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firstname.lastname@liu.se

Abstract—There is currently a strongly growing interest in
obtaining optimal control solutions for vehicle maneuvers, both
in order to understand optimal vehicle behavior and to devise
improved safety systems, either by direct deployment of thesolu-
tions or by including mimicked driving techniques of professional
drivers. However, it is nontrivial to find the right mix of mod els,
formulations, and optimization tools to get useful resultsfor the
above purposes. Here, a platform is developed based on a state-
of-the-art optimization tool together with adoption of existing
vehicle models, where especially the tire models are in focus. A
minimum-time formulation is chosen to the purpose of gaining
insight in at-the-limit maneuvers, with the overall aim of possibly
finding improved principles for future active safety systems.
We present optimal maneuvers for different tire models with
a common vehicle motion model, and the results are analyzed
and discussed. Our main result is that a few-state single-track
model combined with different tire models is able to replicate
the behavior of experienced drivers. Further, we show that the
different tire models give quantitatively different behavior in the
optimal control of the vehicle in the maneuver.

I. I NTRODUCTION

Optimization of vehicle trajectories can be motivated from
different perspectives. One objective is to develop improved
active safety systems for standard customer cars. The Elec-
tronic Stability Program (ESP) systems, see [1] and [2], of
today are still behind the maneuvering performance achievable
by professional race car drivers in critical situations, but the
vision for improvement is there, see [3]. A recent survey on
optimal control in automotive applications [4] points out:

Most often, the optimal control itself will be interest-
ing mainly insofar as it enables the discovery of the
best possible system performance. Occasionally, the
optimal control will provide a basis for the design
and operation of practical systems.

Further, the survey points out that finding the right balancebe-
tween models, correct formulations, and optimization methods
is nontrivial, and that the state-of-the-art today is hampered
by long simulation runs. The goal in this paper, regarding
methodology, is to develop and investigate a platform for
useful solutions to these problems.

It is a common observation that the criterion of time-
optimality in aggressive vehicle maneuvers, combined with
input and state constraints, often results in control signals
using the extremal cases of the input and state regions. It is
therefore crucial how,e.g., the tires are modeled outside their
normal range of operation.

Fig. 1. An example of a hairpin turn. Photo courtesy of RallySportLive.

The interaction between tire and road is complex, and differ-
ent tires have different characteristics. Even when only consid-
ering the longitudinal stiffness, the experimental valuesdiffer
considerably between tires, and the variability can typically be
20–100 %, see [5]. Further, in addition to the differences in
stiffness—i.e., the slope of the longitudinal force-slip curve—
there are also differences between the characteristic shape of
the curve at the maximum force, where the peak can be more
or less accentuated. This is illustrated for Pacejka’s Magic
Formula and the HSRI model in [5]. The complete tire model
capturing both longitudinal and lateral forces can thus be
expected to have large variability both in shape, parameters,
and parameter irregularity.

The control oriented goal of this paper is to find a formula-
tion that gives insight into improved safety systems;e.g., future
ESP systems performing closer to what the most experienced
drivers can do. To that end we study a time-optimal maneuver
in a hairpin turn, an interesting situation testing the limits
of maneuverability of a car in a certain situation. In [6]
we reported that simplified vehicle models identified from
experimental data managed to replicate the behavior of real
vehicles. However, this was based on less aggressive driving
situations, and not using optimization. Previous work in the
subject of optimal control of vehicles in certain time-critical
situations such as T-bone collisions and cornering can be found
in, e.g., [7], [8], [9]. In [10], [11], methods for constraint-
based trajectory planning for optimal maneuvers are presented.
Further, the papers [12], [13] discuss optimal control of over-



actuated vehicles, where similar optimization tools as those
used in the present paper are utilized.

This paper is outlined as follows: The problem description
and overall aim of the paper are discussed in Sec. II. Vehicle
and tire modeling and the specific models investigated in this
study are presented in Sec. III, followed by the formulation
and solution of the studied time-optimal maneuvering problem
in Sec. IV. Optimization results and a subsequent discussion
of the obtained results are provided in Sec. V. Finally, con-
clusions and aspects on future work are given in Sec. VI.

II. PROBLEM DESCRIPTION

The goal of the work presented in this paper is twofold. The
first goal is to find the time-optimal vehicle trajectory when
maneuvering through a hairpin turn, see Fig. 1 for an example,
with the vehicle being subject to various constraints.

Another aim of the study is to explore whether different
vehicle models yield fundamentally different solutions, not
only in the cost function but also in the internal behavior
of the vehicle. Hence, a part of the work is devoted to
investigating how the models differ. We consider differential-
algebraic models of the form

ẋ(t) = G(x(t), y(t), u(t)),

0 = h(x(t), y(t), u(t)),

where G(x(t), y(t), u(t)) and h(x(t), y(t), u(t)) are twice
continuously differentiable nonlinear functions of the vehicle
differential variablesx, algebraic variablesy, and control
inputs u. The models used are based on the same vehicle
model, but differ in the tire modeling aspects.

The motivation for the twofold goal is that, to the best of our
knowledge, most model comparisons in literature are based
on simulation rather than optimization. Since time-optimal
optimization problems tend to push the vehicle more to the
extremes than simulations do, it is plausible that different
conclusions about model behavior can be made from such an
analysis.

III. M ODELING

The vehicle dynamics modeling in this section incorporates
the vehicle motion modeling and the tire force modeling, with
emphasis on the latter. Further, calibration of the tire models
is discussed and a subsequent investigation of the qualitative
behavior of the models studied is presented.

A. Vehicle Modeling

As a basis for the vehicle dynamics model, a two-
dimensional single-track model, with two translational and
one rotational degrees-of-freedom, was used, see Fig. 2. The
motion equations are expressed by, see [14], [15],

v̇x − vyψ̇ =
1

m
(Fx,f cos(δ) + Fx,r − Fy,f sin(δ)), (1)

v̇y + vxψ̇ =
1

m
(Fy,f cos(δ) + Fy,r + Fx,f sin(δ)), (2)

Izψ̈ = lfFy,f cos(δ)− lrFy,r + lfFx,f sin(δ), (3)

δ
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Fig. 2. The single-track model considered in this paper.

TABLE I
VEHICLE MODEL PARAMETERS USED IN(1)–(10).

Notation Value Unit

lf 1.3 m
lr 1.5 m
m 2100 kg
Iz 3900 kgm2

Re 0.3 m
Rw 0.3 m
Iw 4.0 kgm2

g 9.82 ms−2

wherem is the vehicle mass,Iz is the vehicle inertia,ψ̇
is the yaw rate,δ is the steering wheel angle,vx,y are the
longitudinal and lateral velocities,lf,r are the distances from
center-of-gravity to the front and rear wheel base, andFx,y
are the longitudinal and lateral forces acting on the front and
rear wheels. The slip angles,αf,r, and slip ratios,κf,r, are
described by

αf = δ − arctan

(

vy + lf ψ̇

vx

)

, (4)

αr = − arctan

(

vy − lrψ̇

vx

)

, (5)

κf =
Reωf − vx,f

vx,f
, (6)

κr =
Reωr − vx,r

vx,r
, (7)

vx,f = vx cos(δ) + (vy + lf ψ̇) sin(δ), (8)

vx,r = vx, (9)

where Re is the effective wheel radius andωf,r are the
front and rear wheel angular velocities. The wheel dynamics,
necessary for slip ratio computation, is given by

Ti − Iwω̇i − Fx,iRw = 0 , i = f, r. (10)

Here,Ti is the driving/braking torque,Iw is the wheel inertia,
andRw is the loaded wheel radius. The numerical values for
the vehicle model parameters used in this study are provided
in Table I.

B. Tire Modeling

When developing a platform for investigation of optimal
maneuvers, it is of interest to be able to handle and compare



different tires, and thus to cope with different tire models.
We have considered two different model categories for tire
modeling, whose characteristics are described next.

The nominal tire forces—i.e., the forces under pure slip
conditions—are computed with the Magic Formula model
[16], given by

Fx0,i = µxFz,i sin(Cx,i arctan(Bx,iκi)), (11)

Fy0,i = µyFz,i sin(Cy,i arctan(By,iαi)), (12)

Fz,i = mg(l− li)/l, i = f, r. (13)

In (11)–(13),µx andµy are the friction coefficients,B and
C are model parameters,l = lf + lr, andg is the constant of
gravity .

Under combined slip conditions—i.e., both κ and α are
nonzero—the longitudinal and lateral tire forces will depend
on both slip quantities. How this coupling is described can
have immense effect on the vehicle dynamics. In an optimal
maneuver, the solution will use the best combination of
longitudinal and lateral force, and these forces are, of course,
coupled via the physics of the tire. In order to compare differ-
ent models, plotting of the resulting tire force is illustrative,
c.f. Figs. 3–6, to visualize the interaction between longitudinal
and lateral force.

Even though detailed experiments, like the ones in [5]
for longitudinal stiffness, are lacking for the complete
longitudinal-lateral tire interaction, there is a vast plethora of
characteristics, see [1], [16], [17], and [18]. We have chosen
two different tire models for our study, described below.

1) Friction Ellipse: A common way to model combined
slip is to use the friction ellipse, described by

Fy,i = Fy0,i

√

1−

(

Fx0,i
µxFz,i

)2

, (14)

whereFx is used as an input variable. However, we have opted
for using the driving/braking torques as input, see (10), since
this is a quantity that can be controlled in a physical setup of
a vehicle.

2) Weighting Functions:Another approach described in
[16] is to scale the nominal forces, (11)–(12), with weighting
functions,Gxα,i andGyκ,i, which depend onα and κ. The
relations in thex-direction are

Bxα,i = Bx1,i cos(arctan(Bx2,iκi)), (15)

Gxα,i = cos(Cxα,i arctan(Bxα,iαi)), (16)

Fx,i = Fx0,iGxα,i. (17)

The corresponding relations in they-direction are given by

Byκ,i = By1,i cos(arctan(By2,i(αi −By3,i))), (18)

Gyκ,i = cos(Cyκ,i arctan(Byκ,iκi)), (19)

Fy,i = Fy0,iGyκ,i. (20)

C. Calibrating Tire Models for Comparison

When comparing an optimal maneuver based on two differ-
ent tire models, it is not obvious how to calibrate the modelsto
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Fig. 3. Resultant tire forceFres for a friction ellipse model parametrized to
give isotropic behavior.

get comparable solutions. For example, in Fig. 3 and Fig. 6 we
show two different types of tire models. In order to equalize
these models in comparative studies, one way would be to
have the same average resultant force, whereas another way
would be to equalize the longitudinal stiffness. In this study,
the same parameters have been used for the nominal lateral
force; i.e., the lateral force characteristics are the same for all
models when considering pure lateral slip.

D. Qualitative Behavior of Tire Models

In Figs. 3–6 it is shown how the resulting force, defined by

Fres =
√

F 2

x,i + F 2

y,i, i = f, r,

for the above tire models varies over slip angle and slip ratio
with the parameters presented in Table II. Studying Figs. 3–6
gives a basis for discussion of the behavior of the tire models
in an optimal maneuver.

Figure 3 displays the friction ellipse model, and Fig. 4
shows the weighting functions model for an isotropic
parametrization. These are both considered isotropic in the
sense that they have the same properties in the lateral and
longitudinal directions. The most obvious difference in these
figures can be seen for large slip angles, where an increase in
the slip ratio will increase the resulting force for the friction
ellipse model and, on the contrary, decrease it for the model
based on weighting functions.

In contrast, considering the nonisotropic models, Figs. 5
and 6, different force characteristics are obtained in the
longitudinal and lateral directions. The model based on the
weighting functions is parametrized according to the Pacejka
model in [16], thus representing a realistic tire behavior.The
friction ellipse model also uses the Pacejka parameters in [16]
for the nominal tire forces. Hence, both of the nonisotropic
models will exhibit equivalent tire characteristics for pure
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Fig. 4. Resultant tire forceFres for a weighting functions model parametrized
to give isotropic behavior.
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Fig. 5. Resultant tire forceFres with a friction ellipse model with
experimental parameters from [16] (µx = 1.2, µy = 1.0).

slip conditions. Further, the characteristic peaks inFres—not
visible in the isotropic models—influence the behavior of the
tire force model significantly.

IV. OPTIMIZATION

Based on the dynamics described in the previous section,
the time-optimal maneuver for the hairpin turn is to be
determined. This is expressed as an optimization problem, and,
considering the physical setup of the problem, it is clear that
an optimal solution exists. The resulting optimization problem
is more challenging than thought at first sight, since the time-
optimality implies that the tire friction model operates onthe
boundary of its validity. Also, solving dynamic optimization
problems where the final time is free, is more demanding than
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Fig. 6. Resultant tire forceFres for a weighting functions model with the
same friction coefficients as in Fig. 5.

TABLE II
T IRE MODEL PARAMETERS FOR FRICTION ELLIPSE WITH ISOTROPIC

BEHAVIOR (FE-ISO), NONISOTROPIC BEHAVIOR(FE-NONISO), AND
WEIGHTING FUNCTIONS WITH ISOTROPIC BEHAVIOR(WF-ISO),

NONISOTROPIC BEHAVIOR(WF-NONISO).

Parameter FE-Iso FE-Noniso WF-Iso WF-Noniso

µx 1.0 1.2 1.0 1.2
µy 1.0 1.0 1.0 1.0

Cα,f 1.09e5 1.09e5 1.09e5 1.09e5
Cα,r 1.02e5 1.02e5 1.02e5 1.02e5
Cκ,f 1.09e5 2.38e5 1.09e5 2.38e5
Cκ,r 1.02e5 2.06e5 1.02e5 2.06e5
Cx 1.3 1.7 1.3 1.7
Cy 1.3 1.3 1.3 1.3

Bx1,f - - 8.55 11.23
Bx2,f - - 8.33 10.80
Cxα,f - - 1.03 1.14
By1,f - - 8.63 6.37
By2,f - - 8.35 2.64
By3,f - - 0 0
Cyκ,f - - 1.03 1.03
Bx1,r - - 9.28 11.71
Bx2,r - - 9.04 11.61
Cxa,r - - 1.03 1.14
By1,r - - 9.38 5.88
By2,r - - 9.08 2.98
By3,r - - 0 0
Cyκ,r - - 1.02 1.08

a problem with fixed end time. Further, we have found that
numerical issues easily arise and that the optimization does
not converge without proper initialization. In order to make
the convergence more robust from a numerical point of view,
scaling of the optimization variables is essential.

A. Formulation of Optimization Problem

Consider the time horizont ∈ [0, tf ], where tf is the
free final time to be determined as part of the solution
procedure. Express the vehicle dynamics (1)–(3) and (10) as
ẋ(t) = G(x, y, u), wherex are the differential variables andy



are the algebraic variables. The wheel driving/braking torques
T =

(

Tf Tr
)

and the steering angleδ are considered as the
input variables,u = (T δ)T. Further, express (4)–(9), (11)–
(13), and (14) or (15)–(20), depending on the friction model
considered, as0 = h(x, y, u). The dynamic optimization
problem to be solved can then be stated as follows:

minimize tf (21)

subject to Ti,min ≤ Ti ≤ Ti,max, i = f, r (22)

|δ| ≤ δmax, |δ̇| ≤ δ̇max (23)

|Fx,i| ≤ Fx,i,max, i = f, r (24)

|Fy,i| ≤ Fy,i,max, i = f, r (25)
(

Xp

Ri
1

)6

+

(

Yp
Ri

2

)6

≥ 1 (26)

(

Xp

Ro
1

)6

+

(

Yp
Ro

2

)6

≤ 1 (27)

x(0) = x0, y(0) = y0 (28)

x(tf ) = xtf , y(tf ) = ytf (29)

ẋ(t) = G(x, y, u), 0 = h(x, y, u), (30)

where (x0, y0) are the initial conditions for the differen-
tial/algebraic variables,(xtf , ytf ) are the desired values at
the final time t = tf , and (Xp, Yp) is the position of the
center-of-gravity of the vehicle. Note that the path constraint
is formulated using super-ellipses and the shape of the pathis
determined by the radiiRi1, Ri2, Ro1, andRo2.

B. Solution of Optimization Problem

Because of the complex nature of the nonlinear and non-
convex optimization problem in (21)–(30), analytical solutions
are intractable. Instead, we utilize numerical methods based
on simultaneous collocation [19]. Direct collocation is used,
where all state and input variables, originally described in
continuous time, are discretized prior to the optimization. This
results in a discrete-time nonlinear program (NLP). The collo-
cation procedure transforms the original infinite-dimensional
problem to a finite-dimensional problem with a large, however
finite, number of optimization variables, on which numerical
optimization methods are applied.

C. Implementation and Solution

The vehicle and tire dynamics are implemented using the
modeling language Modelica [20]. Utilizing Optimica [21],
which is an extension of Modelica for high-level description
of optimization problems based on Modelica models, the
implementation of the vehicle and tire dynamics described in
Sec. III and the optimal control problem is straightforward.

The collocation procedure and solution of the optimization
problem are performed using the open-source software plat-
form JModelica.org [22], [23]. In JModelica.org, orthogonal
collocation is implemented, where Lagrange polynomials are
used for representation of the state profiles in each element
and the location of the collocation points are chosen as the
corresponding Radau points. The resulting NLP is solved
internally using the numerical solver Ipopt [24], which is a
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Fig. 7. Initialization procedure for solving the time-optimal hairpin turn
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solver based on interior-point methods opted for large, but
sparse, optimization problems.

D. Initialization Procedure

Robust convergence to a solution of the NLP in Ipopt relies
on proper initialization. Two approaches are available to this
purpose: Simulation of an initial guess using driver modelsand
division of the problem into smaller subproblems, respectively.
In this paper, the latter approach is utilized. Consequently,
the hairpin turn problem is solved in four steps, see Fig. 7.
The results from the solution of each subproblem is used
for initialization of the subsequent problem. Hence, the final
optimal maneuver is determined stepwise.

V. RESULTS

For the evaluations we set the maximum allowed wheel
angle, δ, and wheel-angle change rate,δ̇, to 30 deg and
60 deg/s, respectively, which are reasonable parameters, both
seen from physical and driver limitations. Also, constraints on
the driving/braking torques and tire forces were introduced:

Tf ≤ 0, (31)

Tf ≥ −µxFz,fRw, (32)

|Tr| ≤ µxFz,rRw, (33)

|Fx,i| ≤ µxFz,i, i = f, r, (34)

|Fy,i| ≤ µyFz,i, i = f, r. (35)

We let the road be5 m wide. Further, the start,(X0

p , Y
0

p ), and
final vehicle position,(Xtf

p , Y
tf
p ), were set to be in the middle

of the road. The initial velocity wasv0 = 25 km/h. Figures 8–
11 show the vehicle trajectory together with the most relevant
states for all four models. Note that the vehicle is rear-wheel
driven. All models have similarities: The vehicle starts with



giving full engine torque while turning to allow for wider curve
taking. When entering the curve the vehicle starts to break with
both wheels, which it does approximately until reaching the
half-way point. Furthermore, all models give rise to vehicle
slip. The trajectory plots show that the slip—i.e., the angle
between the velocity vector and the longitudinal direction
of the vehicle—is significant, exceeding30 deg in the most
critical parts of the maneuver. The maneuvering achieving
this behavior is very similar to drifting techniques, wherethe
rear wheel driving/braking torque is used to control the rear
lateral tire force. The front wheels are only controlled with the
steering angle, utilizing counter steering if necessary. Also, the
qualitative slip behavior is congruent with the driving behavior
often seen when rally drivers perform similar maneuvers,
indicating that the obtained optimization results manage to
replicate behavior utilized in reality. Furthermore, it also shows
that even a few-state single-track model using the friction
ellipse for tire modeling manages to capture fundamental
and relevant behavior, even for minimum-time optimization
problems.

For the four parameter sets in Table II, the final time
values are for the respective column:tf ≈ 8.82, tf ≈ 8.42,
tf ≈ 8.80, and tf ≈ 8.44. Hence, the objective function,tf ,
deviates approximately0.4 s when comparing all four model
configurations. Comparing the isotropic and nonisotropic mod-
els, the deviation in final time between the friction ellipse
model and the weighting functions model is less than0.02 s.

A. Comparison of Isotropic Models

Studying the obtained results closer, we see that Figs. 8
and 9 only have minor differences, if any. This should,
of course, come as no surprise since the two models are
parametrized to be isotropic,c.f. Figs. 3–4. This is a veri-
fication that the optimization tool is able to handle both of
these models, and also that two completely different model
categories, parametrized to achieve equivalent resultantforce
characteristics, give similar results for the optimal maneuver.
Figures 12 and 13 show the force trajectories as functions ofα
andκ, corresponding to Figs. 8 and 9. By inspection we note
that theα and κ trajectories, and consequently the resulting
tire force trajectory, vary more for the rear wheels, which is
caused by the vehicle being rear-wheel driven. Further, when
comparing the force curves for the rear wheel it is clear that
the friction ellipse model seems to penalize combined slip
more throughout the turn. This can be explained by that the
lateral tire force decreases faster with increasing slip ratio for
the friction ellipse than for the weighting functions model. For
example, when the longitudinal force approaches its maximum
value, the lateral force tends to zero. For the corresponding slip
ratio, the weighting functions model predicts a larger lateral
force than the friction ellipse model does.

B. Comparison of Nonisotropic Models

When investigating Figs. 10 and 11 we see that there are
fundamental differences. First, the maximum steering angle,
δ, in Fig. 11 is twice as large asδ in Fig. 10. Second, the
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Fig. 9. Optimization result for weighting functions model with isotropic
behavior with parameters as in column four in Table II. Same notation and
colors as in Fig. 8.

maximum yaw rate is larger for the weighting functions model,
see Fig. 11, but the yaw rate when in the turn (between
t ≈ 3.5–4.5 s) is smaller. Third, the weighting functions model
seldom uses the rear wheel for braking. Rather, it maximizes
the braking force on the front wheel instead of distributingthe
braking force to both wheels. We believe that this behavior
stems from that the weighting functions model provide, in
addition to the low-slip solution, a large-slip alternative—
i.e., does not penalize combined slip—for a given resulting
force. The force trajectories in Figs. 14 and 15 verify this
claim. These observations indicate that this behavior is model



dependent rather than parameter dependent.
Another interesting behavior can be seen when studying the

slip ratios,κ. For the weighting functions model, a large peak
occurs when increasing the yaw rate att ≈ 2.3 s. At this stage,
when trying to turn quickly, it is desired to have a small lateral
force at the rear, which, in the weighting functions model, can
be achieved by increasing the slip ratio as much as possible.In
the isotropic weighting functions model, this tendency canalso
be seen. However, since the force decrease in the longitudinal
direction is comparatively small, only a modest peak in the
slip ratio appears. Studying the friction ellipse model instead,
no such peak in slip ratio can be seen. Also, the friction ellipse
model as it is implemented here, will increase the lateral force
if the slip ratio exceeds the maximum longitudinal force.

C. Comparing the Isotropic and Nonisotropic Models

When comparing the friction ellipse model for the two
different parameter sets—i.e., Figs. 8 and 10—we note a
couple of discrepancies. The peak ofδ is more accentuated
in Fig. 10. Also, the longitudinal force, and thereby the
longitudinal velocity, is larger in magnitude. This is attributed
to the larger longitudinal friction coefficient,µx, see Table II.
This, in turn, is a result of the fitting procedure used, described
in Sec. III-C. The difference in steering angle can, most
probably, also be deduced to this, since a larger velocity
will demand more aggressive steering to counteract the larger
forces. When comparing the force trajectories for the same
models, Figs. 12 and 14, we see that they are very similar.

The weighting functions have more pronounced differences:
First, δ in Fig. 9 hardly exceeds0 rad. Moreover, the yaw
rate is larger in Fig. 11. Third, the forces differ significantly.
Partly, the differences can be attributed to the differencein
longitudinal friction coefficient. We believe that a contributor
is the significant differences between the maxima and minima
in Fig. 15.

VI. CONCLUSIONS ANDFUTURE WORK

This paper aimed at using vehicle and tire models frequently
encountered in literature to give insight into improved safety
systems. We presented a comparison of vehicle behavior for
minimum-time optimization of a hairpin maneuver, where
different tire models were used. We exploited a single-track
model for vehicle modeling. Although the results differed in
some respects, the qualitative behavior was similar for all
models. We showed that even a few-state single-track model
using the friction ellipse for tire modeling managed to capture
fundamental and relevant behavior. This implies that for future
optimization-based safety systems rather simple models may
suffice. However, the friction ellipse model and weighting
functions model showed some dissimilarities;e.g., the braking
behavior was different. This might have impact on model
choice, especially considering safety systems such as yaw rate
controllers where the brakes typically are the actuators.

For the future we plan to do a similar investigation for
different tires and surfaces, which provides insight into optimal
control of maneuvers under different road conditions. Further,
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Fig. 10. Optimization results for friction ellipse model with parameters as
in column three in Table II. Same notation and colors as in Fig. 8.
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Fig. 11. Optimization results for weighting functions model with parameters
as in column five in Table II. Same notation and colors as in Fig. 8.
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Fig. 12. 3D plot of force curve for friction ellipse model with isotropic
behavior corresponding to Fig. 8. Blue (front wheel) and redcurves (rear
wheel) are the trajectories generated by optimization.
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Fig. 13. 3D plot of force curve for weighting functions modelwith isotropic
parameters corresponding to Fig. 9.
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Fig. 14. 3D plot of force curve for friction ellipse model with parameters
corresponding to Fig. 10.

investigating optimal path tracking is a natural extension
of the work presented in this paper; in this context other
optimization criteria than time-optimality, such as deviation
from the specified path or energy consumption, are of interest.
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ous strategies for dynamic process optimization,”Chemical Engineering
Science, vol. 57, pp. 575–593, 2002.

[20] Modelica Association, 2012, URL: http://www.modelica.org.
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