insight in at-the-limit maneuvers, with the overall aim of possibly =
finding improved principles for future active safety systens. |
We present optimal maneuvers for different tire models with
a common vehicle motion model, and the results are analyzed
and discussed. Our main result is that a few-state single-itk  Fig. 1. An example of a hairpin turn. Photo courtesy of RaiigSLive.
model combined with different tire models is able to replicae
the behavior of experienced drivers. Further, we show that e
different tire models give quantitatively different behavior in the
optimal control of the vehicle in the maneuver. The interaction between tire and road is complex, and differ

ent tires have different characteristics. Even when onhsih
ering the longitudinal stiffness, the experimental valdéter
Optimization of vehicle trajectories can be motivated frordonsiderably between tires, and the variability can tylpidze

different perspectives. One objective is to develop imptbv 20-100 %, see [5]. Further, in addition to the differences in
active safety systems for standard customer cars. The Elggffness—-e, the slope of the longitudinal force-slip curve—
tronic Stability Program (ESP) systems, see [1] and [2], @fere are also differences between the characteristicesbip
today are still behind the maneuvering performance acblevathe curve at the maximum force, where the peak can be more
by professional race car drivers in critical situationst the or less accentuated. This is illustrated for Pacejka’s Magi
vision for improvement is there, see [3]. A recent survey oRormula and the HSRI model in [5]. The complete tire model
optimal control in automotive applications [4] points out:  capturing both longitudinal and lateral forces can thus be

Most often, the optimal control itself will be interest- expected to have large variability both in shape, pararsgter

ing mainly insofar as it enables the discovery of the  and parameter irregularity.

best possible system performance. Occasionally, the  The control oriented goal of this paper is to find a formula-

optimal control will provide a basis for the design  tjon that gives insight into improved safety systers, future

and operation of practical systems. ESP systems performing closer to what the most experienced
Further, the survey points out that finding the right balamee drivers can do. To that end we study a time-optimal maneuver
tween models, correct formulations, and optimization reé¢h in a hairpin turn, an interesting situation testing the tgmi
is nontrivial, and that the state-of-the-art today is harege of maneuverability of a car in a certain situation. In [6]
by long simulation runs. The goal in this paper, regardinge reported that simplified vehicle models identified from
methodology, is to develop and investigate a platform fa@axperimental data managed to replicate the behavior of real
useful solutions to these problems. vehicles. However, this was based on less aggressive grivin

It is a common observation that the criterion of timesituations, and not using optimization. Previous work ie th

optimality in aggressive vehicle maneuvers, combined wiubject of optimal control of vehicles in certain time-iat
input and state constraints, often results in control dgnaituations such as T-bone collisions and cornering can tnedo
using the extremal cases of the input and state regions. ltiris e.g, [7], [8], [9]. In [10], [11], methods for constraint-
therefore crucial howe.g, the tires are modeled outside theibased trajectory planning for optimal maneuvers are pteden
normal range of operation. Further, the papers [12], [13] discuss optimal control ofrev
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actuated vehicles, where similar optimization tools ass¢ho ¥

used in the present paper are utilized. x o

This paper is outlined as follows: The problem description == -—=>——-—~ - F

and tire modeling and the specific models investigated & thi F; ¢ ly

study are presented in Sec. lll, followed by the formulation

and solution of the studied time-optimal maneuvering pgobl ' Yy,
in Sec. IV. Optimization results and a subsequent discaossio ! ‘ I ‘
of the obtained results are provided in Sec. V. Finally, con- f "
clusions and aspects on future work are given in Sec. VI. Fig. 2. The single-track model considered in this paper.
[I. PROBLEM DESCRIPTION TABLE |
The goal of the work presented in this paper is twofold. The VEHIGLE MODEL PARAMETERS USED IN(1)}-(10).
first goal is to find the time-optimal vehicle trajectory when Notation  Value _ Unit
maneuvering through a hairpin turn, see Fig. 1 for an example ; 13 m
with the vehicle being subject to various constraints. lf 15 m
Another aim of the study is to explore whether different m 2100 kg
vehicle models yield fundamentally different solutiongt n 1{{ 33030 k%ﬁ"?
only in the cost function but also in the internal behavior R 0.3 m
of the vehicle. Hence, a part of the work is devoted to Iy 40  kgn?
investigating how the models differ. We consider diffeiait g 9.82 ms?
algebraic models of the form
@(t) = G(2(t),y(t), u(t)), where m is the vehicle mass], is the vehicle inertiaz)
0= h(x(t),y(t),ut)), is the yaw ratey is the steering wheel angle, , are the

longitudinal and lateral velocitied, , are the distances from

where G(x(1), y(1), u(t)) and h(z(t),y(t), u(t)) are twice coniar of gravity to the front and rear wheel base, and,

continuously differentiable nonlinear functions of thehide .o a0 longitudinal and lateral forces acting on the front a

differential variablesz, algebraic variableg, and control ... \vheels. The slip angles,,, and slip ratiosy ., are
inputs u. The models used are based on the same vehigles riped by e fore

model, but differ in the tire modeling aspects. .
The motivation for the twofold goal is that, to the best of our vy + Lt

knowledge, most model comparisons in literature are based ap=0- arCtan< ) ’ “)

on simulation rather than optimization. Since time-optima

Vg

optimization problems tend to push the vehicle more to the o, = — arctan (Uy - lr¢> ’ (5)
extremes than simulations do, it is plausible that differen Vg
conclu_sions about model behavior can be made from such an o Rewy — Uy f ©)
analysis. f Vot )

IIl. M ODELING iy = Ter = Vaur. )

The vehicle dynamics modeling in this section incorporates Yaur .

the vehicle motion modeling and the tire force modelinghwit Vg, = Uz €08(0) + (vy + Lf¢)) sin(d), (8)
emphasis on the latter. Further, calibration of the tire et®d Vg,r = Ug, (9)

is dlsc_ussed and a subsequ_ent_|nvest|gat|0n of the quu,énatwhere R. is the effective wheel radius and,, are the
behavior of the models studied is presented. I

front and rear wheel angular velocities. The wheel dynamics
A. Vehicle Modeling necessary for slip ratio computation, is given by

As a basis for the vehicle dynamics model, a two- T, — Iy — Fp iRy =0, i=f,r (10)
dimensional single-track model, with two translationadan

one rotational degrees-of-freedom, was used, see Fig. @. TiEre.7: is the driving/braking torquel,, is the wheel inertia,
motion equations are expressed by, see [14], [15] and R, is the loaded wheel radius. The numerical values for

. the vehicle model parameters used in this study are provided
bp = vy = —(Fup cos(8) + Fop = Fypsin(d), (1) I Table |.
B. Tire Modeling

) When developing a platform for investigation of optimal
Ly =13F, rcos(d) — I, Fy» + 15 F; ¢sin(0), (3) maneuvers, it is of interest to be able to handle and compare

. 1
by + 0 = (B, poos(6) + By + Fopsin®). (@)



different tires, and thus to cope with different tire models
We have considered two different model categories for til
modeling, whose characteristics are described next.

The nominal tire forces+e., the forces under pure slip
conditions—are computed with the Magic Formula mode
[16], given by

Fro0,i = g Fs ;i sin(Cy ; arctan(By k), (11)
Fyo0,; = pyF, i sin(Cy ; arctan(By ;04)), (12)
F,.,=mg(l-1)/l, i=f,r. (13)

In (11)-(13), 4, and p,, are the friction coefficients3 and
C are model parameters= [y + [,., andg is the constant of
gravity .

Under combined slip conditionsie., both x and « are
nonzero—the longitudinal and lateral tire forces will dege

on both slip quantities. How this coupling is described ca
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have immense effect on the vehicle dynamics. In an optimal
maneuver, the solution will use the best combination &f9- 3. Resultant tire forcércs for a friction ellipse model parametrized to

longitudinal and lateral force, and these forces are, ofsmu
coupled via the physics of the tire. In order to compare diffe
ent models, plotting of the resulting tire force is illugiva,
c.f. Figs. 3—6, to visualize the interaction between longitatin
and lateral force.

Even though detailed experiments, like the ones in |
for longitudinal stiffness, are lacking for the complet
longitudinal-lateral tire interaction, there is a vasttptera of
characteristics, see [1], [16], [17], and [18]. We have @mos
two different tire models for our study, described below.

1) Friction Ellipse: A common way to model combined
slip is to use the friction ellipse, described by

Fro

2
)
R

i (14)

give isotropic behavior.

get comparable solutions. For example, in Fig. 3 and Fig. 6 we

show two different types of tire models. In order to equalize
ese models in comparative studies, one way would be to
ave the same average resultant force, whereas another way

Svould be to equalize the longitudinal stiffness. In thisdstu

the same parameters have been used for the nominal lateral
force;i.e. the lateral force characteristics are the same for all
models when considering pure lateral slip.
D. Qualitative Behavior of Tire Models

In Figs. 3-6 it is shown how the resulting force, defined by

Fres: \/FEQ_’Z"’_F;@ i:fara

whereF}, is used as an input variable. However, we have opted ) ) ) ) )
for using the driving/braking torques as input, see (10)cei folr the above tire models varies over slip angle gnd s_llp)ratl
this is a quantity that can be controlled in a physical setup ¥ith the parameters presented in Table Il Studying Fig$. 3—

a vehicle.

2) Weighting Functions:Another approach described in
[16] is to scale the nominal forces, (11)—(12), with weigti
functions, G.,; and Gy, ;, which depend onx and x. The
relations in thez-direction are

Byo,i = By, cos(arctan(Bga ik4)), (15)
Gza,i = €08(Cypq,; arctan(Bgq i), (16)
Fm,i = FzO,iGza,i- (17)

The corresponding relations in thedirection are given by

Byn,i = Byl,i COS(&I‘CtaD(ByQJ' (Oéi — Bygyi))), (18)
Gyr,i = c08(Cyy,; arctan(By, iki)), (19)
Fyi = Fyo,iGyn,i- (20)

C. Calibrating Tire Models for Comparison

gives a basis for discussion of the behavior of the tire nodel
in an optimal maneuver.

Figure 3 displays the friction ellipse model, and Fig. 4
shows the weighting functions model for an isotropic
parametrization. These are both considered isotropic én th
sense that they have the same properties in the lateral and
longitudinal directions. The most obvious difference iegh
figures can be seen for large slip angles, where an increase in
the slip ratio will increase the resulting force for the fion
ellipse model and, on the contrary, decrease it for the model
based on weighting functions.

In contrast, considering the nonisotropic models, Figs. 5
and 6, different force characteristics are obtained in the
longitudinal and lateral directions. The model based on the
weighting functions is parametrized according to the Racej
model in [16], thus representing a realistic tire behavidre
friction ellipse model also uses the Pacejka parametersah |

When comparing an optimal maneuver based on two diffdor the nominal tire forces. Hence, both of the nonisotropic

ent tire models, it is not obvious how to calibrate the motels

models will exhibit equivalent tire characteristics forreu
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Fig. 4. Resultant tire forcé+.s for a weighting functions model parametrizedrig, 6. Resultant tire force?.s for a weighting functions model with the
to give isotropic behavior. same friction coefficients as in Fig. 5.
Resulting Tire Force TABLE Il

TIRE MODEL PARAMETERS FOR FRICTION ELLIPSE WITH ISOTROPIC
BEHAVIOR (FE-1S0), NONISOTROPIC BEHAVIOR(FE-NONISO), AND
WEIGHTING FUNCTIONS WITH ISOTROPIC BEHAVIOR WF-1S0),
NONISOTROPIC BEHAVIOR(WF-NONISO).

Parameter FE-Iso FE-Noniso WF-Iso  WF-Noniso

L 1.0 1.2 1.0 1.2
Ly 1.0 1.0 1.0 1.0
Cy 1.09e5 1.09e5 1.09e5 1.09e5

Ca,r 1.02e5 1.02e5 1.02e5 1.02e5
Ch,r 1.09e5 2.38e5 1.09e5 2.38e5
Cr,r 1.02e5 2.06e5 1.02e5 2.06e5

Cy 1.3 1.7 1.3 1.7
Cy 1.3 13 1.3 1.3
Bu1 g - - 8.55 11.23
2. f - - 8.33 10.80
o f - - 1.03 1.14
~05 By1,5 - - 8.63 6.37
05 r [1] Bya ¢ - - 8.35 2.64
3, - - 0 0
a [rad] - : : 1.03 1.03
ol r - - 9.28 11.71
Fig. 5. Resultant tire forceFyes with a friction ellipse model with Byor - - 9.04 11.61
experimental parameters from [16}( = 1.2, py = 1.0). cm:T - - 1.03 1.14
i - - 9.38 5.88
Bya,r - - 9.08 2.98
. - s e ByS,'r - - 0 0
slip conditions. Further, the characteristic peaksjg,—not Cyrr - - 1.02 1.08

visible in the isotropic models—influence the behavior af th
tire force model significantly.

a problem with fixed end time. Further, we have found that
numerical issues easily arise and that the optimizatiors doe
Based on the dynamics described in the previous sectiowt converge without proper initialization. In order to meak
the time-optimal maneuver for the hairpin turn is to b&he convergence more robust from a numerical point of view,

determined. This is expressed as an optimization problad), ascaling of the optimization variables is essential.

considering the physical setup of the problem, it is cleat th , o

an optimal solution exists. The resulting optimizationjgem A Formulation of Optimization Problem

is more challenging than thought at first sight, since theetim Consider the time horizon € [0,t;], wheret; is the
optimality implies that the tire friction model operates e free final time to be determined as part of the solution
boundary of its validity. Also, solving dynamic optimizati procedure. Express the vehicle dynamics (1)—(3) and (10) as
problems where the final time is free, is more demanding tha(t) = G(z, y, u), wherex are the differential variables and

IV. OPTIMIZATION



are the algebraic variables. The wheel driving/brakinguers

T = (Ty T,) and the steering angteare considered as the
input variablesu = (T §)™. Further, express (4)—(9), (11)-
(13), and (14) or (15)—(20), depending on the friction mod:
considered, a®) = h(z,y,u). The dynamic optimization
problem to be solved can then be stated as follows:
minimize ¢y (22) _
SubjeCt to Ti,min S 111 S ﬂ,maxa 1= fa r (22) ‘E‘SO’
6] < Omaxs 6] < Omax (23)
|Fm,1| < Fm,i,max, 1= fa r (24) 20
|Fy,i| < Fy,i,max, 1= fa r (25)
6 6
(ﬁ> + (ﬁ) >1 26
Ry Ry
X,\° 2\ ° AN N NN N DR N
(R_‘f> + (R_g> <1 (27) -5 Xo[m] 5 -5 Xo[m] 5 -5 Xo[m] 5 -5 Xo[m] 5

z(0) ==z 0) = 28

( ) 0 y( ) Yo ( ) Fig. 7. Initialization procedure for solving the time-apal hairpin turn
x(ty) =me,,  ylty) = ysy (29) maneuver problem. The whole problem is solved by stepwisengpfour

. successive problems. The black rectangles in the figureatalithe position
'r(t) = G('r7y’u)7 O = h(I7y7 u)? (30)

and direction of the vehicle at the initial and final state acte problem.
where (zg,yo) are the initial conditions for the differen-
tial/algebraic variables(x; ., are the desired values at . . .
the figal timet = ¢, ;nté (gt(f)y) is the position of the solver based on interior-point methods opted for large, but
- ] pyip . . .
center-of-gravity of the vehicle. Note that the path caaistr sparse, optimization problems.
is formulated using super-ellipses and the shape of theipathp. |nitialization Procedure

determined by the radiR, B3, Ry, and k3. Robust convergence to a solution of the NLP in Ipopt relies

B. Solution of Optimization Problem on proper initialization. Two approaches are availablehie t

Because of the complex nature of the nonlinear and ndfidrPose: Simulation of an initial guess using driver modeis
convex optimization problem in (21)—(30), analytical ditios division of the problem into smaller subproblems, respetyi

are intractable. Instead, we utilize numerical methodstradn this paper, the latter approach is utilized. Conseqyent|
on simultaneous collocation [19]. Direct collocation iseds e hairpin turn problem is solved in four steps, see Fig. 7.
where all state and input variables, originally described il "€ results from the solution of each subproblem is used
continuous time, are discretized prior to the optimizatibnis [©" initialization of the subsequent problem. Hence, theilfin
results in a discrete-time nonlinear program (NLP). Théoeol OPtimal maneuver is determined stepwise.

cation proced_ur_e tra_msforms the original _infinite-dimenail V. RESULTS

problem to a finite-dimensional problem with a large, howeve

- Lo ) ) : For the evaluations we set the maximum allowed wheel
finite, number of optimization variables, on which numelkica -

o . angle, 6, and wheel-angle change raté, to 30 deg and
optimization methods are applied.

60 deg/s, respectively, which are reasonable parameters, bot

C. Implementation and Solution seen from physical and driver limitations. Also, consttaion
The vehicle and tire dynamics are implemented using tifae driving/braking torques and tire forces were introdlice

modeling language Modelica [20]. Utilizing Optimica [21], Ty <0, (31)

which is an extension of Modelica for high-level descriptio —

of optimization problems based on Modelica models, the Ty 2 ~Hakz R, (32)

implementation of the vehicle and tire dynamics descrilved i T | < poF R, (33)

Sec. lll and the optimal control problem is straightforward |Fpil < poFriy 0= f,r, (34)
The collocation procedure and solution of the optimization F, | < pyFes, i= fir. (35)

problem are performed using the open-source software plat-

form JModelica.org [22], [23]. In JModelica.org, orthogdn We let the road bé m wide. Further, the startX),Y,?), and
collocation is implemented, where Lagrange polynomiaés afinal vehicle position(X;f,}/;f), were set to be in the middle
used for representation of the state profiles in each elemehthe road. The initial velocity was, = 25 km/h. Figures 8—
and the location of the collocation points are chosen as th& show the vehicle trajectory together with the most reieva
corresponding Radau points. The resulting NLP is solvestiates for all four models. Note that the vehicle is rearethe
internally using the numerical solver Ipopt [24], which is ariven. All models have similarities: The vehicle startsthwi



giving full engine torque while turning to allow for wider oze
taking. When entering the curve the vehicle starts to brattk w
both wheels, which it does approximately until reaching tt
half-way point. Furthermore, all models give rise to vedicl
slip. The trajectory plots show that the slip-e-, the angle ||
between the velocity vector and the longitudinal directio
of the vehicle—is significant, exceedi®y deg in the most
critical parts of the maneuver. The maneuvering achievirE |
this behavior is very similar to drifting techniques, whéehne
rear wheel driving/braking torque is used to control ther re
lateral tire force. The front wheels are only controlledhntihe
steering angle, utilizing counter steering if necessatyoAthe
qualitative slip behavior is congruent with the driving betor 10l
often seen when rally drivers perform similar maneuver
indicating that the obtained optimization results manage
replicate behavior utilized in reality. Furthermore, g@shows o S i e o ST T
that even a few-state single-track model using the frictic .. X m] Time [s]
ellipse for tire mOd.eImg manages_ FO cap'Fure fun.da.'me.nﬁé;. 8. Optimization result for friction ellipse model witkotropic behavior
and relevant behavior, even for minimum-time optimizatioith parameters as in column two in Table II. In the F,, and F, plots
oD sarameter sets in Table I, the final imdhe DICk Teciandies n tu v -raecioty pot Show e Sest angle each
. Second of the maneuver.
values are for the respective column: ~ 8.82, t; ~ 8.42,
ty ~ 8.80, andt; =~ 8.44. Hence, the objective functiony, ‘
deviates approximately.4 s when comparing all four model \\
configurations. Comparing the isotropic and nonisotropicim |
els, the deviation in final time between the friction ellips
model and the weighting functions model is less thai? s.

207
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40

A. Comparison of Isotropic Models

Studying the obtained results closer, we see that Figs._
and 9 only have minor differences, if any. This shoulcE *|
of course, come as no surprise since the two models
parametrized to be isotropic,.f. Figs. 3—4. This is a veri-
fication that the optimization tool is able to handle both ¢
these models, and also that two completely different moc
categories, parametrized to achieve equivalent resuitaoe 101
characteristics, give similar results for the optimal mares.
Figures 12 and 13 show the force trajectories as functioms of
andx, corresponding to Figs. 8 and 9. By inspection we no °
that thea and x trajectories, and consequently the resulting
tire force trajectory, vary more for the rear wheels, whish iFig. 9. Optimization result for weighting functions modelthvisotropic
caused by the vehicle being rear-wheel driven. Furtheriwheehavior with parameters as in column four in Table Il. Sarotation and
comparing the force curves for the rear wheel it is clear theglors as in Fig. 8.
the friction ellipse model seems to penalize combined slip
more throughout the turn. This can be explained by that the
lateral tire force decreases faster with increasing slijp far maximum yaw rate is larger for the weighting functions model
the friction ellipse than for the weighting functions madebr see Fig. 11, but the yaw rate when in the turn (between
example, when the longitudinal force approaches its maximu ~ 3.5—4.5 s) is smaller. Third, the weighting functions model
value, the lateral force tends to zero. For the corresp@glip  seldom uses the rear wheel for braking. Rather, it maximizes
ratio, the weighting functions model predicts a largerriite the braking force on the front wheel instead of distributing

Time [s]

force than the friction ellipse model does. braking force to both wheels. We believe that this behavior
i , ) stems from that the weighting functions model provide, in
B. Comparison of Nonisotropic Models addition to the low-slip solution, a large-slip alternativ

When investigating Figs. 10 and 11 we see that there are, does not penalize combined slip—for a given resulting
fundamental differences. First, the maximum steering @ngforce. The force trajectories in Figs. 14 and 15 verify this
0, in Fig. 11 is twice as large a& in Fig. 10. Second, the claim. These observations indicate that this behavior ideho
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dependent rather than parameter dependent.

Another interesting behavior can be seen when studying t
slip ratios,«. For the weighting functions model, a large pea  sof|
occurs when increasing the yaw rate at 2.3 s. At this stage,
when trying to turn quickly, it is desired to have a small tate
force at the rear, which, in the weighting functions modah ¢
be achieved by increasing the slip ratio as much as possible
the isotropic weighting functions model, this tendency akmo E 50
be seen. However, since the force decrease in the longédis.
direction is comparatively small, only a modest peak in th
slip ratio appears. Studying the friction ellipse modeldasl, 20]
no such peak in slip ratio can be seen. Also, the frictiopsdi
model as it is implemented here, will increase the latenaldo
if the slip ratio exceeds the maximum longitudinal force.
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C. Comparing the Isotropic and Nonisotropic Models

. L .
_When comparing the .frictioln ellipse model for the twc © xm ° A

different parameter setske., Figs. 8 and 10—we note a

couple of discrepancies. The peak bfs more accentuated Fig. 10. Optimization results for friction ellipse modelttviparameters as

in Fig. 10. Also, the longitudinal force, and thereby th& column three in Table Il. Same notation and colors as in Big

longitudinal velocity, is larger in magnitude. This is ditrted

to the larger longitudinal friction coefficient,,, see Table II. [ ‘ \\ r ]

0 NV s

This, in turn, is a result of the fitting procedure used, désct
in Sec. llI-C. The difference in steering angle can, mo: so
probably, also be deduced to this, since a larger veloc
will demand more aggressive steering to counteract thetar
forces. When comparing the force trajectories for the sar
models, Figs. 12 and 14, we see that they are very similar.
The weighting functions have more pronounced differenceE woll
First, 0 in Fig. 9 hardly exceed$ rad. Moreover, the yaw .
rate is larger in Fig. 11. Third, the forces differ signifitsn
Partly, the differences can be attributed to the differeimce  2of]
longitudinal friction coefficient. We believe that a cobtitor
is the significant differences between the maxima and minir
in Fig. 15. o1

40

©
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VI. CONCLUSIONS ANDFUTURE WORK

0 L L C I i i i i i
This paperfaum_ed at using v_ehlqle gnd tire rr_10dels frequen © xm ° 2% ey 0T 8
encountered in literature to give insight into improvedesaf
systems. We presented a comparison of vehicle behavior far. 11. Optimization results for weighting functions mbuéth parameters

minimum-time optimization of a hairpin maneuver wherés in column five in Table Il. Same notation and colors as in 8ig

different tire models were used. We exploited a singlektrac
model for vehicle modeling. Although the results differed i
some respects, the qualitative behavior was similar for i e
models. We showed that even a few-state single-track mo ,.5;3:3'::%.33:2&:@5 =
using the friction ellipse for tire modeling managed to capt -2~:~:~:.;:;::;3~;:;:-.~.~i;~..~..~.~:.~.-.;~
fundamental and relevant behavior. This implies that feufel = e -
optimization-based safety systems rather simple modeis i g <
suffice. However, the friction ellipse model and weightins ™
functions model showed some dissimilaritiesg, the braking .
behavior was different. This might have impact on modi *° - . ~
H H i H rad 05 08 d

choice, especially considering sa_fety systems such as gt@w | ey o [rad] wly o [rad]
controllers where the brakes typically are the actuators.

For the future we plan to do a similar investigation foFig. 12. 3D plot of force curve for friction ellipse model Witisotropic
different tires and surfaces, which provides insight inttimal  Pehavior corresponding to Fig. 8. Blue (front wheel) and cedves (rear

. " wheel) are the trajectories generated by optimization.

control of maneuvers under different road conditions. fent
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